Contents

Preface ix
About the Authors xix

chapter

Introduction to Earth Science 3

- 1.1 Earth Science and the Earth System 4Your Introduction to Earth Science 6
- 1.2 The Scope of (Earth) Science 7
 Earth System Basics 7
 Science and Discovery 8
 Tools Used by Earth Scientists 9
- 1.3 Doing Science 10

 From Observation to Hypothesis 10

 Inductive and Deductive Reasoning 10

 From Hypothesis to Theory 11

 The Characteristics of Good Science 12

 Science in Full View: The Hutchinson
 Gas Explosions 13

 An Example of Good Science:
 The Alvarez Hypothesis 14

 Limitations of Science 15

 The Characteristics of Bad Science 15

 An Example of Bad Science: Prediction of a
 Midcontinent Earthquake 16
- 1.4 Science and Society 16
 The Role of Earth Science 17
 Protecting Against Natural Hazards 17
 Finding and Sustaining Earth's Resources 18
 Protecting the Health of the Environment 19
 Ensuring the Future of Human Life 20
 The Anthropocene: A New Time on Earth? 21
 THE BIG PICTURE 22

chapter 2 Earth in Space 25

- 2.1 Old Ideas, New Ideas 26
- 2.2 Origin of the Universe 28Determining the Age and Size of the Universe 28The Big Bang Theory 30

- 2.3 Stars and Planets 31

 How Stars Formed 31

 How Planets Formed 34
- 2.4 Our Solar System 34
 Characteristics of the Sun 34
 Eight, Nine, or Ten Planets? 37
 Types of Planets 39

Chapter Snapshot:

The Solar System 40

- 2.5 Earth, the Sun, and the Seasons 42 Distribution of Solar Radiation 43
- 2.6 The Unique Composition of Earth 45
 Core, Mantle, and Crust 45
 Why Is There Life on Earth? 48
 THE BIG PICTURE 51

chapter 3

Near-Earth Objects 53

- 3.1 Chevy Asteroid 54

 The Potential for NEO Impacts 54
- 3.2 Characteristics of Near-Earth Objects 55Asteroids and Meteorites 55Comets 57
- 3.3 Impact Features 61

 Crater Characteristics 61
- 3.4 Impact Hazards 64
 An Impact Event 65

Chapter Snapshot:

NEO Impact with Earth 66

3.5 Beware of Flying Rocks 68Predicting and Preventing Impact Events 69THE BIG PICTURE 72

Plate Tectonics

- 4.1 Science and Santa Claus 76

 Hev. Good Lookin' 76
- 4.2 Continental Drift 77

 Wegener's Theory 77

- 4.3 Evidence from the Seafloor 80
 Seafloor Topography 80
 Age of the Ocean Floor 82
 Heat Flow, Volcanoes,
 and Earthquakes 82
 Seafloor Spreading Theory 84
 Paleomagnetism 84
- 4.4 Plate Tectonics 87

 Key Layers and Processes 88

 The Process of Plate Tectonics 89

Chapter Snapshot:

Plates of the World 90
Do Other Planets Have Plate Tectonics? 95

4.5 Plate Boundaries 95
Divergent Plate Boundaries 95
Convergent Plate Boundaries 96
Transform Plate Boundaries 100
Plate Tectonics and Climate 102

THE BIG PICTURE 103

chapter 5

Earthquakes 105

- 5.1 Experiencing an Earthquake Firsthand 106
- 5.2 The Science of Ghost Forests and Megathrust Earthquakes 107
 Evidence from Trees 107
 Evidence from Plate Tectonics 108
 Linking the Evidence to the Orphan
 Tsunami 109
 What These Findings Mean for the Future 109
- 5.3 Faults, Earthquakes, and Plate Tectonics 110

 Common Features of Faults and
 Earthquakes 111

 Directions of Fault Movement 112

 Amounts of Fault Movement 113

 Stress and Deformation 113

 Where to Expect Earthquakes 114
- 5.4 Seismic Waves and Earthquake
 Detection 117
 Types of Seismic Waves 118
 Determining Earthquake Location
 and Magnitude 120
 Seismic Waves and Earthquake Warning
 Systems 122

5.5	Measure	thquakes	122		
	Earthquake	: Magnitude	122		
	Earthquake Intensity (Modified Mercalli				
	Scale)	124			

5.6 Earthquake Hazards 126
Ground Shaking 127
Aftershocks 128
Landslides 128
Elevation Changes 129
Liquefaction 129
Tsunami 130

Chapter Snapshot:

2004 Tsunami 132

THE BIG PICTURE 136

chapter 6

Volcanoes and Other Mountains 139

- 6.1 The Volcano Commandos 140 The Speedy Lavas of Nyiragongo 141
- 6.2 Magma Viscosity 142
 Viscosity and Heat 143
 Viscosity and Chemical Composition 143
 Viscosity and Volcanic Eruptions 144
- 6.3 Magma Sources and Magma Composition 144
- 6.4 The Mount St. Helens Eruption 147
 Prior Activity 148
 The May 18 Eruption 149
 How Does Mount St. Helens Compare to Other Eruptions? 150
- 6.5 Products of Volcanic Eruptions 152

 Airborne Elements 152

Chapter Snapshot:

Potential Features of Volcanic Eruption 154 Surface Effects 156

- 6.6 Volcanoes and VolcanicLandforms 160Three Classes of Volcanic Cones 160Other Volcanic Landforms 162
- 6.7 Mountains: Why Are They
 There? 164
 Mountains and Plate Tectonics 164

6.8 The Rise and Fall of Mountains and Temperatures 167

Mountains and Climate 169

THE BIG PICTURE 170

chapter

Rocks and Minerals 173

- 7.1 Earth Scientists:
 Nature Detectives 174
 Where Do Bricks Come From? 175
- 7.2 Elements and Atoms:
 The Basic Building Blocks 176
 Elements 176
 Atoms 177
- 7.3 Minerals 180

 Mineral Characteristics 180
- 7.4 Igneous Rocks 184

 The Classification of Igneous Rocks 185

Chapter Snapshot:
Origin of Rocks 188

- 7.5 Sedimentary Rocks 192
 Clastic Sedimentary Rocks 192
 Chemical Sedimentary Rocks 195
 Biochemical Sedimentary Rocks 196
 Sedimentary Rocks and Fossil Fuels 197
- 7.6 Metamorphic Rocks 199 Contact Metamorphism 199 Regional Metamorphism 200
- 7.7 The Rock Cycle and Mineral Resources 202 The Rock Cycle 203 Mineral Resources 203

THE BIG PICTURE 207

chapter 8

Geologic Time 209

- 8.1 Thinking About Time 210
- 8.2 The History of (Relative) Time 211

 Relative Time 212

- Chapter Snapshot:
 Geological History of the
 Grand Canyon 218
 Fossils and Chronology 220
- 8.3 Geologic Time 222

 Evolution of Early Earth 222

 The Geologic Timescale 222

 Mass Extinctions 225
- 8.4 Numerical Time 228
 Radioactive Decay 228
 Half-Lives 229
 Applying Both Relative and
 Numerical Time 230
- 8.5 Rates of Change 232

 Catastrophism 233

 Uniformitarianism 233

THE BIG PICTURE 235

chapter 9

Weathering and Soils 237

- 9.1 The Dirt on Weathering 238Weathering of Cultural Sites 238Where Does Dirt Come From? 239
- 9.2 Physical Weathering 240
 Unloading 240
 Wedging 241
- 9.3 Chemical Weathering 243

 Dissolution 243

Chapter Snapshot:

Weathering 244
Hydrolysis 247
Oxidation 248
Linking Chemical and Physical
Weathering Processes 249

- 9.4 Biological Weathering and Decay 249 Macroscopic Processes 250 Microscopic Processes 250
- 9.5 Weathering Rates 251
 Rock Composition 251
 Rock Properties 252
 Climate 252

Weathering at World Heritage Sites 253

9.6	Soils: An Introduction 256 Soil-Forming Factors 256					
	Soil Types 258					
9.7 Soil Erosion and Conserva						
	Erosion by Water and Wind 261					
	Effects of Land Use Practices					
	on Erosion 262					
	Soil Conservation 263					
	THE BIG PICTURE 265					
chap	ter 10					
Lai	ndslides and					
CI_{C}	ppe Failure 267					
)1(NETAIIUIE /()/					

260

10.1 Mass Wasting:
The Human Impact 268
The Phenomenon of Mass Wasting 268
10.2 Factors Influencing
Slope Failure 270
Slope Angle 270

The Influence of Gravity 270
The Effects of Water 271
Case Study: Slope Failure
in Venezuela 272

Methods of Stabilizing Slopes 274

10.3 Slope Failure Processes 276
Rockfalls 276
Rockslides 277

Chapter Snapshot:

Landslides 278 Slumps 280

Debris Flows and Mudflows 281

Creep 281

THE BIG PICTURE 283

chapter

Streams and Floods 285

11.1 Humans and Rivers 286

The Nile River: An Example of
Stream Impact 286

Stream Management 287

- 11.2 The Hydrologic Cycle 287

 The Origin of Streams 289
- 11.3 Drainage Networks
 and Patterns 290
 The Drainage Basin or Watershed 290
 Evolution of Stream Systems 292
 Drainage Patterns 292
- 11.4 Factors Affecting Stream Flow 293 Stream Gradient 293 Stream Velocity 294 Stream Discharge 295
- 11.5 The Work of Streams 296
 Erosion 296
 Transport 297
 Deposition 298

Chapter Snapshot:
Channel Migration in the
Mamoré River 300

- 11.6 Floods 303

 Causes of Floods 303

 Estimating Floods: Measuring Stream

 Discharge and Stream Stage 305

 Determining Recurrence Interval 306
- 11.7 Flood Control 308

 Approaches to Flood Control 309

 THE BIG PICTURE 313

chapter

Groundwater and Wetlands 315

- 12.1 Meet Your Drinking Water 316
 Where Drinking Water Comes From 316
 A Case of Groundwater Contamination:
 Woburn, Massachusetts 316
- 12.2 Holes in Earth Materials 318

 Porosity 318

 Permeability 320
- 12.3 Groundwater Systems 321

 Aquifers 323

 Natural Groundwater Budget: Inflow

 Versus Outflow 325

 Consequences of Human Actions 327

Chapter Snapshot:
Groundwater 330

12.4 A Case Study:
The High Plains Aquifer 332

- 12.5 Groundwater Quality 334

 Drinking Yourself to Death, Naturally 334

 Do-It-Yourself Groundwater

 Contamination 335
- 12.6 Introduction to Wetlands 338

 Characteristics of Wetlands 338

 Case Study: The Florida Everglades 339

 THE BIG PICTURE 341

chapter 13

Oceans and Coastlines 343

- 13.1 Our Changing Oceans 344

 The Dynamic Nature of Oceans

 and Coastlines 345
- 13.2 Ocean Basins 346
 Sea Level 346
 Bathymetry of the Ocean Floor 346
 A Walk Across the Ocean Floor: The Four
 Major Depth Zones 347
- 13.3 Ocean Waters 350
 Water Chemistry 350
 Water Temperature 352
 Water's Density, Temperature,
 and Depth 353
- 13.4 Oceanic Circulation 355
 Ocean Currents 355
 Coriolis Effect 356
 Continents and Oceanic Circulation 357
 Thermohaline Circulation 358
 The El Nino/Southern Oscillation (ENSO):
 An Example of Earth as a System 359

Chapter Snapshot:
Global Circulation and
Topography 360

- 13.5 Tides 362
 Why Tides Occur 362
 Tidal Patterns 363
- 13.6 Wave Action and
 Coastal Processes 365
 Wave Motion in the Open Ocean 365
 Effect of the Wind on Ocean Waves 365
 Wave Motion Close to Shore 366
 Wave Energy 369

13.7	Shoreline Features	370	
	The Changing of Coastal Landforms		370
	The Sediment Budget	373	

13.8 Shoreline Protection 374 Erosion Prevention Strategies 374 Erosion Adjustment Strategies 376 THE BIG PICTURE 377

chapter

The Atmosphere 379

- 14.1 Science and Skydiving 380
- 14.2 Air Evolves 381 An Atmosphere Evolves 381
- 14.3 Structure and Processes of the Atmosphere 383 Heat Versus Temperature 383 The Four Layers of the Atmosphere 384
- 14.4 Solar Radiation and the Atmosphere 385 Solar Radiation and the Electromagnetic Spectrum 385

Earth's Energy Budget 386

Chapter Snapshot:

The Earth's Albedo

- 14.5 The Role of Water in the Atmosphere 390 Three States of Water 390 Changing States of Water 391 Humidity 392
- 14.6 Air Pressure, Condensation, and Precipitation 394 Air Pressure and Air Density 394 Effects of Air Pressure on Temperature 395 Adiabatic Lapse Rates 396 Condensation and Cloud Formation 397 Precipitation 397
- 14.7 Clouds and Frontal Systems 397 Cloud Classification 398 Cloud Formation Mechanisms 399
- 14.8 Winds 401 The Relationship Between Air Pressure and Wind 401 Regional Pressure Gradient 402 Coriolis Effect 403 Friction 403

Cyclones and Anticyclones 404 Wind Energy 405 THE BIG PICTURE 407

chapter

Weather Systems 409

- 15.1 The Weather Around Us 410 Facts About Severe Weather 411
- 15.2 The Science of Weather: From Folklore to Forecasting 412 The First Meteorologists 412 Communications Developments 412 Weather Technology Today 413
- 15.3 Air Masses 414 Source Areas 414 Types of Air Masses 414 Modification of Air Masses 415
- 15.4 Midlatitude Cyclones and Frontal Systems 416 Cold Fronts 417 Warm Fronts 419 Occluded Fronts 419
- 15.5 Severe Weather: Thunderstorms and Tornadoes 420 Thunderstorms 421 Tornadoes 423
- 15.6 Severe Weather: Hurricanes 427 Building a Hurricane 428

Chapter Snapshot:

Hurricane Anatomy 430 Looking to the Future 436

THE BIG PICTURE 437

chapter

Earth's Climate System 439

16.1 Want Ice with That? 440 Climate Change and the Polar Bear Diet 440 The Consequences of Arctic Warming 442

16.2 Global Air Circulation 443 Chapter Snapshot: Climate Data 444 The Nonrotating Earth Model 446 The Rotating Earth Reality 446

- 16.3 Global Climate Regions 448 Köppen-Geiger Classification System 448 Climate and the Biosphere 449 Energy and the Biosphere 451
- 16.4 Extreme Climate Environments Cold Climates 453 Hot Deserts 458
- 16.5 Records of Climate Change Weather Records from Instruments 461 Cultural Records 462 Short-Term Climate Trends: Annual Cycles 463 Long-Term Climate Trends: Abrupt Change and Millennial Cycles 466 Interpreting the Climate Record 468 Intervals and Rates of Climate Change 468
- 16.6 Natural Causes of Climate Change 470 Distribution of the Continents 470 Oceanic Circulation Patterns 471 Variations in Earth's Orbit 471 THE BIG PICTURE 473

chapter

Global Change 475

- 17.1 Alternative Climates, Alternative Choices 476
- 17.2. Ozone and the Stratosphere 478 The Nature of Ozone 478 Natural Variations in Ozone Concentrations 479
- 17.3 CFCs and Ozone Depletion 480 The Nature of CFCs 480 Reductions in Ozone Concentrations 480 Why Does Ozone Become Depleted over the South Pole? 480 Our Ozone Future 481

17.4 Greenhouse Gases and
Global Change 482
The Global Carbon Cycle 483
Carbon Produced by Human Activity 485
Greenhouse Gas Emissions 485

Chapter Snapshot:
Carbon Cycle 486

17.5 Modeling Global Climate Change 490 Forcings and Feedbacks 490 Climate Models 493 17.6 A Warmer World 493

Effects of Warmer Temperatures 495

17.7 What Can Be Done? 498
International Agreements to Improve the
Environment 498
Reducing Greenhouse Gas Emissions 499
What Else Can Be Done? 501

THE BIG PICTURE 503

Appendix A 505

Conversion Factors

Appendix B 506

The Periodic Table of Elements

Appendix C 507

Answers to Selected Checkpoint Questions

Glossary 511 Credits 519 Index 523