Chapter 25: Nutrition, Metabolism, and Temperature Regulation

I. Nutrition

A.	Nu	ıtrie	nts						
	1.	What are nutrients?							
	2.		t the six major classes of nutrients:						
		a.	d						
		b.	e						
		C.	f						
	3.	W	nich of these are the major organic nutrients?			.,			
			, &						
	4.	Er	zymes break organic nutrients into subunits that are:						
		a.	Broken down						
		b.	Used as building						
	5.		nat are "essential nutrients"?						
В.	. Kilocalories								
	1.	Energy used by the body is stored within							
	2.	De	fine the term calorie:						
	3.	Α	kilocalorie is equal to						
			ow many kilocalories in one gram of carbohydrate?						
	5.	Н	w many kilocalories in one gram of fat?						
C.	Carbohydrates								
	1.	Sc	ources in the Diet						
			Carbohydrates include,	, &					
			The most common monosaccharides in the diet are _						
		C	Table sugar is a disaccharide called		and is				
		٥.	composed of a and						
		ہ	Maltose is a disaccharide composed of						
		u.	iviallose is a disaccitatioe composed of						

	e.	Lactose is a disaccharide composed of &	_				
	f.	The complex carbohydrates are the polysaccharides:	_,				
		, &					
	g.	Which is the energy storage molecule used in plants?					
	h.	Which is the energy storage molecule used in animals?	_				
	i.	Which polysaccharide forms cell walls in plants?	_				
2.	Us	Uses in the Body					
	a.	What form of carbohydrate is absorbed into the blood?	_				
	b.	Which polysaccharide are humans unable to digest?					
	C.	The liver converts all monosaccharides to					
	d.	Most cells use glucose to produce	_				
	e.	Excess glucose is converted to for storage					
		Additional glucose may be converted to and stored in					
	f.	Other uses of sugar in the body include:					
		1. Form part of &					
		2. Combine with proteins to form					
3.	Re	Recommended Amounts					
	a.	The daily kilocalorie intake from carbohydrates should be	_				
	b.	Why are complex carbohydrates recommended?					
Lip	oids						
1.	So	ources in the Diet					
	a.	Triglycerides make up about of the lipids in the human diet					
	b.	Triglycerides are also known as					
	C.	A triglyceride molecule consists of	_				
		attached to a					
	d.	Saturated fats have only	_				
	e.	Unsaturated fats have					
	f.	The remaining lipids in the diet include &					

D.

	2.	Us	ses in the Body				
		a.	. Triglycerides are an important source of used to produce				
			What type of cell gets most of its energy from triglycerides?				
		b.	Excess triglycerides are stored in or the				
		C.	Functionally adipose tissue:				
			1. Stores				
			2. Surrounds and				
			3. Under the skin				
		d.	Functionally cholesterol is a:				
			1. Component				
			2. Modified to form &				
	3.	Recommended Amounts					
		a.	The daily kilocalorie intake from lipids should be				
		b.	Which fatty acids must be ingested in the diet? 8				
E.	. Proteins						
	1.	Sc	ources in the Diet				
		a.	Proteins are chains of				
		b.	How many amino acids are in human proteins?				
		C.	How many amino acids are essential amino acids?				
			A complete protein food contains				
	2.	Us	ses in the Body				
		a.	Amino acids are used to				
		b.	Proteins are also used as a				
			Excess proteins can be stored by converting amino acids to				
			or				
	3.	Re	ecommended Amounts				
		a.	The daily kilocalorie intake from protein should be				

	1.	What are vitamins?
	2.	Essential vitamins must be in the diet because
		What does the body do with provitamins?
	4.	Vitamins are used by the body in
	5.	Many vitamins function as
	6.	Fat-soluble vitamins dissolve in
		Absorbed from the intestine along with
		b. Some of them can be stored for a
	7.	Water-soluble vitamins dissolve in
		a. Absorbed from the
		b. Remain in the body
	8.	What does RDA stand for?
9. The RDA's for vitamins and minerals establish a minimum that should		
		in a given group
G.	Miı	nerals
	1.	What are minerals?
	2.	Functionally minerals are involved in:
		a. Establishing
		b. Generating
		c. Adding mechanical
		d. Combining with
		e. Acting as,, or
	3.	Minerals are ingested
Н.		aily Values
	1.	What are daily values?
	2.	Reference Daily Intakes are based on
		a. RDIs are set for four groups:,,
		, and

F. Vitamins

	3	. The Daily Reference Values (DRVs) are set for:				
		a e				
		b f				
		c g				
		d h				
	4	The Daily Values are a combination of and				
	5	The Daily Value for some nutrients is the uppermost limit considered				
		desirable because of				
I.	Meta	bolism				
	A. D	efinitions				
	1	What is metabolism?				
	2	What is anabolism?				
	3. What is catabolism?					
	4	. The cellular metabolic processes are often referred to as				
		or				
	5	5. The food molecules taken into cells are catabolized and the released energy				
		is used to				
	6	. What molecule is the "energy currency" of the cell?				
	7	Transferring energy from food molecules to ATP molecules involve				
	reactions					
		a. A molecule is reduced when				
		b. A molecule is oxidized when				
	8	Nutrient molecules have many hydrogen atoms covalently bonded to the				
		carbon atoms and is therefore highly				
		a. When a hydrogen ion and associated electron are lost from the nutrient				
		molecule, the molecule and				
		b. The energy in the electron is used to				

III. Carbohydrate Metabolism

A.

Gly	Glycolysis						
1.	Glycolysis is a series of chemical reactions in the						
	that results in the breakdown of into						
2.	Glycolysis is divided into:						
	a. Input of ATP						
		1.	Phosphate group is transferred from ATP to glucose forming				
			a. What is this process called?				
		2.	The atoms are rearranged to form				
		3.	Another phosphate group is transferred from a second ATP forming				
	b.	Su	gar Cleavage				
		1.	Fructose-1,6-biphsophate is cleaved into two molecules each having				
			three carbons:				
			a				
			b				
		2.	Dihydroxyacetone phosphate is rearranged to form				
		3.	So the end product is 2 molecules of				
	C.	NADH Production					
		1.	Each glyceraldehyde-3-phosphate molecule is oxidized to form				
			and				
			is reduced to				
		2.	Functionally NADH is a carrier molecule with				
			that				
	d.	ΑT	P and Pyruvic Acid Production				
		1.	Each 1,3-bisphosphoglyceric acid molecule forms				
			a. Two b. One				
3.	Su	mm	nary of Glycolysis				
	a. Each glucose molecule that starts glycolysis forms four,						

			two	o, and two	
		b.	Th		
		C.	Th	erefore the final yield for each glucose molecule is to	wo
			two	o, and two	
В.	An	aeı	robi	c Respiration	
	1.	Ar	naer	obic respiration is the breakdown of glucose in the a	bsence of
				to produce two & tv	vo
	2.	Ar	naer	obic respiration is divided into	:
		a.	Gl	ycolysis	
			1.	Glucose converted to two	& two
				a. Also a net gain of	
		b.	La	ctic Acid Formation	
			1.	Conversion of pyruvic acid to	
			2.	Requires input of energy from	
	3.	W	here	e does the lactic acid go from the cell?	
	4.	W	hat	is the Cori cycle?	
		a.	Re	equires the input of	
		b.	Th	e oxygen necessary is part of the	
C.	Ae	rob	ic F	Respiration	
	1.	Αe	erob	ic respiration is the breakdown of glucose in the pres	sence of
		to	pro	duce,, &	
		a.	Th	e four phases are:	
			1.		
			2.		
			3.		
			4.		
	2.	Gl	yco	lysis is the first phase in	and
	3.		•	I-CoA Formation	
		a.	Ру	ruvic acid molecules move from the into	o a

	b.	Within the inner compartment of the mitochondrion enzymes remove a				
		and two from the three-carbon pyruvio				
		acid molecule to form &				
		Energy is released in the process and is used				
		2. The acetyl group joins with coenzyme-A to form				
	C.	Summary				
		1. From each 2 pyruvic acid molecules from glycolysis (1 glucose) get:				
		a. Two				
		b. Two				
		c. Two				
4.	Cit	ic Acid Cycle				
	a.	Begins with a citric acid molecule that forms from the combination of				
		and				
	b.	Through a series of reactions another is formed				
		which can start the cycle again by joining with				
	C.	Three important events occur during the citric acid cycle:				
		1. ATP Production				
		Each citric acid molecule produces				
		2. NADH and FADH₂ Production				
		a. For each citric acid molecule:				
		1. Three are converted to				
		2. One is converted to				
		3. Carbon Dioxide Production				
		a. Each six-carbon citric acid molecule becomes a				
		b. Two and four				
		from the citric acid molecule form				
	d.	Summary for each glucose that begins aerobic respiration, produce:				
		1. Two in glycolysis				
		2. Converted into two that enter Kreb's cycle				

		3. In the citric acid cycle (Kreb's cycle) two turns of the cycle occur:
		a. Two
		b. Six
		c. Two &
		d. Four
5.	Ele	ectron-Transport Chain
	a.	The electron-transport chain is a series of electron carriers in the
	b.	Electrons from & are transferred to the electron
		transport carriers and released from NADH & FADH ₂
	C.	The now oxidized NAD ⁺ and FAD are reused to
	d.	The released electrons pass from one electron carrier to the next in a
		series of
	e.	Three of the electron carriers also function as proton pumps that move
		hydrogen ions from to the
		The proton pump accepts an
		2. Uses some of the electron's energy to
		3. Passes the electron to the
	f.	The last electron carrier in the series:
		1. Collects the
		2. Combines them with & to form
	g.	Without oxygen to accept the electrons
	h.	As the proton pumps move hydrogen ions into the outer compartment:
		1. The concentration of hydrogen ions in the outer compartment
		Hydrogen ions diffuse
		The hydrogen ions diffuse through channels called
		4. As each hydrogen ion diffuses through the channel it loses
		which is used to produce
		a. This is called the

6	3. Su	Summary of ATP Production			
	a.	For each glucose molecule, aerobic respiration produces a net gain of			
		1 from glycolysis			
		2 from the citric acid cycle			
		3 from the electron-transport chain			
		a. Each NADH molecule formed produces ATP molecules			
		b. Each FADH ₂ molecule formed produces ATP molecules			
	b.	The number of ATP molecules produced per glucose is also reported as a			
		net gain of			
		1. The two NADH molecules produced by glycolysis cannot cross the			
		a. They donate their electrons to a shuttle molecule that carries the			
		electrons to the			
		Depending on the shuttle molecule ATP's are made			
		2. In skeletal muscle and brain, molecules are produced for			
		each NADH from glycolysis for a net gain of			
		3. In liver, kidneys, and heart, molecules are produced for			
		each NADH from glycolysis for a net gain of			
	C.	How many carbon dioxide molecules are produced?			
	d.	In aerobic respiration water molecules are both &			
		1 water molecules are used, but are formed			
		for a net gain of water molecules			
	e.	Aerobic respiration for one glucose molecule is summarized chemically:			
IV. Lipi	d Me	tabolism			
A. S	Stora	ge			
,	1. W	hat is the body's main energy-storage molecule?			
2	2 GI	vcogen accounts for about of energy-storage			

	3.	Lipids are stored primarily as	in						
	4.	Between meals, when blood nutrient levels are low, adipose tissue							
	5.	What are "free fatty acids"?							
		a. What cells use them for energy?							
В.	Ве	eta-oxidation							
	1.	Beta-oxidation refers to the metabolism of							
		a. A series of reactions remove	carbon atoms at a time from the						
		end of a fatty acid chain to form							
	2.	Acetyl-CoA can then enter the	and be used to						
C.	Ke	etogenesis							
	1.	Two molecules of acetyl-CoA combine to for	orm						
		which is converted mainly to	and						
		a. The three molecules formed are referre							
	2.	2. Ketone bodies are released in the blood and travel to other tissues where							
		they are converted back into	& enter the						
		to produce							
Pı	rote	ein Metabolism							
A.	Sy	nthesis of Nonessential Amino Acids							
	1.	The process usually begins with							
	2.	How is a keto acid converted to an amino a	acid?						
	3.	What is transamination?							
	4.	Most amino acids can undergo transamination to produce							
	5.	. What is used as a source of an amine group to construct most of the							
		nonessential amino acids?							
В.	An	nino Acids as an Energy Source							
		In oxidative deamination:							
		a. An amino group is							

٧.

		b. Leaving	and a	
		c. In the process	is reduced to	which
		can enter	to pro	duce
	2.	Ammonia is toxic to cells:		
		a. The liver converts it to		
		b. Carried by the blood to the	ewhere it	s
	3.	Keto acid can also enter the _		cycle or be
		converted into	or	
VI. In	tero	conversion of Nutrient Molec	ules	
Α.	Ca	arbohydrate Storage		
	1.	Blood glucose enters most ce	lls by	
	2.	Inside the cell it is converted to	0	and
		used in cellular respiration to	produce	
	3.	When excess glucose is pres	ent it is converted to	
		a. The process is known as _		
		b. Most of the body's glycoge	en is in	&
В.	Lip	oid Synthesis		
	1.	mino acids are		
		used to synthesize		
		a. The process is known as _		
		1. Glucose molecules for	m:	
		a	and	
		2. Amino acids are conve	rted to	· · · · · · · · · · · · · · · · · · ·
		3. Glyceraldehyde-3-phos	sphate is converted to	
		4. Fatty acid chains are for	ormed by joining together	
		5. Finally triglycerides are	formed by joining together	
		&		
С	. Ca	arbohydrate Mobilization		
	1.	When glucose is needed glyc	ogen is broken down into	
		a. The process is called		

	2.	What happens to glucose-6-phosphate in skeletal muscle?	
	3.	What happens to glucose-6-phosphate in the liver?	
		a. This is necessary to maintain between	en meals
		b. For what organ is this most important?	
	4.	Amino acids and glycerol can be used to produce	
		a. The process is called	
		Amino acids are converted to or or	
		These molecules are then converted to	
		Glycerol is converted to	which
		then enters	
VII. M	eta	bolic States	
A.		osorptive State	
	1.	Period immediately after a meal when	
	2.	Most of the glucose that enters circulation is used	
	3.	Remainder of the glucose is converted to or	
	4.	Most of the absorbed fats are deposited in	
	5.	Many of the absorbed amino acids are used	
		a. Some are used for	
		b. Others enter the liver and are converted into	or
В.	Po	ostabsorptive State	
	1.	Blood glucose levels are maintained by conversion of	
		to	
		a. The first source is stored in the liver	
		b. Next fats are used as an energy source:	
		Glycerol from triglycerides can be converted to	
		2. Fatty acids from triglycerides can be converted to	
		a. Moves into the & used	

		b. In the liver they are used to produce
		that other tissues use for energy
	2.	The use of fatty acids as an energy source:
		a. Partly eliminates
		b. Resulting in
		c. Maintenance of
	3.	What other molecule can be used as a source of glucose or for energy
		production?
VIII. N	leta	abolic Rate
A.	Me	etabolic Rate
	1.	Metabolic rate is the total produced and used by the
		body
	2.	Metabolic rate is usually estimated by measuring
	3.	One liter of oxygen consumed by the body is assumed to produce
В.	Ва	sal Metabolic Rate (BMR)
	1.	The basal metabolic rate is the metabolic rate calculated in
		per per
	2.	How is BMR determined?
	3.	BMR is the energy needed to
	4.	Basal metabolism accounts for about of energy expenditure
	5.	Factors that affect the BMR include:
		a. Muscle tissue is
		b. Younger people
		c. Fever
		d. Reduced kilocaloric input
		e. Thyroid hormones
		f. Epinephrine
		g. Males

		h. During pregnancy
C.	Th	nermic Effect of Food
	1.	Assimilating ingested food consumes energy when:
		Accessory digestive organs and the intestinal lining
		b. Motility of the digestive tract
		c. Liver is involved in
	2.	The energy cost of these activities is called the
		a. They account for about of the body's energy expenditure
D.	М	uscular Activity
	1.	Muscular activity consumes about of the body's energy
	2.	Increased physical activity using skeletal muscle requires more energy for:
		a. Skeletal muscle
		b. Increased contraction of the &
	3.	Energy loss through muscular activity is the only component of energy
		expenditure that
IX. Bo	ody	Temperature Regulation
A.	Н	omeotherms
	1.	What does the term homeotherm or being warm-blooded animals mean for
		humans?
	2.	Maintenance of a constant body temperature is important to
	3.	Most enzymes are very temperature sensitive and only function
		a. Environmental temperatures
		b. Heat produced by metabolism
B.	Fr	ee Energy
	1.	Define the term "free energy":
		a. Usually expressed in terms of per
	2.	How much of the energy released by catabolism is used to do work?

	3.	What happens to the rest of the energy?
C. Heat Exchange		
	1.	What is radiation?
	2.	What is conduction?
	3.	What is convection?
	4.	What is evaporation?
	5.	Body temperature is maintained by
		a. If heat gain exceeds heat loss
		b. If heat loss exceeds heat gain
	6.	Heat gain occurs through &
	7.	Heat loss occurs through
	8.	Radiation, conduction, and convection can result in heat gain or loss
		depending on
	9.	What determines the amount of heat exchanged between the environment
		and the body?
		a. The greater the temperature difference
1	0.	Temperature difference can be controlled physiologically through
		in the skin
		a. Warm blood is brought to the surface by
		b. Skin temperature is lowered by
1	1.	When environmental temperature is greater than body temperature:
		a. Vasodilation
		b. Causing that
		c. Decreases
		d. Evaporation
1	2.	Regulation of body temperature is an example of a
		controlled by a

a.	Increases in blood temperature are detected by
	Activates mechanisms that
b.	Decreases in blood temperature are detected by
	Initiate heat gain by
C.	Under what conditions can the set point of the hypothalamus be changed?