Chapter 27: Water, Electrolytes, and Acid-Base Balance

I. Body Fluids

A.	Int	rac	ellular Fluid Compartment				
	1.	The intracellular fluid compartment includes all the fluid in					
	The intracellular fluid from all cells has a						
	3.	Int	racellular fluid accounts for how much of the total body weight?				
В.	Ex	trad	cellular Fluid Compartment				
	1.	Th	e extracellular fluid compartment includes all of the fluid				
			and constitutes about of total body weight				
	2.	Th	e extracellular fluid compartment is subdivided into				
		a.	The two major subcompartments are:				
			1				
			2				
		b.	Other subcompartments include:				
			1				
			2				
			3				
	3.	W	here is interstitial fluid found?				
	4.	W	here is plasma found?				
	5.	All	the other subcompartments constitute relatively				
C.	Movement Between Subcompartments						
	1.	Н	ow does the composition of extracellular fluid compare in different				
		su	bcompartments?				
	2.		Movement does occur between subcompartments:				
			Water				
			Small molecules and ions				
		C.	Large molecules				

II. Regulation of Body Fluid Concentration and Volume

Re	egulation of vivater Content					
1.	The total volume of the water in the body					
	a. Volume of water taken into body equals					
2.	. Changes in the water volume in the body fluids alter:					
	a. Osmolality					
	b. Blood					
	c. Interstitial					
3.	About 90% of the water entering the body comes from					
	and some comes from					
4.	About 10% of the water entering the body comes from					
5.	The movement of water across the wall of the gastrointestinal tract depends					
	on					
6.	The volume of water entering the body depends on					
	a. If a large volume of dilute liquid is consumed					
	b. If a small volume of concentrated liquid is consumed					
7.	The sensation of thirst results from:					
	a. Increase in the					
	b. Reduction in					
	1. Detected by cells in the within					
	2. Initiate activity in neural circuits that results in					
	c. When do baroreceptors influence the sensation of thirst?					
8.	Angiotensin II opposes a decrease in blood pressure by:					
	a. Acting on the brain to					
	b. Acting on the adrenal cortex					
	c. Acting on blood vessels					

9.	. When dehydrated people drink, they do not usually drink large volumes of		
	wa	ter all at once but drink	
	a.	This is because the thirst sensation is temporarily interrupted by:	
Wetting of the oral mucosa causes sensory neurons to			
		2. Stretch of the gastrointestinal wall:	
		a. Initiates	
		b. Sensory neurons	
		c. Temporarily	
	b.	Since water absorption from the gastrointestinal tract takes	
		temporarily suppressing thirst prevents	
	C.	When osmolality and blood pressure are within normal ranges	
10.	Wa	ater loss from the body occurs through three major routes:	
	a.	61% is lost through	
	b.	35% of water loss occurs through from:	
		1	
		2. Water that	
		3	
	C.	4% is lost in the	
11.	Th	e volume of water lost through the respiratory system depends on:	
	a.	& of the air	
	b.	Body	
		Volume	
12.		nat is insensible perspiration?	
		It plays a role in	
		How much water is lost for each degree of body temperature?	
13.	Sv	veat or sensible perspiration is secreted by the	
		d contains	
	a.	The composition of sweat resembles	

b. Solutes in the sweat include:	
1 3	
2 4	
The major solute component is	
14. What determines the volume of sweat produced?	
a. The volume produced increases substantially under:	
1. Conditions of	
2. Elevated or	
3	
15. The loss of a large volume of hyposmotic sweat causes:	
a. Decrease in	
b. Increase in	
c. Fluid volume is lost primarily from	leads to
1. Increased	
2. Reduction in	
3. Increase in	
d. During severe dehydration this can cause blood viscosity to	
a	
This causes the heart to have an	
16. Why is little water lost from the gastrointestinal tract?	
a. A large volume of fluid loss can occur due to severe	
and	
17. What are the primary organs for regulating the composition and vol	ume of
body fluids?	
B. Regulation of Extracellular Fluid Osmolality	
The osmolality, or concentration of a solution, is changed by:	
a. Adding water	
b. Removing water	-

	2.	An increase in the osmolality of the extracellular fluid triggers and secretion						
		a.	W	ater that is consumed, as a result of thirst, is				
				and enters				
		b.	Αľ	OH acts on the and				
			to	fr	om			
			1.	Both mechanisms result in increased water entering fluid that causes a				
		C.	Th	ne ADH and thirst mechanisms are sensitive to				
		d.	La	rger increases in extracellular fluid osmolality results	in			
	3.	3. A decrease in extracellular fluid osmolality inhibits and secretion						
				ess water is				
				ss water is from				
			1.	Therefore, more water is lost as a				
			2.	Result is an in osmolality of	of extracellular fluid			
C.	Re	gul	latic	on of Extracellular Fluid Volume				
	1.	Εv	⁄en	if the osmolality of the extracellular fluid is within a na	arrow range of			
		va	lue	s, the extracellular fluid volume can	or			
	2.			type of receptors are important in regulation of extract	cellular fluid			
		VO	lum	ne?	_			
		a.		ese receptors include:				
			1.	Carotid sinus and aortic arch	monitor			
			2.	Juxtaglomerular apparatuses monitor				
			3.	Receptors in the walls of the atria and large veins a	re sensitive to			
	3.	Th	ese	e receptors activate	and			
				that regulate extrace	ellular fluid volume			

a. Neural Mechanisms								
	1.	What do neural mechanisms change?						
	2.	W	hen baroreceptors detect an incre	ease in arterial & venous pressure:				
		a. Frequency of action potentials						
		b.	Afferent arterioles					
		C.	Increases					
		d.	Resulting in an					
		e.	Increase in	volume				
		f.	Increase in	volume				
	3.	W	hen baroreceptors detect a decre	ase in arterial & venous pressure:				
		a.	Frequency of action potentials _					
		b.	Afferent arterioles					
		C.	Decreases,	volume, and volume				
b.	Re	nin	-Angiotensin-Aldosterone Mecha	nism				
	1.	This mechanism responds to						
	2.	When juxtaglomerular cells detect increases in blood pressure:						
		a.	Decrease the rate of	secretion				
		b.	Results in decreased conversion	of to				
		C.	Reduced	 causes				
		d.	Decrease in rate of	secretion from adrenal cortex				
		e.	Decreased	levels reduce the rate of				
			reabsorption					
			1. Primarily in the	&				
		f.	Therefore more rer					
				of the filtrate and reduces				
			the ability of the kidney to					
		h.		ne excess in the filtrate				
			Volume of urine produced					
			extracellular fluid volume					

		j.	Reestablishing	homeostas	is				
	3.	W	hen juxtaglomer	ular cells de	tect decreas	es in blood pr	essure:		
		a.	The increase in	l	secretion				
		b.	Results in incre	eased conve	ersion of		to		
		C.	Increased			cau	ses an		
			Increase in rate						
		e.	Increased						
		f.	Increases the r	ate of	reabs	sorption			
			1. Primarily fro	m the		&			
		g.	Therefore, less		remains in	the filtrate			
		h.	Decreases the			_ of the filtrate	9		
		i.	Increases the a	bility of the	kidney to		&		
			to increase						
		j.	The volume of	urine produ	ced		and the		
			extracellular flu	id volume a	nd blood pre	ssure			
b.	Atrial Natriuretic Hormone (ANH) Mechanism								
	1.	М	ost important in r	responding	to				
	2.	An	increase in atri	al blood pre	ssure usually	results from	an increase in		
		— а.	Stimulates seci	retion of					
		b.	Decreases			in t	he		
		C.	Increases the r	ate of	&	los	s in the urine		
		d.	Therefore incre	ased ANH	secretion dec	creases			
	3.	A۱	 NH does not resp	ond strong	ly to				
			decrease in atria						
		a.	Decreases the	inhibition of	:		in the		
		b.	Rate of						

				C.	Which is consistent with	th		urin	e volume and
		C.	An	tidi	uretic Hormone (ADH) I	Mecha	nism		
			1.	Pla	ays an important role in	regula	ating		
				in	response to				
			2.	An	increase in blood pres	sure re	esults in:		
				a.	Decrease in	se	cretion		
				b.	Reabsorption of		decreases	in the _	
					&_			_	
				C.	Results in a		_ volume of		urine
				d.	Response helps decre	ase _		&	·
			3.	A	decrease in blood press	ure re	sults in:		
				a.	Increase in	_ sec	retion		
				b.	Reabsorption of		increases	in the	
				C.	Resulting in a		volume of		urine
				d.	Response helps increa	ase		&	
					ntracellular Fluid Com	positi	on		
A.					nbrane				
	1.				nembranes are				
					vely impermeable to				
					limited permeability to _				
	2.	Mc	st la	arg	e molecules synthesize	d with	in cells remain _		
	_	_							
	3.				ostances are				
		a.			concentrations in the in			ermined t	by:
									_
			2.			d	ifference across	the plasr	na membrane

	B.	Wa	ater			
		1.	Wha	at controls water movement acros	s the plasma membrane?	
		2.	Net	movement of water is affected by	changes in the	· · · · · · · · · · · · · · · · · · ·
			of _	in the	&	fluids
		3.	As	dehydration develops:		
			a. (Concentration of solutes in extrace	ellular fluid	
			b. I	Results in water movement by osr	nosis from	to
			-	1. If enough water moves the cell		
		4.	Afte	r dehydration, when water intake	increases:	
			a. (Concentration of solutes in extrace	ellular fluid	
			b. I	Results in water movement		
IV.	Re	gu	latio	n of Specific Electrolytes in Ext	racellular Fluid	
	WI	nat	are e	electrolytes?		
		A. Regulation of Sodium lons				
			Sodium ions are the cations			
			2. Because of their abundance they exert			
			a. I	How much of extracellular osmotic	pressure is due to Na ⁺ ar	nd associated
				anions?	•	
		3.		kidneys are the major route for N	$a^{^{+}}$	
				Na ⁺ readily passes through the filt		
				he filtrate is the		
				The concentration of Na ⁺ excreted		d by
			_			
			c	Γhe rate of Na⁺ transport in the pro	oximal tubule is	
			d. I	Na ⁺ transport mechanisms of the _		&
			_	are unde	er hormonal control	
			•	 When aldosterone is present _ 		-
			2	2. When aldosterone is absent		

4.	Na ⁺ is also excreted from the body in							
	a. Normally only a							
	b. The amount increases during conditions of in a							
	c. As the body temperature increases:							
	Thermoreceptor neurons within the							
	2. Respond by increasing the							
	As the rate of sweat production increases							
	decreases to keep							
5.	The primary mechanisms that regulate Na ⁺ concentration in the extracellular							
	fluid are sensitive to changes in:							
	a. Extracellular							
	b. Blood							
6.	If the quantity of Na ⁺ increases the osmolality of extracellular fluid							
	a. Stimulates secretion							
	b. Increases the by the kidney							
	c. Causes a volume of urine to be produced							
	d. It also increases the							
	e. There is anvolume							
7.	If the quantity of Na ⁺ decreases the osmolality of extracellular fluid							
	a. Inhibits secretion							
	b. Stimulates a volume of urine to be produced							
	c the sensation of thirst							
	d. Extracellular fluid volume							
8.	By regulating extracellular fluid osmolality and extracellular fluid volume the							
	concentration of							
9.	Elevated blood pressure under resting conditions							
10.	If blood pressure is low							

	a.	Mechanisms such as	the				
		are activated					
		1. Increase		&			
		2. Water	in the				
11.	Αl	NH is secreted in respo	nse to	within the right atrium			
	a.	ANH acts on the kidne	eys to	urine production by			
			the reabsorption of _				
	b.	ANH also inhibits	secretion and tl	ne effect of on			
		the	&	in the kidneys			
12.	W	hat is hypernatremia? _	· · · · · · · · · · · · · · · · · · ·				
13.	W	hat is hyponatremia? _					
B. R	egu	lation of Chloride Ions					
1.	Th	ne electrical attraction o	f anions and cations mak	ces it difficult to			
				_			
2.	Th	nerefore, the mechanisr	ns that regulate concentr	ration of cations in the			
	extracellular fluid also						
3.	Tr	ne mechanisms that reg	gulate,, and	levels in the body			
	ar	e important in influencir	ng				
C. R	egu	lation of Potassium Ions	S				
1.	Th	ne concentration gradie	nt of K ⁺ across the plasm	na membrane has a major			
	inf	fluence on the					
	a.	What cells are highly	sensitive to changes in th	nis concentration gradient?			
2.	Ar	n increase in extracellul	ar K [⁺] leads to				
3.	Α	decrease in extracellula	ar K⁺ leads to				
4.	W	hat is hyperkalemia? _					
5.							
6.	In	the kidney:					
	a.		through the filtration	membrane			
	b.	They are	in the proxi	mal tubules			
	C.	They are	in the dista	I tubules & collecting ducts			

		1.	Secretion in the d	stal tubules and collecting ducts is			
				and primarily responsible for controlling the			
7.			terone plays a majo	or role in regulating K ⁺ concentration in the			
	a.			n from the adrenal cortex is stimulated by:			
		2.	Increased				
	b.	Ele	evated aldosterone	levels in the circulatory system:			
		1.	Increase				
		2.	Lowering				
8.	Cii	rcul	atory system shock	causes the extracellular K ⁺ to be more			
	— а.	Th	is stimulates	from the adrenal cortex			
	b. The low blood pressure associated with circulatory system shock						
		sti	mulate the	mechanism which also			
		sti	mulates secretion o	of			
	c.	Но	meostasis is reest	ablished as:			
		1.		increases			
				reabsorption results in an increase in			
				that dilutes the			
		3.		toward normal as			
				stimulates			
Re	gul	atio	n of Calcium Ions	,			
	•						
	De	ecre	ases and increase	s in the extracellular concentration of Ca ²⁺ markedly			
				the permeability of plasma membranes to Na ⁺			

D.

		 This results in nerve and muscle tissues 	
	b.	Hypercalcemia the permeability of	plasma membranes to Na ⁺
		Preventing normal	
4.	Hiç	gh extracellular Ca ²⁺ levels cause the	
		soft tissues, resulting in	
5.	Wł	nat structures are important in maintaining extra	acellular Ca ²⁺ levels?
	a.		
	b.		
	C.		
6.	Но	w much of the total body calcium is contained i	n bone?
	a.	Therefore part of extracellular Ca ²⁺ regulation	involves regulation of:
		1 into	bone
		2from	bone
7.	Lo	ng-term regulation of Ca ²⁺ levels depends on a	balance between:
	a.		in the intestinal tract
	b.	by the k	idneys
8.	Fu	nctionally parathyroid hormone:	
	a.	Increases	<u> </u>
	b.	Reduces	_
9.		e rate of parathyroid secretion is regulated by _	
	a.	Elevated Ca ²⁺ levels	secretion
	b.	Reduced Ca ²⁺ levels	secretion
10.	Ac	tions of parathyroid hormone include:	
	a.	Increased	which results in the
		of bone and the rele	ase of and
		into body fluids	
	b.	Increases the rate of	in the kidneys
	C.	Increases the concentration of	in the urine
	d.	Increases the rate of Vitamin D conversion to	

		Active vitamin D acts on the intestinal tract to	
11.	Α	ack of parathyroid hormone secretion results in	
		that is caused by:	
	a.	Reduction in	
	b.	Increased	&
	C.	Reduced	
		Could result in death because of	
12.	Vit	amin D	
	a.	Can be obtained from or from	
	b.	Why does lack of exposure to sunlight decrease vitamir	D biosynthesis?
	C.	Without vitamin D, the transport of	
		the intestinal tract is	
		Leads to inadequate even	though the diet
		may contain large amounts	
	d.	Normal Ca ²⁺ absorption depends on both:	
		Consumption of	&
		2. Presence of	
13.	Th	e hormone calcitonin	levels
	a.	Calcitonin is most effective when	
	b.	Calcitonin has its major effect on	by:
		1. Inhibit &	
		2. Prolong	
	C.	By these actions calcitonin:	
		1. Decreases bone	
		2. Increases bone	
	d.	Calcitonin secretion is:	
		1. Stimulated by	
		2. Inhibited by	

		e.	Ind	creased secretion of calcitonin	of Ca ²⁺ but it is	
			no	ot as important in controlling Ca ²⁺ levels as		
Ε.	Re	gul	atio	on of Magnesium Ions		
	1.	Mo	ost	of the magnesium in the body is	or in the	
	2.	Ho	ow r	much magnesium is found in the extracellular	fluid?	
		a.	Αb	oout one-half of these are	and one-half are	
	3.	Μţ	g ²⁺ (are cofactors for	such as the	
				involved in		
	4.	In	the	kidneys:		
		a.	Μţ	g ²⁺ passes through the	into the filtrate	
		b.	Н	ow much of these ions are reabsorbed?	· · · · · · · · · · · · · · · · · · ·	
		C.	W	here is most of the Mg ²⁺ reabsorbed in the ki	dney?	
		d.	Th	ne capacity of the kidney to reabsorb Mg ²⁺ is		
			1.	If the level of free Mg ²⁺ increases in the extr	racellular fluid there is an	
			2.	If the level of free Mg ²⁺ decreases in the ext	tracellular fluid there is an	
		e.	De	ecreased extracellular concentration of Mg ²⁺	causes a	
					in the nephron	
F.	Re	egul	atio	on of Phosphate Ions		
	1.	. About 85% of phosphate is in the form of				
		in bone () and teeth				
	2.	М	ost	of the remaining phosphate is		
		a.	Ma	any phosphate ions are covalently bound to _		
		b.	Pr	nosphate ions are important components of _	,, &	
		C.	Pr	nosphates also play important roles in regulat	ion of	
		d.	Pr	nosphate ions dissolved in the intracellular flu	id act as	
	3.	Th	ie c	apacity of the kidneys to reabsorb phosphate	e ions is	
		a.	Th	nerefore if the level of phosphate ions increas	es in the extracellular fluid	
			1.	Excess	in the filtrate	

			2. Increase in the rate of	in the urine
		4.	Over time a low phosphate intake can	
			a. Most of the phosphate that enters the	filtrate
		5.	Parathyroid hormone can play a	
			a. Promotes bone	
			b. Large amounts of &	are released
			c. PTH decreases the	from renal tubules
			so that a	is lost in urine
		6.	If phosphate levels in the extracellular flui	d increase above normal levels,
				in soft tissues
V.	Re	gu	ation of Acid-Base Balance	
	A.	Ну	drogen lons	
		1.	H ⁺ affect the activity of & inte	eract with
		2.	Most chemical reactions are	
		3.	The major mechanisms that regulate $\mathbf{H}^{\scriptscriptstyle +}$	concentration are:
			a c	
			b	
	В.	Ac	ids and Bases	
		1.	What are acids?	
		2.	What are bases?	
			a. Many bases release	which react with
			to form	
		3.	Strong acids and bases completely	
		4.	Weak acids dissociate but most	
			a. The proportion of weak acid molecules	s that release H ⁺ into solution is
			1. Very & is	
			2. Influenced by	
		5.	Weak acids are:	
			a. Common in	

		b.	Play important roles in _		
C.	Вι	ıffeı	Systems		
	1.	Вι	iffers resist	of a soluti	on
	2.	Вι	iffers within body fluids _	by chemica	ally
		a.	Binding to	when they are	to a solution
		b.	Releasing		begins to fal
	3.	Ca	arbonic Acid/Bicarbonate	Buffer System	
		a.	Is carbonic acid a strong	g or weak acid?	
		b.	The carbonic acid/bicarb	oonate buffer system depends on the	ne equilibrium
			that is	between:	
			1		
			2	&	
			3		
		C.	Adding a small amount	of a strong acid to a solution contai	ning H ₂ CO ₃
			increases H ⁺		
			1. In response a large	binds to _	
			to form	and only a small	
			a. A large	is resisted by the	buffer system
		d.	Adding a small amount	of a strong base to a solution conta	ining H ₂ CO ₃
			removes H ⁺		
			1. Many of the	form and	
			a. A large	is resisted by the b	ouffer system
		e.	The carbonic acid/bicarb	oonate buffer system quickly respo	nds to:
			1. During exercise the	addition of substances such as	&
			2. Increased	& produc	ction
			3. Consumption of large	e amounts of	
		f.	The carbonic acid/bicarb	oonate buffer system plays an esse	ntial role in the
			control of body pH by bo	oth the &	the
	4.	Pr	otein Buffer System		

Page 17 of 21

		a.	What protein molecules act as buffer molecules?
			1
			2
		b.	How much buffer capacity is provided by protein molecules?
		C.	Important intracellular proteins that act as buffers include:
			1 in red blood cells
			2 associated with nucleic acids
		d.	The capacity to act like buffers is due to functional groups such as:
			1
			2
		e.	Protein functional groups act like weak acids:
			1. As the H ⁺ concentration increases
			2. When the H ⁺ concentration decreases
	5.	Ph	osphate Buffer System
		a.	Phosphate is an important buffer system
		b.	Phosphate containing molecules such as,, as
			well as ions in solution act as buffers
		C.	well as ions in solution act as buffers Phosphate ions act as
D.	Me		
D.		ech	Phosphate ions act as
D.		echa Me	Phosphate ions act asanisms of Acid-Base Balance Regulation
D.		echa Me	Phosphate ions act as anisms of Acid-Base Balance Regulation echanisms of acid-base regulation depend on the regulation of
D.		Me Me — a.	Phosphate ions act as anisms of Acid-Base Balance Regulation echanisms of acid-base regulation depend on the regulation of and function
D.	1.	Me Me a. b.	Phosphate ions act as anisms of Acid-Base Balance Regulation echanisms of acid-base regulation depend on the regulation of and function Which system responds more quickly?
D.	1.	Me Me a. b.	Phosphate ions act as anisms of Acid-Base Balance Regulation echanisms of acid-base regulation depend on the regulation of and function Which system responds more quickly? Which system has a greater capacity to respond?
D.	1.	Me Me a. b.	Phosphate ions act as anisms of Acid-Base Balance Regulation echanisms of acid-base regulation depend on the regulation of and function Which system responds more quickly? Which system has a greater capacity to respond? espiratory Regulation of Acid-Base Balance
D.	1.	Me — a. b. Re a.	Phosphate ions act as anisms of Acid-Base Balance Regulation echanisms of acid-base regulation depend on the regulation of and function Which system responds more quickly? Which system has a greater capacity to respond? espiratory Regulation of Acid-Base Balance
D.	1.	Me — a. b. Re a.	Phosphate ions act as anisms of Acid-Base Balance Regulation echanisms of acid-base regulation depend on the regulation of and function Which system responds more quickly? Which system has a greater capacity to respond? espiratory Regulation of Acid-Base Balance The respiratory system regulates acid-base balance by influencing the
D.	1.	Me — a. b. Re a.	Phosphate ions act as anisms of Acid-Base Balance Regulation echanisms of acid-base regulation depend on the regulation of and function Which system responds more quickly? Which system has a greater capacity to respond? espiratory Regulation of Acid-Base Balance The respiratory system regulates acid-base balance by influencing the Carbon dioxide reacts with to form carbonic acid which

C.	Th	e reaction is in	but shifts in response to					
	ch	anges in	_ levels					
	1.	Increases in carbon dioxide:						
		a. Cause CO ₂ to join with	and form more					
		b. The then dissoc	iates to &					
	2.	Decreases in carbon dioxide cau	se the equilibrium to shift					
			_ combine to form					
		b. Which then forms						
d.	WI	hat is the function of carbonic anh	ydrase?					
_		hara ia aarkania ankudraaa laasta	۳0 					
e.	VVI	nere is carbonic annydrase locate	d?					
f.	De	Decreases in body fluid pH:						
	1.	Stimulate neurons in the						
	2.	Cause the rate and depth of vent	tilation to					
	3.	This eliminates	at a greater rate					
	4.	The concentration of	decreases in					
	5.	As CO ₂ levels decline the carbon	nic acid/bicarbonate buffer system:					
		a combine with	to form					
		b. The then forms	&					
	6.	This results in concentration of _	(pH increases)					
			exits the lungs					
g.	Inc	creases in body fluid pH:						
	1.	Inhibit neurons in the						
			tilation to					
	3.	Causes less	to be eliminated					
	4.	As incr	eases due to metabolism					
	5.	Body fluid concentration of	also increases					
		As the increased						
		concentration of H ⁺ increases an						

3.	Re	enal Regulation of Acid-Base Balance
	a.	Cells of the kidney tubules directly regulate acid-base balance by
		increasing or decreasing the rate of:
		1 into the filtrate
		2 from the filtrate
	b.	Carbonic anhydrase is present in the nephron cells and catalyzes the
		formation of from and
		The carbonic acid molecules dissociate to &
		2. A countertransport system on the apical membrane then exchanges
		for
		a. Secreting into the filtrate
		b. Reabsorbing from the filtrate
		3. The and are cotransported across the
		basal membrane and then diffuse into
	C.	The reabsorbed combine with excess in the
		extracellular fluid to form
		1. This removes and increases
	d.	The rate of secretion and reabsorption increases
		when pH and slows
		when pH
	e.	Some of the H ⁺ secreted into the filtrate combines with HCO ₃ ⁻ to form
		(The bicarbonate entered the filtrate
		in the form of through the filtration membrane)
		1. The H ₂ CO ₃ then dissociates to form and
		2. The then diffuses from the into the tubule cells
		3. Inside the tubule cells it reacts with to form
		4. The H ₂ CO ₃ subsequently dissociates into and
		a. The is transported into the filtrate in exchange for
		b. And the enter the extracellular fluid
		5. Therefore, many of the HCO ₃ entering the filtrate through glomerular
		filtration reenter the

f.	H ⁺ secreted into the nephron normally exceed the amount of
	that enter through the filtration membrane
	1. Almost all of the HCO ₃ are
	2. Few HCO ₃ are lost in the urine unless
g.	If the pH of the body fluids increases:
	 The rate of H⁺ secretion into the filtrate
	2. The rate of HCO ₃ reabsorption into the extracellular fluid
	a. As a result, the amount of bicarbonate filtered into the kidney
	tubules exceeds
	b. The excess pass into the urine
	c. Diminishing the amount of in the fluid
	Allows extracellular to increase and
	2. pH of body fluids toward normal range
h.	If pH of the filtrate drops below 4.5 it inhibits
	Buffers in the filtrate combine with
	2. What substances in the filtrate act as buffers?
	a
	b
	C
i.	NH ₃ is produced in the cells of the nephron when amino acids like
	are
	1. NH ₃ diffuses from the nephron cells into
	and combines with to form
	2. The rate of NH ₃ production increases when
	days
	3. The elevated ammonia production:
	a. Increases filtrate
	b. Allowing secretion of urine