Chapter 26: Urinary System

I. Functions of the Urinary System

2.	
3.	
4.	
5.	
6.	
Kidn	ey Anatomy and Histology
	ocation and External Anatomy of the Kidneys
1.	Describe the size and shape of the kidneys:
	The kidneys lie on the on the

	4.	. What is the renal capsule?	
	5.	5. What is perirenal fat?	
		a. Functionally the perirenal fat acts as	
	6.	What is the structure of the renal fascia?	
		a. Functionally the renal fascia anchors	
	7.	7. The hilum is a that lies on _	
		a. What structures enter here?	
		b. What structures exit here?	
	8.	3. The hilum opens into the	
В.	Int	nternal Anatomy and Histology of the Kidneys	
	1.	. The renal sinus is surrounded by an inner	_ and an outer
	2.	2. What are renal pyramids?	
	3.	Medullary rays extend from the into _	
	4.	. What are renal columns?	
	5.	5. The bases of the pyramids form the boundary between	the
		and the	
	6.	S. The tips of the renal pyramids, called	
		point toward	
	7.	7. What are minor calyces?	
	8.	 Minor calyces from several pyramids join together to for 	orm
	9.	 The major calyces converge to form an enlarged cham 	ber called the
		which is surrounded by the	
	10	0. The renal pelvis narrows into a small-diameter tube the	e
		which exits the kidney at the and connec	cts to
	11	1.Nephron	
		a. The nephron is the and	of the kidney
		b. Each nephron is a tubelike structure with an:	
		Enlarged terminal end called	
		2. Proximal	

	3. Loop of	_ () and a
	4. Distal		
c.	The distal tubule empties into a _		,which
	carries urine toward the		
d.	Several collecting ducts merge to	o form a lar	ger diameter tubule called a
	which e	empties into	o a
e.	Which structures are located in the	he renal co	rtex?
	1		
	2	 	
	3		
f.	Which structures are located in the	he renal me	edulla?
	1		
	2		
g.	Nephrons whose renal corpuscle	es lie near t	he medulla are called
	1. They have long	W	hich extend deep into the
	2. These account for only about		of nephrons
h.	The remainder of the nephrons a	are called _	
	1. Their loops of Henle do not _		
i.	Each renal corpuscle consists of	•	
	1. Enlarged end of a nephron ca	alled	
	2. Network of capillaries called _		
	3. The wall of the Bowman's cap	osule is inde	ented to form a
	4. The glomerulus fills the	_	of the Bowman's capsule
	5. Fluid flows from the		
j.	Bowman's capsule has an:		
•	Outer layer called the		
	2. Inner layer called the		
	3. The parietal laver consists of		

		becomes at the beginning
	4.	The visceral layer is composed of specialized
		that wrap around the
k.	WI	hat are fenestrae?
l.	WI	hat are filtration slits?
m.	Th	ere is a basement membrane sandwiched between the
		& the
n.	Th	ne kidney's filtration membrane consists of:
	1.	Capillary
	2.	membrane
	3.	of Bowman's capsule
0.	Ur	ine formation begins when material moves from
	ac	ross the into the
p.	WI	hat supplies blood to the glomerulus?
q.	WI	hat drains blood from the glomerulus?
r.	WI	here the afferent arteriole enters the glomerulus the smooth muscle
	се	lls form a cufflike arrangement called
s.	In	the distal tubule adjacent to the afferent arteriole there are
	sp	ecialized epithelial cells called the
t.	Th	ne juxtaglomerular cells and macula densa are collectively called the
u.	Th	ne proximal tubule is also called the
	1.	The wall of the tubule is made up of
	2.	The luminal surface of the cells have many
٧.	Th	ne loops of Henle are continuations of the
	1.	Each loop has two limbs, one and one
	2.	The first part of the descending is similar in structure to the
	3.	The loops of Henle that extend into the medulla become
		near the end of the loop
		a. Lumen in the thin part

		b. Abrupt transition from	to
		4. The first part of the ascending limb isar	nd the wall
		consists of	
		5. Then it becomes and	
		is replaced by	
		6. The thick part of the ascending limb returns toward the	
		and ends by	giving rise to
	w.	. The distal tubules are also called	
		1. The wall is composed of	
		a. Cells are than in the prox	
		b. Cells do not possess a large number of	
		2. The distal tubules connect to	
	x.	The collecting ducts are composed of	
		1. Their diameter is	
		2. They form much of the	
		3. Extend through the toward the tips of	
C.	Ar	rteries and Veins of the Kidneys	
	1.	. The renal artery branches off the	_ and enters
		the kidney at the	
	2.	. The first branches of the renal artery are called	
	3.	. These diverge to form	which
		ascend within the renal column toward the cortex	
	4.	. These arteries branch at the base of the pyramids and arch	n over the
		pyramids forming the	
	5.	. Smaller branches off the arched arteries project into the co	rtex and are
		called	
	6.	. Derived from these small vessels are the	
		which supply blood to the glomerular capillaries of the	

	b. Minus		_ and	reabs	sorbed
б.	Urine produced a			and	_secreted
e	Liring produced	by the perhan	no consists of:		
5.	Describe the pro	ocess of secre	tion:		
	b. What is not re	eabsorbed?			
	a. What is reabs	sorbed?			
4.	Describe the pro	ocess of reabs	orption:		
	a. The fluid ente	_			
3.	Describe the pro				
	b				
	a				
2.	The three major	•		ation of urine a	are:
1.	Why are nephron	ns called the fu	unctional units o	of the kidney? _	
A. G	eneral				
III. Urine	Production				
	connects to the				-
12	.Which drain into	the		_ which exits	the kidney and
11	.Which empty int	to the			
	.Which in turn dr	_			
9.	The plexus of ca				
	•		d	•	
	a. Specialized I		•		
0.	J	•	ound the proxim		
	This vessel give	•			
7	Blood is carried	away from the	olomerular car	oillaries in the	

	1.	What	is the renal fraction?	
		a. In	a healthy resting adult it varies from	
		b. Th	nis results in an average renal blood flow ra	ate of
	2.	Defin	e "renal plasma flow rate":	
		a. It i	is equal to	multiplied by the
		ро	ortion of blood that is	
	3.	What	is the filtration fraction?	
	4.	 What	t is the glomerular filtration rate (GFR)?	
		a. Th	nis is approximately	each minute
		b. Wit	th this GFR approximately how much filtrat	te is made a day?
		1.	. Approximately how much of this is reabso	orbed?
C.	Gl	omera	alar Filtration Rate (GFR)	
	1.	List th	he four characteristics that a substance mu	ust have to estimate GFR:
		a.		
	2		substance has these characteristics?	
			s filtrate is formed	
		D. AS	s filtrate flows through the nephron	
		1.	Therefore, the entire volume of plasma the	nat becomes filtrate is
			cleared	
		2.	The plasma clearance for inulin is equal	to
	2	Cinco	CED is reduced when the kidney fails usin	
	ა.		GFR is reduced when the kidney fails usir	_
		HILLICE	ates	

B. Filtration

4.	ΗII	tration Barrier	
	a.	The filtration membrane is a	and prevents:
		1and	from entering
		Bowman's capsule	
		2. Allows other	to enter
	b.	The filtration membrane is	
		permeable than a typical capillary	
		1and solutes of a	readily pass
		through the filtration membrane from the glomerul	lar capillaries
		2 molecules do not pa	ass through
	c.	In general the membrane prevents molecules from	n passing that are
		1. Larger than	
		2. Have a molecular mass of	or more
	d.	What is the size of most plasma proteins?	
		1. Do they pass through the filtration membrane?	
	e.	What is the diameter of an albumin molecule?	
		1.This allows amounts to enter the	filtrate
	f.	Do protein hormones pass through the filtration m	embrane?
	g.	What happens in the proximal tubule to proteins in	n the filtrate?
		Actively reabsorbed by	
		2 by the cells	
		a. As a result is normally found	in the urine
5.	Fil	Itration Pressure	
	a.	Filtration pressure forces fluid from the	across
		the into the	
	b.	Filtration pressure results from the sum of the force	ces that:
		1. Move fluid out of the glomerular capillary into _	
		2. Move fluid out of the lumen of Bowman's capsu	ıle into the
	c.	The glomerular capillary pressure is ir	nside the capillary

		1. It m	oves fluid	of	the capillary	Bowman's capsule
		2. The	glomerular o	capillary p	oressure averag	es
	d.	Capsu	le pressure i	s caused	by filtrate	
		1. It		_ the mo	vement of fluid	into Bowman's capsule
		2.The	capsule pres	sure ave	rages	
	e.	Colloid	osmotic pres	ssure witl	hin the glomerul	ar capillary exists
		becau	se			
		1. Prot	eins in the g	lomerulaı	r capillary produ	ce an of
		about		_ that fav	ors fluid moven	nent to the
				from _		
	f. ⁻	The hig	h glomerular	capillary	pressure result	s from a:
		1. Low	resistance t	o blood fl	ow in the	and
		2. High	ner resistanc	e to blood	d flow in the	
		3. As t	he diameter	of a vess	el decreases:	
		a.	Resistance	to flow th	nrough the vess	el
		b.	Pressure up	ostream f	rom the decreas	sed diameter is
		C.	Pressure do	ownstrea	m from the decr	eased diameter is lower
		4. Sind	e the efferer	nt arteriol	es have a small	diameter:
		a.	Blood press	sure in the	e glomerular ca _l	oillaries is
			1. Results i	n filtrate l	peing forced	
		b.	Blood press	sure in the	e peritubular ca	pillaries is
						the
D.	Tu	ıbular R	eabsorption			
	1.	Tubula	ar reabsorption	on results	from processes	s such as:
		a			d	
		b				
		c				
	2.	Inorga	nic salts, org	anic mole	ecules, and abo	ut 99% of the filtrate volume
		leave	the nephron	and ente	er	

a. The materi	ial then enters the	
and pass bac	ck into general circulation	
3. Solutes reabs	sorbed from the lumen of th	ne nephron to interstitial fluid
include:		
a	ee	
b	f	
C	g	
d	h	
4. As solutes ar	e reabsorbed from the nepl	hron water follows by
	<u> </u>	
5. The small vol	lume of filtrate that forms ur	rine contains a relatively high
concentration	n of:	
a	C	
b	d	
e. Other subs	stances that are	
6. Regulation of	f solute reabsorption and th	e permeability characteristics
portions of th	e nephron allow for produc	tion of:
a.Small volur	me of	OR
b.Large volur	me of	
7. Reabsorption	n in the Proximal Tubule	
a. The cells t	hat form the wall of the nep	hron have:
1. Apical sur	face which makes	
2. Basal surf	face which forms	
3. Lateral su	rfaces which are bound	
b. In the prox	imal tubule reabsorption of	most solute is linked to the
primary	of	across the
	of the epithelial cells from t	the into the
	_ creating a low	inside the cells
c. At the base	al cell membrane:	
ATP provides the	e required energy to move o	out of the cell
in evehance for	by	

	2.	Concentration of	is high in the lumen of the tubule se	o there
		is a large	between the lumen of the tube	ule and
			of the nephron cells	
		1. This concentration	on gradient is the source of energy for the	
			of many solute molecules from the lu	umen of
		the nephron into	the	
d.	Ca	arrier molecules that t	ransport useful solutes like glucose and amino	acids
	ar	e located within the _		
	1.	Each carrier molecu	le binds specifically to one	
			and to	
	2.	As the Na ⁺ moves d	own the concentration gradient from inside the	lumen
		of the tubule to insid	le the epithelial cell:	
		a. Both the	and other or	
		bound to the car	rier molecule move	
		b. From the	into the	
	3.	Once the cotranspo	rted molecules are inside the cell they cross the	е
			of the cell by	
e.	So	me solutes also	between the cells from the	ne lumen
	of	the	into the	
f.	Re	eabsorption of solutes	s in the proximal tubule is	and
	the	e tubule is	to	
	1.	As solute molecules	are reabsorbed water follows by	
g.	Ab	out how much filtrate	e is reabsorbed in the proximal tubule?	
Re	eab	sorption in the Loop	of Henle	
a.	Th	e loop of Henle desc	ends into the	
b.	In	the medulla the cond	entration of solutes is	
c.	Th	e thin segment of the	e loop of Henle (descending limb) is:	
	1.		to water	
	2.		to urea, sodium, and other ions	
	3.	Adapted to allow pa	ssive movements of	_ but
			passes through more	

8.

	4.	As the filtrate passes through the thin segment of the loop of Henle:	
		a. Water moves	
		b. Some solutes move	
	5.	By the time the filtrate reaches the end of the thin segment:	
		a. Volume of filtrate has been	_
		b. Concentration of the filtrate	
d.	In	the ascending limb of Henle, both the thin and thick segments are	
		so no additional	
	1.	Surrounded by interstitial fluid that becomes	_
		toward the cortex	
	2.	As the filtrate flows through the thin segment solutes	_ into
		the making filtrate	
	3.	In the thick segment of the ascending limb of the loop of Henle:	
		a. Cotransport is responsible for the movement of,	, &
		across the apical membrane into the cell	
	4.	From the epithelial cells to the interstitial fluid:	
		a. Cl ⁻ and K ⁺ move by	
		b. Na ⁺ moves by	
	5.	Because the ascending limb of the loop of Henle is:	
		a. Impermeable to & ions	_
		The concentration of solutes in the filtrate is	_ by
		the time it reaches the distal tubule	
9.	Re	eabsorption in the Distal Tubule and Collecting Duct	
	a.	In the distal tubules and collecting ducts:	
		1 is transported across the apical membrane with	
		a. The active transport of Na ⁺ across the membran	е
		creates the gradient	
	2.	The collecting ducts extend from the of the kidner	
		through the of the kidney where solute concentration	n is
	3	Water moves by into the more concentrated interstitial flu	iid.

		a. When the distal tubule and collecting duct are	
		1. Producing a volume of urine	
	4.	Water does not move by into the interstitial fluid:	
		a. When the distal tubule and collecting duct are	-
		1. Producing a volume of urine	
	5.	Formation of dilute or concentrated urine is under	
10		Changes in the Concentration of Solutes in the Nephron	
	a.	Urea enters the glomerular filtrate and is in the	as
		in the plasma	
	b.	As the volume of filtrate decreases in the nephron:	
		1. Concentration of urea because the renal	
		tubules are more permeable to	
		a. How much water is reabsorbed?	
		b. How much urea is reabsorbed?	
	c.	What other substances are not reabsorbed at the same rate as water?	
		1 4	
		2 5	
		3 6	
	d.	They all become more in the filtrate as the	
	vo	lume of the filtrate becomes	
	e.	If these substances accumulate in the body they are	_
	f.	Their accumulation in the filtrate and in urin	e
	he	lp maintain	
Ε.	Αι	toregulation	
	1.	What is autoregulation?	
	2.	Autoregulation involves changes in	
		in the	
	3.	As systemic blood pressure increases	
		& prevent	
	4.	A decrease in systemic blood pressure results in	
		preventing	

	5.	If the macula densa detect an increased filtrate flow rate:
		a. Sends a signal to
		b. To constrict
		c. The result is a
F.	Eff	fect of Sympathetic Stimulation on Kidney Function
	1.	Sympathetic stimulation of the kidneys constricts the &
		a. Decreasing &
	2.	Intense sympathetic stimulationthe rate of filtrate
		formation to only
	3.	Small changes in sympathetic stimulation have
	4.	In response to severe stress or circulatory shock:
		a. Renal blood flow can decrease
		b. Kidney tissues can be and unable to
G.	Tu	bular Secretion
	1.	Tubular secretion involves the movement of substances such as:
		a. By-products of
		b. Drugs or molecules
		These substances are moved into
	2.	Tubular secretion can occur by either or processes
	3.	What substance diffuses into lumen of the nephron?
	4.	What substances are secreted by active transport or countertransport?
		a
		b
	5.	One example of a countertransport process moves H ⁺ into the filtrate:
		a. The carrier molecule is on the apical surface of the nephron cell:
		1. H ⁺ bind to the carrier molecule on the
		2. Na ⁺ bind to the carrier molecule on the
		a. As Na ⁺ move into the cell cell
		b. The H ⁺ are produced as a result of:

	1	and		reacting
	2. To form	and		
	C	and a	re cotransported across	the
		of the cel	I and enter the	
H. Ur	ine Concentrati	on Mechanism		
1.	When a large	olume of water i	s consumed it is neces	sary to:
	a. Eliminate _			water without
	b. Losing			homeostasis
	1.The response	onse of the kidne	ys is to produce a	volume
	of		urine	
	2.If water is	not available thi	s would lead to	
2.	When water in	take is restricted	the kidneys produce a	
	volume of		urine that contains	
	to prevent thei	r accumulation		
3.	The kidneys ca	an produce urine	concentrations that var	y between
	and	while m	aintaining extracellular	fluid close to
4.	Conditions tha	t are essential fo	r the kidneys to control	the volume and
	concentration	of urine produced	d include:	
	a. Maintenand	e of		
	b. Countercur	rent		
	c. Mechanism	that		
5.	Medullary Con	centration Gradi	ent	
			oncentration in the cort	ical region of the
	-		near the	
	-		create and maintain the	e high solute
		ons in the medul		
		-	and the cotran	-
			in	
	the			

;						
,		os that optor the moduli				
		3. The vasa recta remove water and solutes that enter the medulla				
	without					
	4.Active transport of ions from the	to	the			
		of the medulla				
;	5.Passive diffusion of	to the				
-	of the	medulla				
d.	The roles of each of these mechanisms i	n the maintenance of the	e hig			
	solute concentration in the medulla of the kidney includes:					
	1. Loops of Henle					
	a. Descending limbs of the loop of Henle	: :				
	1.Are permeable to water so as filtrate flows through water					
	into the _	 				
	b. Ascending limbs of the loop of Henle:					
	1. Are to v	vater				
	2. Solutes out of th	e thin segment as it pas	sses			
	through					
	3. The thick segment actively transports,,					
	and into the					
	c. Water enters interstitial fluid from the					
	d. Solutes enter interstitial fluid from the					
2.	. The Vasa Recta					
	a. What are countercurrent systems?					

		d. As blood flows toward the medulla:	
		1.Water	
		2. Some solutes	_
		e. As blood flows back toward the cortex:	
		1. Water moves	
		2.Some solutes	_
		f. The rates of diffusion are such that	and
		are carried from the medulla by the vas	sa recta
		g. The composition of the blood at both ends of the vasa r	ecta is
		Volume and osmolality	
		h. The loops of Henle and vasa recta are in:	
		1.Parallel & their	
		2.Functions	
		a. Water and solutes that leave the	
		enter the	
		b. Vasa recta carry the water and solutes away with	thout
	3.	 . Urea	
		a. Urea molecules are responsible for	
		b. Descending limbs are permeable to urea so urea diffus	es from
		into the	
		c. The ascending limbs and distal tubules are	to urea
		1. So there is no movement of urea in or out	
		d. The collecting ducts are permeable to urea:	
		1. Some urea diffuses out of and	d into the
		of the	e medulla
		e. Thus, urea flows in a	
6.	Sumr	mary of Changes in Filtrate Volume and Concentration	
	a. In	the average person how much filtrate is produced per day	by
	glo	lomerular filtration?	

b.	As the filtrate flows through the proximal tubule:
	1. Solutes such as glucose are moved by from the
	lumens of the nephron into the
	2. Water moves by from the lumen into
	3. Approximately how much of the filtrate is reabsorbed in the proximal
	tubule?
c.	As the filtrate passes through the descending limbs of the loops of Henle
	1. Water of the nephrons
	2. Solutes the nephrons
	a. Approximately how much filtrate is reabsorbed in the descending
	limbs of the loops of Henle?
	3. So total volume reabsorption at this point is
d.	As the filtrate passes through the ascending limbs of the loops of Henle:
	1. Thick segments are to water
	2, and are transported from into
	the
	a. The reabsorption of ions but not water causes the osmolality of
	the filtrate to
	b.Therefore the filtrate in the nephrons is
Fc	ormation of Concentrated Urine
a.	After leaving the loops of Henle filtrate passes into the
	and then into the ducts
b.	These tubes are effected by the hormone
	1. ADH permeability of the membrane to water
	a. Cyclic AMP increases the number of in
	the
	2. When ADH is present out of the
	and
	a. This water reabsorption accounts for another of the
	filtrate being reabsorbed
	b. The osmolality at the end of the collecting ducts is

7.

8.	Fo	ormation of Dilute Urine	
	a.	If ADH is not present the distal tubules and collecting ducts ha	ve a
	b.	The amount of water reabsorbed by osmosis is	
	C.	Water remaining in the lumen of the nephron dilutes the solute	es .
	d.	The resulting urine produced:	
		Has a concentration less than	
		a. The osmolality may be close to the osmolality in the:	
		2. The volume is	
		The volume may be much larger than	_of the
		filtrate formed each day	
Re	gu	lation of Urine Concentration and Volume	
Α.	Ge	eneral	
	1.	Where is reabsorption obligatory and therefore relatively const	tant?
		a	
		b	
	2.	Where is reabsorption regulated and therefore changes drama	atically?
		a	
		b	
	3.	If homeostasis requires the elimination of a large volume of dil	ute urine:
		a. Large volume of	
		b. Dilute filtrate in the and	passes
		through with little	
	4.	If conservation of water is required to maintain homeostasis:	
		a. Slightly less	
		b. Water is reabsorbed as filtrate passes through	&
		1. Resulting in a volume of	urine
В.	Нс	ormonal Mechanisms	

1. Antidiuretic Hormone

IV.

a.	In the absence of ADH the	&
	remain	
b.	How much urine do people with a lack of AL	OH produce?
c.	Lack of ADH can lead to major problems su	ch as:
	1&	
	2	
d.	Insufficient ADH secretion results in a condit	ion called diabetes insipidus:
	1. Diabetes implies	
	2. Insipidus implies	
e.	In contrast to diabetes mellitus, which implie	es:
	1. Mellitus means	
f. <i>i</i>	ADH is secreted from the	
	Neurons with cell bodies in the	nuclei of the
	have axons that termina	te in the posterior pituitary
	a. ADH is released into the	from these
	neuron terminals	
g.	Where are the osmoreceptor cells?	
h.	Osmoreceptor cells are very sensitive to	
	If the osmolality increases these cells	
	2. Action potentials in the ADH-secreting ne	eurons are
	to the posterior pituitary caus	sing axons to
	3. Reduced osmolality within the supraoptic	nuclei
	from the	
i. E	Baroreceptors	
	Baroreceptors that monitor blood	influence ADH
	secretion when the	
	2. When baroreceptors detect decreases in	blood pressure:
	a. Decrease the of nerve	impulses to hypothalamus
	b. Results in an	of ADH
j. \	When blood osmolality increases or when blo	ood pressure declines

	S	ignificantly:			
		1. ADH secretion			
		2. ADH acts on the kidr	neys to		
		3.This decreases			
		4.Increases	which	n increases	
	k.	When blood osmolality	decreases or b	lood pressure	increases:
		1.ADH secretion		-	
		2. Causes the kidney to)		
		3.Produce a		_ of	urine
		4.Increases blood		<u>.</u>	
		5. Decreases			
	l. <i>i</i>	ADH is more important i	n	than	l
2.	Re	enin-Angiotensin-Aldoste	erone		
	a.	Renin is an enzyme se	creted by cells	of the	
	b.	The rate of renin secre	tion increases i	n response to:	
		1	_ in blood press	sure in the affe	erent arteriole
		2	_ in Na⁺ concer	tration of the	filtrate as it
		passes by the macula	a densa cells		
	C.	Renin enters the gener	al circulation ar	nd acts on	
		converting it to			
	d.	Then a proteolytic enzy	me called		
		converts	to		
	e.	Functionally angiotensi	n II:		
		1. ls a	that	increases	
		ca			
		2. Increases the rate of			
		3. Increases the sensar	tion of		
		4. Increases	appetite		
		5. Increases	secretion		
	f.	The rate of renin secre	tion decreases:		
		1. If blood pressure			

2. If the Na ⁺ concentration
g. Aldosterone
Aldosterone is a steroid hormone secreted by
2. In the distal tubules and collecting ducts aldosterone molecules:
a. Diffuse
b. Bind to
c. The combination of aldosterone molecules with receptor molecules increases
d. As a result the rate of Na ⁺ transport
3. Reduced secretion of aldosterone
a. Concentration of solutes in the distal tubules and collecting
ducts remains
b. This diminishes the capacity of water to
from the tubules into the
c. Therefore, urine volume and the urine has a
greater concentration of
3. Other Hormones
a. Atrial natriuretic hormone is secreted by
when blood volume in the right atrium
b. Atrial natriuretic hormone:
1. Inhibits
2. Inhibits reabsorption in the kidney
a. This leads to production of a volume urine
b. The resulting decrease in blood volume blood pressure
c. Atrial natriuretic hormone also
1. Reduces and lowers
V. Clearance and Tubular Maximum
A. Plasma Clearance
What is plasma clearance?

2.	Plasma clearance can also be used to estimate
B. Re	nal Plasma Flow
1.	Plasma clearance can also be used to calculate
2.	What characteristics must the substance have?
	a
	b
3.	What substance has these characteristics?
	a. As blood flows through the kidney
	The clearance calculation for PAH is therefore a good estimate for
	2. If the hematocrit is known, one can easily calculate
C. Tu	bular Load and Tubular Maximum
1.	What is the tubular load of a substance?
2.	What is the tubular maximum?
3.	Is the tubular maximum the same for all substances?
4.	The tubular maximum for each substance is determined by:
	a. Number of
	b. Rate at which
5.	In a person with diabetes mellitus:
	a. The tubular load exceeds the
	b. This allows in the urine
	c. Urine volume isbecause the glucose
VI. Anato	omy and Histology of the Ureters and Urinary Bladder
A. An	atomy
1.	What are the ureters?

2.	The ureters leave the	renal pelvis of ea	ich kidney at t	he	_ and
	extend	&	to the u	rinary bladder	
3.	The urinary bladder is	s described as a _			_ that
	lies				
4.	Where do the ureters	enter the bladder	?		_
5.	The urinary bladder is	s positioned:			
	a. In the male				_
	b. In the female				
6.	Functionally the ureth	ıra			
7.	Where does the ureth	ra exit the bladde	r?		
8.	The triangular area m	arked by the two	ureters and th	ne urethra is called	d the
C. Hi	istology				
1.	What kind of epitheliu	ım lines the ureter	s and bladde	?	_
2.	The rest of the walls of	consist of a:			
	a				
	b				
	C				
3.	. The wall of the urinary	y bladder is		than the ureter	S
	a. This is caused by	layers, composed	primarily of		
		external	to the epitheli	um	
4.	. Transitional epitheliur	n is specialized so	o that cells		_
	and the number of ce				
	a. How many cells th	ick when the urina	ary bladder is	empty?	_
	b. How many cells th	ick when the urina	ary bladder is	full?	_
5.	. Where the urethra ex	its the urinary blad	dder		and
		keeps urin	e from flowing	out of the bladde	er
	until pressure				
	a. In males the	tissue a	and	_ muscle form an	
		which contrac	ts to keep		
	from entering the b	oladder			

6.	The external urinary sphincter is composed of			
	a. It surrounds the urethra as it extends			
	b. The sphincter acts like athat the flow of urine			
	through the urethra			
7.	The urethra opens to the outside:			
	a. In the male at			
	b. In the female into the anterior to the			
/II. Urin	e Movement			
A. Ur	ine Flow Through the Nephron and the Ureters			
1.	Hydrostatic pressure averages:			
	a in Bowman's capsule			
	b in the renal pelvis			
1.	This pressure gradient forces urine from			
	through into the			
2.	No pressure gradient exists to force urine to flow to			
	through the			
	a. The circular smooth muscle in the walls of the ureters:			
	1. Exhibits			
	2. That forces			
	b. The peristaltic contractions of each ureter:			
	1. Proceed at a velocity of			
	2. Generate pressures			
	c. Where the ureters penetrate the they cour			
	1. Pressure inside the urinary bladder:			
	a. Compresses			
	b. Prevents the			
	d. When no urine is present in the urinary bladder the internal pressure			
	When it contains 100 mL or urine pressure is elevated to			

		Between 400-500 mL of urine the pressure
		3. With urine volumes over 500 mL the pressure
В.	Mi	cturition Reflex
	1.	What is micturition?
	2.	The micturition reflex is activated when
	3.	The micturition reflex is:
		a. Integrated in
		b. Modified by
	4.	Urine filling the urinary bladder:
		a. Stimulates which produce
		b. Sensory neurons carry action potentials to the
		through the
	5.	In response:
		Action potentials are carried to the urinary bladder through
		b. This causes
		c. Decreased somatic motor action potentials cause the
		, composed of to
		d. Urine flows from the urinary bladder when the
		to force through the urethra while
		e. The reflex normally produces a
	6.	Stretch receptors in the urinary bladder also send action potentials to
		micturition centers in the and to the
		a. Response from these areas modify the activity of the
		in the spinal cord
	7.	The micturition reflex, integrated in the spinal cord, predominates
	8.	The ability to voluntarily inhibit micturition develops at the age of
	9.	After this time the influence of the &
		on the spinal reflex predominates
		a. The micturition reflex integrated in the spinal cord is
		but it is either or by

b. Higher brain centers prevent micturition by				
Inhibits parasympathetic stimulation of				
2. Simulates somatic motor neurons that				
10. When the contents of the urinary bladder exceed 400-500 mL:				
a. Pressure				
b. Frequency of action potentials				
c. Increased stimulation of pons and cerebrum results in				
11. Voluntary initiation of micturition involves:				
a in action potentials from the	to:			
1. Facilitate				
2. Voluntarily				
3. Increased voluntary contraction of which				
cause an increase in				
a. Increases the pressure applied to the				
12. The desire to urinate can also be initiated by:				
a. Irritation of the or				
by or other conditions				
VIII. Effects of Aging on the Kidneys				
A. Size of Kidneys				
1. Aging causes a				
a. Begins as early as				
b. Obvious by				
c. Continues				
2. Loss of size appears to be related to changes				
B. Blood Flow				
The amount of blood flowing through the kidneys				
a. Starting at age 20 there is	_ 10 years			
2. Small arteries, including the afferent and efferent arteriole beco	me			
and				
3. Functional glomeruli				

4.	Other glomeruli	and assume a structure similar to			
C. Nephrons and Collecting Ducts					
1.	1. Some nephrons and collecting ducts become,				
	and more	in structure			
2.	2. The capacity to secrete and absorb				
3.	3. Whole nephrons				
4.	4. The ability of the kidney to concentrate urine				
	a. Increases the risk of				
5.	Decreased ability to eliminate:				
	a	C			
	b	d			
6.	Less responsive to	and			
7.	The reduced ability to				
contributes to Ca ²⁺ deficiency, osteoporosis, and bone fracture.					