
20S U P P L E M E N T  2  T O  C H A P T E R

Regenerative Method 
of Statistical Analysis

The statistical analysis of a simulation run involves using the output to obtain both a
point estimate and confidence interval of some steady-state measure (or measures) of

performance of the system. (For example, one such measure for a queueing system would
be the mean of the steady-state distribution of waiting times for the customers.) To do this
analysis, the simulation run can be viewed as a statistical experiment that is generating a
series of sample observations of the measure. The question is how to use these sample
observations to compute the point estimate and confidence interval.

Traditional Methods and Their Shortcomings

The most straightforward approach would be to use standard statistical procedures to com-
pute these quantities from the observations. However, there are two special characteristics
of the observations from a simulation run that require some modification of this approach.

One characteristic is that the system is not in a steady-state condition when the sim-
ulation run begins, so the initial observations are not random observations from the un-
derlying probability distribution for the steady-state measure of performance. The tradi-
tional approach to circumventing this difficulty is to not start collecting data until it is
believed that the simulated system has essentially reached a steady-state condition.
Unfortunately, it is difficult to estimate just how long this warm-up period needs to be.
Furthermore, available analytical results suggest that a surprisingly long period is required,
so that a great deal of unproductive computer time must be expended.

The second special characteristic of a simulated experiment is that its observations
are likely to be highly correlated. This is the case, for example, for the waiting times of
successive customers in a queueing system. On the other hand, standard statistical proce-
dures for computing the confidence interval for some measure of performance assume that
the sample observations are statistically independent random observations from the un-
derlying probability distribution for the measure.

One traditional method of circumventing this difficulty is to execute a series of com-
pletely separate and independent simulation runs of equal length and to use the average
measure of performance for each run (excluding the initial warm-up period) as an indi-
vidual observation. The main disadvantage is that each run requires an initial warm-up
period for approaching a steady-state condition, so that much of the simulation time is
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unproductive. The second traditional method eliminates this disadvantage by making the
runs consecutively, using the ending condition of one run as the steady-state starting con-
dition for the next run. In other words, one continuous overall simulation run (except for
the one initial warm-up period) is divided for bookkeeping purposes into a series of equal
portions (referred to as batches). The average measure of performance for each batch is
then treated as an individual observation. The disadvantage of this method is that it does
not eliminate the correlation between observations entirely, even though it may reduce it
considerably by making the portions sufficiently long.

The Regenerative Method Approach

We now turn to an innovative statistical approach that is specially designed to eliminate
the shortcomings of the traditional methods described above. (This is the approach used
by the Queueing Simulator to obtain its point estimates and confidence intervals.)

The basic concept underlying this approach is that for many systems a simulation run
can be divided into a series of cycles such that the evolution of the system in a cycle is
a probabilistic replica of the evolution in any other cycle. Thus, if we calculate an ap-
propriate measure of the length of the cycle along with some statistic to summarize the
behavior of interest within each cycle, these statistics for the respective cycles constitute
a series of independent and identically distributed observations that can be analyzed by
standard statistical procedures. Because the system keeps going through these indepen-
dent and identically distributed cycles regardless of whether it is in a steady-state condi-
tion, these observations are directly applicable from the outset for estimating the steady-
state behavior of the system.

For cycles to possess these properties, they must each begin at the same regenera-
tion point, i.e., at the point where the system probabilistically restarts and can proceed
without any knowledge of its past history. The system can be viewed as regenerating it-
self at this point in the sense that the probabilistic structure of the future behavior of the
system depends upon being at this point and not on anything that happened previously.
(This property is the Markovian property

cycle ends when the system again
 reaches the regen eration point (when the next cycle begins). Thus, the length of a cycle
is the elapsed time between consecutive occurrences of the regeneration point. This elap-

 sed time is a random variable that depends upon the evolution of the system.
When next-event incrementing is used, a typical regeneration point is a point at which

an event has just occurred but no future events have yet been scheduled. Thus, nothing
needs to be known about the history of previous schedulings, and the simulation can start
from scratch in scheduling future events. When fixed-time incrementing is used, a regen-
eration point is a point at which the probabilities of possible events occurring during the
next unit of time do not depend upon when any past events occurred, only on the current
state of the system.

Not every system possesses regeneration points, so this regenerative method of col-
lecting data cannot always be used. Furthermore, even when there are regeneration points,
the one chosen to define the beginning and ending points of the cycles must recur fre-
quently enough that a substantial number of cycles will be obtained with a reasonable
amount of computer time.1 Thus, some care must be taken to choose a suitable regener-
ation point.

1The basic theoretical requirements for the method are that the expected cycle length be finite and that the num-
ber of cycles would go to infinity if the system continued operating indefinitely. For details, see P. W. Glynn
and D. L. Iglehart, “Conditions for the Applicability of the Regenerative Method,” Management Science,
39: 1108–1111, 1993.
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20S2-10 SUPPLEMENT 2 TO CHAPTER 20 REGENERATIVE METHOD

Perhaps the most important application of the regenerative method to date has been
the simulation of queueing systems, including queueing networks (see Sec. 17.9) such as
the ones that arise in computer modeling.2

Example. Suppose that information needs to be obtained about the steady-state behavior
of a system that can be formulated as a single-server queueing system (see Sec. 17.2).
However, both the interarrival and service times have a discrete uniform distribution with a
probability of �

1
1
0
� of the values of 6, 8, . . . , 24 and the values of 1, 3, . . . , 19, respectively.

Because analytical results are not available, simulation with next-event incrementing is to
be used to obtain the desired results.

Except for the distributions involved, the general approach is the same as that de-
scribed in Sec. 20.1 for Example 2. In particular, the building blocks of the simulation
model are the same as specified there, including defining the state of the system as the
number of customers in the system. Suppose that one-digit random integer numbers are
used to generate the random observations from the distributions, as shown in Table 1.
Beginning the simulation run with no customers in the system then yields the results sum-
marized in Table 2 and Fig. 1, where the random numbers are obtained sequentially as
needed from the tenth row of Table 20.3.3 (Note in Table 2 that, at time 98, the arrival of

2See, e.g., D. L. Iglehart and G. S. Shedler, Regenerative Simulation of Passage Times in Networks of Queues, Lecture
Notes in Control and Information Sciences, vol. 4, Springer-Verlag, New York, 1980. For another exposition that
emphasizes applications to computer system modeling, see G. S. Shedler, Regeneration and Networks of Queues,
Springer-Verlag, New York, 1987. For a general introduction to the regenerative method that describes how it can
also be applied to more complicated kinds of problems than those considered here, see M. A. Crane and A. J.
Lemoine, An Introduction to the Regenerative Method for Simulation Analysis, Springer-Verlag, Berlin, 1977.
3When both an interarrival time and a service time need to be generated at the same time, the interarrival time
is obtained first.

� TABLE 1 Correspondence between random 
numbers and random observations 
for the queueing system example
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Outcome of the simulation
run for the queueing system
example.

hil61217_ch20_supplement2.qxd  5/14/04  11:02  Page 20S-10



SUPPLEMENT 2 TO CHAPTER 20 REGENERATIVE METHOD                         20S2-11

one customer and the service completion for another customer occur simultaneously, so
these canceling events are not visible in Fig. 1.)

For this system, one regeneration point is where an arrival occurs with no previous cus-
tomers left. At this point, the process probabilistically restarts, so the probabilistic structure
of when future arrivals and service completions will occur is completely independent of any
previous history. The only relevant information is that the system has just entered the special
state of having had no customers and having the time until the next arrival reach zero. The
simulation run would not previously have scheduled any future events but would now gen-
erate both the next interarrival time and the service time for the customer that just arrived.

The only other regeneration points for this system are where an arrival and a service
completion occur simultaneously, with a prespecified number of customers in the system.
However, the regeneration point described in the preceding paragraph occurs much more
frequently and thus is a better choice for defining a cycle. With this selection, the first
five complete cycles of the simulation run are those shown in Fig. 1. (In most cases, you
should have a considerably larger number of cycles in the entire simulation run in order
to have sufficient precision in the statistical analysis.)

Various types of information about the steady-state behavior of the system can be ob-
tained from this simulation run, including point estimates and confidence intervals for the
expected number of customers in the system, the expected waiting time, and so on. In
each case, it is necessary to use only the corresponding statistics from the respective cy-
cles and the lengths of the cycles. We shall first present the general statistical expressions
for the regenerative method and then apply them to this example.

� TABLE 2 Simulation run for the queueing system example

Number
of Random Next Next Service

Time Customers Number Arrival Completion

0 0 9, 0 24 —
24 1 2, 6 34 37
34 2 4, 0 48 37
37 1 6, 0 48 50
48 2 4, 0 62 50
50 1 1, 0 62 53
53 0 — 62 —
62 1 1, 1 70 65
65 0 — 70 —
70 1 3, 9 82 89
82 2 1, 0 90 89
89 1 4, 0 90 98
90 2 1, 0 98 98
98 2 1, 5 106 109

106 3 6, 0 124 109
109 2 2, 0 124 114
114 1 1, 0 124 117
117 0 — 124 —
124 1 5, 6 140 137
137 0 — 140 —
140 1 9, 3 164 147
147 0 — 164 —
164 1
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20S2-12 SUPPLEMENT 2 TO CHAPTER 20 REGENERATIVE METHOD

Statistical Formulas

Formally speaking, the statistical problem for the regenerative method is to obtain esti-
mates of the expected value of some random variable X of interest. This estimate is to be
obtained by calculating a statistic Y for each cycle and an appropriate measure Z of the
size of the cycle such that

E(X) � �
E
E

(
(
Y
Z

)
)

�.

(The regenerative property ensures that such a ratio formula holds for many steady-state
random variables X.) Thus, if n complete cycles are generated during the simulation run,
the data gathered are Y1, Y2, . . . , Yn and Z1, Z2, . . . , Zn for the respective cycles.

By letting Y� and Z�, respectively, denote the sample averages for these two sets of data,
the corresponding point estimate of E(X) would be obtained from the formula

Est {E(X)} � .

To obtain a confidence interval for E(X), we must first calculate several quantities
from the data. These quantities include the sample variances
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and the combined sample covariance
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Also let

s2 � s2
11 � 2 s2

12 � � �
2

s2
22.

Finally, let � be the constant such that 1 � 2� is the desired confidence coefficient for the
confidence interval, and look up K� in Table A5.1 (see App. 5) for the normal distribu-
tion. If n is not too small, an asymptotic confidence interval for E(X) is then given by

� � E(X) � � ;

i.e., the probability is approximately 1 � 2� that the endpoints of an interval generated
in this way will surround the actual value of E(X).

Application of the Statistical Formulas to the Example

Consider first how to estimate the expected waiting time for a customer before beginning
service (denoted by Wq in Chap. 17). Thus, the random variable X now represents a cus-
tomer’s waiting time excluding service, so that

Wq � E(X).
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The corresponding information gathered during the simulation run is the actual waiting
time (excluding service) incurred by the respective customers. Therefore, for each cycle,
the summary statistic Y is the sum of the waiting times, and the size of the cycle Z is the
number of customers, so that

Wq � �
E
E

(
(
Y
Z)

)
�.

Refer to Fig. 1 and Table 2; for cycle 1, a total of three customers are processed, so
Z1 � 3. The first customer incurs no waiting before beginning service, the second waits
3 units of time (from 34 to 37), and the third waits 2 units of time (from 48 to 50), so
Y1 � 5. We proceed similarly for the other cycles. The data for the problem are

Y1 � 5, Z1 � 3
Y2 � 0, Z2 � 1
Y3 � 34, Z3 � 5
Y4 � 0, Z4 � 1
Y5 � 0, Z5 � 1
Y� � 7.8, Z� � 2.2.

Therefore, the point estimate of Wq is

Est {Wq} � � �
7
2
.
.
8
2
� � 3�

1
6
1
�.

To obtain a 95 percent confidence interval for Wq, the preceding formulas are first
used to calculate

s2
11 � 219.20, s2

22 � 3.20, s2
12 � 24.80, s � 9.14.

Because 1 � 2� � 0.95, then � � 0.025, so that K� � 1.96 from Table A5.1. The result-
ing confidence interval is

�0.09 � Wq � 7.19;

or

Wq � 7.19.

The reason that this confidence interval is so wide (even including impossible neg-
ative values) is that the number of sample observations (cycles), n � 5, is so small. Note
in the general formula that the width of the confidence interval is inversely proportional
to the square root of n, so that, e.g., quadrupling n reduces the width by half (assum-
ing no change in s or Z�). Given preliminary values of s and Z� from a short preliminary
simulation run (such as the run in Table 2), this relationship makes it possible to esti-
mate in advance the width of the confidence interval that would result from any given
choice of n for the full simulation run. The final choice of n can then be made based
on the trade-off between computer time and the precision of the statistical analysis.

Now suppose that this simulation run is to be used to estimate P0, the probability of
having no customers in the system. (Because �/� is the utilization factor for the server in
a single-server queueing system, the theoretical value is known to be P0 � 1 � �/� �
1 � �

1
1
5
�/�

1
1
0
� � �

1
3

�.) The corresponding information obtained during the simulation run is the
fraction of time during which the system is empty. Therefore, the summary statistic Y for
each cycle is the total time during which no customers are present, and the size Z is the
length of the cycle, so that

P0 � �
E
E

(
(
Y
Z

)
)

�.

Y�
�
Z�
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20S2-14 SUPPLEMENT 2 TO CHAPTER 20 REGENERATIVE METHOD

The length of cycle 1 is 38 (from 24 to 62), so that Z1 � 38. During this time, the
system is empty from 53 to 62, so that Y1 � 9. Proceeding in this manner for the other
cycles, we obtain the following data for the problem:

Y1 � 9, Z1 � 38
Y2 � 5, Z2 � 8
Y3 � 7, Z3 � 54
Y4 � 3, Z4 � 16
Y5 � 17, Z5 � 24
Y� � 8.2, Z� � 28.

Thus, the point estimate of P0 is

Est {P0} � �
8
2
.
8
2
� � 0.293.

By calculating

s2
11 � 29.20, s2

22 � 334, s2
12 � 17, s � 6.92,

a 95 percent confidence interval for P0 is found to be

0.076 � P0 � 0.510.

(The wide range of this interval indicates that a much longer simulation run would be
needed to obtain a relatively precise estimate of P0.)

If we redefine Y appropriately, the same approach also can be used to estimate other
probabilities involving the number of customers in the system. However, because this num-
ber never exceeded 3 during this simulation run, a much longer run will be needed if the
probability involves larger numbers.

The other basic expected values of queueing theory defined in Sec. 17.2 (W, Lq, and
L) can be estimated from the estimate of Wq by using the relationships among these four
expected values given near the end of Sec. 17.2. However, the other expected values can
also be estimated directly from the results of the simulation run. For example, because
the expected number of customers waiting to be served is

Lq � �
�

n�2
(n � 1)Pn,

it can be estimated by defining

Y � �
�

n�2
(n � 1)Tn,

where Tn is the total time that exactly n customers are in the system during the cycle.
(This definition of Y actually is equivalent to the definition used for estimating Wq.) In
this case, Z is defined as it would be for estimating any Pn, namely, the length of the cy-
cle. The resulting point estimate of Lq then turns out to be simply the point estimate of
Wq multiplied by the actual average arrival rate for the complete cycles observed.

It is also possible to estimate higher moments of these probability distributions by re-
defining Y accordingly. For example, the second moment about the origin of the number
of customers waiting to be served Nq

E(Nq
2) � �

�

n�2
(n � 1)2Pn
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can be estimated by redefining

Y � �
�

n�2
(n � 1)2Tn.

This point estimate, along with the point estimate of Lq (the first moment of Nq) just de-
scribed, can then be used to estimate the variance of Nq. Specifically, because of the gen-
eral relationship between variance and moments, this variance is

Var (Nq) � E(Nq
2) � Lq

2.

Therefore, its point estimate is obtained by substituting in the point estimates of the quan-
tities on the right-hand side of this relationship.

Finally, we should mention that it was unnecessary to generate the first interarrival
time (24) for the simulation run summarized in Table 2 and Fig. 1, because this time
played no role in the statistical analysis. It is more efficient with the regenerative method
just to start the run at the regeneration point.

20S2-1. A certain single-server system has been simulated, with
the following sequence of waiting times before service for the re-
spective customers. Use the regenerative method to obtain a point
estimate and 90 percent confidence interval for the steady-state ex-
pected waiting time before service.
(a) 0, 5, 4, 0, 2, 0, 3, 1, 6, 0
(b) 0, 3, 2, 0, 3, 1, 5, 0, 0, 2, 4, 0, 3, 5, 2, 0

20S2-2. Consider the queueing system example presented in this
supplement for the regenerative method. Explain why the point
where a service completion occurs with no other customers left is
not a regeneration point.

20S2-3. Reconsider Prob. 20.6-3. You now wish to begin the analy-
sis by performing a short simulation by hand and then applying
the regenerative method of statistical analysis when possible.
R (a) Starting with four new relays, simulate the operation of the

two alternative policies for 5,000 hours of simulated time.
Obtain the needed uniform random numbers as instructed at
the beginning of the Problems section for Chap. 20.

(b) Use the data from part (a) to make a preliminary comparison
of the two alternatives on a cost basis.

(c) For the proposed policy, describe an appropriate regeneration
point for defining cycles that will permit applying the regen-
erative method of statistical analysis. Explain why the regen-
erative method cannot be applied to the current policy.

(d) For the proposed policy, use the regenerative method to obtain a
point estimate and 95 percent confidence interval for the steady-
state expected cost per hour from the data obtained in part (a).

(e) Write a computer simulation program for the two alternative
policies. Then repeat parts (a), (b), and (d ) on the computer,
with 100 cycles for the proposed policy and 55,000 hours of

simulated time (including a warm-up period of 5,000 hours)
for the current policy.

20S2-4. One of the main lessons of queueing theory (Chap. 17) is
that the amount of variability in the service times and interarrival
times has a substantial impact on the measures of performance of
the queueing system. Significantly decreasing variability helps
considerably.

This phenomenon is well illustrated by the M/G/1 queueing
model presented at the beginning of Sec. 17.7. For this model, the
four fundamental measures of performance (L, Lq, W, and Wq) are
expressed directly in terms of the variance of service times (�2), so
we can see immediately what the impact of decreasing �2 would be.

Consider an M/G/1 queueing system with mean arrival rate 
� � 0.8 and mean service rate � � 1, so the utilization factor is 
� � �/� � 0.8.
Q (a) Use the Queueing Simulator to execute a simulation run

with 10,000 customer arrivals for each of the following
cases: (i) � � 1 (corresponds to an exponential distribu-
tion of service times), (ii) � � 0.5 (corresponds to an
Erlang distribution of service times with shape parameter
k � 4), and (iii) � � 0 (constant service times). Using the
point estimates of Lq obtained, calculate the ratio of Lq for
case (ii) to Lq for case (i). Also calculate the ratio of Lq

for case (iii) to Lq for case (i).
(b) For each of the three cases considered in part (a), use the for-

mulas given in Sec. 17.7 to compute the exact values of L, Lq,
W, and Wq. Compare these exact values to the point estimates
and 95 percent confidence intervals obtained in part (a). Iden-
tify any exact values that fall outside the 95 percent confidence
interval. Also calculate the exact values of the ratios requested
in part (a).

� PROBLEMS
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20S2-5. Follow the instructions of part (a) of Prob. 20S2-4 for an
M/G/2 queueing system (two servers), with � � 1.6 and � � 1 [so
� � �/(2�) � 0.8] and with �2 still being the variance of service
times.

20S2-6. Reconsider Prob. 20S2-4. For the single-server queueing
system under consideration, suppose now that service times defi-
nitely have an exponential distribution. However, it now is possible

to reduce the variability of interarrival times, so we want to ex-
plore the impact of doing so.

Assume now that � � 1 and � � 1.25, so � � 0.8. Let �2 now
denote the variance of interarrival times.

Follow the instructions of Prob. 20S2-4a, where the distribu-
tions for the three cases now are for interarrival times instead of
service times.
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