
 113

Chapter
 5

Modelling Concepts

5.1 Introduction

Systems analysts and designers produce models of systems. A business analyst will start
by producing a model of how an organization works; a systems analyst will produce
a more abstract model of the objects in that business and how they interact with one
another; a designer will produce a model of how a new computerized system will work
within the organization. In UML, the term ‘model’ has a specifi c meaning, and we explain
the UML concept of a model and how it relates to other UML concepts, such as the
idea of a package. Diagrams are often confused with models. A diagram is a graphical
view of a part of a model for a particular purpose.

The best way to understand what we mean by a diagram is to look at an example.
In the Unifi ed Process (the method of developing systems that is promoted by the
developers of UML) activity diagrams are used to model the development process itself.
Activity diagrams are useful for modelling sequences of actions from business processes
within an organization (or between organizations) down to the detail of how an operation
works. Activity diagrams are one of the techniques that can be used to model the
behavioural view of a system, and their use in systems analysis and design is explained
in Chapter 10, where they are used as one way of specifying operations. We introduce
them here as an example of a UML diagram and because, as in the Unifi ed Process, we
use them to model the development process that we use in the book.

 113

LEARNING OBJECTIVES

In this chapter you will learn
✓ what is meant by a model
✓ the distinction between a model and a diagram
✓ the UML concept of a model
✓ how to draw activity diagrams to model processes
✓ the approach to system development that we have adopted in this book.

✓

9780077125363_001_ch05.indd 1139780077125363_001_ch05.indd 113 3/5/10 8:45:27 AM3/5/10 8:45:27 AM

114 CHAPTER 5 MODELLING CONCEPTS

A systems analysis and design project needs to follow some kind of process. We have
adopted a relatively lightweight process based on the Unifi ed Process.

5.2 Models and Diagrams

In any development project that aims at producing useful artefacts, the main focus of
both analysis and design activities is on models (although the ultimate objective is a
working system). This is equally true for projects to build highways, space shuttles,
television sets or software systems. Aircraft designers build wooden or metal scale models
of new aircraft to test their characteristics in a wind tunnel. A skilled furniture designer
may use a mental model, visualizing a new piece of furniture without drawing a single
line.

In IS development, models are usually both abstract and visible. On the one hand,
many of the products are themselves abstract in nature; most software is not tangible for
the user. On the other hand, software is usually constructed by teams of people who
need to see each other’s models. However, even in the case of a single developer
working alone, it is still advisable to construct visible models. Software development is
a complex activity, and it is extremely diffi cult to carry all the necessary details in one
person’s memory.

5.2.1 What is a model?

A model is an abstract representation of something real or imaginary. Like maps, models
represent something else. They are useful in several different ways, precisely because
they differ from the things that they represent.

A model is quicker and easier to build. ■

A model can be used in simulations, to learn more about the thing it represents. ■

A model can evolve as we learn more about a task or problem. ■

We can choose which details to represent in a model, and which to ignore. A model is ■

an abstraction.
A model can represent real or imaginary things from any domain. ■

Many different kinds of thing can be modelled. Civil engineers model bridges, city
planners model traffi c fl ow, economists model the effects of government policy and
composers model their music. This book is a model of the activity of object-oriented
analysis and design.

A useful model has just the right amount of detail and structure, and represents only
what is important for the task at hand. This point was not well understood by at least
one character in The Restaurant at the End of the Universe by Douglas Adams (1980).
A group of space colonists are trying to reinvent things they need after crash-landing
on a strange planet, and are unable to proceed with a project to design the wheel,
because they cannot come to an agreement on what colour it should be.

Real projects do get bogged down in this kind of unnecessary detail if insuffi cient
care is taken to exclude irrelevant considerations (though this example is a little extreme).
What IS developers must usually model is a complex situation, frequently within a
human activity system. We may need to model what different stakeholders think about

9780077125363_001_ch05.indd 1149780077125363_001_ch05.indd 114 3/5/10 8:45:28 AM3/5/10 8:45:28 AM

5.2 MODELS AND DIAGRAMS 115

the situation, so our models need to be rich in meaning. We must represent functional
and non-functional requirements (see Section 6.2.2). The whole requirements model must
be accurate, complete and unambiguous. Without this, the work of analysts, designers
and programmers later in the project would be much more diffi cult. At the same time, it
must not include premature decisions about how the new system is going to fulfi l its
users’ requests, otherwise analysts, designers and programmers may later fi nd their
freedom of action too restricted. Most systems development models today are held as
data in modelling tools, and much of that data is represented visually in the form of
diagrams, with supporting textual descriptions and logical or mathematical specifi cations
of processes and data.1

5.2.2 What is a diagram?

A diagram is a visual representation of some part of a model. Analysts and designers use
diagrams to illustrate models of systems in the same way as architects use drawings and
diagrams to model buildings. Diagrammatic models are used extensively by systems
analysts and designers in order to:

communicate ideas ■

generate new ideas and possibilities ■

test ideas and make predictions ■

understand structures and relationships. ■

The models may be of existing business systems or they may be of new computerized
systems. If a system is very simple, it may be possible to model it with a single diagram
and supporting textual descriptions. Most systems are more complex and may require
many diagrams fully to capture that complexity.

Figure 5.1 shows an example of a diagram (a UML activity diagram) used to show
part of the process of producing a book. This diagram alone is not a complete model.
A model of book production would include other activity diagrams to show other parts
of the overall system such as negotiating contracts and marketing the book. This
diagram does not even show all the detail of the activities carried out by authors and
the other participants in the process. Many of the activities, shown as rectangles with
rounded corners in Fig. 5.1, could be expanded into more detail. For example, the activity
Write Chapter could be broken down into other activities such as those shown in
Fig. 5.2.

We might break some of the activities shown in Fig. 5.2 down into more detail,
though it will be diffi cult to show the detail at a lower level, as activities like Write a
Paragraph, Add a Figure, Revise a Paragraph and Move a Figure do not lend
themselves to being represented in the fl owchart notation of the activity diagram. There
is also a limit to what we want to show in such a diagram. There are many activities
such as Make Coffee, Change CD and Stare out of Window that are part of the
process of writing, but like the colour of the wheel in the example from The Restaurant
at the End of the Universe, they represent unnecessary detail.

1 Some approaches rely primarily on formal logic techniques and rigorous mathematical specifi cation. These
are most often applied to real-time and safety-critical systems, such as those that control aircraft in fl ight
or manage nuclear power plants, and are not covered in this book.

9780077125363_001_ch05.indd 1159780077125363_001_ch05.indd 115 3/5/10 8:45:28 AM3/5/10 8:45:28 AM

116 CHAPTER 5 MODELLING CONCEPTS

The diagrams of Figs 5.1 and 5.2 are typical of the kind of diagrams used in systems
analysis and design. Abstract shapes are used to represent things or actions from the
real world. The choice of what shapes to use is determined by a set of rules that are laid
down for the particular type of diagram. In UML, these rules are laid down in the OMG
Unifi ed Modeling Language Specifi cation 2.2 (OMG, 2009). It is important that we
follow the rules about diagrams, otherwise the diagrams may not make sense, or other
people may not understand them. Standards are important as they promote commu-
nication in the same way as a common language. They enable communication between

[book not
complete]

Author Reviewer Typesetter Printer

[book complete]

Write Chapter

Review Chapter

Typeset Book

Correct Proofs

Reset Book

Print Book

Revise Chapter

Figure 5.1 Activity diagram for producing a book.

9780077125363_001_ch05.indd 1169780077125363_001_ch05.indd 116 3/5/10 8:45:28 AM3/5/10 8:45:28 AM

5.2 MODELS AND DIAGRAMS 117

members of the development team if they all document the information in the same
standard formats. They promote communication over time, as other people come to
work on the system, even several years after it has been implemented, in order to carry
out maintenance. They also promote communication of good practice, as experience of
what should be recorded and how best to do that recording builds up over time and is
refl ected in the techniques that are used.

Modelling techniques are refi ned and evolve over time. The diagrams and how they
map to things in the real world or in a new system change as users gain experience of
how well they work. However, for the designers of modelling techniques, some general
rules are that the techniques should aid (and enforce):

simplicity of representation—only showing what needs to be shown ■

internal consistency—within a set of diagrams ■

completeness—showing all that needs to be shown ■

hierarchical representation—breaking the system down and showing more detail at ■

lower levels.

Figure 5.3 shows some symbols from a label in an item of clothing. These icons belong
to a standard that allows a manufacturer of clothing in Argentina to convey to a
purchaser in Sweden that the item should be washed at no more than 40°C, should not
be bleached and can be tumble dried on a low setting.

While not following the UML standards will not cause your T-shirts to shrink, it will
cause you problems in communicating with other analysts and designers—at least if they

[not satisfied]

[satisfied]

Write Chapter

Produce
First Draft

Add References
to Bibliography

Add Exercises

Revise Draft

Plan Chapter

Figure 5.2 Activity diagram for the activity Write Chapter.

9780077125363_001_ch05.indd 1179780077125363_001_ch05.indd 117 3/5/10 8:45:28 AM3/5/10 8:45:28 AM

118 CHAPTER 5 MODELLING CONCEPTS

are using UML as well. We have chosen to use UML in this book, as it has become the
industry standard for modelling information systems.

UML classifi es diagrams as either structural diagrams or behavioural diagrams.
Structural diagrams show the static relationship between elements, and are package, class,
object, composite structure, component and deployment diagrams. Behavioural diagrams
show an aspect of the dynamic behaviour of the system being modelled, and are use case,
activity, state machine, communication, sequence, timing and interaction overview diagrams.

UML consists mainly of a graphical language to represent the concepts that we
require in the development of an object-oriented information system. UML diagrams
are made up of four elements:

icons ■

two-dimensional symbols ■

paths ■

strings. ■

These terms were used in the UML 1.X specifi cations, and are no longer used in UML 2.2.
However, they are useful to explain the graphical representation of UML diagrams.

UML diagrams are graphs—composed of various kinds of shapes, known as nodes,
joined together by lines, known as paths. The activity diagrams in Figs 5.1 and 5.2 illustrate
this. Both are made up of two-dimensional symbols that represent activities, linked
by arrows that represent the control fl ows from one activity to another and the fl ow of
control through the process that is being modelled. The start and fi nish of each activity
graph is marked by special symbols—icons: the dot for the initial node and the dot in a circle
for the fi nal node. The activities are labelled with strings, and strings are also used at the
decision nodes (the diamond shapes) to show the conditions that are being tested.

The UML Specifi cation (OMG, 2009) provides the formal grammar of UML—the
syntax—and the meaning of the elements and of the rules about how elements can be
combined—the semantics. It also explains the different diagrams in more detail and
provides examples of their construction and use (although with fewer examples than
previous versions).

There is an example on the book’s website of how the UML specifi cation defi nes the
syntax and semantics of UML. It may be diffi cult to follow at this stage in your understanding
of UML, so feel free to skip it and come back to it when you know more about UML.

5.2.3 The difference between a model and a diagram

We have seen an example of a diagram in the previous section. A single diagram can
illustrate or document some aspect of a system. However, a model provides a complete
view of a system at a particular stage and from a particular perspective.

40°

Figure 5.3 Example from a diagram standard.

9780077125363_001_ch05.indd 1189780077125363_001_ch05.indd 118 3/5/10 8:45:29 AM3/5/10 8:45:29 AM

5.2 MODELS AND DIAGRAMS 119

For example, a requirements model of a system will give a complete view of the
requirements for that system. It may use one or more types of diagram and will most
likely contain sets of diagrams to cover all aspects of the requirements. These diagrams
may be grouped together in models in their own right. In a project that uses UML, a
requirements model would probably consist of a use case model, which comprises use
cases and prototypes of some use cases (see Chapter 6) and an initial system architecture
model which defi nes initial subsystems (see Section 5.2.4). Note that models can contain
diagrams, data and textual information. Figure 5.4 shows this: on the left-hand side of
the diagram is a UML diagram showing the contents of models and packages (see Section
5.2.4), while the right-hand side of the diagram illustrates schematically the fact that use
case diagrams are one possible view of the contents of the use case model.

On the other hand a behavioural model of a system will show those aspects of a
system that are concerned with its behaviour—how it responds to events in the outside
world and to the passage of time. During the initial analysis activities of a project, the
behavioural model may be quite simple, using communication diagrams to show which
classes collaborate to respond to external events and with informally defi ned messages
passing between them. As the project progresses and more design activities have taken
place, the behavioural model will be considerably more detailed, using interaction
sequence diagrams to show in detail the way that objects interact, and with every
message defi ned as an event or an operation of a class.

A model may consist of a single diagram, if what is being modelled is simple enough
to be modelled in that way, but most models consist of many diagrams—related to one
another in some way—and supporting data and textual documentation. Most models
consist of many diagrams because it is necessary to simplify complex systems to a level
that people can understand and take in. For example, the class libraries for Java are
made up of hundreds of classes, but books that present information about these classes
rarely show more than about twenty on any one diagram, and each diagram groups
together classes that are conceptually related.

5.2.4 Models in UML

The UML 2.2 Superstructure Specifi cation (OMG, 2009b) defi nes a model as follows:

Assign staff
to work on
a campaign

Campaign
Manager

Adda new
advert to

a campaign

Check campaign
budget

Findcampaign

Accountant

Print campaign
invoice

Print campaign
summary

Campaign Management

extendª extendª

includeª

ncludeª

ncludeª

Requirements Model

Use CasesInterface
Prototypes

Requirements
List

Initial System
Architecture

Model

Glossary

Use Case Model

Use Case Diagrams
One View of the Use

Case Model

Assign staff
to work on
a campaign

Campaign
Manager

Adda new
advert to

a campaign

Check campaign
budget

Findcampaign

Accountant

Print campaign
invoice

Print campaign
summary

Campaign Management

extendª extendª

includeª

ncludeª

ncludeª

Figure 5.4 Illustration of a UML model and its relationship with one type of diagram.

9780077125363_001_ch05.indd 1199780077125363_001_ch05.indd 119 3/5/10 8:45:29 AM3/5/10 8:45:29 AM

120 CHAPTER 5 MODELLING CONCEPTS

A model captures a view of a physical system. It is an abstraction of the physical system,
with a certain purpose. This purpose determines what is to be included in the model and what
is irrelevant. Thus the model completely describes those aspects of the physical system that
are relevant to the purpose of the model, at the relevant level of detail.

In UML there are a number of concepts that are used to describe systems and the
ways in which they can be broken down and modelled. A system is the overall thing that
is being modelled, such as the Agate system for dealing with clients and their advertising
campaigns. A subsystem is a part of a system, consisting of related elements: for exam-
ple, the Campaigns subsystem of the Agate system. A model is an abstraction of a system
or subsystem from a particular perspective or view. An example would be the use case
view of the Campaigns subsystem, which would be represented by a model containing
use case diagrams, among other things. A model is complete and consistent at the level
of abstraction that has been chosen. Different views of a system can be presented in
different models, and a diagram is a graphical representation of a set of elements in the
model of the system.

Different models present different views of the system. Booch et al. (1999) suggest
fi ve views to be used with UML: the use case view, the design view, the process view, the
implementation view and the deployment view. The choice of diagrams that are used to
model each of these views will depend on the nature and complexity of the system that
is being modelled. Indeed, you may not need all these views of a system. If the system
that you are developing runs on a single machine, then the implementation and deploy-
ment views are unnecessary, as they are concerned with which components must be
installed on which different machines.

UML provides a notation for modelling subsystems and models that uses an extension
of the notation for packages in UML. Packages are a way of organizing model elements
and grouping them together. They do not represent things in the system that is being
modelled, but are a convenience for packaging together elements that do represent things
in the system. They are used particularly in CASE tools as a way of managing the models
that are produced. For example, the use cases can be grouped together into a Use Cases
Package. Figure 5.5 shows the notation for packages, subsystems and models. In diagrams
we can show how packages, subsystems and models contain other packages, subsystems
and models. This can be done by containing model elements within larger ones. Figure
5.6 shows the notation for an example of a system containing two subsystems.

5.2.5 Developing models

The models that we produce during the development of a system change as the project
progresses. They change along three main dimensions:

Use Cases

Package

Campaign
Management

«subsystem»

Subsystem

Use Case
Model

Model

Figure 5.5 UML notation for packages, subsystems and models.

9780077125363_001_ch05.indd 1209780077125363_001_ch05.indd 120 3/5/10 8:45:29 AM3/5/10 8:45:29 AM

5.2 MODELS AND DIAGRAMS 121

abstraction ■

formality ■

level of detail. ■

During a particular phase of a project we may extend and elaborate a model as we
increase our understanding of the system that is to be built. At the end of each phase we
hope to have a model that is complete and consistent, within the limitations of that
phase of the project. That model represents a view of our understanding of the system at
that point in the project.

In a system development project that uses an iterative lifecycle, different models that
represent the same view may be developed at different levels of detail as the project
progresses. For example, the fi rst use case model of a system may show only the obvious
use cases that are apparent from the fi rst iteration of requirements capture. After a
second iteration, the use case model may be elaborated with more detail and additional
use cases that emerge from discussion of the requirements. Some prototypes may be added
to try out ideas about how users will interact with the system. After a third iteration,
the model will be extended to include more structured descriptions of how the users
will interact with the use cases and with relationships among use cases. (Use cases are
explained in Chapter 6.) Figure 5.7 illustrates this process of adding detail to a model
through successive iterations. The number of iterations is not set at three. Any phase in
a project will consist of a number of iterations, and that number will depend on the
complexity of the system being developed.

It is also possible to produce a model that contains a lot of detail, but to hide or
suppress some of that detail in order to get a simplifi ed overview of some aspect of the
system. For example, class diagrams (explained in Chapter 7) can be shown with the
compartments that contain attributes and operations suppressed. This is often useful for
showing the structural relationships between classes, using just the name of each class,
without the distracting detail of all the attributes and operations. This is the case in the
diagrams that show the classes in the Java class libraries (referred to in Section 5.2.3), where
the intention is to show structural relationships between classes rather than the detail.

As we progress through analysis and design of a system, elements in the model will
become less abstract and more concrete. For example, we may start off with classes that
represent the kinds of objects that we fi nd in the business, Campaigns, Clients etc.,
that are defi ned in terms of the responsibilities that they have. By the time that we get to the
end of design and are ready to implement the classes, we will have a set of more concrete
classes with attributes and operations, and the classes from the domain will have been
supplemented by additional classes such as collection classes, caches, brokers and proxies
that are required to implement mechanisms for storing the domain classes (see Chapter 18).

Staff

«subsystem»

Campaigns

«subsystem»

Agate

Figure 5.6 UML notation for a system containing subsystems, shown by containment.

9780077125363_001_ch05.indd 1219780077125363_001_ch05.indd 121 3/5/10 8:45:29 AM3/5/10 8:45:29 AM

122 CHAPTER 5 MODELLING CONCEPTS

In the same way, the degree of formality with which operations, attributes and con-
straints are defi ned will increase as the project progresses. Initially, classes will have
responsibilities that are loosely defi ned and named in English (or whatever language
the project is being developed in). By the time we reach the end of design and are ready
to implement the classes, they will have operations defi ned using activity diagrams,
Object Constraint Language, structured English or pseudo-Code (see Chapter 10), with
pre-conditions and post-conditions for each operation.

This iterative approach, in which models are successively elaborated as the project pro-
gresses, has advantages over the Waterfall model, but it also has shortcomings. First, it is
sometimes diffi cult to know when to stop elaborating a model and, second, it raises the
question of whether to go back and update earlier models with additional information that
emerges in later stages of the project. Issues like these are addressed either as part of a
methodology (Chapter 21) or as part of a project management approach (see supporting
website). For now, we shall look at a fi rst example of a UML diagram and see how it is
developed.

5.3 Drawing Activity Diagrams

We have used activity diagrams earlier in this chapter to illustrate what is meant by a
diagram. In this section we explain the basic notation of activity diagrams in UML and
give examples of how they are used. We are introducing activity diagrams at this point,
fi rst to provide an illustration of a UML diagram type, and second, so that we can use
them to illustrate the development process that we use in the book.

5.3.1 Purpose of activity diagrams

Activity diagrams can be used to model different aspects of a system. At a high level,
they can be used to model business processes in an existing or potential system. For this

Iteration 1
Obvious use cases.
Simple use case descriptions.

Accountant

Staff Management

Iteration 2
Additional use cases.
Simple use case descriptions.
Prototypes.

Iteration 3
Structured use cases.
Structured use case descriptions.
Prototypes.

Campaign

Manager

´includeª

´extendª

´includeª

Campaign Selection

Client:

Campaign Selection

OK Quit

Campaign:

Campaign Selection

Holborn Motors
Lynch Properties
Yellow Partridge
Zeta Systems

Client:

Campaign Selection

Client:

Campaign Selection

OK Quit

Campaign:

Campaign Selection

Holborn Motors
Lynch Properties
Yellow Partridge
Zeta Systems

Client:

Accountant

Accountant

Add a new staff
member

Add a new staff
grade

Change the
rate for a

staff grade

Change the
grade for a

staff member

Calculate staff
bonuses

Assign staff
to work on
a campaign

Add a new
advert to

a campaign

Check campaign

Print campaign
summary

Print campaign
summary

Staff Management

Add a new staff
member

Add a new staff
grade

Change the
rate for a

staff grade

Change the
grade for a

staff member

Calculate staff
bonuses

Figure 5.7 Development of the use case model through successive iterations.

9780077125363_001_ch05.indd 1229780077125363_001_ch05.indd 122 3/5/10 8:45:29 AM3/5/10 8:45:29 AM

5.3 DRAWING ACTIVITY DIAGRAMS 123

purpose they may be used early in the system development lifecycle. They can be used
to model a system function represented by a use case, possibly using object fl ows to
show which objects are involved in each use case. This would be done during the phase
of the lifecycle when requirements are being elaborated. They can also be used at a low
level to model the detail of how a particular operation is carried out, and are likely to be
used for this purpose in later analysis or system design activities. Activity diagrams are
also used within the Unifi ed Software Development Process (USDP) (Jacobson et al.,
1999) to model the way in which the activities of USDP are organized and relate to one
another in the software development lifecycle. We use them for a similar purpose in
later chapters to show how the activities of the simplifi ed process that we have adopted
for this book fi t together. (This process is described in Section 5.4.)

In summary, activity diagrams are used for the following purposes:

to model a process or task (in business modelling for instance); ■

to describe a system function that is represented by a use case; ■

in operation specifi cations, to describe the logic of an operation; ■

in USDP to model the activities that make up the lifecycle. ■

Fashions change in systems analysis and design—new approaches such as object-oriented
analysis and design replace older approaches and introduce new diagrams and notation.
One diagram type that is always dismissed by the inventors of new approaches but
always creeps back in again is the fl owchart.2 Activity diagrams are essentially fl owcharts
in an object-oriented context.

UML 2.0 changed the underlying model for activity diagrams. In UML 1.X they were
based on state machines (see Chapter 11), but are now distinct from state machines and
based on Petri nets.

5.3.2 Notation of activity diagrams

Activity diagrams at their simplest consist of a set of actions linked together by fl ows
from one action to the next, formally called ActivityEdges. Each action is shown as
a rectangle with rounded corners. The name of the action is written inside this two-
dimensional symbol. It should be meaningful and summarize the action. Figure 5.8
shows an example of two actions joined by a control fl ow.

Add a New
Client

Assign Staff
Contact

Figure 5.8 Example of two activities joined by a control fl ow.

Actions exist to carry out some task. In the example of Fig. 5.9, the fi rst action is to
add a new client into the Agate system described in Chapter A1. The fl ow to the second

2 Flowcharts are useful because they model the way that people perform tasks as a sequence of actions with
decision points where they take one of a set of alternative paths, in which some actions are repeated either
a number of times or until some condition is true and some actions take place in parallel. In UML 2.2
activity diagrams have the semantics of Petri Nets.

9780077125363_001_ch05.indd 1239780077125363_001_ch05.indd 123 3/5/10 8:45:30 AM3/5/10 8:45:30 AM

124 CHAPTER 5 MODELLING CONCEPTS

action implies that as soon as the fi rst action is complete, the next action is started.
Sometimes there is more than one possible fl ow from an action to the next.

In this example from the Agate system, the fl ow of work is summarized by this brief
statement from an interview with one of the directors of Agate:

When we add a new client, we always assign a member of staff as a contact for the client
straightaway. If it’s an important client, then that person is likely to be one of our directors
or a senior member of staff. The normal reason for adding a new client is because we have
agreed a campaign with them, so we then add details of the new campaign. But that’s not
always the case—sometimes we add a client before the details of the campaign have been
fi rmed up, so in that case, once we have added the client the task is complete. If we are adding
the campaign, then we would record its details, and if we know which members of staff will
be working on the campaign, we would assign each of them to work on the campaign.

This transcript from an interview describes some choices that can be made, and these
choices will affect the actions that are undertaken. We can show these in an activity
diagram with an explicit decision node, represented by a diamond-shaped icon, as in
Figure 5.9.

In UML 1.X, it was not necessary to use an explicit decision node like this. The diagram
could just show the alternative fl ows out of the action Assign Staff Contact, as in
Figure 5.10.

Add a New
Client

Add New
Campaign

Assign Staff
Contact

[no campaign to add]

[campaign to add]

Figure 5.10 UML 1.X choice represented without an explicit decision point.

Add a New
Client

Add New
Campaign

Assign Staff
Contact

[no campaign to add]

[campaign to add]

Figure 5.9 Activities with a decision node.

9780077125363_001_ch05.indd 1249780077125363_001_ch05.indd 124 3/5/10 8:45:30 AM3/5/10 8:45:30 AM

5.3 DRAWING ACTIVITY DIAGRAMS 125

However, this is no longer possible since UML 2.0. In UML 1.X, if there was more
than one fl ow out of an action, it was treated as an OR, i.e. only one fl ow would be
taken. In UML 2.2, it is treated as an AND, i.e. all of the fl ows must be taken.

The alternative fl ows are each labelled with a guard condition. The guard condition
is shown inside square brackets and must evaluate to either true or false. The fl ow of
control will follow along the fi rst control fl ow with a guard condition that evaluates to
true. Alternative guard conditions from a single decision node do not have to be mutually
exclusive, but if they are not, you should specify the order of evaluation in some way,
otherwise the results will be unpredictable. We would recommend that they should be
mutually exclusive.

Figures 5.9 and 5.10 illustrate another element of the notation of activity diagrams:
when an activity has completed that ends the sequence of activities within a particular
diagram, there must be a control fl ow to a fi nal node, shown as a black circle within a
white circle with a black border. Each activity diagram should also begin with another
special icon, a black circle, which represents the start of the activity. Figure 5.11 shows the
addition of the initial node into the diagram of Fig. 5.9. It also shows an additional action—to
assign a member of staff to work on a campaign—and additional guarded fl ows.

Figure 5.11 also shows a feature of UML diagrams from version 2.0 onwards: every
diagram can be drawn in a frame, a rectangle with the heading of the diagram in the top
left hand corner. The heading consists of the kind of diagram (this is optional), in this

Assign Staff
to Campaign

Add New
Campaign

[more staff to assign]

act Take on new client

[no more staff to assign]

[no staff to assign]

[no campaign to add]

[campaign to add]

[staff to assign]

Add a New
Client

Assign Staff
Contact

Figure 5.11 Activity diagram in frame with initial node.

9780077125363_001_ch05.indd 1259780077125363_001_ch05.indd 125 3/5/10 8:45:30 AM3/5/10 8:45:30 AM

126 CHAPTER 5 MODELLING CONCEPTS

case activity abbreviated as act, the name of the diagram and optional parameters.
Frames are really only required for diagrams such as sequence diagrams where messages
can enter the diagram from the boundary represented by the frame, as in Fig. 9.6.

Note that there is a loop or iteration created at the bottom of this diagram, where
the activity Assign Staff to Campaign is repeated until there are no more staff to
assign to this particular campaign.

Activity diagrams make it possible to represent the three structural components of all
procedural programming languages: sequences, selections and iterations. This ability to
model processes in this way is particularly useful for modelling business procedures,
but can also be helpful in modelling the operations of classes. UML 2.0 added a large
number of types of actions to the metamodel for activity diagrams. These actions are
the kind of actions that take place in program code. These include actions such as
AddVariableValueAction and CreateObjectAction. They are intended to make it easier
to create activity diagrams that can model the implementation of operations and can be
compiled into a programming language: Executable UML.

In an object-oriented system, however, the focus is on objects carrying out the pro-
cessing necessary for the overall system to achieve its objectives. There are two ways in
which objects can be shown in activity diagrams:

the operation name and class name can be used as the name of an action; ■

an object can be shown as providing the input to or output of an action. ■

Figure 5.12 shows an example of the fi rst of these uses of objects in activity diagrams. In
this example, the total cost of a campaign is calculated from the cost of all the individual
adverts in the campaign added to the campaign overheads. The names of the classes

getFirst
(AdvertCollection::)

[no more adverts]

Campaign::calculateCost

[more adverts]

getCost
(Advert::)

getNext
(AdvertCollection::)

getOverheads
(Campaign::)

Figure 5.12 Activity diagram with operations of classes as actions.

9780077125363_001_ch05.indd 1269780077125363_001_ch05.indd 126 3/5/10 8:45:30 AM3/5/10 8:45:30 AM

5.3 DRAWING ACTIVITY DIAGRAMS 127

involved are shown followed by double colons in brackets beneath the names of the
actions. If the name of the action is not the same as the name of an operation of the
class, then the operation name can be shown after the colons. This is one of those
specialized actions to support Executable UML: a CallOperationAction.

The second way that objects are shown in activity diagrams is by using object fl ows.
An object fl ow is an arrow between an object and an action that may result in a change
to the state of that object. The state of the object can be shown in square brackets within
the symbol for the object. Figure 5.13 shows an example of this for the activity Record
Completion of a Campaign, which changes the state of a Campaign object from Active
to Completed. (Objects and classes are covered in much more detail in Chapters 7 and 8,
and the idea of ‘state’ is covered in more detail in Chapter 11, where we explain state
machine diagrams.)

A fi nal element of the notation of activity diagrams that it is useful to understand
at this stage is the idea of activity partitions, which were called swimlanes in UML 1.X
and are generally known by this name. Activity partitions are particularly useful when
modelling how things happen in an existing system and can be used to show where
actions take place or who carries out the actions.

In the Agate system, when an advertising campaign is completed, the campaign
manager for that advertising campaign records that it is completed. This triggers off the
sending of a record of completion form to the company accountant. An invoice is then
sent to the client and, when the client pays the invoice, the payment is recorded. (Some
of these actions are documented as use cases in Fig. A2.2.)

In order to model the way that the system works at the moment, we might draw an
activity diagram like the one in Fig. 5.14 in order to show these actions taking place.
The brief for this project is to concern ourselves with the campaign management side of
the business, as there is an existing accounts system in the company. However, the act of
drawing this diagram raises the question of what happens to the payment from the client:

Does the payment go to the accountant, and is there some way in which the campaign ■

manager is notifi ed?
Does the payment go to the campaign manager, and does he or she record the ■

payment and then pass it on to the accountant?

Clarifying points like these is part of the process of requirements capture, which is
covered in detail in Chapter 6.

One of the reasons for introducing activity diagrams at this point is that they are used
in the Unifi ed Software Development Process to document the activities of the software
development lifecycle. In USDP, the diagrams are stereotyped—the standard UML

Record Completion
of a Campaign

:Campaign
[Active]

:Campaign
[Completed]

Figure 5.13 Activity diagram with object fl ows.

9780077125363_001_ch05.indd 1279780077125363_001_ch05.indd 127 3/5/10 8:45:30 AM3/5/10 8:45:30 AM

128 CHAPTER 5 MODELLING CONCEPTS

symbols are replaced with special icons to represent actions and the inputs and outputs
of those actions. In the next section, we describe the simplifi ed process model that we
have adopted in this book. We use activity diagrams to summarize this process in the
case study chapters later in the book.

5.4 A Development Process

A development process should specify what has to be done, when it has to be done, how
it should be done and by whom in order to achieve the required goal. Project manage-
ment techniques (see Chapter 22 on the supporting website) are used to manage and
control the process for individual projects. One of the software development processes
currently in wide use is the Rational Unifi ed Process, a proprietary process now owned by
IBM but based on the Unifi ed Software Development Process (USDP) (Jacobson et al.,
1999). USDP was originally developed by the team that created UML. It is claimed that
USDP embodies much of the currently accepted best practices in information systems
development. These include:

iterative and incremental development ■

component-based development ■

requirements-driven development ■

confi gurability ■

architecture centrism ■

visual modelling techniques. ■

Record Completion
of a Campaign

Issue invoice

Pay invoice

Record client
payment

Accountant ClientCampaign
Manager

Figure 5.14 Activity diagram with activity partitions.

9780077125363_001_ch05.indd 1289780077125363_001_ch05.indd 128 3/5/10 8:45:31 AM3/5/10 8:45:31 AM

5.4 A DEVELOPMENT PROCESS 129

USDP is explained in more detail in Chapter 21 on System Development Methodologies.
USDP is often referred to as the Unifi ed Process.

USDP does not follow the traditional Waterfall Lifecycle shown in Fig. 3.3 but adopts
an iterative approach within four main phases. These phases refl ect the different emphasis
on tasks that are necessary as systems development proceeds (Fig. 5.15). These differences
are captured in a series of workfl ows that run through the development process. Each
workfl ow defi nes a series of activities that are to be carried out as part of the workfl ow
and specifi es the roles of the people who will carry out those activities. The important
fact to bear in mind is that in the Waterfall Lifecycle, activities and phases are one and
the same, while in iterative lifecycles like USDP the activities are independent of the
phases and it is the mix of activities that changes as the project proceeds. Figure 5.16
illustrates how a simplifi ed Waterfall Lifecycle would look using the same style of
diagram as Fig. 5.15.

5.4.1 Underlying principles

In order to place the techniques and models described in this book in context we have
assumed an underlying system development process. We are not attempting to invent
yet another methodology. The main activities that we describe here appear in one form

Requirements

Analysis

Test

Implementation

Design

1 8765432

Size of square
relative to time

Time

spent on
workflows

Workflows

Project
phases

Inception Elaboration Construction

Iterations within
a phase

Transition

Figure 5.15 Phases and workfl ows in the Unifi ed Software Development Process.

9780077125363_001_ch05.indd 1299780077125363_001_ch05.indd 129 3/5/10 8:45:31 AM3/5/10 8:45:31 AM

130 CHAPTER 5 MODELLING CONCEPTS

or another in most system development methodologies. The system development
process that we adopt is largely consistent with USDP, although it incorporates ideas
from other sources. This approach incorporates the following characteristics. It is:

iterative ■

incremental ■

requirements-driven ■

component-based ■

architectural. ■

These principles are embodied in many commonly used methodologies and are viewed
as elements of best practice.

5.4.2 Main activities

The systems development process embodies the following main activities:

requirements capture and modelling ■

requirements analysis ■

system architecture and design ■

class design ■

interface design ■

data management design ■

construction ■

testing ■

implementation. ■

Requirements

Analysis

Test

Implementation

Design

Analysis Implementation

Requirements Design Test

Figure 5.16 Phases and activities in a simplifi ed waterfall process.

9780077125363_001_ch05.indd 1309780077125363_001_ch05.indd 130 3/5/10 8:45:31 AM3/5/10 8:45:31 AM

5.4 A DEVELOPMENT PROCESS 131

These activities are interrelated and dependent upon each other. In a waterfall development
process they would be performed in a sequence (as in Fig. 5.16). This is not the case in
an iterative development process, although some activities clearly precede others. For
example, at least some requirements capture and modelling must take place before any
requirements analysis can be undertaken. Various UML techniques and notations are
used, as well as other techniques, and these are summarized in the table in Fig. 5.17.

Activity Techniques Key Deliverables

Requirements
capture and
modelling

Requirements elicitation Use case model
Use case modelling Requirements list
Architectural modelling Initial architecture
Prototyping Prototypes

Requirements
analysis

Communication diagrams Analysis models
Class and object modelling
Analysis modelling

Object diagrams
Communication diagrams

System
architecture
and design

Deployment modelling Overview design
Component modelling and implementation
Package modelling architecture
Architectural modelling Class diagrams
Design patterns

Class design Class and object modelling Design models
Interaction modelling
State modelling
Design patterns

Object diagrams
Sequence diagrams
State machine diagrams

Interface
design

Class and object modelling Design models with
Interaction modelling interface specification
State modelling
Package modelling
Prototyping
Design patterns

Sequence diagrams
State machine diagrams
Package diagrams

Data
management
design

Class and object modelling Design models with
Interaction modelling database specification
State modelling
Package modelling
Design patterns

Sequence diagrams
State machine diagrams
Package diagrams

Construction Programming Constructed system
Component reuse Documentation
Database DDL
Programming idioms
Manual writing

Testing Programming Test plans
Test planning and design Test cases
Testing Tested system

Implementation Installed system

Diagrams Used

Use case diagrams
Package diagrams

Class diagrams

Package diagrams
Component diagrams
Deployment diagrams

Class diagrams

Class diagrams
Object diagrams

Class diagrams
Object diagrams

Figure 5.17 Table of system development process activities.

9780077125363_001_ch05.indd 1319780077125363_001_ch05.indd 131 3/5/10 8:45:32 AM3/5/10 8:45:32 AM

132 CHAPTER 5 MODELLING CONCEPTS

Only the key deliverables are listed in the table and are likely to be produced in a
series of iterations and delivered incrementally. A brief summary of each activity
follows. The models that are produced and the activities necessary to produce them are
explained in more detail in subsequent chapters.

Requirements capture and modelling
Various fact-fi nding techniques are used to identify requirements. These are discussed in
Chapter 6. Requirements are documented in use cases and a requirements list. A use
case captures an element of functionality and the requirements model may include many
use cases. For example, in the Agate case study the requirement that the accountant
should be able to record the details of a new member of staff on the system is an example
of a use case. It would be described initially as follows:

Use Case: Add a new staff member
When a new member of staff joins Agate, his or her details are recorded. He or she is
assigned a staff number, and the start date is recorded. Start date defaults to today’s date.
The starting grade is recorded.

The use cases can also be modelled graphically. The use case model is refi ned to
identify common procedures and dependencies between use cases. The objective of this
refi nement is to produce a succinct but complete description of requirements. Not all
requirements will be captured in use cases. Some requirements that apply to the whole
system will be captured in a list of requirements. Requirements that are concerned with
how well the system performs rather than what it does (non-functional requirements) are
also captured separately. It is also common to capture rules that refl ect how the business
works (business rules) in a separate document and cross-reference them from use cases.

Prototypes of some key user interfaces may be produced in order to help to under-
stand the requirements that the users have for the system.

An initial system architecture in terms of an outline package structure (see Fig. 5.18
for part of the Agate system) may be developed to help guide subsequent steps during
the development process. This initial architecture will be refi ned and adjusted as the
development proceeds.

Requirements analysis
This activity analyses the requirements. Essentially each use case describes one major
user requirement. Each use case is analysed separately to identify the objects that are
required to support it. The use case is also analysed to determine how these objects
interact and what responsibilities each of the objects has in order to support the use
case. Communication diagrams (Fig. 5.19) are used to model the object interaction. The

Campaign
Costs

«subsystem»

Adverts

«subsystem»

Campaigns

Figure 5.18 Part of the initial system architecture for the Agate system.

9780077125363_001_ch05.indd 1329780077125363_001_ch05.indd 132 3/5/10 8:45:32 AM3/5/10 8:45:32 AM

5.4 A DEVELOPMENT PROCESS 133

models for each use case are then integrated to produce an analysis class diagram, as
described in Chapters 7 and 8. Figure 5.20 shows an example of an analysis class. The
initial system architecture may be refi ned as a result of these activities. Object diagrams
may be used to analyse the links between objects in order to determine the associations
between classes.

System architecture and design
In this activity various decisions concerning the design process are made, including
the further specifi cation of a suitable systems architecture. For example, a possible
architecture for the system in the Agate case study is shown in Fig. 5.21. This architecture
has four layers. The two bottom layers provide common functionality and database access
for the campaign costing and advert planning subsystems. Part of the architectural
specifi cation may include the identifi cation of particular technologies to be used. In this
case it may be decided to use a client–server architecture with the subsystem interfaces
operating through a web browser to give maximum operational fl exibility.

As well as package diagrams, shown here, component diagrams are used to model
logical components of the system, and deployment diagrams are used to show the physical
architecture of processors and the software that will run on them.

sd Add new staff

:Accountant

:AddNewStaffUI :AddNewStaff

:Staff

createStaff createStaff

Staff

Figure 5.19 Part of a communication diagram for the use case Add New Staff.

Client

«responsibilities»

companyName
companyAddress
companyTelephone

addClient
updateClientDetails
getClientDetails
addNewCampaign
getClientCampaigns

Figure 5.20 Partly completed sample analysis class.

9780077125363_001_ch05.indd 1339780077125363_001_ch05.indd 133 3/5/10 8:45:32 AM3/5/10 8:45:32 AM

134 CHAPTER 5 MODELLING CONCEPTS

System architecture and design is also concerned with identifying and documenting
suitable development standards (e.g. interface design standards, coding standards) for
the remainder of the project. System architecture and design is explained in Chapter 13.

Class design
Each of the use case analysis models is now elaborated separately to include relevant design
detail. Interaction sequence diagrams may be drawn to show detailed object communica-
tion (Chapter 9) and state machine diagrams may be prepared for objects with complex
state behaviour (Chapter 11). The separate models are then integrated to produce a detailed
design class diagram. Design classes have attributes and operations specifi ed (Fig. 5.22)
to replace the less specifi c responsibilities that may have been identifi ed by the analysis
activity (Fig. 5.20). The detailed design of the classes normally necessitates the addition
of further classes to support, for example, the user interface and access to the data storage
system (typically a database management system). Class design is explained in Chapter 14.

User interface design
The nature of the functionality offered via each use case has been defi ned in require-
ments analysis. User interface design produces a detailed specifi cation as to how the
required functionality can be realized. User interface design gives a system its look and
feel and determines the style of interaction the user will have. It includes the positioning
and colour of buttons and fi elds, the mode of navigation used between different parts of

Campaign Domain

Campaign Database

CampaignCostsHCI
«subsystem»

CampaignCosts
«subsystem»

Adverts HCI
«subsystem»

Adverts
«subsystem»

Figure 5.21 Possible architecture for part of the Agate system.

Client

− companyName: String
− companyAddress: Address
− companyTelephone: Phone

+ addClient(name: String, address: Address, phone: Phone)
+ addNewCampaign(campaign: Campaign)
+ getClientCampaigns(): Campaign[]

Figure 5.22 Partly completed sample design class.

9780077125363_001_ch05.indd 1349780077125363_001_ch05.indd 134 3/5/10 8:45:32 AM3/5/10 8:45:32 AM

5.5 SUMMARY 135

the system and the nature of online help. Interface design is explained in Chapter 17
and is very dependent on class design. Sequence diagrams are used to model the inter-
action between instances of classes, and state machine diagrams are used to model the
way in which the user interface responds to user events, such as mouse clicks and the
entry of data. The class model is updated with new classes representing the user inter-
face, and detail is added as the interaction becomes better understood.

Data management design
Data management design focuses on the specifi cation of the mechanisms suitable for
implementation of the database management system being used (see Chapter 18). Techniques
such as normalization and entity–relationship modelling may be particularly useful if a
relational database management system is being used. Data management design and class
design are interdependent. Sequence diagrams are used to model the interaction between
instances of classes, and state machine diagrams are used to model the way that objects change
state over time in response to real world events. The class model is updated with new classes
representing the way in which data will be stored, including data management frameworks.

Construction
Construction is concerned with building the application using appropriate development
technologies. Different parts of the system may be built using different languages. Java
may be used to construct the user interface, while a database management system such
as Oracle would manage data storage and handle commonly used processing routines.
Class, sequence, state machine, component and deployment diagrams provide the specifi -
cation to the developers.

Testing
Before the system can be delivered to the client it must be thoroughly tested. Testing
scripts should be derived from the use case descriptions that were previously agreed
with the client. Testing should be performed as elements of the system are developed.
Different kinds of tests are carried out as the construction work proceeds. Testing is not
all left to the end.

Implementation
The fi nal implementation of the system will include its installation on the various computers
that will be used. It will also include managing the transition from the old systems to the
new systems for the client. This will involve careful risk management and staff training.

5.5 Summary

As in many kinds of development projects, we use models to represent things and ideas
that we want to document and to test out without having to actually build a system. Of
course, our ultimate aim is to build a system and the models help us to achieve that. Models
allow us to create different views of a system from different perspectives and, in an infor-
mation system development project, most models are graphical representations of things
in the real world and the software artefacts that will be used in the information system.

These graphical representations are diagrams, which can be used to model objects
and processes. In UML a number of diagrams are defi ned and the rules for how they are to

9780077125363_001_ch05.indd 1359780077125363_001_ch05.indd 135 3/5/10 8:45:32 AM3/5/10 8:45:32 AM

136 CHAPTER 5 MODELLING CONCEPTS

be drawn are documented. UML defi nes two types of diagram: structural and behavioural.
Diagrams are also supported with textual material, some of which may be informal, for
example in natural language, while some may be formal, for example written in Object
Constraint Language.

As a project progresses a variety of models are produced in order to represent different
aspects of the system that is being built. A model is a complete and consistent view of a
system from a particular perspective, typically represented visually in diagrams. An example
of a diagram notation that is used in UML is the activity diagram. Activity diagrams model
activities that are carried out in a system and include sequences of actions, alternative
paths and repeated actions. As well as being used in system development projects, activity
diagrams are also used in the Unifi ed Software Development Process to document the
sequence of activities in a workfl ow.

The Unifi ed Software Development Process provides a specifi cation of a process that
can be used to develop software systems. It is made up of phases, within which models
of the system are elaborated through successive iterations in which additional detail is
added to the models until the system can be constructed in software and implemented.
For the purpose of this book, we have broken the software development process into a
number of activities that must be undertaken in order to develop a system. These activities
are described in more detail in subsequent chapters.

5.1 What is the difference between a diagram and a model?

5.2 What are the two types of UML diagram?

5.3 Why do we use models in developing computerized information systems and
other artefacts?

5.4 Why do we need standards for the graphical elements of diagrams?

5.5 What is the UML notation for each of the following: package, subsystem and
model?

5.6 In what way can we show in UML that something is contained within some-
thing else, for example a subsystem within another subsystem?

5.7 What is the notation used for an action in a UML activity diagram?

5.8 What links actions in an activity diagram?

5.9 In what way can a decision be represented in a UML activity diagram?

5.10 What is the notation for the two special nodes that start and fi nish an activity
diagram?

5.11 What is meant by a guard condition?

5.12 What is an object fl ow?

5.13 What is the notation for an object fl ow?

5.14 What is the difference between USDP and the Waterfall Lifecycle in the
relationship between activities and phases?

Review Questions

9780077125363_001_ch05.indd 1369780077125363_001_ch05.indd 136 3/5/10 8:45:33 AM3/5/10 8:45:33 AM

FURTHER READING 137

Further Reading

Although activity diagrams are used in UML for a variety of purposes, including modelling business
processes, there are other notations that are becoming more widely used specifi cally for business
process modelling. These have their origins in workfl ow modelling notations and the growth of
business process automation packages that use web services to carry out steps in a business
process. The Business Process Modelling Notation (BPMN) is becoming the standard in this area,
and is now managed by the OMG (http://www.bpmn.org/).

Booch et al. (1999) discuss the purpose of modelling and the differences between models and
diagrams. They also describe the notation of activity diagrams. Jacobson et al. (1999) describe the
Unifi ed Software Development Process and explain the notation of the stereotyped activity
diagrams that they use to model the workfl ows in USDP.

An alternative to USDP is the Rational Unifi ed Process, see Kruchten (2004), Kroll and
Kruchten (2003) or the IBM Corporation website (http://www.ibm.com/developerworks/rational/
products/rup/).

Executable UML is explained in a book by Mellor and Balcer (2002).

5.A Some people suggest that information systems are models or simulations of
the real world. What are the advantages and disadvantages of thinking of
information systems in this way?

5.B Think of other kinds of development project in which models are used. For
each kind of project list the different kinds of models that you think are
used.

5.C Choose a task that you carry out and that you understand, for example
preparing an assignment at college or university, or a task at work. Draw an
activity diagram to summarize the actions that make up this task. Use activity
partitions if the task involves actions that are carried out by other people.

5.D Choose some of the actions in your activity diagram and break them down
into more detail in separate diagrams.

5.E Read about the Rational Unifi ed Process (RUP) (see references in the Further
Reading section). Identify some of the differences between RUP and USDP.

Case Study Work, Exercises and Projects

9780077125363_001_ch05.indd 1379780077125363_001_ch05.indd 137 3/5/10 8:45:33 AM3/5/10 8:45:33 AM

