Chapter 11: Functional Organization of Nervous Tissue

I. Functions of the Nervous System

A.		st and describe the five major nervous system functions:
	1.	
	2.	
	3.	
	4.	
	5.	
	0.	
I. Di	visi	ions of the Nervous System
A.	Th	e Central Nervous System
	1.	What does the CNS consist of? &
	2.	At what point are the two components of the CNS continuous?
В.	Th	e Peripheral Nervous System
	1.	What does the PNS consist of?
		a
		b
		C
		d
	2	What are sensory receptors? or

3.	Where are sensory receptors located?		
	a		
	b		
	C		
	d		
	e		
4.	What is a nerve?		
5.	Where do cranial nerves originate?		
	a. How many pairs of cranial nerves are the	ere?	
6.	Where do spinal nerves originate?		
	a. There are how many pairs of spinal nerv	es?	_
7.	A ganglion is a		
8.	What is a plexus?		
9.	Functionally the sensory or afferent division		
	a. The cell bodies of sensory neurons are I	ocated in:	
	1	_ or	
	2	_	
10.	Functionally the motor or efferent division _		· · · · · · · · · · · · · · · · · · ·
11.	The motor division is divided into the:		
	a &		
	b		
12.	What is a synapse?		
13.	The somatic nervous system transmits		from
	to		
	a. Is this voluntary or involuntary (subconso	cious) control? _	
14.	The autonomic nervous system transmits _		from
	to,, a		
	a. Is this voluntary or involuntary (subconso		
15.	The ANS is subdivided into the:		
	a		

	C
16.	Functionally the sympathetic division:
17.	Functionally the parasympathetic division:
18.	The enteric nervous system consists of:
	a. Why is it considered to be part of the ANS?
III. Cells	of the Nervous System
	eurons
1.	Functionally neurons or nerve cells
2.	Structurally neurons are organized
3.	Each neuron consists of a:
	a or
	b. And two types of processes:
	1
	2
4.	Neuron Cell Body
	a. Contains normal cellular organelles including:
	1. Nucleus which is
	2. Extensive
	3 apparatuses
	4. Moderate
	5. Randomly arranged &
	a. These increase as
	6. Large numbers of &
	7. What are Nissl bodies?
5.	Dendrites
	a. Describe the structure of a dendrite
	b. What are dendritic spines?

		C.	When stimulated dendrites				
	6.	Ax	rons				
		a.	Describe the structure of an axon hillock?				
			What arises at the axon hillock?				
		b.	The beginning of an axon is called the				
		C.	Branches of an axon are called or				
		d.	What is axoplasm?				
		e.	What is an axolemma?				
		f.	Enlarged structures on the terminal end of an axon are called				
			or				
			These structures contain numerous				
		g.	Functionally neurotransmitters				
		h.	What is a trigger zone and what does it do?				
В.	Ту	pes	of Neurons				
	1.	Fu	nctional classification is based on the direction of action potentials:				
		a.	Neurons that carry action potentials toward the CNS are				
		b.	Neurons that carry action potentials away from the CNS to muscles or				
			glands are or				
		C.	Neurons that carry action potentials within the CNS are				
			or				
	2.	Str	ructural classification is based on the number of processes:				
		a.	Describe the structure of a multipolar neuron:				
			Where would you find multipolar neurons?				
		b.	Describe the structure of a bipolar neuron:				
			Where would you find bipolar neurons?				
		C.	Describe the structure of a unipolar neuron:				

			1.	Where would	l you find unipo	olar neuron	s?	
C.	Ne	eurc		of the CNS				
	1.	As	strocy	ytes				
		a.	Ast	rocytes are-s	tar shaped be	cause		
					cesses cover			
			1.					
		d.						m to
		e.	Fun	nctionally astr	ocytes play a	role in		
			1.	What is the b	olood-brain bar	rier?		
			2.	Functionally	the blood-brain	n barrier:		
			i	a. Protects _				
				b. Allows				
				c. Prevents				
			3.	Astrocytes al	so regulate the	e concentra	ation of	&
			i	and		. &		_ neurotransmitters
	2.	Εp	endy	ymal Cells				
		a.	Wh	ere do you fii	nd ependymal	cells?		
		b.	Wh	at is a choroi	d plexus comp	osed of? _		
			1.	Where would	I you find a ch	oroid plexu	s?	
		C.	Fur	nctionally a cl	noroid plexus?			
		d.	Wh	at do the cilia	a on ependyma	al cells do?		
		e.	Wh	at do the lon	g processes of	ependyma	al cells do?	
	3.	Mi	 crog	lia				
		а	Fun	nctionally mic	roglia are			in the CNS

			b. In response to inflammation they become _	&	
		4.	Oligodendrocytes		
			a. Oligodendrocytes have	that can	_axons
			b. If they wrap around axons many times it for	ms	
			c. One oligodendrocyte can form		_ axons
	D.	Ne	euroglia of the PNS		
		1.	Schwann cells or neurolemmocytes	axons	
			a. If they wrap around the axon many times it	forms	
			b. Each Schwann cell wraps around	axon	
		2.	Where are satellite cells found?		
			a. Functionally satellite cells		
	E.	My	velinated and Unmyelinated Axons		
		1.	Myelin and	axons	
		2.	Action potentials travel fastest in		_
		3.	Structurally how is a myelin sheath formed?		
		4.	What is the myelin sheath composed of?		
		5.	Interruptions in the myelin sheath are called		
		6.	The myelinated segments are known as		
		7.	How is an unmyelinated axon associated with	an oligodendrocyte or a	l
			Schwann cell?		
			; 		
IV	Or	יבהי	nization of Nervous Tissue		
IV		•			
	Α.		hite matter is composed of		
	D		The white color is due to the presence of		
			ay matter is composed of		
			hat are nerve tracts?		
	IJ.	ΓU	nctionally the gray matter of the CNS		

	Ε.	WI	hat is the cortex?
			e nuclei are
			erves of the PNS are composed of
	Н.	Ga	anglia are
/ .	Ele	ecti	ric Signals
	A.	Сс	oncentration Differences Across the Plasma Membrane
		1.	What ions have a higher concentration outside the cell than inside the cell?
			a
			b
		2.	What ions have a higher concentration inside the cell than outside the cell?
			a
			b such as &
		3.	There is a steep concentration gradient from outside to inside for
		4.	There is a steep concentration gradient from inside to outside for
		5.	Describe the actions of the sodium-potassium exchange pump:
			a. Is this a one for one ion exchange?
		6.	Negatively charged proteins are synthesized
			a. They cannot readily diffuse across the plasma membrane because of:
			1 &
			2
		7.	The negatively charged molecules inside the cell repel
			a. This causes an of outside the cell
		8.	Nongated Ion Channels (Leak Channels)
			a. These channels are always and are responsible for the
			when the cell is at rest
			b. Each ion channel is for of ion
			c. The membrane is more permeable to K ⁺ and Cl ⁻ because

	9.	Ga	ated Ion Channels						
		a.	Open and close in response to	-					
		b.	Opening and closing changes the	of the membrane					
		C.	Ligand-gated ion channels open or close in response to						
			1. What is a ligand?						
			2. What is a receptor?						
		d.	What four substances do ligand-gated ion channels exis-						
			1 2 3	4					
		e.	Voltage-gated ion channels open and close in response	to					
		f.	What three substances do voltage-gated ion channels ex	xist for?					
			1 2 3						
		g.	Other-gated ion channels respond to stimuli such as:						
			1 of the skin in touch recepto	rs					
			2 changes in the skin						
В.	Th	The Resting Membrane Potential							
	1.	W	Vhat is the potential difference?						
	2.	In	skeletal muscle fibers and nerve cells the potential difference is equal to						
		<u> —</u>	Why is this reported as a negative number?	·					
		b.	What does "resting membrane potential" refer to?						
	3.	Es	stablishing the Resting Membrane Potential						
		a.	The resting membrane potential results from the:						
			1. Permeability	&					
			2. Difference						
		b.	Why is the membrane permeable to K ⁺ ?						
		C.	Why do K ⁺ move through the membrane?						
		d.	What is too big to move through the membrane?						

		e. Together the movement of K' and the ions that do not move make the
		membrane inside the cell and outside the cell
		f. Why is the resting membrane potential at equilibrium?
		g. What other ions have a small influence on the resting membrane
		potential? 1 2 3
		h. Why does K ⁺ play the major role?
		i. What mechanism keeps the concentration of Na ⁺ high outside the cell and the concentration of K ⁺ high inside the cell?
		Does this play a role in the resting membrane potential?
C	I۸	cal Potentials
О.		What is a local potential?
		Local potentials can result from:
	۷.	·
		a
		b
		C
		d
	0	e
	3.	The change in the membrane may be depolarization or hyperpolarization:
		a. If a stimulus opens Na ⁺ channels
		b. If a stimulus opens K ⁺ channels
	4.	Why are local potentials referred to as "graded"?
	5.	What happens when local potentials "summate"?
	6.	What happens to the intensity of a local potential as it spreads?
D.	Ac	tion Potentials
	1.	What is a threshold level?

Ar	n action potential is
Fc	or each of the following indicate if they may generate an action potential:
a.	Depolarizing local potentials
b.	Hyperpolarizing local potentials
C.	Small local potentials
	Large local potentials
	escribe what is meant by the "all" part of the all-or-none principle:
De	escribe what is meant by the "none" part of the all-or-none principle:
De	epolarization Phase
a.	List the events that occur after a threshold depolarization is reached:
	1. Many
	2. Na ⁺
	3. Resulting
	4. More
	5. Causing
	6. In turn
	a. This is a feedback cycle that continues until
b.	When the plasma membrane is at rest:
	 Which gate on the voltage-gated Na⁺ channel is closed?
	2. Which gate on the voltage-gated Na ⁺ channel is open?
C.	When threshold is reached the to open and
	allows into the cell
d.	When the plasma membrane is at rest voltage-gated K ⁺ channels are
e.	When threshold is reached the voltage-gated K ⁺ channels begin to
	1. But because the channels open little K ⁺ moves out of c

		a.	Lis	at the events that occur at maximum depolar	ization:
			1.	Change in	
			2.	Causes	
				a. So the permeability	
			3.	Voltage-gated K ⁺ channels continue	
			4.	As a result the membrane permeability to:	
				a decreases	
				b increases	
			5.	The decreased diffusion of	and increased diffusion of
				causes repolarization	
		b.	At	the end of repolarization the voltage-gated N	Na ⁺ channels are returned
			to	their resting state by:	
			1.	Closing	
				Opening	
	8.	Aft		otential (Hyperpolarization)	
		a.	W	hat causes the afterpotential?	
		b.	All	the action potentials produced by a cell are	identical because they all:
			1.	Take	_
				Exhibit	
E.	Re	efra		y Period	
	1.	W	hat	is the refractory period?	
	2.	Th	e a	bsolute refractory period is:	
		a.	Fr	om	
				itil	
	3.	Th	e a	bsolute refractory period guarantees that:	
		a.	Or	nce an action potential is begun	
		b.	Α:	strong stimulus cannot	
	4.	Th	e re	elative refractory period follows	

7. Repolarization Phase

	5.	During the relative refractory period an action potential can be initiated by
F.	Ac	tion Potential Frequency
	1.	The action potential frequency is
		How many action potentials will each of the following stimuli produce:
		a. Subthreshold stimulus
		b. Threshold stimulus
		c. Maximal stimulus
	3.	Submaximal stimulus includes all stimuli between &
	4.	What is a supramaximal stimulus?
		What determines the maximum frequency of action potentials in a cell?
	6.	Frequency of action potentials provides information about stimulus strength:
		a. A weak stimulus generates
		b. A strong stimulus generates
	7.	Is there a difference in the magnitude of action potentials produced by weak
		or strong stimuli?
	8.	Frequency of action potentials determines response of muscle or gland:
		a. Less secretion or contraction is stimulated by
		b. More secretion or contraction is stimulated by
G.	Pro	opagation of Action Potentials
	1.	Propagate refers to the spread
		a. This is accomplished because an action potential at one location
	_	
	2.	In an unmyelinated axon, when an action potential is produced:
		a. Inside of the membrane
		b. On the outside positively
		c. On the inside positively
		The movement of positively charged ions is called
		2. As a result of the ion movement the membrane immediately adjacent
		to the action potential is

	a. W	hen it reaches thresho	ld an	
3. I	ln a myelina	ted axon, an action po	tential is conducted fror	n
t	to	in a pr	ocess called	
á	a. The lipid	s of the myelin sheath	act as	
t	b. An action	n potential at one node	of Ranvier generates lo	ocal currents that
4. /	Action poter	ntials travel faster in my	elinated axons because	e:
ć	a. They are	formed		
k	b. Instead o	of being		
5. I	Does an act	ion potential move faster through a large-diameter axon or a		
5	small-diame	ter axon?		
6. (Complete th	e following data table:		
Nerve	Fiber	Diameter	Myelination	Speed
Тур	e A			
Тур	е В			
Тур	e C			
7.	Type A fiber	s are used for		
8.	Type B and	C fibers are used for _		
VI. The Sy	napse			
A. Terr	minology			
1. \	What is a sy	napse?		
2.	Define pres	synaptic cell:		
3. [Define posts	synaptic cell:		
B. Elec	Electrical Synapses			
1. [Electrical sy	napses are gap junctio	ons that allow	
- 2 N	What are co			
	What are connexons?			
			one cell	

	4.	W	here would you find electrical synapses?
		a.	y
		b.	y
C.	Ch	em	ical Synapses
	1.	De	escribe the three essential components of a chemical synapse:
		a.	Presynaptic terminal
		b.	Synaptic cleft
		C.	Postsynaptic membrane
			1. These are typically,, or,
	2.	Ne	eurotransmitter Release
		a.	List the events that occur when an action potential arrives at the
			presynaptic terminal:
			1. Voltage
			2. Ca ²⁺
			3. Synaptic vesicles
			4. Release
		b.	When neurotransmitters are released:
			1. Diffuse
			2. Bind
		C.	Depending on the receptor, the binding produces:
			1or
			2
	3.	Ne	eurotransmitter Removal
		a.	There are three primary methods of removing neurotransmitter:
			Neurotransmitter is broken down by
			a. An example of this is acetylcholine being broken down by
			Neurotransmitter is actively transported
			and repackaged into
			Diffusion of neurotransmitter molecules
			and into

4.	Re	ceptor Molecules in Synapses		
	a.	Receptor molecules in synapses are:		
		1. Membrane		
		2. Ligand		
		3. Highly		
	b.	How many different neurotransmitters can bind to one type of receptor? Why?		
	C.	Neurotransmitters only affect cells		
	d.	Different types of receptors for the same neurotransmitter results in		
		One type of norepinephrine receptor will cause		
		Another type of norepinephrine receptor will cause		
5.	Ne	eurotransmitters and Neuromodulators		
	a.	Some neurons can secrete more than one type of		
		The physiological significance is		
	b.	What is the function of a neuromodulator?		
6	Εv	citatory and Inhibitory Doctovnantia Dotontials		
0.		citatory and Inhibitory Postsynaptic Potentials		
	а.	What is an excitatory postsynaptic potential?		
	b.	EPSP's are important because		
	C.	What is an excitatory neuron?		
	d.	Generally an EPSP occurs because of an increase		
	e.	What is an inhibitory postsynaptic potential?		
	f.	IPSP's are important because		
	g.	What is an inhibitory neuron?		
	h.	An IPSP occurs because of an increase		

	7.	Pre	synaptic Inhibition and Facilitation			
		a.	What is an axoaxonic synapse?			
		b. Neuromodulators released in an axoaxonic synapse can alter _				
		C.	. In presynaptic inhibition			
			. Functionally endorphins inhibit neurons by			
			1. This prevents			
		e.	In presynaptic facilitation			
D.	Sp	oatial	and Temporal Summation			
	1.	A s	ingle presynaptic action potential does not reach			
			I produce an in the postsynaptic membrane.			
	2.		/hat is summation?			
	3.	Wh	Vhat is the trigger zone?			
	4.	The	he concentration of Na⁺ channels at the trigger zone is			
	5.	Spatial summation occurs when two action potentials arrive				
		at _	that synapse with			
		a.	The local depolarizations in the postsynaptic neuron summate at the			
			and if it reaches threshold			
	6.	Ter	nporal summation occurs when two or more action potentials arrive			
			at a single presynaptic terminal			
		a	Although local depolarizations are short lived if the action potentials arrive			
			close enough together they can			
		b.	If the summated local depolarization reaches at the			
			then in the postsynaptic neuron			
	7.	If a	postsynaptic neuron is receiving EPSP's and IPSP's at the same time			
		wha	at determines if an action potential will be created in the postsynaptic			
			ıron?			

VII. Neuronal Pathways and Circuits

Α.	In	convergent pathways
		If some presynaptic neurons are inhibitory and some are excitatory
В.	In	divergent pathways
		Describe the simplest divergent pathway
C.	Os	cillating circuits have neurons arranged in
	1.	This allows
		a. This response is called
	2.	Oscillating circuits are similar to
		What causes an oscillating circuit to stop?
		a or
		b