Chapter 23: Respiratory System

I.	Fu	nct	ion	s of the Respiratory System	
	Α.	Lis	t ar	nd describe the five major functions of the respiratory system:	
		1.			
		•			
		2.			
		2			
		3.			
		Δ			
		ч.			
		5.			
II.	An	ato	my	and Histology of the Respiratory System	
	A.	No	se		
		1.	Со	nsists of and the	_
		2.	Ex	ternal Nose	
			a.	The largest part is composed of	
			b.	What bones make the bridge of the nose?	&
				extensions of the and	
		4.	Na	sal Cavity	
			a.	Extends from the to the	
				1. What are the nares?	
				2. What are the choanae?	
			b.	What is the vestibule?	

		C.	W	hat forms the floor of the nasal cavity and separates it from the oral	
			са	vity?	
		d.	Tł	ne nasal septum is composed of:	
			1.	Anterior part is	
			2.	Posterior part consists of:	
				a bone	
				b. Perpendicular	
		e.	W	hat are the conchae?	
			1.	Where are they located in the nasal cavity?	-
		f.	W	hat is a meatus?	_
		g.	Tł	ne paranasal sinuses open into	
		h.	Tł	ne nasolacrimal duct opens into	
		i.	Fι	inctionally the nasal cavity:	
			1.	Passageway	_
			2.	Cleans	
			3.	Humidifies and	
			4.	Sensory organ for located	
			5.	Resonating	
В.	Ph	nary	'nx		
	1.	Сс	omr	non opening for both &	
	2.	Inf	erio	orly connected to:	
		a.	Re	espiratory system at the	
		b.	Di	gestive system at the	
	3.	Na	aso	pharynx	
		a.	Sı	uperior part of the pharynx and extends from	to
		b.	W	hat is the uvula attached to?	
		C.	Fι	inctionally the soft palate prevents	
		d.	M	ucus containing trapped particles from the nasal cavity moves through	
			th	e nasopharynx and is	

	e.	The auditory tubes from open into the nasopharyn	х
		a. They function to	
	f.	Where is the pharyngeal tonsil or adenoid located?	
4.	Oı	ropharynx	
	a.	Extends from to the	
	b.	The opening to the oral cavity is called the	
	C.	What two sets of tonsils are located near the opening to the oral cavity?	
		1	
		2	
5.	La	aryngopharynx	
	a.	Extends from the to the	
	b.	Passes posterior to the	
C. La	aryn	X	
1.	Сс	onsists of an outer casing of that are connected	to
	or	ne another by &	
2.	W	hat is the largest unpaired cartilage?	
3.	W	hat cartilage forms the base of the larynx?	
4.	W	hich cartilage projects as a free flap toward the tongue?	—
	a.	This cartilage is composed of	
	b.	During swallowing it covers	
5.	Tł	ne paired cartilages:	
	a.	Where are the arytenoid cartilages?	
	b.	Where are the corniculate cartilages?	
	C.	Where are the cuneiform cartilages?	
6.	Τv	vo pairs of ligaments extend fromto))
	а.	The superior pair is called	
		1. Functionally when they come together	
	b.	The inferior pair is called	

		c. What is the glottis?
		d. What is laryngitis?
	7.	Functionally the larynx:
		a. Maintain an open
		b. Prevent
		c. Primary source of
		1. Higher pitched tones are produced when
		2. Progressively lower tones
		Why do males have lower-pitched voices?
		4. Movement of the cartilages is controlled by
		5. Movement of arytenoid cartilages:
		a. Lateral rotation
		b. Medial rotation
		c. Anterior/posterior movement
D.	Tra	achea
	1.	Describe the structure of the trachea:
	2.	Functionally the C-shaped cartilage the trachea and
		for air
	3.	The posterior wall of the trachea is but contains:
		a. Elastic
		b. Bundles of called
	4.	What does the smooth muscle do during coughing?
	5.	Describe the structure of the mucous membrane:
	_	a. What functional role do the cilia play?
	6.	At the level of the fifth thoracic vertebrae the trachea divides into
	7	What is the carina?
E.	Tra	acheobronchial Tree
	1.	What does the term tracheobronchial tree refer to?

2.	Сс	onducting Zone
	a.	Extends from the to
	b.	How many generations of branching are present?
	C.	Functionally the conducting zone is a&
		contains epithelial tissue that helps
	d.	The trachea divides into the&
		1. Compared to the left primary bronchus, the right primary bronchus is:
		a
		b
		C
	e.	The primary bronchi divide into
		 How many in the left lung?
		How many in the right lung?
	f.	The secondary bronchi divide into
	g.	The bronchi continue to branch giving rise to
	h.	Several more subdivisions finally become
	i.	As the tubes divide the amount of cartilage and smooth muscle changes:
		1. Primary bronchi have
		2. Secondary bronchi have
		3. Terminal bronchioles have
	j.	Diameter of the air passageways is changed by
	k.	What happens to the air passageways in an asthma attack?
3.	Re	espiratory Zone
	a.	Extends from the to
		called which are sites of
	b.	How many generations of branching are present?
	C.	The terminal bronchioles divide to form

1. Have a few attached alveoli so have a limited ability _____

d.	As respiratory bronchioles divide into smaller branches the nu	imber of
	attached alveoli	
e.	The respiratory bronchioles finally form	ducts
	1. The alveolar duct wall is little more than	
	2. The alveolar duct ends as	
f.	The tissue surrounding the alveoli contains	
	1. This allows the alveoli to:	
	a. Expand	
	b. Recoil	
g.	Structurally the walls of respiratory bronchioles consists of:	
	a and	with
	b. Bundles of	
	c. Epithelium is a	
h.	Structurally the alveolar ducts and alveoli consist of	
i.	Debris in the respiratory zone is removed by	
	1. Where does the debris end up?	or
j.	Alveolar walls are composed of two cell types:	
	1. Type I pneumocytes are	that form
	2. Type II pneumocytes are	that
	produce which	
	3. Most gas exchange occurs through which cells?	
k.	What is the respiratory membrane?	
I.	Why does the respiratory membrane need to be thin?	
m.	List the elements of the respiratory membrane:	
	1	
	2	
	3	

	4	
	5	
	6	
F. Lu	ings	
1.	What is the shape of a lung?	
2.	What is the hilum?	
3.	What is the root of the lung?	
4.	How many lobes does each lung have?	
	a. Right lung has	
	b. Left lung has	
5.	What separates the lobes of the lung?	
6.	Internally each lobe is supplied by a	bronchus
7.	The lobes are subdivided into	which are
	supplied by	
8.	Bronchopulmonary segments are subdivided into	
	that are supplied by	
G. Tł	noracic Wall and Muscles of Respiration	
1.	The thoracic wall consists of the:	
	a	
	b	
	C	
	d	
	e	
2.	How is the thoracic cavity defined?	
3.	The associated muscles are responsible for	
4.	The muscles of inspiration include:	
	a	
	b	
	C	
	d	

5.	Which muscle is responsible for two-thirds of the the	horacic cavity	volume
	increase?		

6.	Which muscles	elevate the	ribs to	increase	thoracic	cavity volume?
----	---------------	-------------	---------	----------	----------	----------------

- 7. The muscles of expiration that compress the ribs and sternum include:
 - a. _____
 - b. _____
- 8. How is inward collapse of the thoracic cage prevented during inspiration?
- 9. Describe the shape of the diaphragm: _____
 - a. The base is attached to _____
 - b. What is the central tendon? _____
- 10. What happens to the diaphragm during normal quiet breathing?
- 11. When breathing deeper what happens to the diaphragm?
- 12. When the ribs are elevated the costal cartilage allows
- 13. During quiet breathing expiration occurs when ______ &

_____ relax and the _____

- cause a _____
- a. Contraction of the abdominal muscles _____

H. Pleura

- 1. Each lung is contained inside a _____
- 2. What is the mediastinum?

What does the parietal pleura cover? ______

- 4. What does the visceral pleura cover? _____
- 5. The pleural cavity is filled with _____
- 6. Functionally the pleural fluid:
 - a. Acts as a _____

- b. Helps hold _____
- I. Blood Supply
 - 1. What is oxygenated blood? _____
 - 2. What is deoxygenated blood?
 - 3. The major blood flow route:
 - a. Brings deoxygenated blood from the heart through _____
 - b. Flows through pulmonary capillaries where it is _____
 - c. Then flows back to the heart through _____

4. The smaller blood flow route:

- a. Brings oxygenated blood from the _____
- b. Passes through ______ to _____
 - where oxygen is released
- c. The now deoxygenated blood from the proximal part of the bronchi returns to the heart through ______ veins and the ______
- d. The now deoxygenated blood from the distal part of the bronchi returns to the heart through the ______ containing ______

J. Lymphatic Supply

- 1. Where are the superficial lymphatic vessels located?
 - a. Functionally they drain lymph from _____
- 2. Where are the deep lymphatic vessels located?
 - a. Functionally they drain lymph from _____
- 3. The lymphatic vessels exit the lungs at the _____

III. Ventilation

- A. Pressure Differences and Airflow
 - 1. What is ventilation?
 - 2. Airflow into the lungs requires ______
 - 3. Airflow out of the lungs requires _____

B. Pressure and Volume

	1.	Th	ie g	eneral gas law reveals that air pressure is	
				to	
		a.	As	volume increases	
		b.	As	volume decreases	_
C.	Aiı	rflov	w in	to and out of Alveoli	
	1.	Ba	ron	netric air pressure is defined to be equal to	
	2.	W	hat	is alveolar pressure?	
		a.	Th	is pressure is usually expressed in terms of	
	3.	Dι	uring	g the process of ventilation:	
		a.	At	the End of Expiration:	
			1.	No air is moving because	
		b.	Dι	iring Inspiration	
			1.	Contraction of	
			2.	thoracic volume	
			3.	Results in of the lungs and an	
			4.	Causes a in alveolar pressure	
			5.	Air flows because	
				is	
		C.	Er	nd of Inspiration	
			1.	Thorax and alveoli	-
			2.	Alveolar pressure becomes	
			3.	No further movement of air because	
		d.	Dι	iring Expiration	
			1.	Diaphragm	
			2.	thoracic volume	
			3.	Thorax and lungs	
			4.	Decreased thoracic volume results in	alveolar
				volume and alveolar pressure	

		5. /	Air flo	ows	because
		i	s		
		6. /	As ex	xpiration ends:	
		ć	а		in thoracic volume stops
		k	э. A	lveoli	
Cł	nang	ging /	Alve	olar Volume	
1.	Lu	ng R	ecoi	I	
	a.	Wha	at do	es lung recoil cause	?
	b.	Lun	g red	coil is the result of:	
		1. E	Elast	tic	
		2. 3	Surfa	ace	
	C.	Sur	facta	int composed of	
	d.	How	v doe	es surfactant reduce	the tendency of the lungs to collapse?
2.	Ple	eural	Pres	ssure	
	a.	Pleu	ural p	pressure is the press	sure in the
	b.	Nor	mally	y the alveoli are exp	anded because
	C.	Whe	ən pl	leural pressure is low	ver than alveolar pressure
		<u> </u>			
	d.	This	s exp	ansion is opposed b	by the tendency of the lungs to
	e.	Wha	at ha	ppens if the pleural	pressure is sufficiently low?
	f.	Wha	at ha	ppens if the pleural	pressure is not low enough to overcome lung
		reco	oil? _		
3.	Pr	essu	re Cl	hanges During Inspi	ration and Expiration
	a.	At th	ne er	nd of a normal expira	ation:
		1. I	Pleu	ral pressure is	
		2. /	Alveo	olar pressure is	
	b.	Duri	ing n	ormal quiet inspirati	on:
		1. F	Pleu	ral pressure	to
		2. /	Alveo	olar volume	

D.

	3.	Alveolar pressure	
	4.	Air flows	_
	5.	As air flows into the lungs, alveolar pressure _	
		and	at the end of inspiration
	6.	The tendency for the lungs to recoil increases	as
		similar to	
	c. D	uring expiration:	
	1.	Thoracic volume	
	2.	Pleural pressure	
	3.	Alveolar volume	
	4.	Alveolar pressure	
	5.	Air flows	_
	6.	As air flows out of the lungs, alveolar pressure	
		and	_ at the end of expiration
IV. Me	easuring	Lung Function	
Α.	Complia 1. What	nce of the Lungs and the Thorax is compliance a measure of?	
A.	Compliant 1. What	nce of the Lungs and the Thorax is compliance a measure of?	by which they
Α.	Compliant 1. What 2. Comp	nce of the Lungs and the Thorax is compliance a measure of? pliance of the lungs and thorax is the	by which they
Α.	Compliant 1. What 2. Compliant 3. The c	nce of the Lungs and the Thorax is compliance a measure of? pliance of the lungs and thorax is the for each unit of reater the compliance	by which they in
Α.	Compliant 1. What 2. Compliant 3. The g	nce of the Lungs and the Thorax is compliance a measure of? pliance of the lungs and thorax is the for each unit of greater the compliance	by which they in
Α.	Compliant 1. What 2. Compliant 3. The gradient 4. A hig	nce of the Lungs and the Thorax is compliance a measure of? pliance of the lungs and thorax is the for each unit of greater the compliance her than normal compliance means the lungs wi	by which they in
Α.	Compliant 1. What 2. Compliant 3. The gradient 4. A hig 5. A low	nce of the Lungs and the Thorax is compliance a measure of?	by which they in
А. В.	Compliant 1. What 2. Compliant 3. The gradient 4. A hig 5. A low Pulmona	nce of the Lungs and the Thorax is compliance a measure of?	by which they in Il expand
А. В.	Compliant 1. What 2. Compliant 3. The gradient 4. A hig 5. A low Pulmonat 1. What	hce of the Lungs and the Thorax is compliance a measure of?	by which they in Il expand
A. B.	Compliant 1. What 2. Compliant 2. Compliant 3. The gradient 4. A hig 5. A low Pulmonat 1. What 2. What	nce of the Lungs and the Thorax is compliance a measure of?	by which they in Il expand
А. В.	Compliant 1. What 2. Compliant 2. Compliant 3. The gradient 4. A hig 5. A low Pulmonat 1. What 2. What 3. List a	nce of the Lungs and the Thorax is compliance a measure of?	by which they in Il expand

		b				
		с				
		d				
	٨	List and describe the pulmonany capacities:				
	ч.	a.				
		b				
		С				
		d				
	5.	List factors that cause variations in pulmonary volumes and capacities:				
	6.	Do males or females have a larger vital capacity?				
	7.	The vital capacity is usually highest at what age?				
	8.	What is the forced expiratory vital capacity?				
C.	Mi	nute Ventilation and Alveolar Ventilation				
	1.	Define minute ventilation:				
	2.	Minute ventilation is equal to				
	3.	The anatomic dead space is the part of the respiratory system where gas				
		exchange				
	4.	What structures make up the anatomic dead space?,				
		,,, &, &, &, &, &, &, & &, & &, & & & &				
	5.	What is physiologic dead space?				

6.	Alveolar ventilation is the volume of air
	per

V. Physical Principles of Gas Exchange

- A. Partial Pressure
 - 1. What is atmospheric pressure at sea level?
 - 2. What does Dalton's law say about pressures in a mixture of gases?
 - 3. What is a partial pressure? _____
 - 4. How do you calculate a partial pressure?
 - 5. What is water vapor pressure?
- B. Diffusion of Gases Through Liquids
 - 1. The amount of gas that will dissolve in a liquid is determined by:
 - a. Partial _____
 - b. Solubility _____
 - 1. This is described by _____
 - 2. What is the solubility coeffiecient?
 - 3. The calculated partial pressure of a gas in a liquid is a measure of
- C. Diffusion of Gases Through the Respiratory Membrane
 - 1. Respiratory Membrane Thickness
 - a. Increasing the thickness of the respiratory membrane
 - b. How thick is the respiratory membrane normally?
 - c. What happens if the thickness increases two or three times?
 - d. What is the most common cause of an increase in the thickness of the respiratory membrane?

- e. List a few examples of conditions that can cause such fluid accumulation:
- 2. Diffusion Coefficient
 - a. What is the diffusion coefficient?
 - 1. This takes into account:
 - a. Solubility _____
 - b. Size _____

b. Does oxygen or carbon dioxide diffuse more easily? _____

c. Damage to the respiratory membrane interferes with the diffusion of _____ more than the diffusion of _____

d. Extensive oxygen therapy can result in large blood increases of

- 3. Surface Area
 - a. What is the normal surface area of the respiratory membrane of a healthy adult? ______
 - b. What diseases might decrease surface area? ______
 - c. Small decreases in surface area affect the ability to exchange gases during
 - d. The ability to exchange gases becomes a problem even under resting conditions when the surface area is decreased by
 - e. List examples of how surface area for gas exchange can be reduced:
- 4. Partial Pressure Difference
 - a. Define partial pressure difference: _____
 - b. Net diffusion occurs from the ______ partial pressure to
 - _____ partial pressure
 - c. Normally the partial pressure of oxygen (Po₂) is higher in ______ than the _____
 - d. Normally the partial pressure of carbon dioxide ($\ensuremath{\text{Pco}}_2\ensuremath{)}$ is higher in

_____ than the _____

- e. How can the partial pressure difference for oxygen and carbon dioxide be raised?
- f. A lower than normal partial pressure difference is caused by:
- D. Relationship Between Ventilation and Pulmonary Capillary Blood Flow
 - 1. Regular ventilation of the alveoli and normal blood flow through pulmonary capillaries allows effective ______ between air and blood
 - 2. During exercise effective gas exchange is maintained because:
 - a. Ventilation _____
 - b. Cardiac output _____
 - 3. The normal relationship can be disrupted in two ways:
 - a. Cardiac output is ______ and therefore not enough blood flows to the lungs to pick up the available oxygen
 - b. Ventilation is ______ to provide enough

oxygen for the blood flowing through the pulmonary capillaries

- 4. What is shunted blood? ______
- 5. What is the anatomic shunt? _____
- 6. What is the physiologic shunt?
- When a person is standing blood flow and ventilation in the lungs is effected by _____
- When a person is standing most gas exchange occurs at ______
- 9. There is decreased pressure at the ______ of the lungs
- 10. During exercise, cardiac output and ventilation _____
 - a. This ______ pulmonary blood pressure throughout the lung
 - b. Blood flow _____ most at the _____
- 11. If there is a low Po_2 in one portion of the lung:
 - a. Causes arterioles to ______ blood flow
 - b. This reroutes blood _____

c. This reduces the effect on gas exchange by rerouting the blood to

VI. Oxygen and Carbon Dioxide Transport in the Blood

- A. Oxygen Diffusion Gradients
 - 1. The Po₂ within the alveoli averages approximately _____
 - The Po₂ of the blood as it flows into pulmonary capillaries is ______
 - a. Therefore, oxygen diffuses from ______ into _____
 - Does the blood Po₂ ever reach equilibrium with the alveoli Po₂?
 - Blood leaving the pulmonary capillaries has a Po₂ of ______
 but blood leaving the lungs in the pulmonary veins has a Po₂ of ______
 - a. What causes this decrease in Po₂?
 - 5. The Po₂ of blood entering tissue capillaries is approximately _____
 - 6. The Po₂ of the interstitial spaces is close to _____
 - 7. The Po₂ inside the cells is probably near _____
 - a. Therefore, oxygen diffuses from _____ into _____ & from the _____ into _____
 - b. A constant diffusion gradient exists because _____
- B. Carbon Dioxide Diffusion Gradients
 - Carbon dioxide is continually produced as a by-product of ______
 - a. This establishes a diffusion gradient for carbon dioxide from the
 - 1. The intracellular Pco₂ is approximately _____
 - 2. The interstitial fluid Pco₂ is approximately _____
 - 3. The blood entering the tissue capillaries has a Pco₂ of _____
 - a. Therefore, carbon dioxide diffuses from ______ to _____

_____ to the _____

- c. As the blood leaves the tissue capillaries it has a Pco₂ of _____
- 2. At the lungs:
 - a. The Pco₂ of blood entering the pulmonary capillaries is _____

		b.	 The Pco₂ of the alveoli is approximately 				
			1. Therefore, carbon dioxide diffuses from	into			
		C.	The Pco ₂ of blood leaving the pulmonary capillaries has decreased to)			
C.	He	emo	oglobin and Oxygen Transport				
	1.	Ho	ow much of the oxygen transported in blood is in combination with				
		he	emoglobin?				
	2.	Th	ne combination of oxygen with hemoglobin is				
		a.	In the pulmonary capillaries				
		b.	In the tissue capillaries				
	3.	Ef	fect of Po ₂				
		a.	What is the oxygen-hemoglobin dissociation curve?				
		b.	When is hemoglobin saturated with oxygen?				
		C.	At any Po ₂ above 80 mm Hg the hemoglobin is about satu	rated			
		d.	At the Po ₂ of 104 mm Hg the hemoglobin is saturat	ed			
		e.	In the skeletal muscle of a resting person:				
			1. The blood leaving the muscle has a Po ₂ of				
			a. At this Po ₂ the hemoglobin is approximately satur	rated			
			1. Therefore the hemoglobin released of the ox	ygen			
		f.	During vigorous exercise the blood Po ₂ can decline to				
			1. At this level approximately of the hemoglobin is satur	rated			
			and of the bound oxygen is released				
		g.	When the oxygen needs of the tissue, blood	d Po ₂			
			and				
	4.	Ef	fect of pH, Pco ₂ , and Temperature				
		a.	рН				
			1. As the pH of the blood declines				

	2.	This occurs because decreased pH is caused by				
	3.	Hydrogen ions combine with				
		& change				
		a. This results in a decrease in the ability				
	4.	As the pH of the blood increases				
	5.	The effect of pH on the oxygen-hemoglobin dissociation curve is called				
b.	Pc	2O ₂				
	1.	An increase in Pco ₂ the ability of hemoglobin				
		to bind oxygen because carbon dioxide effects				
	2.	What is carbonic anhydrase?				
	3.	What is the chemical reaction carbonic anhydrase is involved in?				
	4.	When carbon dioxide levels increase more				
	5.	When carbon dioxide levels decline there is a decrease in				
		and an increase in				
	6.	As blood passes through tissue capillaries:				
		a. Carbon dioxide				
		b. Blood carbon dioxide levels				
		c. Hemoglobin has				
		d. Greater amount of				
	7.	As blood passes through the lungs:				
		a. Carbon dioxide &				
		b. Carbon dioxide levels in the pulmonary capillaries				
		c. Affinity				
c.	Те	mperature				
	1.	What effect does an increase in temperature have on the tendency of				
		hemoglobin to bind to oxygen?				
	2.	Tissues with increased metabolism have higher temperature and				

			therefore oxygen is released from hemoglobin
		3.	Less active tissues have a lower temperature and
			oxygen is released
	d.	Du	uring exercise what happens to the following in the tissues:
		1.	Carbon dioxide levels
		2.	Acidic substances so the pH
		3.	Temperature
			a. These conditions cause how much of the oxygen to be released
			from the hemoglobin?
			1. This is due to the oxygen-hemoglobin curve shifting
	e.	In	the lungs the hemoglobin becomes easily saturated because:
		1.	Carbon dioxide levels
		2.	Temperature
		3.	Lactic acid levels
5.	Eff	fect	of BPG (2,3-biphosphoglycerate)
	a.	BF	PG is formed as red blood cells
	b.	W	hat does BPG do when it binds to hemoglobin?
	C.	W	hen BPG levels increase
	d.	W	hen BPG levels decrease
	e.	W	hat happens to BPG levels at high altitudes?
	f.	W	hat happens to BPG levels in stored blood?
		1.	Why does stored blood become unsuitable for transfusion?
6.	Fe	tal	Hemoglobin
	a.	Fe	tal blood is very efficient at picking up oxygen because:
		1.	Concentration of fetal hemoglobin is
		2.	Fetal hemoglobin has an oxygen-hemoglobin dissociation curve that is
			to the of the maternal curve. This means that fetal
			hemoglobin can

3. BPG has ______ on fetal hemoglobin.

	4.	Of the double Bohr effect. Describe what happens in the do	ouble Bohr
		effect:	
D. Tr	anspo	rt of Carbon Dioxide	
1.	Carb	on dioxide is transported in the blood in three major ways:	
	a. 7º	%	
	b. 2	3%	
	c. 70	0%	
2.	Carb	on dioxide binds in a reversible fashion to the	
	of the		
3.	What	is the Haldane effect?	
	a. In	the tissues	
	b. In	the lungs	
4.	Chlo	ide Shift	
	a. A	t the tissues:	
	1.	Carbon dioxide diffuses into	
	2.	Some of the carbon dioxide binds to	
	3.	Most of the carbon dioxide reacts with	to
		form	
		a. This reaction is catalyzed by the enzyme	
	4.	The carbonic acid then dissociates into:	
		a	
		b	
	5.	In the chloride shift carrier molecules move:	
		a. Bicarbonate ions	
		b. Chloride ions	
		1. This exchange maintains	
	6.	Hemoglobin binds to	
		a. In this fashion hemoglobin functions as a	

		b.	At the lungs:
			1. Carbon dioxide
			2. Carbonic acid is converted to
			3. Bicarbonate ions join to form
			4. Bicarbonate ions the red blood cell in exchange for
			5. Hemoglobin releases
	5.	Ca	rbon Dioxide and Blood pH
		a.	Blood pH refers to not
		b.	Carbonic anhydrase is found on
		C.	So in plasma carbon dioxide joins with to form
			which dissociates to form
			and
		d.	As carbon dioxide increases, hydrogen ions & pH
		e.	The respiratory system regulates blood pH by
VII. R	hyt	hm	ic Ventilation
Α.	Re	spi	ratory Areas in the Brainstem
	1.	Th	e medullary respiratory center consists of:
		a.	Two
		b.	Two
			1. Communication exists between
			2. Communication also exists between
	2.	Th	e dorsal respiratory groups are primarily responsible for
		a.	The input they receive allows
	3.	Th	e ventral respiratory group is a collection of neurons that are active during
			&
		a.	The neurons of the ventral respiratory group primarily stimulate:
			1
			2
			3

4.	Functionally	y the p	pontine	respiratory	group has:
----	--------------	---------	---------	-------------	------------

- a. Some of the neurons _____
- b. Some of the neurons
- c. Some of the neurons _____
 - 1. Appears to play a role in _____

B. Generation of Rhythmic Ventilation

- 1. Starting inspiration:
 - a. Neurons that promote inspiration are _____
 - b. The medullary respiratory center constantly receives input related to:
 - 1. Blood _____
 - 2. Blood _____
 - 3. Movements of ______ & _____
 - c. The medullary respiratory center can also receive input from:
 - 1. Parts of brain concerned with ______ &
 - Inspiration starts when the combined input from all sources causes the production of ______

2. Increasing inspiration:

- a. What happens once inspiration begins?
- b. What does this do to the stimulation of respiratory muscles? ______

_____ lasts for ______

3. Stopping inspiration:

- a. Neurons in the medullary respiratory center that are responsible for stopping inspiration:
 - 1. Are ______ that stimulate the inspiratory muscles
 - 2. Also receive input from:
 - a. Pontine _____
 - b. Stretch ______ & probably other sources
- When these inhibitory neurons are activated, they inhibit ______

C.	Relaxation of respiratory muscles results in	that
	lasts	

VIII. Modification of Ventilation

Α.	Cerebral and	Limbic \$	System	Control
----	--------------	-----------	--------	---------

- A person can consciously increase or decrease the rate and depth of respiratory movements through the _____
- 2. Apnea is _____
- 3. When a person holds their breath they eventually develop an urge to breathe:
 - a. This is associated with _____
 - b. Finally Pco₂ is high enough that ______
- 4. If a person is able to hold their breath until they pass out due to lack of oxygen then
- 5. What causes the feeling of dizziness when a person hyperventilates?
- 6. Emotions affect the respiratory system through the ______ system
- 7. What kind of affects can strong emotions have on respiratory movements?
- B. Chemical Control of Ventilation
 - 1. Chemoreceptors
 - a. What are chemoreceptors?
 - b. The chemoreceptors involved in respiration respond to changes in:
 - 1. _____ OR
 - 2. _____ or both
 - c. Where are the central chemoreceptors located?
 - d. Where are the peripheral chemoreceptors located?

2.	Effect	of	рΗα
		•	P · · ·

	a.	Cerebrospinal fluid bathes the						
		1. The cerebrospinal fluid pH is altered by changes in						
		2. Therefore the is indirectly sensitive to blood p⊢						
	b.	The carotid and aortic bodies are directly sensitive to						
	C.	If blood pH decreases:						
		1. Respiratory center is						
		2. Results in &						
		3 in blood pH back to normal						
	d.	If blood pH increases:						
		1. Respiratory rate						
		2. Carbon dioxide levels						
		3. Causing blood pH to						
3.	Eff	Effect of Carbon Dioxide						
	a.	. Blood carbon dioxide levels are a						
	b.	Even a small increase in carbon dioxide triggers						
	C.	What is hypercapnia?						
	d.	What is hypocapnia?						
	e.	Carbon dioxide exerts its effect on the chemosensitive area by						
	f.	If blood carbon dioxide levels increase:						
		1. Carbon dioxide diffuses						
		 Carbon dioxide joins with water to form 						
		which then dissociates into:						
		a						
		b						
		3 The increased concentration of						
		and stimulates the which then						
		stimulates the						

- 4. Resulting in _____
- 5. This eliminates ______ from the body
- g. The carotid and aortic bodies also respond to changes in carbon dioxide because of
- h. Which is most important for regulating Pco2 and pH? _____
- i. During intense exercise which responds fastest?
- 4. Effect of Oxygen
 - a. What is hypoxia? _____
 - b. The effect of oxygen on the regulation of respiration is _____
 - c. Arterial Po₂ must decrease to approximately ______ to have a large stimulatory effect on respiratory movements
 - d. Why is a small change in Po₂ not a problem?
 - e. The carotid and aortic body chemoreceptors respond to decreased Po_2 by

C. Hering-Breuer Reflex

- 1. What does the Hering-Breuer reflex accomplish?
- 2. The reflex depends on stretch receptors in the _____
- 3. Action potentials are initiated in the stretch receptors when _____
- 4. The action potentials reach the medulla via the _____
- 5. The action potentials have an ______ on the respiratory center and result in ______
- With expiration the stretch receptors are ______
- 7. The decreased inhibitory effect on the respiratory center allows

IX. Respiratory Adaptations to Exercise

- A. In response to training:
 - 1. Vital capacity _____

		2.	Residual volume	
		3.	At rest tidal volume	
		4.	At maximal exercise tidal volume	
		5.	At rest respiratory rate is	
		6.	At maximal exercise respiratory rate is	
		7.	Minute ventilation at rest is	
		8.	Minute ventilation at maximal exercise is	
		9.	Blood flow through the lungs is especially in the _	
Х.	Ef	fec	s of Aging on the Respiratory System	
	Α.	Vit	al capacity decreases with age because of a:	
		1.	Decreased ability to	&
		2.	Decreased ability to	
			a. As a result maximum minute ventilation rates	
		3.	The changes are related to:	
			a. Weakening	
			b. Decreased	caused by
	В.	Residual volume increases with age as the and man		and many
			in diameter	
		1.	This the dead space	
			a. Which the amount of air available for	gas exchange
	C.	Ga	as exchange across the respiratory membrane is reduced becau	se:
		1.	Parts of the which decre	ases the
		2.	The remaining walls, which decrease	S
	D.	Ele	derly are more susceptible to respiratory infections and bronchiti	s because:
		1.	Mucus	
		2.	The mucus-cilia escalator is less able to move the mucus beca	use:
			a. The mucus	

b. The number ______ & their rate of