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his chapter explains how to use control charts
to improve business processes. Basically, a
control chart is a graphical device that helps

us determine when a process is not operating
consistently and thus is “out of control.” The
information provided by a control chart helps us
discover the causes of unusual process variations.
When such causes have been identified, we attempt to
remove them in order to reduce the amount of process
variation. By doing so, we improve the process.

We begin this chapter by tracing the history of
the U.S. quality movement. Then we study control

charts for monitoring the level and variability 
of a process and for monitoring the fraction of
nonconforming (or defective) units produced. We
also discuss how to evaluate the process capability.
That is, we show how to assess a process’s ability to
produce individual items that meet customer
requirements (specifications). In particular, we
explain the concept of six sigma capability, which
was introduced by Motorola Inc. In an optional
section we discuss cause-and-effect diagrams.

In order to demonstrate the ideas of this chapter,
we employ three case studies:

T

The Hole Location Case: A manufacturer of
automobile air conditioner compressors uses
control charts to reduce variation in the locations
of a hose connection hole that is punched in the
outer housing (or shell) of the compressor.

The Hot Chocolate Temperature Case: The food
service staff at a university dining hall wishes to
avoid possible litigation by making sure that it
does not serve excessively hot beverages. The staff
uses control charts to find and eliminate causes of
unusual variations in hot chocolate temperatures.

The Camshaft Case: An automobile manufacturer
wishes to improve the process it uses to harden a
part in a camshaft assembly. The manufacturer
uses control charts and process capability studies 
to reduce the sources of process variation that are
responsible for a 12 percent rework rate and a 
9 percent scrap rate. After the process variation is
reduced, virtually all of the hardened parts meet
specifications. (Note: This case is included in the
supplementary exercises.)

15.1 Quality: Its Meaning and a Historical Perspective 
What is quality? It is not easy to define quality, and a number of different definitions have

been proposed. One definition that makes sense is fitness for use. Here the user of a product or

service can be an individual, a manufacturer, a retailer, or the like. For instance, an individual

who purchases a High Definition television set or a DVD recorder expects the unit to be defect

free and to provide years of reliable, high-performance service. If the TV or DVD recorder per-

forms as desired, it is fit for use. Another definition of quality that makes sense says that quality
is the extent to which customers feel that a product or service exceeds their needs and ex-
pectations. For instance, if the DVD recorder’s purchaser believes the unit exceeds all the needs

and expectations he or she had for the recorder when it was purchased, then the customer is sat-

isfied with the unit’s quality.

Three types of quality can be considered: quality of design, quality of conformance, and

quality of performance. Quality of design has to do with intentional differences between goods

and services with the same basic purpose. For instance, all DVD recorders are built to perform the

same function—record and play back DVDs. However, DVD recorders differ with respect to

various design characteristics—picture sharpness, sound quality, digital effects, ease of use, and so

forth. A given level of design quality may satisfy some consumers and may not satisfy others. The

product design will specify a set of tolerances (specifications) that must be met. For example, the

design of a DVD recorder sets forth many specifications regarding electronic and physical char-

acteristics that must be met if the unit is to operate acceptably. Quality of conformance is the abil-

ity of a process to meet the specifications set forth by the design. Quality of performance is how

well the product or service actually performs in the marketplace. Companies must find out how

well customers’ needs are met and how reliable products are by conducting after-sales research.

The marketing research arm of a company must determine what the customer seeks in each of

these dimensions. Consumer research is used to develop a product or service concept—a combi-

nation of design characteristics that exceeds the expectations of a large number of consumers.

This concept is translated into a design. The design includes specifications that, if met, will

satisfy consumer wants and needs. A production process is then developed to meet the design

Discuss the
principles

and importance
of quality
improvement.
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specifications. In order to do this, variables that can control the process must be identified, and

the relationships between input variables and final quality characteristics must be understood.

The manufacturer expresses quality characteristics as measurable variables that can be tracked

and used to monitor and improve the performance of the process. Service call analysis often leads

to product or service redesigns in order to improve the product or service concept. It is extremely

important that the initial design be a good one so that excessive redesigns and customer dissatis-

faction can be avoided.

History of the quality movement In the 1700s and 1800s, master craftsmen and their

apprentices were responsible for designing and building products. Quantities of goods produced

were small, and product quality was controlled by expert workmanship. Master craftsmen had a

great deal of pride in their work, and quality was not a problem. However, the introduction of

mass production in the late 1800s and early 1900s changed things. Production processes became

very complex, with many workers (rather than one skilled craftsman) responsible for the final

product. Inevitably, product quality characteristics displayed variation. In particular, Henry Ford

developed the moving assembly line at Ford Motor Company. As assembly line manufacturing

spread, quality became a problem. Production managers were rewarded for meeting production

quotas, and quality suffered. To make mass-produced products more consistent, inspectors were

hired to check product quality. However, 100 percent inspection proved to be costly, and people

started to look for alternatives.

Much of the early work in quality control was done at Bell Telephone (now known as

American Telephone and Telegraph or AT&T). The Bell System and Western Electric, the

manufacturing arm of Bell Telephone, formed the Inspection Engineering Department to deal

with quality problems. In 1924 Walter Shewhart of Bell Telephone Laboratories introduced

the concept of statistical quality control—controlling quality of mass-produced goods.

Shewhart believed that variation always exists in manufactured products, and that the varia-

tion can be studied, monitored, and controlled using statistics. In particular, Shewhart devel-

oped a statistical tool called the control chart. Such a chart is a graph that can tell a company

when a process needs to be adjusted and when the process should be left alone. In the late

1920s Harold F. Dodge and Harold G. Romig, also of Bell Telephone Laboratories, intro-

duced statistical acceptance sampling, a statistical sampling technique that enables a com-

pany to accept or reject a quantity of goods (called a lot) without inspecting the entire lot. By

the mid-1930s, Western Electric was heavily using statistical quality control (SQC) to

improve quality, increase productivity, and reduce inspection costs. However, these statistical

methods were not widely adopted outside Bell Telephone.

During World War II statistical quality control became widespread. Faced with the task of pro-

ducing large quantities of high-quality war matériel, industry turned to statistical methods, fail-

ure analysis, vendor certification, and early product design. The U.S. War Department required

that suppliers of war matériel employ acceptance sampling, and its use became commonplace.

Statistical control charts were also used, although not as widely as acceptance sampling.

In 1946 the American Society for Quality Control (ASQC) was established to encourage the

use of quality improvement methods. The organization sponsors training programs, seminars, and

publications dealing with quality issues. In spite of the efforts of the ASQC, however, interest in

quality in American industry diminished after the war. American business had little competition in

the world market—Europe and Japan were rebuilding their shattered economies. Tremendous

emphasis was placed on increased production because firms were often unable to meet the

demand for their products. Profits were high, and the concern for quality waned. As a result, post-

war American managers did not understand the importance of quality and process improvement,

and they were not informed about quality improvement techniques.

However, events in Japan took a different turn. After the war, Japanese industrial capacity was

crippled. Productivity was very low, and products were of notoriously bad quality. In those days,

products stamped “Made in Japan” were generally considered to be “cheap junk.” The man

credited with turning this situation around is W. Edwards Deming. Deming, born in 1900, earned

a Ph.D. in mathematical physics from Yale University in 1927. He then went to work in a

Department of Agriculture–affiliated laboratory. Deming, who had learned statistics while study-

ing physics, applied statistics to experiments conducted at the laboratory. Through this work,

Deming was introduced to Walter Shewhart, who explained his theories about using statistical

15-3 Chapter 15 Process Improvement Using Control Charts
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15.1 Quality: Its Meaning and a Historical Perspective 15-4

control charts to improve quality and productivity. During World War II, Deming was largely re-

sponsible for teaching 35,000 American engineers and technical people how to use statistics to

improve the quality of war matériel. After the war, the Allied command sent a group of these en-

gineers to Japan. Their mission was to improve the Japanese communication system. In doing so,

the engineers employed the statistical methods they had learned, and Deming’s work was brought

to the attention of the Union of Japanese Scientists and Engineers (JUSE). Deming, who had

started his own consulting firm in 1946, was asked by the JUSE to help increase Japanese pro-

ductivity. In July 1950 Deming traveled to Japan and gave a series of lectures titled “Elementary

Principles of the Statistical Control of Quality” to a group of 230 Japanese managers. Deming

taught the Japanese how to use statistics to determine how well a system can perform, and taught

them how to design process improvements to make the system operate better and more effi-

ciently. He also taught the Japanese that the more quality a producer builds into a product, the less

it costs. Realizing the serious nature of their economic crisis, the Japanese adopted Deming’s

ideas as a philosophy of doing business. Through Deming, the Japanese found that by listening

to the wants and needs of consumers and by using statistical methods for process improvement

in production, they could export high-quality products to the world market.

Although American business was making only feeble attempts to improve product quality in

the 1950s and 1960s, it was able to maintain a dominant competitive position. Many U.S. com-

panies focused more on marketing and financial strategies than on product and production. But

the Japanese and other foreign competitors were making inroads. By the 1970s, the quality of

many Japanese and European products (for instance, automobiles, television sets, and electronic

equipment) became far superior to their American-made counterparts. Also, rising prices made

consumers more quality conscious—people expected high quality if they were going to pay high

prices. As a result, the market shares of U.S. firms rapidly decreased. Many U.S. firms were

severely injured or went out of business.

Meanwhile, Deming continued teaching and preaching quality improvement. While Deming

was famous in Japan, he was relatively unknown in the United States until 1980. In June 1980

Deming was featured in an NBC television documentary titled “If Japan Can, Why Can’t We?”

This program, written and narrated by then–NBC correspondent Lloyd Dobyns, compared

Japanese and American industrial productivity and credited Deming for Japan’s success. Within

days, demand for Deming’s consulting services skyrocketed. Deming consulted with many major

U.S. firms. Among these firms are The Ford Motor Company, General Motors Corporation, and

The Procter & Gamble Company. Ford, for instance, began consulting with Deming in 1981.

Donald Petersen, who was Ford’s chairman and chief executive officer at the time, became a

Deming disciple. By following the Deming philosophy, Ford, which was losing 2 billion dollars

yearly in 1980, attempted to create a quality culture. Quality of Ford products was greatly

improved, and the company again became profitable. The 1980s saw many U.S. companies adopt

a philosophy of continuous improvement of quality and productivity in all areas of their

businesses—manufacturing, accounting, sales, finance, personnel, marketing, customer service,

maintenance, and so forth. This overall approach of applying quality principles to all company

activities is called total quality management (TQM) or total quality control (TQC). It is

becoming an important management strategy in American business. Dr. Deming taught seminars

on quality improvement for managers and statisticians until his death on December 20, 1993.

Deming’s work resulted in widespread changes in both the structure of the world economy and

the ways in which American businesses are managed.

The fundamental ideas behind Deming’s approach to quality and productivity improvement

are contained in his “14 points.” These are a set of managerial principles that, if followed,

Deming believed would enable a company to improve quality and productivity, reduce costs, and

compete effectively in the world market. We briefly summarize the 14 points in Table 15.1 on the

next page. For more complete discussions of these points, see Bowerman and O’Connell (1996),

Deming (1986), Walton (1986), Scherkenbach (1987), or Gitlow, Gitlow, Oppenheim, and

Oppenheim (1989). Deming stressed that implementation of the 14 points requires both changes

in management philosophy and the use of statistical methods. In addition, Deming believed that

it is necessary to follow all of the points, not just some of them.

In 1988 the first Malcolm Baldrige National Quality Awards were presented. These awards,

presented by the U.S. Commerce Department, are named for the late Malcolm Baldrige, who was

Commerce Secretary during the Reagan administration. The awards were established to promote
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quality awareness, to recognize quality achievements by U.S. companies, and to publicize suc-

cessful quality strategies. The Malcolm Baldrige National Quality Award Consortium, formed by

the ASQC (now known as the ASQ) and the American Productivity and Quality Center, admin-

isters the award. The Baldrige award has become one of the most prestigious honors in American

business. Annual awards are given in three categories—manufacturing, service, and small busi-

ness. Winners include companies such as Motorola Inc., Xerox Corporation Business Products

and Systems, the Commercial Nuclear Fuel Division of Westinghouse Electric Corporation,

Milliken and Company, Cadillac Division, General Motors Corporation, Ritz Carlton Hotels, and

AT&T Consumer Communications.

Finally, the 1990s saw the adoption of an international quality standards system called

ISO 9000. More than 90 countries around the globe have adopted the ISO 9000 series of stan-

dards for their companies, as have many multinational corporations (including AT&T, 3M, IBM,

Motorola, and DuPont). As a brief introduction to ISO 9000, we quote “Is ISO 9000 for You?”

published by CEEM Information Systems:

What Is ISO 9000?
ISO 9000 is a series of international standards for quality assurance management systems. It estab-

lishes the organizational structure and processes for assuring that the production of goods or services

meets a consistent and agreed-upon level of quality for a company’s customers.

The ISO 9000 series is unique in that it applies to a very wide range of organizations and indus-

tries encompassing both the manufacturing and service sectors.

15-5 Chapter 15 Process Improvement Using Control Charts

1 Create constancy of purpose toward improvement of product and service with a plan to become competitive, stay in business, 
and provide jobs.
Devise a plan for the long-term success of the company based on quality improvement.

2 Adopt a new philosophy.
Do not tolerate commonly accepted mistakes, delays, defective materials, and defective workmanship.

3 Cease dependence on mass inspection.
Quality cannot be inspected into a product. It must be built into the product through process improvement.

4 End the practice of awarding business on the basis of price tag.
Do not buy from the lowest bidder without taking the quality of goods purchased into account. Purchasing should be based on
lowest total cost (including the cost of bad quality).

5 Improve constantly and forever the system of production and service to improve quality and productivity, and thus constantly 
decrease costs.
Constantly seek to improve every aspect of the business.

6 Institute training.
Workers should know how to do their jobs and should know how their jobs affect quality and the success of the company.

7 Institute leadership.
The job of management is leadership, not mere supervision. Leadership involves understanding the work that needs to be done
and fostering process improvement.

8 Drive out fear, so that everyone may work more effectively for the company.
Workers should not be afraid to express ideas, to ask questions, or to take appropriate action.

9 Break down organizational barriers.
Barriers that damage the company performance (such as competition between staff areas, poor communication, disputes between
labor and management, and so on) must be removed so that everyone can work for the good of the company.

10 Eliminate slogans, exhortations, and arbitrary numerical goals and targets for the workforce that urge the workers to achieve
new levels of productivity and quality without providing methods.
Slogans and numerical goals (such as production quotas) are counterproductive unless management provides methods for 
achieving them.

11 Eliminate work standards and numerical quotas.
Work standards and numerical quotas that specify the quantity of goods to be produced while quality is ignored are 
counterproductive and should be eliminated.

12 Remove barriers that rob employees of their pride of workmanship.
While workers want to do a good job and have pride in their work, bad management practices often rob workers of their pride.
Barriers that rob workers of pride (such as inadequate instructions, cheap materials, poor maintenance, and so on) must be 
removed.

13 Institute a vigorous program of education and self-improvement.
Education and training are necessary for everyone if continuous improvement is to be achieved.

14 Take action to accomplish the transformation.
A management structure that is committed to continuous improvement must be put in place.

Source: W. Edwards Deming, “Deming’s 14 Points, condensed version” from Out of Crisis. Copyright © MIT Press. Used with permission.

T A B L E 1 5 . 1 W. Edwards Deming’s 14 Points
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15.2 Statistical Process Control and Causes of Process Variation 15-6

Why Is ISO 9000 Important?
ISO 9000 is important for two reasons. First . . . the discipline imposed by the standard for processes

influencing your quality management systems can enhance your company’s quality consistency. 

Second . . . more and more companies, both here at home and internationally, are requiring their

suppliers to be ISO 9000 registered.1

Clearly, quality has finally become a crucially important issue in American business. The

quality revolution now affects every area in business. But the Japanese continue to mount new

challenges. For years, the Japanese have used designed statistical experiments to develop new

processes, find and remedy process problems, improve product performance, and improve

process efficiency. Much of this work is based on the insights of Genichi Taguchi, a Japanese

engineer. His methods of experimental design, the so-called Taguchi methods, have been heav-

ily used in Japan since the 1960s. Although Taguchi’s methodology is controversial in statistical

circles, the use of experimental design gives the Japanese a considerable advantage over U.S.

competitors because it enables them to design a high level of quality into a product before pro-

duction begins. Some U.S. manufacturers have begun to use experimental design techniques to

design quality into their products. It will be necessary for many more U.S. companies to do so in

order to remain competitive in the future—a challenge for the 21st century.

15.2 Statistical Process Control and Causes
of Process Variation 

Statistical process control Statistical process control (SPC) is a systematic method for an-

alyzing process data (quality characteristics) in which we monitor and study the process varia-
tion. The goal is to stabilize the process and to reduce the amount of process variation. When a

process has been stabilized, we say that the process is in statistical control. That is, more formally:

A process is in statistical control when the process measurements display a constant amount of

variation around a constant mean (or level).

The ultimate goal of SPC is continuous process improvement. While we often use SPC to moni-

tor and improve manufacturing processes, SPC is also commonly used to improve service quality.

For instance, we might use SPC to reduce the time it takes to process a loan application, or to

improve the accuracy of an order entry system.

Before the widespread use of SPC, quality control was based on an inspection approach. Here

the product is first made, and then the final product is inspected to eliminate defective items. This

is called action on the output of the process. The emphasis here is on detecting defective

product that has already been produced. This is costly and wasteful because, if defective product

is produced, the bad items must be (1) scrapped, (2) reworked or reprocessed (that is, fixed),

or (3) downgraded (sold off at a lower price). In fact, the cost of bad quality (scrap, rework, and

so on) can be tremendously high. It is not unusual for this cost to be as high as 10 to 30 percent

or more of a company’s dollar sales.

In contrast to the inspection approach, SPC emphasizes integrating quality improvement into

the process. Here the goal is preventing bad quality by taking appropriate action on the
process. In order to accomplish this goal, we must decide when actions on the process are

needed. The focus of much of this chapter is to show how such decisions can be made.

Causes of process variation In order to understand SPC methodology, we must realize that

the variations we observe in quality characteristics are caused by different sources. These sources

include factors such as equipment (machines or the like), materials, people, methods and proce-

dures, the environment, and so forth. Here we must distinguish between usual process variation
and unusual process variation. Usual process variation results from what we call common
causes of process variation.

Common causes are sources of variation that have the potential to influence all process obser-

vations. That is, these sources of variation are inherent to the current process design.

Distinguish
between

common causes
and assignable
causes of process
variation.

1CEEM Information Services, “Is ISO 9000 for You?” 1993.
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Common cause variation can be substantial. For instance, obsolete or poorly maintained

equipment, a poorly designed process, and inadequate instructions for workers are examples of

common causes that might significantly influence all process output. As an example, suppose that

we are filling 16-ounce jars with grape jelly. A 25-year-old, obsolete filler machine might be a

common cause of process variation that influences all the jar fills. While (in theory) it might be

possible to replace the filler machine with a new model, we might have chosen not to do so, and

the obsolete filler causes all the jar fills to exhibit substantial variation.

Common causes also include small influences that would cause slight variation even if all con-

ditions are held as constant as humanly possible. For example, in the jar fill situation, small vari-

ations in the speed at which jars move under the filler valves, slight floor vibrations, and small

differences between filler valve settings would always influence the jar fills even when condi-

tions are held as constant as possible. Sometimes these small variations are described as being

due to “chance.”

Together, the important and unimportant common causes of variation determine the usual
process variability. That is, these causes determine the amount of variation that exists when the

process is operating routinely. We can reduce the amount of common cause variation by remov-

ing some of the important common causes. Reducing common cause variation is usually a
management responsibility. For instance, replacing obsolete equipment, redesigning a plant or

process, or improving plant maintenance would require management action.

In addition to common cause variation, processes are affected by a different kind of vari-

ation called assignable cause variation (sometimes also called special cause or specific cause
variation).

Assignable causes are sources of unusual process variation. These are intermittent or perma-

nent changes in the process that are not common to all process observations and that may cause

important process variation. Assignable causes are usually of short duration, but they can be per-

sistent or recurring conditions.

For example, in the jar filling situation, one of the filler valves may become clogged so that some

jars are being substantially underfilled (or perhaps are not filled at all). Or a relief operator might

incorrectly set the filler so that all jars are being substantially overfilled for a short period of time.

As another example, suppose that a bank wishes to study the length of time customers must wait

before being served by a teller. If a customer fills out a banking form incorrectly, this might cause

a temporary delay that increases the waiting time for other customers. Notice that assignable
causes such as these can often be remedied by local supervision—for instance, by a production

line foreman, a machine operator, a head bank teller, or the like. One objective of SPC is to
detect and eliminate assignable causes of process variation. By doing this, we reduce the

amount of process variation. This results in improved quality.

It is important to point out that an assignable cause could be beneficial—that is, it could be an

unusual process variation resulting in unusually good process performance. In such a situation,

we wish to discover the root cause of the variation, and then we wish to incorporate this condi-

tion into the process if possible. For instance, suppose we find that a process performs unusually

well when a raw material purchased from a particular supplier is used. It might be desirable to

purchase as much of the raw material as possible from this supplier.

When a process exhibits only common cause variation, it will operate in a stable, or consis-

tent, fashion. That is, in the absence of any unusual process variations, the process will display
a constant amount of variation around a constant mean. On the other hand, if assignable

causes are affecting the process, then the process will not be stable—unusual variations will

cause the process mean or variability to change over time. It follows that

1 When a process is influenced only by common cause variation, the process will be in
statistical control.

2 When a process is influenced by one or more assignable causes, the process will not be in
statistical control.

In general, in order to bring a process into statistical control, we must find and eliminate

undesirable assignable causes of process variation, and we should (if feasible) build desirable

assignable causes into the process. When we have done these things, the process is what we call

a stable, common cause system. This means that the process operates in a consistent fashion

15-7 Chapter 15 Process Improvement Using Control Charts
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15.3 Sampling a Process, Rational Subgrouping, and Control Charts 15-8

and is predictable. Because there are no unusual process variations, the process (as currently

configured) is doing all it can be expected to do.

When a process is in statistical control, management can evaluate the process capability. That

is, it can assess whether the process can produce output meeting customer or producer require-

ments. If it does not, action by local supervision will not remedy the situation—remember, the as-

signable causes (the sources of process variation that can be dealt with by local supervision) have

already been removed. Rather, some fundamental change will be needed in order to reduce com-

mon cause variation. For instance, perhaps a new, more modern filler machine must be purchased

and installed. This will require action by management.

Finally, the SPC approach is really a philosophy of doing business. It is an entire firm or

organization that is focused on a single goal: continuous quality and productivity improvement.

The impetus for this philosophy must come from management. Unless management is support-

ive and directly involved in the ongoing quality improvement process, the SPC approach will not

be successful.

Exercises for Sections 15.1 and 15.2
CONCEPTS

15.1 Write an essay comparing the management philosophy that Dr. Deming advocated in his 14 points

to the management styles you have been exposed to in your personal work experiences. Do you

think Dr. Deming’s philosophy is preferable to the management styles you have seen in practice?

Which of the 14 points do you agree with? Which do you disagree with?

15.2 Write a paragraph explaining how common causes of process variation differ from assignable

causes of process variation.

METHODS AND APPLICATIONS

15.3 In this exercise we consider several familiar processes. In each case, describe several common

causes and several assignable causes that might result in variation of the given quality

characteristic.

a Process: getting ready for school or work in the morning.

Quality characteristic: the time it takes to get ready.

b Process: driving, walking, or otherwise commuting from your home or apartment to school or

work.

Quality characteristic: the time it takes to commute.

c Process: studying for and taking a statistics exam.

Quality characteristic: the score received on the exam.

d Process: starting your car in the morning.

Quality characteristic: the time it takes to start your car.

15.4 Form a group of three or four students in your class. As a group project, select a familiar process

and determine a variable that measures the quality of some aspect of the output of this process.

Then list some common causes and assignable causes that might result in variation of the variable

you have selected for the process. Discuss your lists in class.

15.3 Sampling a Process, Rational Subgrouping, 
and Control Charts 

In order to find and eliminate assignable causes of process variation, we sample output from

the process. To do this, we first decide which process variables—that is, which process

characteristics—will be studied. Several graphical techniques (sometimes called prestatistical
tools) are used here. Pareto charts (see Section 2.1 on page 38) help identify problem areas and

opportunities for improvement. Cause-and-effect diagrams (see optional Section 15.7 on

page 15-42) help uncover sources of process variation and potentially important process vari-

ables. The goal is to identify process variables that can be studied in order to decrease the gap

between customer expectations and process performance.

Whenever possible and economical, it is best to study a quantitative, rather than a categorical,
process variable. For example, suppose we are filling 16-ounce jars with grape jelly, and suppose

specifications state that each jar should contain between 15.95 and 16.05 ounces of jelly. If we

record the fill of each sampled jar by simply noting that the jar either “meets specifications”

Sample a
process by

using rational
subgrouping.

LO15-3
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(the fill is between 15.95 and 16.05 ounces) or “does not meet the specifications,” then we are

studying a categorical process variable. However, if we measure and record the amount of grape

jelly contained in the jar (say, to the nearest one-hundredth of an ounce), then we are studying a

quantitative process variable. Actually measuring the fill is best because this tells us how close
we are to the specification limits and thus provides more information. As we will soon see, this

additional information often allows us to decide whether to take action on a process by using a

relatively small number of measurements.

When we study a quantitative process variable, we say that we are employing measurement
data. To analyze such data, we take a series of samples (usually called subgroups) over time.

Each subgroup consists of a set of several measurements; subgroup sizes between 2 and 6 are

often used. Summary statistics (for example, means and ranges) for each subgroup are calculated

and are plotted versus time. By comparing plot points, we hope to discover when unusual process

variations are taking place.

Each subgroup is typically observed over a short period of time—a period of time in which the

process operating characteristics do not change much. That is, we employ rational subgroups.

15-9 Chapter 15 Process Improvement Using Control Charts

Rational Subgroups

Rational subgroups are selected so that, if process changes of practical importance exist, the chance that
these changes will occur between subgroups is maximized and the chance that these changes will occur

within subgroups is minimized.

In order to obtain rational subgroups, we must determine the frequency with which subgroups

will be selected. For example, we might select a subgroup once every 15 minutes, once an hour,

or once a day. In general, we should observe subgroups often enough to detect important process

changes. For instance, suppose we wish to study a process, and suppose we feel that workers’

shift changes (that take place every eight hours) may be an important source of process variation.

In this case, rational subgroups can be obtained by selecting a subgroup during each eight-hour

shift. Here shift changes will occur between subgroups. Therefore, if shift changes are an impor-

tant source of variation, the rational subgroups will enable us to observe the effects of these

changes by comparing plot points for different subgroups (shifts). However, in addition, suppose

hourly machine resets are made, and we feel that these resets may also be an important source of

process variation. In this case, rational subgroups can be obtained by selecting a subgroup during

each hour. Here machine resets will occur between subgroups, and we will be able to observe

their effects by comparing plot points for different subgroups (hours). If in this situation we

selected one subgroup each eight-hour shift, we would not obtain rational subgroups. This is

because hourly machine resets would occur within subgroups, and we would not be able to

observe the effects of these resets by comparing plot points for different shifts. In general, it is

very important to try to identify important sources of variation (potential assignable causes such

as shift changes, resets, and so on) before deciding how subgroups will be selected. As previously

stated, constructing a cause-and-effect diagram helps uncover these sources of variation (see

optional Section 15.7 on page 15-42).

Once we determine the sampling frequency, we need to determine the subgroup size—that is,

the number of measurements that will be included in each subgroup—and how we will actually

select the measurements in each subgroup. It is recommended that the subgroup size be held
constant. Denoting this constant subgroup size as n, we typically choose n to be from 2 to 6, with

n � 4 or 5 being a frequent choice. To illustrate how we can actually select the subgroup measure-

ments, suppose we select a subgroup of 5 units every hour from the output of a machine that pro-

duces 100 units per hour. We can select these units by using a consecutive, periodic, or random
sampling process. If we employ consecutive sampling, we would select 5 consecutive units pro-

duced by the machine at the beginning of (or at some time during) each hour. Here production
conditions—machine operator, machine setting, raw material batch, and so forth—will be as
constant as possible within the subgroup. Such a subgroup provides a “freeze-frame picture”

of the process at a particular point in time. Thus the chance of variations occurring within the
subgroups is minimized. If we use periodic sampling, we would select 5 units periodically

through each hour. For example, because the machine produces 100 units per hour, we could select

bow20530_ch15_001-052.qxd  11/14/13  2:00 PM  Page 10 CONFIRMING PAGES



15.3 Sampling a Process, Rational Subgrouping, and Control Charts 15-10

the 1st, 21st, 41st, 61st, and 81st units produced. If we use random sampling, we would use a ran-

dom number table to randomly select 5 of the 100 units produced during each hour. If production

conditions are really held fairly constant during each hour, then consecutive, periodic, and ran-

dom sampling will each provide a similar representation of the process. If production conditions

vary considerably during each hour, and if we are able to recognize this variation by using a pe-

riodic or random sampling procedure, this would tell us that we should be sampling the process

more often than once an hour. Of course, if we are using periodic or random sampling every hour,

we might not realize that the process operates with considerably less variation during shorter pe-

riods (perhaps because we have not used a consecutive sampling procedure). We therefore might

not recognize the extent of the hourly variation.

Lastly, it is important to point out that we must also take subgroups for a period of time that
is long enough to give potential sources of variation a chance to show up. If, for instance, dif-

ferent batches of raw materials are suspected to be a significant source of process variation, and

if we receive new batches every few days, we may need to collect subgroups for several weeks

in order to assess the effects of the batch-to-batch variation. A statistical rule of thumb says
that we require at least 20 subgroups of size 4 or 5 in order to judge statistical control and
in order to obtain reasonable estimates of the process mean and variability. However,

practical considerations may require the collection of much more data.

We now look at a more concrete example of subgrouped data.

EXAMPLE 15.1 The Hole Location Case:2 Subgrouped Process Data

A manufacturer produces automobile air conditioner compressor shells. The compressor shell is

basically the outer metal housing of the compressor. Several holes of various sizes must be

punched into the shell to accommodate hose connections that must be made to the compressor. If

any one of these holes is punched in the wrong location, the compressor shell becomes a piece of

scrap metal (at considerable cost to the manufacturer). Figure 15.1(a) illustrates a compressor

shell (note the holes that have been punched in the housing). Experience with the hole-punching

process suggests that substantial changes (machine resets, equipment lubrication, and so forth)

C

Hole

Trim 
edge

Measured
dimension

(b) Twenty subgroups of 5 hole location measurements (measurement from
trim edge to the bottom of hole; target value is 3.00 inches)

Measurement
Time Subgroup 1 2 3 4 5 Mean Range
8:00 AM 1 3.05 3.02 3.04 3.09 3.05 3.05 0.07

8:20 AM 2 3.00 3.04 2.98 2.99 2.99 3.00 0.06

8:40 AM 3 3.07 3.06 2.94 2.97 3.01 3.01 0.13

9:00 AM 4 3.02 2.96 3.01 2.98 3.02 2.998 0.06

9:20 AM 5 3.01 2.98 3.04 3.01 3.01 3.01 0.06

9:40 AM 6 3.01 3.02 2.99 2.97 2.96 2.99 0.06

10:00 AM 7 3.03 2.98 2.92 3.17 2.96 3.012 0.25

10:20 AM 8 3.05 3.03 2.96 3.01 2.97 3.004 0.09

10:40 AM 9 2.99 2.96 3.01 3.00 2.95 2.982 0.06

11:00 AM 10 3.02 3.02 2.98 3.03 3.02 3.014 0.05

11:20 AM 11 2.97 2.96 2.96 3.00 3.04 2.986 0.08

11:40 AM 12 3.06 3.04 3.02 3.10 3.05 3.054 0.08

12:00 PM 13 2.99 3.00 3.04 2.96 3.02 3.002 0.08

12:20 PM 14 3.00 3.01 2.99 3.00 3.01 3.002 0.02

12:40 PM 15 3.02 2.96 3.04 2.95 2.97 2.988 0.09

1:00 PM 16 3.02 3.02 3.04 2.98 3.03 3.018 0.06

1:20 PM 17 3.01 2.87 3.09 3.02 3.00 2.998 0.22

1:40 PM 18 3.05 2.96 3.01 2.97 2.98 2.994 0.09

2:00 PM 19 3.02 2.99 3.00 2.98 3.00 2.998 0.04

2:20 PM 20 3.00 3.00 3.01 3.05 3.01 3.014 0.05

(a) Holes punched in a compressor
shell for hose connections

F I G U R E 1 5 . 1 The Compressor Shell and the Hole Location Data HoleLocDS

2The data for this case were obtained from a metal fabrication plant located in the Cincinnati, Ohio, area. For confidentiality, 
we have agreed to withhold the company’s name.
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Subgrouped data are used to determine when assignable causes of process variation exist.

Typically, we analyze subgrouped data by plotting summary statistics for the subgroups versus

time. The resulting plots are often called graphs of process performance. For example, the sub-

group means and the subgroup ranges of the hole location measurements in Figure 15.1(b) are

plotted in time order on graphs of process performance in the Excel output of Figure 15.2. The

subgroup means ( values) and ranges (R values) are plotted on the vertical axis, while the time

sequence (in this case, the subgroup number) is plotted on the horizontal axis. The values and

R values for corresponding subgroups are lined up vertically. The plot points on each graph are

connected by line segments as a visual aid. However, the lines between the plot points do not re-

ally say anything about the process performance between the observed subgroups. Notice that the

subgroup means and ranges vary over time.

If we consider the plot of subgroup means, very high and very low points are undesirable—

they represent large deviations from the target hole location dimension (3 inches). If we consider

the plot of subgroup ranges, very high points are undesirable (high variation in the hole location

dimensions), while very low points are desirable (little variation in the hole location dimensions).

x
x

can occur quite frequently—as often as two or three times an hour. Because we wish to observe

the impact of these changes if and when they occur, rational subgroups are obtained by selecting

a subgroup every 20 minutes or so. Specifically, about every 20 minutes five compressor shells are

consecutively selected from the process output. For each shell selected, a measurement that helps

to specify the location of a particular hole in the compressor shell is made. The measurement is

taken by measuring from one of the edges of the compressor shell (called the trim edge) to the bot-

tom of the hole [see Figure 15.1(a)]. Obviously, it is not possible to measure to the center of the

hole because you cannot tell where it is! The target value for the measured dimension is

3.00 inches. Of course, the manufacturer would like as little variation around the target as possi-

ble. Figure 15.1(b) gives the measurements obtained for 20 subgroups that were selected between

8 A.M. and 2:20 P.M. on a particular day. Here a subgroup consists of the five measurements labeled

1 through 5 in a single row in the table. Notice that Figure 15.1(b) also gives the mean, , and the

range, R, of the measurements in each subgroup. In the next section we will see how to use the

subgroup means and ranges to detect when unusual process variations have taken place.

x

15-11 Chapter 15 Process Improvement Using Control Charts
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F I G U R E 1 5 . 2 Excel Output of Graphs of Performance (Subgroup Means and Ranges) 
for the Hole Location Data in Figure 15.1(b)
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15.4 x– and R Charts 15-12

We now wish to answer a very basic question. Is the variation that we see on the graphs of
performance due to the usual process variation (that is, due to common causes), or is the
variation due to one or more assignable causes (unusual variations)? It is possible that

unusual variations have occurred and that action should be taken to reduce the variation in pro-

duction conditions. It is also possible that the variation in the plot points is caused by common

causes and that (given the current configuration of the process) production conditions have been

held as constant as possible. For example, do the high points on the plot in Figure 15.2 suggest

that one or more assignable causes have increased the hole location dimensions enough to war-

rant corrective action? As another example, do the high points on the R plot suggest that excess

variability in the hole location dimensions exists and that corrective action is needed? Or does the

lowest point on the R plot indicate that an improvement in process performance (reduction in

variation) has occurred due to an assignable cause?

We can answer these questions by converting the graphs of performance shown in Figure 15.2

into control charts. In general, by converting graphs of performance into control charts, we can

(with only a small chance of being wrong) determine whether observed process variations are

unusual (due to assignable causes). That is, the purpose of a control chart is to monitor a process

so we can take corrective action in response to assignable causes when it is needed. This is called

statistical process monitoring. The use of “seat of the pants intuition” is not a particularly

effective way to decide whether observed process performance is unusual. By using a control

chart, we can reduce our chances of making two possible errors—(1) taking action when none is

needed and (2) not taking action when action is needed.

A control chart employs a center line (denoted CNL) and two control limits—an upper con-
trol limit (denoted UCL) and a lower control limit (denoted LCL). The center line represents

the average performance of the process when it is in a state of statistical control—that is, when

only common cause variation exists. The upper and lower control limits are horizontal lines sit-

uated above and below the center line. These control limits are established so that, when the

process is in control, almost all plot points will be between the upper and lower limits. In prac-

tice, the control limits are used as follows:

1 If all observed plot points are between the LCL and UCL (and if no unusual patterns of

points exist—this will be explained later), we have no evidence that assignable causes exist

and we assume that the process is in statistical control. In this case, only common causes
of process variation exist, and no action to remove assignable causes is taken on the
process. If we were to take such action, we would be unnecessarily tampering with the

process.

2 If we observe one or more plot points outside the control limits, then we have evidence

that the process is out of control due to one or more assignable causes. Here we must
take action on the process to remove these assignable causes.

In the next section we begin to discuss how to construct control charts. Before doing this,

however, we must emphasize the importance of documenting a process while the subgroups of

data are being collected. The time at which each subgroup is taken is recorded, and the person

who collected the data is also recorded. Any process changes (machine resets, adjustments, shift

changes, operator changes, and so on) must be documented. Any potential sources of variation

that may significantly affect the process output should be noted. If the process is not well docu-

mented, it will be very difficult to identify the root causes of unusual variations that may be

detected when we analyze the subgroups of data.

15.4 –x and R Charts 
and R charts are the most commonly used control charts for measurement data (such charts are

often called variables control charts). Subgroup means are plotted versus time on the chart,

while subgroup ranges are plotted on the R chart. The chart monitors the process mean or level
(we wish to run near a desired target level). The R chart is used to monitor the amount of variabil-
ity around the process level (we desire as little variability as possible around the target). Note here

that we employ two control charts, and that it is important to use the two charts together. If we

do not use both charts, we will not get all the information needed to improve the process.

x
x

x

x

Use and
R charts to

establish process
control.

xLO15-4
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15-13 Chapter 15 Process Improvement Using Control Charts

Before seeing how to construct and R charts, we should mention that it is also possible to

monitor the process variability by using a chart for subgroup standard deviations. Such a chart

is called an s chart. However, the overwhelming majority of practitioners use R charts rather than

s charts. This is partly due to historical reasons. When control charts were developed, electronic

calculators and computers did not exist. It was, therefore, much easier to compute a subgroup

range than it was to compute a subgroup standard deviation. For this reason, the use of R charts

has persisted. Some people also feel that it is easier for factory personnel (some of whom may

have little mathematical background) to understand and relate to the subgroup range. In addition,

while the standard deviation (which is computed using all the measurements in a subgroup) is a

better measure of variability than the range (which is computed using only two measurements),

the R chart usually suffices. This is because and R charts usually employ small subgroups—as

mentioned previously, subgroup sizes are often between 2 and 6. For such subgroup sizes, it can

be shown that using subgroup ranges is almost as effective as using subgroup standard deviations.

To construct and R charts, suppose we have observed rational subgroups of n measurements

over successive time periods (hours, shifts, days, or the like). We first calculate the mean and

range R for each subgroup, and we construct graphs of performance for the values and for the

R values (as in Figure 15.2). In order to calculate center lines and control limits, let denote the

mean of the subgroup of n measurements that is selected in a particular time period. Furthermore,

assume that the population of all process measurements that could be observed in any time pe-

riod is normally distributed with mean m and standard deviation s, and also assume successive

process measurements are statistically independent.3 Then, if m and s stay constant over time, the

sampling distribution of subgroup means in any time period is normally distributed with mean m

and standard deviation . It follows that (in any time period) 99.73 percent of all possible

values of the subgroup mean are in the interval

This fact is illustrated in Figure 15.3. It follows that we can set a center line and control limits for

the chart as

If an observed subgroup mean is inside these control limits, we have no evidence to suggest that

the process is out of control. However, if the subgroup mean is outside these limits, we conclude

that m and/or s have changed, and that the process is out of control. The chart limits are

illustrated in Figure 15.3.

If the process is in control, and thus m and s stay constant over time, it follows that m and s

are the mean and standard deviation of all possible process measurements. For this reason, we

call m the process mean and s the process standard deviation. Because in most real situations

we do not know the true values of m and s, we must estimate these values. If the process is in

control, an appropriate estimate of the process mean m is

( is pronounced “x double bar”). It follows that the center line for the chart is

To obtain control limits for the chart, we compute

It can be shown that an appropriate estimate of the process standard deviation s is , where

d2 is a constant that depends on the subgroup size n. Although we do not present a development

of d2 here, it intuitively makes sense that, for a given subgroup size, our best estimate of the

process standard deviation should be related to the average of the subgroup ranges . The(R)

(R�d2)

R � the mean of all observed subgroup ranges

x

Center linex � x

xx

x � the mean of all observed subgroup means

x

 Lower control limit � LCLx � m � 3(s�1n)

 Upper control limit � UCLx � m � 3(s�1n)

 Center line � m

x

[m � 3(s�1n),  m � 3(s�1n)]

x
s�1n

x
x

x
x

x

x

3Basically, statistical independence here means that successive process measurements do not display any kind of pattern 
over time.
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15.4 x– and R Charts 15-14

number d2 relates these quantities. Values of d2 are given in Table 15.2 (on the next page) for sub-

group sizes n � 2 through n � 25. At the end of this section we further discuss why we use 

to estimate the process standard deviation.

Substituting the estimate of m and the estimate of s into the limits

we obtain

Finally, we define

and rewrite the control limits as

Here we call A2 a control chart constant. As the formula for A2 implies, this control chart

constant depends on the subgroup size n. Values of A2 are given in Table 15.2 for subgroup sizes

n � 2 through n � 25.

The center line for the R chart is

Center lineR �

Furthermore, assuming normality, it can be shown that there are control chart constants D4 and

D3 so that

UCLR � D4R    and    LCLR � D3R

R

UCLx � x � A2R    and    LCLx � x � A2R

A2 �
3

d21n

LCLx � x � 3�R�d2

1n � � x � � 3

d21n�  R

 UCLx � x � 3�R�d2

1n � � x � � 3

d21n�  R

m � 3(s�1n)    and    m � 3(s�1n)

R�d2x

R�d2

99.73%
�

� � 3� � � 3�

99.73%

�� � 3(��   n ) � � 3(��   n )

1Time
period 2

3
4
5
6
7
8
9

10

LCLx UCLx
Center

line

Population of all subgroup means 
in any given time period

Subgroup means
observed over time

Population of all individual process
measurements in any given 
time period

x

x

F I G U R E 1 5 . 3 An Illustration of Chart Control Limits with the Process Mean M and Process Standard 
Deviation S Known

x
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15-15 Chapter 15 Process Improvement Using Control Charts

Here the control chart constants D4 and D3 also depend on the subgroup size n. Values of D4

and D3 are given in Table 15.2 for subgroup sizes n � 2 through n � 25. We summarize the cen-

ter lines and control limits for and R charts in the following box:x

Chart for
Averages ( ) Chart for Ranges (R)

Divisor for
Factor for Estimate of Factors for

Subgroup Control Standard Control
Size, Limits, Deviation, Limits
n A2 d2 D3 D4

2 1.880 1.128 — 3.267

3 1.023 1.693 — 2.574

4 0.729 2.059 — 2.282

5 0.577 2.326 — 2.114

6 0.483 2.534 — 2.004

7 0.419 2.704 0.076 1.924

8 0.373 2.847 0.136 1.864

9 0.337 2.970 0.184 1.816

10 0.308 3.078 0.223 1.777

11 0.285 3.173 0.256 1.744

12 0.266 3.258 0.283 1.717

13 0.249 3.336 0.307 1.693

14 0.235 3.407 0.328 1.672

15 0.223 3.472 0.347 1.653

16 0.212 3.532 0.363 1.637

17 0.203 3.588 0.378 1.622

18 0.194 3.640 0.391 1.608

19 0.187 3.689 0.403 1.597

20 0.180 3.735 0.415 1.585

21 0.173 3.778 0.425 1.575

22 0.167 3.819 0.434 1.566

23 0.162 3.858 0.443 1.557

24 0.157 3.895 0.451 1.548

25 0.153 3.931 0.459 1.541

x

T A B L E 1 5 . 2 Control Chart Constants for and R Chartsx

and R Chart Center Lines and Control Limitsx

and A2, D4, and D3 are control chart constants that
depend on the subgroup size (see Table 15.2). When
D3 is not listed, the R chart does not have a lower
control limit.4

where the mean of all subgroup means
the mean of all subgroup rangesR �

x �

LCLx � x � A2R         LCLR � D3R

UCLx � x � A2R        UCLR � D4R

Center linex � x         Center lineR � R

EXAMPLE 15.2 The Hole Location Case: Trial Control Limits

Consider the hole location data for air conditioner compressor shells that is given in Figure 15.1

(page 15-10). In order to calculate and R chart control limits for this data, we compute

 �
3.05 � 3.00 � � � � � 3.014

20
� 3.0062

 x � the average of the 20 subgroup means

x

C

4When D3 is not listed, the theoretical lower control limit for the R chart is negative. In this case, some practitioners prefer to
say that the LCLR equals 0. Others prefer to say that the LCLR does not exist because a range R equal to 0 does not indicate that
an assignable cause exists and because it is impossible to observe a negative range below LCLR. We prefer the second
alternative. In practice, it makes no difference.

bow20530_ch15_001-052.qxd  11/14/13  2:00 PM  Page 16 CONFIRMING PAGES



15.4 x– and R Charts 15-16

Looking at Table 15.2, we see that when the subgroup size is n � 5, the control chart constants

needed for and R charts are A2 � .577 and D4 � 2.114. It follows that center lines and control

limits are

Because D3 is not listed in Table 15.2 for a subgroup size of n � 5, the R chart does not have a

lower control limit. Figure 15.4 presents the MINITAB output of the and R charts for the hole

location data. Note that the center lines and control limits that we have just calculated are shown

on the and R charts.

Control limits such as those computed in Example 15.2 are called trial control limits. Theo-

retically, control limits are supposed to be computed using subgroups collected while the process

is in statistical control. However, it is impossible to know whether the process is in control until

we have constructed the control charts. If, after we have set up the and R charts, we find that the

process is in control, we can use the charts to monitor the process.

If the charts show that the process is not in statistical control (for example, there are plot

points outside the control limits), we must find and eliminate the assignable causes before we

can calculate control limits for monitoring the process. In order to understand how to find and

eliminate assignable causes, we must understand how changes in the process mean and the

process variation show up on and R charts. To do this, consider Figures 15.5 and 15.6 on the

next page. These figures illustrate that, whereas a change in the process mean shows up only

on the chart, a change in the process variation shows up on both the and R charts. Specif-

ically, Figure 15.5 shows that, when the process mean increases, the sample means plotted on

the chart increase and go out of control. Figure 15.6 shows that, when the process variationx

xx

x

x

x

x

 UCLR � D4 R � 2.114(.085) � 0.1797

 Center  lineR � R � .085

 LCLx � x � A2R � 3.0062 � .577(0.085) � 2.9572

 UCLx � x � A2R � 3.0062 � .577(0.085) � 3.0552

 Center linex � x � 3.0062

x

 �
.07 � .06 � � � � � .05

20
� 0.085

 R � the average of the 20 subgroup ranges

Subgroup

S
ub

gr
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p 
M
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0.24

0.18
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0.06

0.00

_
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1
1

Xbar-R Charts for Hole Locations

F I G U R E 1 5 . 4 MINITAB Output of and R Charts for the Hole Location Datax
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Distributions
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F I G U R E 1 5 . 5 A Shift of the Process Mean F I G U R E 1 5 . 6 An Increase in the Process Variation

(standard deviation, s) increases,

1 The sample ranges plotted on the R chart increase and go out of control.

2 The sample means plotted on the chart become more variable (because, when s increases,

increases) and go out of control.

Because changes in the process mean and in the process variation show up on the chart, we do

not begin by analyzing the chart. This is because, if there were out-of-control sample means on

the chart, we would not know whether the process mean or the process variation had changed.

Therefore, it might be more difficult to identify the assignable causes of the out-of-control sam-

ple means because the assignable causes that would cause the process mean to shift could be

very different from the assignable causes that would cause the process variation to increase. For

instance, unwarranted frequent resetting of a machine might cause the process level to shift up

and down, while improper lubrication of the machine might increase the process variation.

In order to simplify and better organize our analysis procedure, we begin by analyzing the R
chart, which reflects only changes in the process variation. Then we analyze the chart.x

x
x

x

sx � s�1n
x

EXAMPLE 15.3 The Hole Location Case: Establishing Statistical Control

Consider the and R charts for the hole location data that are given in Figure 15.4 on page 15-16.

To develop control limits that can be used for ongoing control, we first examine the R chart. We

find two points above the UCL on the R chart. This indicates that excess within-subgroup vari-

ability exists at these points. We see that the out-of-control points correspond to subgroups 7 and

15. Investigation reveals that, when these subgroups were selected, an inexperienced, newly

hired operator ran the operation while the regular operator was on break. We find that the inex-

perienced operator is not fully closing the clamps that fasten down the compressor shells during

the hole punching operation. This is causing excess variability in the hole locations. This assign-

able cause can be eliminated by thoroughly retraining the newly hired operator.

Because we have identified and corrected the assignable cause associated with the points that

are out of control on the R chart, we can drop subgroups 7 and 17 from the data set. We recalcu-

late center lines and control limits by using the remaining 18 subgroups. We first recompute

(omitting and R values for subgroups 7 and 17):

Notice here that has not changed much (see Figure 15.4), but has been reduced from .085 

to .0683. Using the new and values, revised control limits for the chart are

 LCLx � x � A2R � 3.0063 � .577(.0683) � 2.9669

 UCLx � x � A2R � 3.0063 � .577(.0683) � 3.0457

xRx
Rx

x �
54.114

18
� 3.0063    and    R �

1.23

18
� .0683

x

x

C
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11

Xbar-R Charts for Hole Locations: Subgroups 7 & 17 Deleted

F I G U R E 1 5 . 7 MINITAB Output of and R Charts for the Hole Location Data: Subgroups 
7 and 17 Omitted

x

The revised UCL for the R chart is

Because D3 is not listed for subgroups of size 5, the R chart does not have a LCL. Here the re-

duction in has reduced the UCL on the R chart from .1797 to .1444 and has also narrowed the

control limits for the chart. For instance, the UCL for the chart has been reduced from 3.0552

to 3.0457. The MINITAB output of the and R charts employing these revised center lines and

control limits is shown in Figure 15.7.

We must now check the revised R chart for statistical control. We find that the chart shows

good control: there are no other points outside the control limits or long runs of points on either

side of the center line. Because the R chart is in good control, we can analyze the revised chart.

We see that two plot points are above the UCL on the chart. Notice that these points were not

outside our original trial control limits in Figure 15.4 on page 15-16. However, the elimination of

the assignable cause and the resulting reduction in has narrowed the chart control limits so

that these points are now out of control. Because the R chart is in control, the points on the chart

that are out of control suggest that the process level has shifted when subgroups 1 and 12 were

taken. Investigation reveals that these subgroups were observed immediately after start-up at the

beginning of the day and immediately after start-up following the lunch break. We find that, if we

allow a five-minute machine warm-up period, we can eliminate the process level problem.

Because we have again found and eliminated an assignable cause, we must compute newly re-

vised center lines and control limits. Dropping subgroups 1 and 12 from the data set, we recompute

Using the newest and values, we compute newly revised control limits as follows:

Again, the R chart does not have a LCL. We obtain the newly revised and R charts that are

shown in the MINITAB output of Figure 15.8 on the next page. We see that all the points on each

chart are inside their respective control limits. This says that the actions taken to remove as-

signable causes have brought the process into statistical control. However, it is important to point

out that, although the process is in statistical control, this does not necessarily mean that the

x

 UCLR � D4 R � 2.114(.0675) � .1427

 LCLx � x � A2 R � 3.0006 � .577(.0675) � 2.9617

 UCLx � x � A2 R � 3.0006 � .577(.0675) � 3.0396

Rx

x �
48.01

16
� 3.0006    and    R �

1.08

16
� .0675

x
xR

x
x

x
xx

R

UCLR � D4 R � 2.114(.0683) � .1444
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Xbar-R Charts for Hole Locations: Subgroups 1, 7, 12 & 17 Deleted

F I G U R E 1 5 . 8 MINITAB Output of and R Charts for the Hole Location Data: Subgroups 1,
7, 12, and 17 Omitted. The Charts Show Good Control.

x

process is capable of producing products that meet the customer’s needs. That is, while the

control charts tell us that no assignable causes of process variation remain, the charts do not

(directly) tell us anything about how much common cause variation exists. If there is too much

common cause variability, the process will not meet customer or manufacturer specifications. We

will discuss this further in Section 15.5.

When both the and R charts are in statistical control, we can use the control limits for
ongoing process monitoring. New and R values for subsequent subgroups are plotted with

respect to these limits. We summarize analyzing and R charts as follows:x
x

x

Analyzing and R Charts to Establish Process Controlx

1 Remember that it is important to use both the 
chart and the R chart to study the process.

2 Begin by analyzing the R chart for statistical
control.

a Find and eliminate assignable causes that are
indicated by the R chart.

b Revise both the and R chart control limits,
dropping data for subgroups corresponding
to assignable causes that have been found
and eliminated in 2a.

c Check the revised R chart for control.
d Repeat 2a, b, and c as necessary until the R

chart shows statistical control.

3 When the R chart is in statistical control, the 
chart can be properly analyzed.

a Find and eliminate assignable causes that are
indicated by the chart.

b Revise both the and R chart control limits,
dropping data for subgroups corresponding

to assignable causes that have been found and
eliminated in 3a.

c Check the revised chart (and the revised R
chart) for control.

d Repeat 3a, b, and c (or, if necessary, 2a, b, and
c and 3a, b, and c) as needed until both the 
and R charts show statistical control.

4 When both the and R charts are in control, use
the control limits for process monitoring.

a Plot and R points for newly observed sub-
groups with respect to the established limits.

b If either the chart or the R chart indicates a
lack of control, take corrective action on the
process.

5 Periodically update the and R chart control
limits using all relevant data (data that describe
the process as it now operates).

6 When a major process change is made, develop
new control limits if necessary.

x

x

x

x

x

x

x
x

x

x

x
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15.4 x– and R Charts 15-20

With respect to periodically updating the and R chart control limits in ongoing process mon-

itoring, note that employees often seem to be uncomfortable working with control limits that are

frequently changing. Therefore, it is probably a good idea to update the control limits only when

the new data would substantially change the limits. Of course, if an important process change is

implemented, new data must be collected, and we may need to develop new control limits from

scratch.

x

EXAMPLE 15.4 The Hole Location Case: Process Monitoring

We consider the hole location problem and the revised and R charts shown in Figure 15.8. Be-

cause the process has been brought into statistical control, we may use the control limits in Fig-

ure 15.8 to monitor the process. This would assume that we have used an appropriate subgrouping

scheme and have observed enough subgroups to give potential assignable causes a chance to

show up. In reality, we probably want to collect considerably more than 20 subgroups before set-

ting control limits for ongoing control of the process.

We assume for this example that the control limits in Figure 15.8 are reasonable. Table 15.3

gives four subsequently observed subgroups of five hole location dimensions. The subgroup

means and ranges for these data are plotted with respect to the ongoing control limits in the

MINITAB output of Figure 15.9. We see that the R chart remains in control, while the mean for

subgroup 24 is above the UCL on the chart. This tells us that an assignable cause has increased

the process mean. Therefore, action is needed to reduce the process mean.

x

x

C

Subgroup

S
ub

gr
ou

p 
M

ea
n

24222018161412108642

3.05

3.00

2.95

__
X=3.0006

UCL=3.0396

LCL=2.9617

SubgroupS
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gr
ou

p 
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ge

24222018161412108642

0.15

0.10

0.05

0.00

_
R=0.0675

UCL=0.1427

LCL=0

1
Xbar-R Charts for Hole Locations: Ongoing Control

F I G U R E 1 5 . 9 MINITAB Output of and R Charts for the Hole Location Data:
Ongoing Control

x

Measurement (Inches) Mean, Range,
Subgroup 1 2 3 4 5 R
21 2.98 3.00 2.97 2.99 2.98 2.984 .03

22 3.02 3.06 3.01 2.97 3.03 3.018 .09

23 3.03 3.08 3.01 2.99 3.02 3.026 .09

24 3.05 3.00 3.11 3.07 3.06 3.058 .11

x

T A B L E 1 5 . 3 Four Subgroups of Five Hole Location Dimensions Observed after 
Developing Control Limits for Ongoing Process Monitoring
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15-21 Chapter 15 Process Improvement Using Control Charts

Having seen how to interpret and R charts, we are now better prepared to understand why we

estimate the process standard deviation s by . Recall that when m and s are known, the 

chart control limits are . The standard deviation s in these limits is the process

standard deviation when the process is in control. When this standard deviation is unknown, we
estimate S as if the process is in control, even though the process might not be in control.
The quantity is an appropriate estimate of s because is the average of individual ranges
computed from rational subgroups—subgroups selected so that the chances that important
process changes occur within a subgroup are minimized. Thus each subgroup range, and

therefore , estimates the process variation as if the process were in control. Of course, we

could also compute the standard deviation of the measurements in each subgroup, and employ

the average of the subgroup standard deviations to estimate s. The key is not whether we use

ranges or standard deviations to measure the variation within the subgroups. Rather, the key is

that we must calculate a measure of variation for each subgroup and then must average the sepa-

rate measures of subgroup variation in order to estimate the process variation as if the process is

in control.

Pattern analysis When we observe a plot point outside the control limits on a control chart,

we have strong evidence that an assignable cause exists. In addition, several other data patterns in-

dicate the presence of assignable causes. Precise description of these patterns is often made easier

by dividing the control band into zones—designated A, B, and C. Zone boundaries are set at

points that are one and two standard deviations (of the plotted statistic) on either side of the center

line. We obtain six zones—each zone being one standard deviation wide—with three zones on

each side of the center line. The zones that stretch one standard deviation above and below the cen-

ter line are designated as C zones. The zones that extend from one to two standard deviations away

from the center line are designated as B zones. The zones that extend from two to three standard

deviations away from the center line are designated as A zones. Figure 15.10 illustrates a control

chart with the six zones and shows how the zone boundaries for an chart and an R chart are cal-

culated. This figure also shows the values of the zone boundaries for the hole location and R
charts shown in Figure 15.8 (page 15-19). In calculating these boundaries, we use � 3.0006 and

� .0675, which we computed from subgroups 1 through 20 with subgroups 1, 7, 12, and 17 re-

moved from the data set; that is, we are using and when the process is in control. For example,

the upper A–B boundary for the chart has been calculated as follows:

Finally, Figure 15.10 shows (based on a normal distribution of plot points) the percentages of

points that we would expect to observe in each zone when the process is in statistical control. For

instance, we would expect to observe 34.13 percent of the plot points in the upper portion of

zone C.

For an chart, if the distribution of process measurements is reasonably normal, then the

distribution of subgroup means will be approximately normal, and the percentages shown in

Figure 15.10 apply. That is, the plotted subgroup means for an “in control” chart should look

as if they have been randomly selected from a normal distribution. Any distribution of plot

points that looks very different from the expected percentages will suggest the existence of an

assignable cause.

Several companies (for example, Western Electric [AT&T] and Ford Motor Company) have

established sets of rules for identifying assignable causes; use of such rules is called pattern
analysis. We summarize some commonly accepted rules on the next page. Note that many of

these rules are illustrated in Figures 15.11, 15.12, and 15.13, which show several common out-

of-control patterns. Also note that it is tempting to use many rules to decide when an assignable

cause exists. However, if we use too many rules, we can end up with an unacceptably high chance

of a false out-of-control signal (that is, an out-of-control signal when there is no assignable

cause present). For most control charts, the use of the rules described on the next page will yield

an overall probability of a false signal in the range of 1 to 2 percent.

x

x

x �
2

3
 (A2R) � 3.0006 �

2

3
 (.577(.0675)) � 3.0266

x
Rx

R
x

x
x

R�d2

RR�d2

[m � 3(s�1n)]

xR�d2

x

Detect the
presence of

assignable causes
through pattern
analysis.

LO15-5
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15.4 x– and R Charts 15-22

Pattern Analysis for and R Chartsx

If one or more of the following conditions exist, it is
reasonable to conclude that one or more assign-

able causes are present:

1 One plot point beyond zone A (that is, beyond
the three standard deviation control limits).

2 Two out of three consecutive plot points in
zone A (or beyond) on one side of the center line
of the control chart. Sometimes a zone boundary
that separates zones A and B is called a two stan-
dard deviation warning limit. Figure 15.11 illus-
trates this pattern. Specifically, note that plot
points 5 and 6 are two consecutive plot points in
zone A and that plot points 19 and 21 are two
out of three consecutive plot points in zone A.

3 Four out of five consecutive plot points in zone B
(or beyond) on one side of the center line of the
control chart. Figure 15.12 illustrates this pattern.
Specifically, note that plot points 2, 3, 4, and 5 are
four consecutive plot points in zone B and that
plot points 12, 13, 15, and 16 are four out of five
consecutive plot points in zone B (or beyond).

4 A run of at least eight plot points. Here we define a
run to be a sequence of plot points of the same
type. For example, we can have a run of points on
one side of (above or below) the center line. Such a
run is illustrated in part (a) of Figure 15.13 on the
next page, which shows a run above the center line.
We might also observe a run of steadily increasing
plot points (a run up) or a run of steadily decreasing
plot points (a run down). These patterns are illus-
trated in parts (b) and (c) of Figure 15.13. Any of the
above types of runs consisting of at least eight
points is an out-of-control signal.

5 A nonrandom pattern of plot points. Such a pat-
tern might be an increasing or decreasing trend,
a fanning-out or funneling-in pattern, a cycle,
an alternating pattern, or any other pattern
that is very inconsistent with the percentages
given in Figure 15.10 (see parts (d) through (h)
of Figure 15.13).

If none of the patterns or conditions in 1 through
5 exists, then the process is in control.

A

A

B

B

C
C

UCL

LCL

x

(.135%)

(2.145%)

(13.59%)

(34.13%)

(34.13%)

(13.59%)

(2.145%)

(.135%)

Zone A 

Zone A

Zone B

Zone B

Zone C

Zone C

Zone Boundaries

Hole Location Case

Upper A–B Boundary:

Upper B–C Boundary:

Center Line:

Lower B–C Boundary:

Lower A–B Boundary:

Lower Control Limit:

Upper Control Limit:

x Chart

x �     (A2R) � 3.02662
3

x �     (A2R) � 2.97462
3

x �     (A2R) � 3.01361
3

x �     (A2R) � 2.98761
3

x � 3.0006

x � A2R � 3.0396

x � A2R � 2.9617

Note: Use the lower B–C and A–B bounderies if they are 0 or positive.

R Chart

R �     (D4R � R) � .11762
3

R �     (D4R � R) � .0174
2
3

R �     (D4R � R) � .09261
3

R �     (D4R � R) � .04241
3

R � .0675

D4R � .1427

D3R � does not
           exist

F I G U R E 1 5 . 1 0 Zone Boundaries

Zone A

Zone A
Zone B

Zone B
Zone C
Zone C

1 10 20
Observation

UCL

CNL

LCL

Zone A

Zone A
Zone B

Zone B
Zone C
Zone C

5 15 25
Observation

UCL

CNL

LCL

Source of Figures 15.11 and 15.12: H. Gitlow,
S. Gitlow, A. Oppenheim, and R. Oppenheim,
Tools and Methods for the Improvement 
of Quality, pp. 191–93, 209–211. Copyright ©
1989. Reprinted by permission of 
McGraw-Hill Companies, Inc.

F I G U R E 1 5 . 1 1
Two Out of Three Points in Zone A

F I G U R E 1 5 . 1 2
Four Out of Five Points in Zone B

bow20530_ch15_001-052.qxd  11/14/13  2:00 PM  Page 23 CONFIRMING PAGES



15-23 Chapter 15 Process Improvement Using Control Charts

(c) A run down

(a) A run on one side of the
center line

(b) A run up

(d) A trend (here, increasing)

(e) Fanning out (f) Funneling in

(g) A cycle (h) An alternating pattern

F I G U R E 1 5 . 1 3 Other Out-of-Control Patterns
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F I G U R E 1 5 . 1 4 Ongoing and R Charts for the Hole
Location Data—Zones A, B, and C
Included

x

As a specific example, Figure 15.14 shows ongoing and R charts for the hole location problem.

Here the chart includes zone boundaries with zones A, B, and C labeled. Notice that the first

out-of-control condition (one plot point beyond zone A) exists. Looking at the last five plot points

on the chart, we see that the third out-of-control condition (four out of five consecutive plot

points in zone B or beyond) also exists.

x

x
x

Exercises for Sections 15.3 and 15.4
CONCEPTS

15.5 Explain (1) the purpose of an chart, (2) the purpose of an R chart, (3) why both charts are

needed.

15.6 Explain why the initial control limits calculated for a set of subgrouped data are called “trial

control limits.”

15.7 Explain why a change in process variability shows up on both the and R charts.

METHODS AND APPLICATIONS

15.8 A pizza restaurant monitors the size (measured by the diameter) of the 10-inch pizzas that it

prepares. Pizza crusts are made from doughs that are prepared and prepackaged in boxes of 15 by a

supplier. Doughs are thawed and pressed in a pressing machine. The toppings are added, and the

pizzas are baked. The wetness of the doughs varies from box to box, and if the dough is too wet or

greasy, it is difficult to press, resulting in a crust that is too small. The first shift of workers begins

work at 4 P.M., and a new shift takes over at 9 P.M. and works until closing. The pressing machine

x

x
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15.4 x– and R Charts 15-24

is readjusted at the beginning of each shift. The restaurant takes five consecutive pizzas prepared at

the beginning of each hour from opening to closing on a particular day. The diameter of each

baked pizza in the subgroups is measured, and the pizza crust diameters obtained are given in

Table 15.4. Use the pizza crust diameter data to do the following: PizzaDiam

a Show that � 10.032 and � .84.

b Find the center lines and control limits for the and R charts for the pizza crust data.

c Set up the and R charts for the pizza crust data.

d Is the R chart for the pizza crust data in statistical control? Explain.

e Is the chart for the pizza crust data in statistical control? If not, use the chart and the

information given with the data to try to identify any assignable causes that might exist.

f Suppose that, based on the chart, the manager of the restaurant decides that the employees do

not know how to properly adjust the dough pressing machine. Because of this, the manager thor-

oughly trains the employees in the use of this equipment. Because an assignable cause

(incorrect adjustment of the pressing machine) has been found and eliminated, we can remove

the subgroups affected by this unusual process variation from the data set. We therefore drop

subgroups 1 and 6 from the data. Use the remaining eight subgroups to show that we obtain re-

vised center lines of � 10.2225 and � .825.

g Use the revised values of and to compute revised and R chart control limits for the pizza

crust diameter data. Set up and R charts using these revised limits. Be sure to omit subgroup

means and ranges for subgroups 1 and 6 when setting up these charts.

h Has removing the assignable cause brought the process into statistical control? Explain.

15.9 THE HOT CHOCOLATE TEMPERATURE CASE5

Since 1994 a number of consumers have filed and won large claims against national fast-food

chains as a result of being scalded by excessively hot beverages such as coffee, tea, and hot choco-

late. Because of such litigation, the food service staff at a university dining hall wishes to study the

temperature of the hot chocolate dispensed by its hot chocolate machine. The dining hall staff

believes that there might be substantial variations in hot chocolate temperatures from meal to meal.

Therefore, it is decided that at least one subgroup of hot chocolate temperatures will be observed

during each meal—breakfast (6:30 A.M. to 10 A.M.), lunch (11 A.M. to 1:30 P.M.), and dinner (5 P.M.

to 7:30 P.M.). In addition, because the hot chocolate machine is heavily used during most meals, the

dining hall staff also believes that hot chocolate temperatures might vary substantially from the

beginning to the end of a single meal. It follows that the staff will obtain rational subgroups by

selecting a subgroup a half hour after the beginning of each meal and by selecting another subgroup

a half hour prior to the end of each meal. Specifically, each subgroup will be selected by pouring

three cups of hot chocolate over a 10-minute time span using periodic sampling (the second cup will

be poured 5 minutes after the first, and the third cup will be poured 5 minutes after the second). The

temperature of the hot chocolate will be measured by a candy thermometer (to the nearest degree

Fahrenheit) immediately after each cup is poured. Table 15.5 on the next page gives the results for

24 subgroups of three hot chocolate temperatures taken at each meal served at the dining hall over a

four-day period. Here a subgroup consists of the three temperatures labeled 1 through 3 in a single

x
xRx

Rx

x

xx

x
x

Rx

DS

Pizza Crust Diameter (Inches) Mean, Range,
Subgroup Time 1 2 3 4 5 R
1 4 P.M. 9.8 9.0 9.0 9.2 9.2 9.24 0.8

2 5 P.M. 9.5 10.3 10.2 10.0 10.0 10.00 0.8

3 6 P.M. 10.5 10.3 9.8 10.0 10.3 10.18 0.7

4 7 P.M. 10.7 9.5 9.8 10.0 10.0 10.00 1.2

5 8 P.M. 10.0 10.5 10.0 10.5 10.5 10.30 0.5

6 9 P.M. 10.0 9.0 9.0 9.2 9.3 9.30 1.0

7 10 P.M. 11.0 10.0 10.3 10.3 10.0 10.32 1.0

8 11 P.M. 10.0 10.2 10.1 10.3 11.0 10.32 1.0

9 12 A.M. 10.0 10.4 10.4 10.5 10.0 10.26 0.5

10 1 A.M. 11.0 10.5 10.1 10.2 10.2 10.40 0.9

New shift at 9 P.M., pressing machine adjusted at the start of each shift (4 P.M. and 9 P.M.).

x

T A B L E 1 5 . 4 10 Samples of Pizza Crust Diameters PizzaDiamDS

5The data for this case were collected for a student’s term project with the cooperation of the Food Service at Miami 
University, Oxford, Ohio.
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15-25 Chapter 15 Process Improvement Using Control Charts

Temperature Subgroup Subgroup
Day Meal Subgroup 1 2 3 Mean, Range, R
Monday Breakfast 1 142º 140º 139º 140.33º 3º

2 141 138 140 139.67 3

Lunch 3 143 146 147 145.33 4

4 146 149 147 147.33 3

Dinner 5 133 142 140 138.33 9

6 138 139 141 139.33 3

Tuesday Breakfast 7 145 143 140 142.67 5

8 139 144 145 142.67 6

Lunch 9 139 141 147 142.33 8

10 150 144 147 147.00 6

Dinner 11 138 135 137 136.67 3

12 145 141 144 143.33 4

Wednesday Breakfast 13 138 145 139 140.67 7

14 145 136 141 140.67 9

Lunch 15 140 139 140 139.67 1

16 142 143 145 143.33 3

Dinner 17 144 142 141 142.33 3

18 137 140 146 141.00 9

Thursday Breakfast 19 125 129 135 129.67 10

20 134 139 136 136.33 5

Lunch 21 145 141 146 144.00 5

22 147 146 148 147.00 2

Dinner 23 140 143 139 140.67 4

24 139 139 143 140.33 4

x

T A B L E 1 5 . 5 24 Subgroups of Three Hot Chocolate Temperatures (Measurements to the Nearest 
Degree Fahrenheit) HotChocDS
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F I G U R E 1 5 . 1 5 Excel add-in (MegaStat) Output of and R Charts for the Hot Chocolate Temperature Datax

row in the table. The and R charts for these data are given in the Excel add-in (MegaStat) output

in Figure 15.15. HotChoc

a Using the fact that � 141.28 and � 4.96, compute the control limits for the and R charts

and verify that they are as shown in Figure 15.15.

b Is the R chart in statistical control? Explain.

c Is the chart in statistical control? If not, use the chart to identify any out-of-control 

points.

xx

xRx

DS
x
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15.4 x– and R Charts 15-26

d Looking at the chart, we see that the subgroup means that are above the UCL were observed

during lunch (note subgroups 4, 10, and 22). Investigation and process documentation reveal

that on these days the hot chocolate machine was not turned off between breakfast and lunch.

Discussion among members of the dining hall staff further reveals that, because there is less

time between breakfast and lunch than there is between lunch and dinner or dinner and break-

fast, the staff often fails to turn off the hot chocolate machine between breakfast and lunch.

Apparently, this is the reason behind the higher hot chocolate temperatures observed during

lunch. Investigation also shows that the dining hall staff failed to turn on the hot chocolate

machine before breakfast on Thursday (see subgroup 19)—in fact, a student had to ask that the

machine be turned on. This caused the subgroup mean for subgroup 19 to be far below the

chart LCL. The dining hall staff concludes that the hot chocolate machine needs to be turned

off after breakfast and then turned back on 15 minutes before lunch (prior experience suggests

that it takes the machine 15 minutes to warm up). The staff also concludes that the machine

should be turned on 15 minutes before each meal. In order to ensure that these actions are

taken, an automatic timer is purchased to turn on the hot chocolate machine at the appropriate

times. This brings the process into statistical control. Figure 15.16 shows and R charts with

revised control limits calculated using the subgroups that remain after the subgroups for the

out-of-control lunches (subgroups 3, 4, 9, 10, 21, and 22) and the out-of-control breakfast

(subgroups 19 and 20) are eliminated from the data set. Are these revised control charts in

statistical control? Explain.

15.10 A company packages a bulk product in bags with a 50-pound label weight. During a typical day’s

operation of the fill process, 22 subgroups of five bag fills are observed. Using the observed data,

and are calculated to be 52.9364 pounds and 1.6818 pounds, respectively. When the 22 ’s

and 22 R’s are plotted with respect to the appropriate control limits, the first 6 subgroups are

found to be out of control. This is traced to a mechanical start-up problem, which is remedied.

Using the remaining 16 subgroups, and are calculated to be 52.5875 pounds and 

1.2937 pounds, respectively.

a Calculate appropriate revised and R chart control limits.

b When the remaining 16 ’s and 16 R’s are plotted with respect to the appropriate revised

control limits, they are found to be within these limits. What does this imply?

15.11 In the book Tools and Methods for the Improvement of Quality, Gitlow, Gitlow, Oppenheim, and

Oppenheim discuss an example of using and R charts to study tuning knob diameters. In their

problem description the authors say this:

A manufacturer of high-end audio components buys metal tuning knobs to be used in the

assembly of its products. The knobs are produced automatically by a subcontractor using a

single machine that is supposed to produce them with a constant diameter. Nevertheless,

because of persistent final assembly problems with the knobs, management has decided to

examine this process output by requesting that the subcontractor keep an and R chart for

knob diameter.

x

x

x
x
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F I G U R E 1 5 . 1 6 Excel Add-in (MegaStat) Output of Revised and R Charts for the Hot
Chocolate Temperature Data. The Process Is Now in Control.

x
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On a particular day the subcontractor selects four knobs every half hour and carefully measures

their diameters. Twenty-five subgroups are obtained, and these subgroups (along with their

subgroup means and ranges) are given in Table 15.6. KnobDiam

a For these data, show that � 841.45 and � 5.16. Then use these values to calculate control

limits and to set up and R charts for the 25 subgroups of tuning knob diameters. Do these 

and R charts indicate the existence of any assignable causes? Explain.

b An investigation is carried out to find out what caused the large range for subgroup 23. The

investigation reveals that a water pipe burst at 7:25 P.M. and that the mishap resulted in water

leaking under the machinery used in the tuning knob production process. The resulting

disruption is the apparent cause for the out-of-control range for subgroup 23. The water pipe

is mended, and because this fix is reasonably permanent, we are justified in removing sub-

group 23 from the data set. Using the remaining 24 subgroups, show that revised center lines

are 841.40 and 4.88.

c Use the revised values of and to set up revised and R charts for the remaining 

24 subgroups of diameters. Be sure to omit the mean and range for subgroup 23.

d Looking at the revised R chart, is this chart now in statistical control? What does your answer

say about whether we can use the chart to decide if the process mean is changing?

e Looking at the revised chart, is this chart in statistical control? What does your answer tell

us about the process mean?

f An investigation is now undertaken to find the cause of the very high values for subgroups

10, 11, 12, and 13. We again quote Gitlow, Gitlow, Oppenheim, and Oppenheim:

The investigation leads to the discovery that . . . a keyway wedge had cracked and

needed to be replaced on the machine. The mechanic who normally makes this repair

was out to lunch, so the machine operator made the repair. This individual had not

been properly trained for the repair; for this reason, the wedge was not properly aligned

in the keyway, and the subsequent points were out of control. Both the operator and

the mechanic agree that the need for this repair was not unusual. To correct this problem

it is decided to train the machine operator and provide the appropriate tools for making

x

x
x

xRx
R �x �

xx
Rx

DS

15-27 Chapter 15 Process Improvement Using Control Charts

Subgroup Diameter Measurement Average, Range,
Time Number 1 2 3 4 R

8:30 A.M. 1 836 846 840 839 840.25 10

9:00 2 842 836 839 837 838.50 6

9:30 3 839 841 839 844 840.75 5

10:00 4 840 836 837 839 838.00 4

10:30 5 838 844 838 842 840.50 6

11:00 6 838 842 837 843 840.00 6

11:30 7 842 839 840 842 840.75 3

12:00 8 840 842 844 836 840.50 8

12:30 P.M. 9 842 841 837 837 839.25 5

1:00 10 846 846 846 845 845.75 1

1:30 11 849 846 848 844 846.75 5

2:00 12 845 844 848 846 845.75 4

2:30 13 847 845 846 846 846.00 2

3:00 14 839 840 841 838 839.50 3

3:30 15 840 839 839 840 839.50 1

4:00 16 842 839 841 837 839.75 5

4:30 17 841 845 839 839 841.00 6

5:00 18 841 841 836 843 840.25 7

5:30 19 845 842 837 840 841.00 8

6:00 20 839 841 842 840 840.50 3

6:30 21 840 840 842 836 839.50 6

7:00 22 844 845 841 843 843.25 4

7:30 23 848 843 844 836 842.75 12

8:00 24 840 844 841 845 842.50 5

8:30 25 843 845 846 842 844.00 4

Source: H. Gitlow, S. Gitlow, A. Oppenheim, and R. Oppenheim, Tools and Methods for the Improvement of Quality, p. 301.
Copyright © 1989. Reprinted by permission of McGraw-Hill Companies, Inc.

x

T A B L E 1 5 . 6 25 Subgroups of Tuning Knob Diameters KnobDiamDS
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15.5 Comparison of a Process with Specifications: Capability Studies 15-28

this repair in the mechanic’s absence. Furthermore, the maintenance and engineering

staffs agree to search for a replacement part for the wedge that will not be so prone to

cracking. 

Because the assignable causes responsible for the very high values for subgroups 10, 11, 12, 

and 13 have been found and eliminated, we remove these subgroups from the data set. Show 

that removing subgroups 10, 11, 12, and 13 (in addition to the previously removed 

subgroup 23) results in the revised center lines � 840.46 and � 5.25. Then use these

revised values to set up revised and R charts for the remaining 20 subgroups.

g Are all of the subgroup means and ranges for these newly revised and R charts inside their

respective control limits? Note: See Exercise 15.14 for more on this situation.

15.12 In an issue of Quality Progress, Gunter presents several control charts. Four of these charts are

reproduced in Figure 15.17. For each chart, find any evidence of a lack of statistical control (that

is, for each chart identify any evidence of the existence of one or more assignable causes). In

each case, if such evidence exists, clearly explain why the plot points indicate that the process is

not in control. 

15.13 In the book Tools and Methods for the Improvement of Quality, Gitlow, Gitlow, Oppenheim, and

Oppenheim present several control charts in a discussion and exercises dealing with pattern analysis.

These control charts, which include appropriate A, B, and C zones, are reproduced in Figure 15.18.

For each chart, identify any evidence of a lack of statistical control (that is, for each chart identify

any evidence suggesting the existence of one or more assignable causes). In each case, if such

evidence exists, clearly explain why the plot points indicate that the process is not in control.

15.14 Consider Exercise 15.11. After removing subgroups 10, 11, 12, 13, and 23 from Table 15.6, we

found that � 840.46 and � 5.25. Using the formula � (2�3) A2 , calculate the upper A�B
boundary for performing pattern analysis. Then, using the fact that the last three values are

843.25, 842.50, and 844.0 (see Table 15.6 on page 15-27, and recall that we removed subgroup 23),

identify a condition that indicates a lack of statistical control.

x
RxRx

x
x

Rx

x

15.5 Comparison of a Process with Specifications:
Capability Studies 

If we have a process in statistical control, we have found and eliminated the assignable causes
of process variation. Therefore, the individual process measurements fluctuate over time with a

constant standard deviation S around a constant mean M. It follows that we can use the indi-

vidual process measurements to estimate m and s. Doing this lets us determine if the process is
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Source: B. Gunter, “Process Capability Studies Part 3: The Tale of the Charts,”
Quality Progress (June 1991), pp. 77–82. Copyright © 1991. American Society for
Quality. Used with permission.
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F I G U R E 1 5 . 1 7 Charts for Exercise 15.12
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209–11. Copyright © 1989. Reprinted by permission of McGraw-Hill
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capable of producing output that meets specifications. Specifications are based on fitness for use

criteria—that is, the specifications are established by design engineers or customers. Even if a

process is in statistical control, it may exhibit too much common cause variation (represented

by s) to meet specifications.

As will be shown in Example 15.5, one way to study the capability of a process that is in statistical

control is to construct a histogram from a set of individual process measurements.The histogram can

then be compared with the product specification limits. In addition, we know that if all possible indi-

vidual process measurements are normally distributed with mean m and standard deviation s, then

99.73 percent of these measurements will be in the interval [m � 3s, m � 3s]. Estimating m

ands by and , we obtain the natural tolerance limits6 for the process.R�d2x

15-29 Chapter 15 Process Improvement Using Control Charts

If the natural tolerance limits are inside the specification limits, then almost all (99.73 percent)

of the individual process measurements are produced within the specification limits. In this case

we say that the process is capable of meeting specifications. Furthermore, if we use and R charts

to monitor the process, then as long as the process remains in statistical control, the process will

continue to meet the specifications. If the natural tolerance limits are wider than the specification

limits, we say that the process is not capable. Here some individual process measurements are

outside the specification limits.

x

Natural Tolerance Limits

The natural tolerance limits for a normally distributed process that is in statistical control are

where d2 is a constant that depends on the subgroup size n. Values of d2 are given in Table 15.2 (page 15-15)
for subgroup sizes n � 2 to n � 25. These limits contain approximately 99.73 percent of the individual process
measurements.

Bx � 3� R
d2

�R � Bx � 3� R
d2

�,  x � 3� R
d2

�R

6There are a number of alternative formulas for the natural tolerance limits. Here we give the version that is the most clearly
related to using and R charts. At the end of this section we present an alternative formula.x

3.093.073.053.033.012.992.972.952.932.91
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F I G U R E 1 5 . 1 9 A Relative Frequency Histogram of the Hole Location Data (Based on the Data with 
Subgroups 1, 7, 12, and 17 Omitted)

Again consider the hole punching process for air conditioner compressor shells. Recall that we

were able to get this process into a state of statistical control with � 3.0006 and � .0675 by

removing several assignable causes of process variation.

Figure 15.19 gives a relative frequency histogram of the 80 individual hole location mea-

surements used to construct the and R charts of Figure 15.8 (page 15-19). This histogramx

Rx

EXAMPLE 15.5 The Hole Location Case: Meeting Customer Requirements C
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15.5 Comparison of a Process with Specifications: Capability Studies 15-30

suggests that the population of all individual hole location dimensions is approximately nor-

mally distributed.

Because the process is in statistical control, is an estimate of the process mean,

and is an estimate of the process standard deviation. Here

is obtained from Table 15.2 (page 15-15) corresponding to the subgroup size 

Furthermore, the natural tolerance limits

tell us that almost all (approximately 99.73 percent) of the individual hole location dimensions

produced by the hole punching process are between 2.9135 inches and 3.0877 inches.

Suppose a major customer requires that the hole location dimension must meet specifications

of 3.00 � .05 inches. That is, the customer requires that every individual hole location dimension

must be between 2.95 inches and 3.05 inches. The natural tolerance limits, [2.9135, 3.0877],

which contain almost all individual hole location dimensions, are wider than the specification

limits [2.95, 3.05]. This says that some of the hole location dimensions are outside the specifica-

tion limits. Therefore, the process is not capable of meeting the specifications. Note that the

histogram in Figure 15.19 also shows that some of the hole location dimensions are outside the

specification limits.

Figure 15.20 illustrates the situation, assuming that the individual hole location dimensions

are normally distributed. The figure shows that the natural tolerance limits are wider than the

� [2.9135, 3.0877]

� [3.0006 � .0871]

 Bx � 3�R

d2
�R � B3.0006 � 3�.0675

2.326�R

n � 5.d2 � 2.326

R�d2 � .0675�2.326 � .0290198

x � 3.0006

2.9135 2.95 x � 3.0006 3.05 3.0877

P (z � �1.74) � .0409

P (z � 1.70) � .0446

Distribution of individual
hole location dimensions
Mean � x � 3.0006

St. dev. �      �          � .0290198R

d2

.0675

 2.326

Lower natural
tolerance limit

Lower specification

Upper natural
tolerance limit

Upper specification

z2.95  �
2.95 � 3.0006

.0675�2.326

�.0506
.0290198

z3.05 � 3.05 � 3.0006
.0675�2.326

� 1.70� �1.74�
.0494

.0290198�

Proportion out of specification is .0409 � .0446 � .0855

F I G U R E 1 5 . 2 0 Calculating the Fraction out of Specification for the Hole Location Data. Specifications 
Are 3.00 � .05.
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BI

specification limits. The shaded areas under the normal curve make up the fraction of product that

is outside the specification limits. Figure 15.20 also shows the calculation of the estimated

fraction of hole location dimensions that are out of specification. We estimate that 8.55 percent

of the dimensions do not meet the specifications.

Because the process is not capable of meeting specifications, it must be improved by remov-

ing common cause variation. This is management’s responsibility. Suppose engineering and

management conclude that the excessive variation in the hole locations can be reduced by re-

designing the machine that punches the holes in the compressor shells. Also suppose that after

a research and development program is carried out to do this, the process is run using the new

machine and 20 new subgroups of n � 5 hole location measurements are obtained. The resulting

and R charts (not given here) indicate that the process is in control with � 3.0002 and �
.0348. Furthermore, a histogram of the 100 hole location dimensions used to construct the and

R charts indicates that all possible hole location measurements are approximately normally

distributed. It follows that we estimate that almost all individual hole location dimensions are

contained within the new natural tolerance limits

As illustrated in Figure 15.21, these tolerance limits are within the specification limits 

Therefore, the new process is now capable of producing almost all hole location dimensions

inside the specifications. The new process is capable because the estimated process standard

deviation has been substantially reduced (from for the old process

to for the redesigned process).

Next, note that (for the improved process) the z value corresponding to the lower specification

limit (2.95) is

This says that the lower specification limit is 3.36 estimated process standard deviations below 

Because the lower natural tolerance limit is 3 estimated process standard deviations below , there

is a leeway of .36 estimated process standard deviations between the lower natural tolerance limit

and the lower specification limit (see Figure 15.21). Also, note that the z value corresponding to

x
x.

z2.95 �
2.95 � 3.0002

.0149613
� �3.36

R�d2 � .0348�2.326 � .0149613

R�d2 � .0675�2.326 � .0290

.05.

3.00 �

� [2.9553, 3.0451]

� [3.0002 � .0449]

 Bx � 3�R

d2
�R � B3.0002 � 3�.0348

2.326�R

x
Rxx

15-31 Chapter 15 Process Improvement Using Control Charts

Distribution of individual hole
location dimensions using the
new process
 
Mean � x � 3.0002

St.  dev. �       �            � .0149613.0348
2.326

.36 Estimated �’s leeway

2.95 2.9553 x

3.0002

.9973

3.0451 3.05 Upper specification

Upper natural tolerance limit

Lower specification

Lower natural tolerance limit

.33 Estimated �’s leeway

R
d2

�

F I G U R E 1 5 . 2 1 A Capable Process: The Natural Tolerance Limits Are within 
the Specification Limits
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15.5 Comparison of a Process with Specifications: Capability Studies 15-32

the upper specification limit (3.05) is

This says that the upper specification limit is 3.33 estimated process standard deviations above 

Because the upper natural tolerance limit is 3 estimated process standard deviations above , there

is a leeway of .33 estimated process standard deviations between the upper natural tolerance limit

and the upper specification limit (see Figure 15.21). Because some leeway exists between the nat-

ural tolerance limits and the specification limits, the distribution of process measurements (that is,

the curve in Figure 15.21) can shift slightly to the right or left (or can become slightly more spread

out) without violating the specifications. Obviously, the more leeway, the better.

To understand why process leeway is important, recall that a process must be in statistical con-

trol before we can assess the capability of the process. In fact:

x
x.

z3.05 �
3.05 � 3.0002

.0149613
� 3.33

In order to demonstrate that a company’s product meets customer requirements, the company must present

1 and R charts that are in statistical control.

2 Natural tolerance limits that are within the specification limits.

x

However, even if a capable process shows good statistical control, the process mean and/or the

process variation will occasionally change (due to new assignable causes or unexpected recurring

problems). If the process mean shifts and/or the process variation increases, a process will need

some leeway between the natural tolerance limits and the specification limits in order to avoid

producing out-of-specification product. We can determine the amount of process leeway (if any

exists) by defining what we call the sigma level capability of the process.

Sigma Level Capability

The sigma level capability of a process is the number of estimated process standard deviations between the
estimated process mean, , and the specification limit that is closest to .xx

For instance, in the previous example the lower specification limit (2.95) is 3.36 estimated

standard deviations below the estimated process mean, , and the upper specification limit

(3.05) is 3.33 estimated process standard deviations above . It follows that the upper specifi-

cation limit is closest to the estimated process mean , and because this specification limit is

3.33 estimated process standard deviations from , we say that the hole punching process has

3.33 sigma capability.

If a process has a sigma level capability of three or more, then there are at least three esti-

mated process standard deviations between and the specification limit that is closest to . It

follows that, if the distribution of process measurements is normally distributed, then the

process is capable of meeting the specifications. For instance, Figure 15.22(a) on the next page

illustrates a process with three sigma capability. This process is just barely capable—that is,

there is no process leeway. Figure 15.22(b) on the next page illustrates a process with six sigma

capability. This process has three standard deviations of leeway. In general, we see that if a

process is capable, the sigma level capability expresses the amount of process leeway. The

higher the sigma level capability, the more process leeway. More specifically, for a capable

process, the sigma level capability minus three gives the number of estimated standard devia-

tions of process leeway. For example, because the hole punching process has 3.33 sigma capa-

bility, this process has 3.33 � 3 � .33 estimated standard deviations of leeway.

The difference between three sigma and six sigma capability is dramatic. To illustrate this,

look at Figure 15.22(a), which shows that a normally distributed process with three sigma

capability produces 99.73 percent good quality (the area under the distribution curve between

xx

x
x

x
x
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the specification limits is .9973). On the other hand, Figure 15.22(b) shows that a normally

distributed process with six sigma capability produces 99.9999998 percent good quality. Said

another way, if the process mean is centered between the specifications, and if we produce

large quantities of product, then a normally distributed process with three sigma capability

will produce an average of 2,700 defective products per million, while a normally distributed

process with six sigma capability will produce an average of only .002 defective products per

million.

In the long run, however, process shifts due to assignable causes are likely to occur. It can be

shown that, if we monitor the process by using an chart that employs a typical subgroup size of

4 to 6, the largest sustained shift of the process mean that might remain undetected by the chart

is a shift of 1.5 process standard deviations. In this worst case, it can be shown that a normally

distributed three sigma capable process will produce an average of 66,800 defective products per

million (clearly unacceptable), while a normally distributed six sigma capable process will pro-

duce an average of only 3.4 defective products per million. Therefore, if a six sigma capable

process is monitored by and R charts, then, when a process shift occurs, we can detect the shift

(by using the control charts), and we can take immediate corrective action before a substantial

number of defective products are produced.

x

x
x

15-33 Chapter 15 Process Improvement Using Control Charts
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(a) Three sigma capability—no process leeway
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x
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x

(b) Six sigma capability—three standard deviations of process leeway

F I G U R E 1 5 . 2 2 Sigma Level Capability and Process Leeway
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15.5 Comparison of a Process with Specifications: Capability Studies 15-34

This is, in fact, how control charts are supposed to be used to prevent the production of

defective product. That is, our strategy is

Prevention Using Control Charts

3 When the control charts give out-of-control
signals, take immediate action on the process to
reestablish control before out-of-specification
product is produced.

1 Reduce common cause variation in order to cre-
ate leeway between the natural tolerance limits
and the specification limits.

2 Use control charts to establish statistical control
and to monitor the process.

A number of U.S. companies have adopted what they call a six sigma philosophy. In fact,

these companies refer to themselves as six sigma companies. It is the goal of these companies to

achieve six sigma capability for all processes in the entire organization. For instance, Motorola,

Inc., the first company to adopt a six sigma philosophy, began a five-year quality improvement

program in 1987. The goal of Motorola’s companywide defect reduction program is to achieve

six sigma capability for all processes—for instance, manufacturing processes, delivery, informa-

tion systems, order completeness, accuracy of transactions records, and so forth. As a result of its

six sigma plan, Motorola claims to have saved more than $1.5 billion. The corporation won the

Malcolm Baldrige National Quality Award in 1988, and Motorola’s six sigma plan has become a

model for firms that are committed to quality improvement. Other companies that have adopted

the six sigma philosophy include IBM, Digital Equipment Corporation, and General Electric.

To conclude this section, we make two comments. First, it has been traditional to measure

process capability by using what is called the Cpk
index. This index is calculated by dividing the

sigma level capability by three. For example, because the hole punching process illustrated in

Figure 15.21 (page 15-31) has a sigma level capability of 3.33, the for this process is 1.11. In

general, if is at least 1, then the sigma level capability of the process is at least 3 and thus the

process is capable. Historically, has been used because its value relative to the number 1

describes the process capability. We prefer using sigma level capability to characterize process

capability because we believe that it is more intuitive.

Second, when a process is in control, then the estimates and s of the process standard

deviation will be very similar. This implies that we can compute the natural tolerance limits

by using the alternative formula For example, because the mean and standard devia-

tion of the 80 observations used to construct the and R charts in Figure 15.8 (page 15-19) are

and .028875, we obtain the natural tolerance limits

These limits are very close to those obtained in Example 15.5 on pages 15-29 and 15-30, [2.9135,

3.0877], which were computed by using the estimate of the process standard de-

viation. Use of the alternative formula [ is particularly appropriate when there are long-run

process variations that are not measured by the subgroup ranges (in which case underestimates

the process standard deviation). Because statistical control in any real application of SPC will not be

perfect, some people believe that this version of the natural tolerance limits is the most appropriate.

R�d2

x � 3s]

R�d2 � .0290198

 � [2.9140, 3.0872]

 [x � 3s] � [3.0006 � 3(.028875)]

s �x � 3.0006

x
[x � 3s].

R�d2

Cpk

Cpk

Cpk

Exercises for Section 15.5
CONCEPTS

15.15 Write a short paragraph explaining why a process that is in statistical control is not necessarily

capable of meeting customer requirements (specifications).

15.16 Explain the interpretation of the natural tolerance limits for a process. What assumptions must be

made in order to properly make this interpretation? How do we check these assumptions?

15.17 Explain how the natural tolerance limits compare to the specification limits when

a A process is capable of meeting specifications.

b A process is not capable of meeting specifications.
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15.18 For each of the following, explain

a Why it is important to have leeway between the natural tolerance limits and the specification

limits.

b What is meant by the sigma level capability for a process.

c Two reasons why it is important to achieve six sigma capability.

METHODS AND APPLICATIONS

15.19 THE HOT CHOCOLATE TEMPERATURE CASE

Consider the hot chocolate temperature situation in Exercise 15.9 (page 15-24). We found that 

and R charts based on subgroups of size 3 for these data are in statistical control with 

and . HotChoc

a Assuming that the hot chocolate temperatures are approximately normally distributed,

calculate a range of values that contains almost all (approximately 99.73 percent) of the hot

chocolate temperatures.

b Find reasonable estimates of the maximum and minimum hot chocolate temperatures that

would be served at the dining hall.

c Suppose the dining hall staff has determined that all of the hot chocolate it serves should

have a temperature between 130°F and 150°F. Is the process capable of meeting these 

specifications? Why or why not?

d Find the sigma level capability of the process.

15.20 Suppose that and R charts based on subgroups of size 3 are used to monitor the moisture

content of a type of paper. The and R charts are found to be in statistical control with � 6.0

percent and � .4 percent. Further, a histogram of the individual moisture content readings

suggests that these measurements are approximately normally distributed.

a Compute the natural tolerance limits (limits that contain almost all the individual moisture

content readings) for this process.

b If moisture content specifications are 6.0 percent �.5 percent, is this process capable of

meeting the specifications? Why or why not?

c Estimate the fraction of paper that is out of specification.

d Find the sigma level capability of the process.

15.21 A grocer has a contract with a produce wholesaler that specifies that the wholesaler will supply

the grocer with grapefruit that weigh at least .75 pounds each. In order to monitor the grapefruit

weights, the grocer randomly selects three grapefruit from each of 25 different crates of

grapefruit received from the wholesaler. Each grapefruit’s weight is determined and, therefore, 

25 subgroups of three grapefruit weights are obtained. When and R charts based on these

subgroups are constructed, we find that these charts are in statistical control with � .8467 and

� .11. Further, a histogram of the individual grapefruit weights indicates that these 

measurements are approximately normally distributed.

a Calculate a range of values that contains almost all (approximately 99.73 percent) of the

individual grapefruit weights.

b Find a reasonable estimate of the maximum weight of a grapefruit that the grocer is likely

to sell.

c Suppose that the grocer’s contract with its produce supplier specifies that grapefruits are to

weigh a minimum of .75 lb. Is this lower specification being met? Explain. Note here that

there is no upper specification because we would like grapefruits to be as large as possible.

d If the lower specification of .75 lb. is not being met, estimate the fraction of grapefruits that

weigh less than .75 lb. Hint: Find an estimate of the standard deviation of the individual

grapefruit weights.

15.22 Consider the pizza crust diameters for 10-inch pizzas given in Exercise 15.8 (pages 15-23 to 

15-24). We found that, by removing an assignable cause, we were able to bring the process into

statistical control with � 10.2225 and � .825. PizzaDiam

a Recalling that the subgroup size for the pizza crust and R charts is 5, and assuming that the

pizza crust diameters are approximately normally distributed, calculate the natural tolerance

limits for the diameters.

b Using the natural tolerance limits, estimate the largest diameter likely to be sold by the

restaurant as a 10-inch pizza.

c Using the natural tolerance limits, estimate the smallest diameter likely to be sold by the

restaurant as a 10-inch pizza.

d Are all 10-inch pizzas sold by this restaurant really at least 10 inches in diameter? If not,

estimate the fraction of pizzas that are not at least 10 inches in diameter.

x

DSRx

R
x

x

R
xx

x

DSR � 4.75

x � 140.73

x

15-35 Chapter 15 Process Improvement Using Control Charts

bow20530_ch15_001-052.qxd  11/14/13  2:00 PM  Page 36 CONFIRMING PAGES



15.6 Charts for Fraction Nonconforming 15-36

15.23 Consider the bag fill situation in Exercise 15.10 (page 15-26). We found that the elimination

of a start-up problem brought the filling process into statistical control with � 52.5875 and

� 1.2937.

a Recalling that the fill weight and R charts are based on subgroups of size 5, and assuming

that the fill weights are approximately normally distributed, calculate the natural tolerance

limits for the process.

b Suppose that management wishes to reduce the mean fill weight in order to save money by

“giving away” less product. However, because customers expect each bag to contain at least

50 pounds of product, management wishes to leave some process leeway. Therefore, after the

mean fill weight is reduced, the lower natural tolerance limit is to be no less than 50.5 lb.

Based on the natural tolerance limits, how much can the mean fill weight be reduced? If the

product costs $2 per pound, and if 1 million bags are sold per year, what is the yearly cost

reduction achieved by lowering the mean fill weight?

15.24 Suppose that a normally distributed process (centered at target) has three sigma capability. If the

process shifts 1.5 sigmas to the right, show that the process will produce defective products at a

rate of 66,800 per million.

15.25 Suppose that a product is assembled using 10 different components, each of which must meet

specifications for five different quality characteristics. Therefore, we have 50 different specifi-

cations that potentially could be violated. Further suppose that each component possesses three

sigma capability (process centered at target) for each quality characteristic. Then, if we assume

normality and independence, find the probability that all 50 specifications will be met.

15.6 Charts for Fraction Nonconforming 
Sometimes, rather than collecting measurement data, we inspect items and simply decide

whether each item conforms to some desired criterion (or set of criteria). For example, a fuel tank

does or does not leak, an order is correctly or incorrectly processed, a batch of chemical product

is acceptable or must be reprocessed, or plastic wrap appears clear or too hazy. When an

inspected unit does not meet the desired criteria, it is said to be nonconforming (or defective).

When an inspected unit meets the desired criteria, it is said to be conforming (or nondefective).

Traditionally, the terms defective and nondefective have been employed. Lately, the terms non-
conforming and conforming have become popular.

The control chart that we set up for this type of data is called a p chart. To construct this chart,

we observe subgroups of n units over time. We inspect or test the n units in each subgroup and

determine the number d of these units that are nonconforming. We then calculate for each subgroup

� d�n � the fraction of nonconforming units in the subgroup

and we plot the values versus time on the p chart. If the process being studied is in statistical con-

trol and producing a fraction p of nonconforming units, and if the units inspected are independent,

then the number of nonconforming units d in a subgroup of n units inspected can be described by a

binomial distribution. If, in addition, n is large enough so that np is greater than 2,7 then both d and

the fraction of nonconforming units are approximately described by normal distributions. Fur-

thermore, the population of all possible values has mean and standard deviation

Therefore, if p is known we can compute three standard deviation control limits for values of 

by setting

However, because it is unlikely that p will be known, we usually must estimate p from process

data. The estimate of p is

UCL � p � 3 A
p(1 � p)

n
    and    LCL � p � 3 A

p(1 � p)

n

p̂

sp̂ � A
p(1 � p)

n

mp̂ � pp̂
p̂

p̂

p̂

x
R

x

7Some statisticians believe that this condition should be np � 5. However, for p charts many think np � 2 is sufficient.

Use p charts
to monitor

process quality.

Total number of nonconforming units in all subgroups
Total number inspected in all subgroups

p �

LO15-7

bow20530_ch15_001-052.qxd  11/14/13  2:00 PM  Page 37 CONFIRMING PAGES



Substituting for p, we obtain the following:p

15-37 Chapter 15 Process Improvement Using Control Charts

Center Line and Control Limits for a p Chart

Note that if the LCL calculates negative, there is no lower control limit for the p chart.

 LCL � p � 3A
p(1 � p)

n
 UCL � p � 3A

p(1 � p)
n

 Center line � p

The control limits calculated using these formulas are considered to be trial control limits.
Plot points above the upper control limit suggest that one or more assignable causes have

increased the process fraction nonconforming. Plot points below the lower control limit may sug-

gest that an improvement in the process performance has been observed. However, plot points

below the lower control limit may also tell us that an inspection problem exists. Perhaps defective

items are still being produced, but for some reason the inspection procedure is not finding them. If

the chart shows a lack of control, assignable causes must be found and eliminated and the trial con-

trol limits must be revised. Here data for subgroups associated with assignable causes that have

been eliminated will be dropped, and data for newly observed subgroups will be added when cal-

culating the revised limits. This procedure is carried out until the process is in statistical control.

When control is achieved, the limits can be used to monitor process performance. The process
capability for a process that is in statistical control is expressed using , the estimated
process fraction nonconforming. When the process is in control and is too high to meet inter-

nal or customer requirements, common causes of process variation must be removed in order to

reduce . This is a management responsibility.p

p
p

EXAMPLE 15.6 The Sales Invoice Case: Improving Customer Service

To improve customer service, a corporation wishes to study the fraction of incorrect sales

invoices that are sent to its customers. Every week a random sample of 100 sales invoices sent

during the week is selected, and the number of sales invoices containing at least one error is

determined. The data for the last 30 weeks are given in Table 15.7. To construct a p chart for these

data, we plot the fraction of incorrect invoices versus time. Because the true overall fraction p of

incorrect invoices is unknown, we estimate p by (see Table 15.7)

Because � 100(.023) � 2.3 is greater than 2, the population of all possible values has an

approximate normal distribution if the process is in statistical control. Therefore, we calculate the

center line and control limits for the p chart as follows:

Because the LCL calculates negative, there is no lower control limit for this p chart. The Excel add-

in (MegaStat) output of the p chart for these data is shown in Figure 15.23. We note that no plot

points are outside the control limits, and we fail to see any nonrandom patterns of points. 

 � �.02197

 LCL � p � 3 A
p(1 � p )

n
� .023 � .04497

 � .06797

 � .023 � .04497

 UCL � p � 3 A
p(1 � p )

n
� .023 � 3 A

.023(1 � .023)

100

Center line � p � .023

p̂np

p �
1 � 5 � 4 � � � � � 0

3,000
�

69

3,000
� .023
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We conclude that the process is in statistical control with a relatively constant process fraction

nonconforming of � .023. That is, the process is stable with an average of approximately

2.3 incorrect invoices per each 100 invoices processed. Because no assignable causes are present,

there is no reason to believe that any of the plot points have been affected by unusual process

variations. That is, it will not be worthwhile to look for unusual circumstances that have changed

the average number of incorrect invoices per 100 invoices processed. If an average of 2.3 incor-

rect invoices per each 100 invoices is not acceptable, then management must act to remove com-

mon causes of process variation. For example, perhaps sales personnel need additional training

or perhaps the invoice itself needs to be redesigned.

In the previous example, subgroups of 100 invoices were randomly selected each week for

30 weeks. In general, subgroups must be taken often enough to detect possible sources of varia-

tion in the process fraction nonconforming. For example, if we believe that shift changes may

significantly influence the process performance, then we must observe at least one subgroup per

shift in order to study the shift-to-shift variation. Subgroups must also be taken long enough to

allow the major sources of process variation to show up. As a general rule, at least 25 subgroups

will be needed to estimate the process performance and to test for process control.

We have said that the size n of each subgroup should be large enough so that np (which is usu-

ally estimated by ) is greater than 2 (some practitioners prefer np to be greater than 5). Because

we often monitor a p that is quite small (.05 or .01 or less), n must often be quite large. Subgroup

sizes of 50 to 200 or more are common. Another suggestion is to choose a subgroup size that is

large enough to give a positive lower control limit (often, when employing a p chart, smaller

np

p

Number of Fraction of
Incorrect Sales Incorrect Sales

Week Invoices (d ) Invoices ( )
1 1 .01

2 5 .05

3 4 .04

4 0 .00

5 3 .03

6 2 .02

7 1 .01

8 3 .03

9 0 .00

10 6 .06

11 4 .04

12 3 .03

13 2 .02

14 0 .00

15 2 .02

p̂ � d�100

Number of Fraction of
Incorrect Sales Incorrect Sales

Week Invoices (d ) Invoices ( )
16 3 .03

17 3 .03

18 2 .02

19 1 .01

20 0 .00

21 4 .04

22 2 .02

23 1 .01

24 2 .02

25 5 .05

26 2 .02

27 3 .03

28 4 .04

29 1 .01

30 0 .00

p̂ � d�100

0.08

0.06

0.04

Sa
m

p
le

 P
ro

p
o

rt
io

n

0.02

0.0000

0.0230

0.0680

0.00
1 3 5 7 9 11 13 15

Sample Number

p Chart for Errors

17 19 21 23 25 27 29

T A B L E 1 5 . 7 Sales Invoice Data—100 Invoices Sampled Weekly InvoiceDS

F I G U R E 1 5 . 2 3 Excel Add-in (MegaStat) Output of a p Chart for the Sales Invoice Data
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subgroup sizes give a calculated lower control limit that is negative). A positive LCL is desirable

because it allows us to detect opportunities for process improvement. Such an opportunity exists

when we observe a plot point below the LCL. If there is no LCL, it would obviously be impossi-

ble to obtain a plot point below the LCL. It can be shown that

15-39 Chapter 15 Process Improvement Using Control Charts

A condition that guarantees that the subgroup size is large enough to yield a positive lower control limit for
a p chart is

where p0 is an initial estimate of the fraction nonconforming produced by the process. This condition is
appropriate when three standard deviation control limits are employed.

n �
9(1 � p0)

p0

For instance, suppose experience suggests that a process produces 2 percent nonconforming

items. Then, in order to construct a p chart with a positive lower control limit, the subgroup size

employed must be greater than

As can be seen from this example, for small values of p0, the above condition may require very

large subgroup sizes. For this reason, it is not crucial that the lower control limit be positive.

We have thus far discussed how often—that is, over what specified periods of time (each

hour, shift, day, week, or the like)—we should select subgroups. We have also discussed how

large each subgroup should be. We next consider how we actually choose the items in a sub-

group. One common procedure—which often yields large subgroup sizes—is to include in a

subgroup all (that is, 100 percent) of the units produced in a specified period of time. For

instance, a subgroup might consist of all the units produced during a particular hour. When

employing this kind of scheme, we must carefully consider the independence assumption. The

binomial distribution assumes that successive units are produced independently. It follows that

a p chart would not be appropriate if the likelihood of a unit being nonconforming depends on

whether other units produced in close proximity are nonconforming. Another procedure is to

randomly select the units in a subgroup from all the units produced in a specified period of
time. This was the procedure used in Example 15.6 to obtain the subgroups of sales invoices. As

long as the subgroup size is small relative to the total number of units produced in the specified

period, the units in the randomly selected subgroup should probably be independent. How-

ever, if the rate of production is low, it could be difficult to obtain a large enough subgroup

when using this method. In fact, even if we inspect 100 percent of the process output over a

specified period, and even if the production rate is quite high, it might still be difficult to obtain

a large enough subgroup. This is because (as previously discussed) we must select subgroups

often enough to detect possible assignable causes of variation. If we must select subgroups fairly

often, the production rate may not be high enough to yield the needed subgroup size in the time

in which the subgroup must be selected.

In general, the large subgroup sizes that are required can make it difficult to set up useful

p charts. For this reason, we sometimes (especially when we are monitoring a very small p) relax

the requirement that np be greater than 2. Practice shows that even if np is somewhat smaller than 2,

we can still use the three standard deviation p chart control limits. In such a case, we detect

assignable causes by looking for points outside the control limits and by looking for runs of

points on the same side of the center line. In order for the distribution of all possible values to

be sufficiently normal to use the pattern analysis rules we presented for charts, must be

greater than 2. In this case we carry out pattern analysis for a p chart as we do for an chart (see

page 15-22), and we use the following zone boundaries:

Upper A–B boundary:  Lower B–C boundary:  

Upper B–C boundary:  Lower A–B boundary:  

Here, when the LCL calculates negative, it should not be placed on the control chart. Zone

boundaries, however, can still be placed on the control chart as long as they are not negative.

p � 2 A
p(1 � p )

n
p � A

p(1 � p )

n

p � A
p(1 � p )

n
p � 2 A

p(1 � p )

n

x
npx
p̂

9(1 � p0)

p0

�
9(1 � .02)

.02
� 441
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Exercises for Section 15.6
CONCEPTS

15.26 In your own words, define a nonconforming unit.

15.27 Describe two situations in your personal life in which you might wish to plot a control chart for

fraction nonconforming.

15.28 Explain why it can sometimes be difficult to obtain rational subgroups when using a control chart

for fraction nonconforming.

METHODS AND APPLICATIONS

15.29 Suppose that � .1 and n � 100. Calculate the upper and lower control limits, UCL and LCL, of

the corresponding p chart.

15.30 Suppose that � .04 and n � 400. Calculate the upper and lower control limits, UCL and LCL,

of the corresponding p chart.

15.31 In an issue of Quality Progress, William J. McCabe discusses using a p chart to study a company’s

order entry system. The company was experiencing problems meeting the promised 60-day

delivery schedule. An investigation found that the order entry system frequently lacked all the

information needed to correctly process orders. Figure 15.24 gives a p chart analysis of the

percentage of orders having missing information.

a From Figure 15.24 we see that � .527. If the subgroup size for this p chart is n � 250,

calculate the upper and lower control limits, UCL and LCL.

b Is the p chart of Figure 15.24 in statistical control? That is, are there any assignable causes

affecting the fraction of orders having missing information?

c On the basis of the p chart in Figure 15.24, McCabe says,

The process was stable and one could conclude that the cause of the problem was built

into the system. The major cause of missing information was salespeople not paying

attention to detail, combined with management not paying attention to this problem.

Having sold the product, entering the order into the system was generally left to clerical

people while the salespeople continued selling.

Can you suggest possible improvements to the order entry system?

15.32 In the book Tools and Methods for the Improvement of Quality, Gitlow, Gitlow, Oppenheim, and

Oppenheim discuss a data entry operation that makes a large number of entries every day. Over a

24-day period, daily samples of 200 data entries are inspected. Table 15.8 gives the number of

erroneous entries per 200 that were inspected each day. DataErr

a Use the data in Table 15.8 to compute . Then use this value of to calculate the control

limits for a p chart of the data entry operation, and set up the p chart. Include zone boundaries

on the chart.

pp

DS

p

p

p

Week number

p  Chart

2624222018161412108
LCL

p � .527

UCL

Number of Number of
Day Erroneous Entries Day Erroneous Entries
1 6 13 2

2 6 14 4

3 6 15 7

4 5 16 1

5 0 17 3

6 0 18 1

7 6 19 4

8 14 20 0

9 4 21 4

10 0 22 15

11 1 23 4

12 8 24 1

Source: H. Gitlow, S. Gitlow, A. Oppenheim, and R. Oppenheim, Tools and
Methods for the Improvement of Quality, pp. 168–172. Copyright © 1989.
Reprinted by permission of McGraw-Hill Companies, Inc.

Source: W. J. McCabe, “Examining Processes Improves Operations,” Quality
Progress (July 1989), pp. 26–32. Copyright © 1989 American Society for
Quality. Used with permission.

T A B L E 1 5 . 8 The Number of Erroneous Entries for 
24 Daily Samples of 200 Data Entries

DataErrDS

F I G U R E 1 5 . 2 4 A p Chart for the Fraction of Orders
with Missing Information
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b Is the data entry process in statistical control, or are assignable causes affecting the process?

Explain.

c Investigation of the data entry process is described by Gitlow, Gitlow, Oppenheim, and

Oppenheim as follows:

In our example, to bring the process under control, management investigated the observa-

tions which were out of control (days 8 and 22) in an effort to discover and remove the

special causes of variation in the process. In this case, management found that on day 8 a

new operator had been added to the workforce without any training. The logical conclusion

was that the new environment probably caused the unusually high number of errors. To

ensure that this special cause would not recur, the company added a one-day training

program in which data entry operators would be acclimated to the work environment.

A team of managers and workers conducted an investigation of the circumstances

occurring on day 22. Their work revealed that on the previous night one of the data entry

consoles malfunctioned and was replaced with a standby unit. The standby unit was

older and slightly different from the ones currently used in the department. The repairs

on the regular console were not expected to be completed until the morning of day 23. To

correct this special source of variation, the team recommended purchasing a spare

console that would match the existing equipment and disposing of the outdated model

presently being used as the backup. Management then implemented the suggestion.

Because the assignable causes on days 8 and 22 have been found and eliminated, we can

remove the data for these days from the data set. Remove the data and calculate the new 

value of . Then set up a revised p chart for the remaining 22 subgroups.

d Did the actions taken bring the process into statistical control? Explain.

15.33 In an issue of Quality Progress, William J. McCabe discusses using a p chart to study the

percentage of errors made by 21 buyers processing purchase requisitions. The p chart presented

by McCabe is shown in Figure 15.25. In his explanation of this chart, McCabe says,

The causes of the errors . . . could include out-of-date procedures, unreliable office equip-

ment, or the perceived level of management concern with errors. These causes are all

associated with the system and are all under management control.

Focusing on the 21 buyers, weekly error rates were calculated for a 30-week period (the

data existed, but weren’t being used). A p-chart was set up for the weekly department error

rate. It showed a 5.2 percent average rate for the department. In week 31, the manager called

the buyers together and made two statements: “I care about errors because they affect our

costs and delivery schedules,” and “I am going to start to count errors by individual buyers

so I can understand the causes.” The p-chart . . . shows an almost immediate drop from 

5.2 percent to 3.1 percent.

The explanation is that the common cause system (supervision, in this case) had

changed; the improvement resulted from eliminating buyer sloppiness in the execution of

orders. The p-chart indicates that buyer errors are now stable at 3.1 percent. The error rate

will stay there until the common cause system is changed again.

p
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Week number

p Chart Based on 400 requisitions per week

40302010

LCL

.031

p � .052

0.090
0.080
0.070
0.060
0.050
0.040
0.030
0.020
0.010

UCL

Source: W. J. McCabe, “Examining Processes Improves Operations,” Quality Progress (July 1989), pp. 26–32. Copyright © 1989
American Society for Quality. Used with permission.

F I G U R E 1 5 . 2 5 p Chart for the Weekly Department Error Rate for 21 Buyers Processing Purchase Requisitions
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15.7 Cause-and-Effect and Defect Concentration Diagrams (Optional) 15-42

a The p chart in Figure 15.25 shows that for weeks 1 through 30. Noting that the

subgroup size for this chart is calculate the control limits UCL and LCL for the

p chart during weeks 1 through 30.

b The p chart in Figure 15.25 shows that after week 30 the value of is reduced to .031.

Assuming that the process has been permanently changed after week 30, calculate new

control limits based on � .031. If we use these new control limits after week 30, is the

improved process in statistical control? Explain.

15.34 The customer service manager of a discount store monitors customer complaints. Each day a

random sample of 100 customer transactions is selected. These transactions are monitored, and

the number of complaints received concerning these transactions during the next 30 days is

recorded. The numbers of complaints received for 20 consecutive daily samples of 100

transactions are, respectively, 2, 5, 10, 1, 5, 6, 9, 4, 1, 7, 1, 5, 7, 4, 5, 4, 6, 3, 10, and 5.

Complaints

a Use the data to compute . Then use this value of to calculate the control limits for a p chart

of the complaints data. Set up the p chart.

b Are the customer complaints for this 20-day period in statistical control? That is, have any

unusual problems caused an excessive number of complaints during this period? Explain why

or why not.

c Suppose the discount store receives 13 complaints in the next 30 days for the 100 transactions

that have been randomly selected on day 21. Should the situation be investigated? Explain

why or why not.

15.7 Cause-and-Effect and Defect Concentration 
Diagrams (Optional) 

We saw in Chapter 2 that Pareto charts are often used to identify quality problems that require

attention. When an opportunity for improvement has been identified, it is necessary to exam-

ine potential causes of the problem or defect (the undesirable effect). Because many processes

are complex, there are often a very large number of possible causes, and it may be difficult to

focus on the important ones. In this section we discuss two diagrams that can be employed to

help uncover potential causes of process variation that are resulting in the undesirable effect.

The cause-and-effect diagram was initially developed by Japanese quality expert Professor
Kaoru Ishikawa. In fact, these diagrams are often called Ishikawa diagrams; they are also

called fishbone charts for reasons that will become obvious when we look at an example. Cause-

and-effect diagrams are usually constructed by a quality team. For example, the team might

consist of product designers and engineers, production workers, inspectors, supervisors and fore-

men, quality engineers, managers, sales representatives, and maintenance personnel. The team

will set up the cause-and-effect diagram during a brainstorming session. After the problem

(effect) is clearly stated, the team attempts to identify as many potential causes (sources of

process variation) as possible. None of the potential causes suggested by team members should

be criticized or rejected. The goal is to identify as many potential causes as possible. No attempt

is made to actually develop solutions to the problem at this point. After beginning to brainstorm

potential causes, it may be useful to observe the process in operation for a period of time before

finishing the diagram. It is helpful to focus on finding sources of process variation rather than

discussing reasons why these causes cannot be eliminated.

The causes identified by the team are organized into a cause-and-effect diagram as follows:

1 After clearly stating the problem, write it in an effect box at the far right of the diagram.

Draw a horizontal (center) line connected to the effect box.

2 Identify major potential cause categories. Write them in boxes that are connected to the 

center line. Various approaches can be employed in setting up these categories. For 

example, Figure 15.26 on the next page is a cause-and-effect diagram for “why tables are

not cleared quickly” in a restaurant. This diagram employs the categories:

Policy Procedures People Physical Environment

3 Identify subcauses and classify these according to the major potential cause categories iden-

tified in step 2. Identify new major categories if necessary. Place subcauses on the diagram

as branches. See Figure 15.26.

pp

DS

p

p

n � 400,

p � .052

Use dia-
grams to

discern the causes
of quality problems
(Optional).

LO15-8
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15-43 Chapter 15 Process Improvement Using Control Charts

4 Try to decide which causes are most likely causing the problem or defect. Circle the most

likely causes. See Figure 15.26.

After the cause-and-effect diagram has been constructed, the most likely causes of the prob-

lem or defect need to be studied. It is usually necessary to collect and analyze data in order to find

out if there is a relationship between likely causes and the effect. We have studied various statis-

tical methods (for instance, control charts, scatter plots, ANOVA, and regression) that help in this

determination.

A defect concentration diagram is a picture of the product. It depicts all views—for exam-

ple, front, back, sides, bottom, top, and so on. The various kinds of defects are then illustrated on

the diagram. Often, by examining the locations of the defects, we can discern information con-

cerning the causes of the defects. For example, in the October 1990 issue of Quality Progress,
The Juran Institute presents a defect concentration diagram that plots the locations of chips in the

enamel finish of a kitchen range. This diagram is shown in Figure 15.27. If the manufacturer of

this range plans to use protective packaging to prevent chipping, it appears that the protective

packaging should be placed on the corners, edges, and burners of the range.

Can’t start clearing
soon enough

Not allowed to clear until
entire party has left

Takes too long to pay check
Waitress must bring
check to desk

Not enough staff
at busy times

High
turnover

Can’t clear promptly

Customers drink coffee
 endlessly 

Waitresses don’t care
Poor morale

Poor pay

Credit card machine jams

Takes long time to
get to kitchen

Kitchen is far from tables

Empty tables
are not cleared 
quickly

Waitresses not available

Waitresses spend too much time 
sorting dishes in kitchen—less 
time to clear

Bottlenecks in kitchen

No standard training

Physical EnvironmentPeople

Policy Procedures

Source: M. Gaudard, R. Coates, and L. Freeman,“Accelerating Improvement,” Quality Progress (October 1991), pp. 81–88.
Copyright © 1991. American Society for Quality. Used with permission.

F I G U R E 1 5 . 2 6 A Cause-and-Effect Diagram for “Why Tables Are Not Cleared Quickly” in a Restaurant

(Top)

(Back)

Source: “The Tools of Quality Part V: Check Sheets,” from QI Tools: Data Collection Workbook, p. 11. Copyright © 1989. Juran
Institute, Inc. Reprinted with permission from Juran Institute, Inc.

F I G U R E 1 5 . 2 7 Defect Concentration Diagram Showing the Locations of Enamel Chips on Kitchen Ranges
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Exercises for Section 15.7
CONCEPTS

15.35 Explain the purpose behind constructing (a) a cause-and-effect diagram and (b) a defect

concentration diagram.

15.36 Explain how to construct (a) a cause-and-effect diagram and (b) a defect concentration diagram.

METHODS AND APPLICATIONS

15.37 In an issue of Quality Progress, Hoexter and Julien discuss the quality of the services delivered

by law firms. One aspect of such service is the quality of attorney–client communication. Hoexter

and Julien present a cause-and-effect diagram for “poor client–attorney telephone communica-

tions.” This diagram is shown in Figure 15.28.

a Using this diagram, what (in your opinion) are the most important causes of poor client–attorney

telephone communications?

b Try to improve the diagram. That is, try to add causes to the diagram.

15.38 In an issue of Quality Progress, The Juran Institute presents an example that deals with the

production of integrated circuits. The article describes the situation as follows:

The manufacture of integrated circuits begins with silicon slices that, after a sequence of

complex operations, will contain hundreds or thousands of chips on their surfaces. Each

chip must be tested to establish whether it functions properly. During slice testing, some

chips are found to be defective and are rejected. To reduce the number of rejects, it is

necessary to know not only the percentage but also the locations and the types of defects.

There are normally two major types of defects: functional and parametric. A functional re-

ject occurs when a chip does not perform one of its functions. A parametric reject occurs

when the circuit functions properly, but a parameter of the chip, such as speed or power con-

sumption, is not correct.

Figure 15.29 gives a defect concentration diagram showing the locations of rejected chips within

the integrated circuit. Only those chips that had five or more defects during the testing of 1,000

integrated circuits are shaded. Describe where parametric rejects tend to be, and describe where

functional rejects tend to be.

4. Did not greet
    caller courteously

Did not take
message

Did not identify
firm name

3. Transfer call to
    wrong extension

1. Attorney does not
    return client’s call

Too many
interruptions

5. Client dis-
    connected
    for no obvious
    reason

Four or more
rings before call
is answered

2. Insufficient
    space on
    message 
    form

No means to
verify that
attorney got
message

Employee
directory not 
up to date

Poor client
telephone

communications

Operators

Environment Methods

Equipment

Causes Effect

Parametric rejects
Functional rejects

Source: “The Tools of Quality Part V: Check Sheets,” from 
QI Tools: Data Collection Workbook, p. 12. Copyright © 1989
Juran Institute, Inc. Used with permission.

Source: R. Hoexter and M. Julien, “Legal Eagles Become Quality Hawks,” Quality
Progress (January 1994), pp. 31–33. Copyright © 1994 American Society for Quality.
Used with permission.

F I G U R E 1 5 . 2 8 A Cause-and-Effect Diagram for “Poor
Client–Attorney Telephone Communications”

F I G U R E 1 5 . 2 9 Defect Concentration 
Diagram Showing the
Locations of Rejected Chips 
on Integrated Circuits
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15.39 In an issue of Quality Progress, Franklin P. Schargel presents a cause-and-effect diagram for the

“lack of quality in schools.” We present this diagram in Figure 15.30.

a Identify and circle the causes that you feel contribute the most to the “lack of quality in schools.”

b Try to improve the diagram. That is, see if you can add causes to the diagram.

15-45 Chapter 15 Process Improvement Using Control Charts

Staff

Underpaid

Student

Parent

Society

Lack of
quality in
schools

Dual jobs

Neglect
Abuse

Single parent

Lazy

No respect
from media

Lack of education

Substance abuse

Substance abuse

Lack discipline
Automatic promotion

Short-term goals
Stereotype teenagers

Media promote negative school image

Do not emphasize importance
of education

Dysfunctional families
on rise

Do not
provide educational
role models

Lack of
communication
with child

Do not value
education
or schools

Lack of
involvement
with school

Emphasis on
material
goods

Disruptive
students

Do not want
to teach

Lack of involvement
in school

Need training

Not taught how to

Peer pressure

Lack of
self-respect

Sports

Study
Take tests
Listen

Source: F. P. Schargel,“Teaching TQM in an Inner City High School,” Quality Progress (September 1994), pp. 87–90. 
Copyright © 1994 American Society for Quality. Used with permission.

F I G U R E 1 5 . 3 0 A Cause-and-Effect Diagram on the “Lack of Quality in Schools”

Chapter Summary

In this chapter we studied how to improve business processes by

using control charts. We began by considering several meanings

of quality, and we discussed the history of the quality movement in

the United States. We saw that Walter Shewhart introduced statis-

tical quality control while working at Bell Telephone Laboratories

during the 1920s and 30s, and we also saw that W. Edwards

Deming taught the Japanese how to use statistical methods to

improve product quality following World War II. When the quality

of Japanese products surpassed that of American-made goods, and

when, as a result, U.S. manufacturers lost substantial shares of

their markets, Dr. Deming consulted and lectured extensively in

the United States. This sparked an American reemphasis on qual-

ity that continues to this day. We also briefly presented Deming’s
14 Points, a set of management principles that, if followed,

Deming believed would enable a company to improve quality and

productivity, reduce costs, and gain competitive advantage.

We next learned that processes are influenced by common
cause variation (inherent variation) and by assignable cause
variation (unusual variation), and we saw that a control chart sig-

nals when assignable causes exist. Then we discussed how to

sample a process. In particular, we explained that effective con-

trol charting requires rational subgrouping. Such subgroups

minimize the chances that important process variations will occur

within subgroups, and they maximize the chances that such vari-

ations will occur between subgroups.

Next we studied x– and R charts in detail. We saw that charts

are used to monitor and stabilize the process mean (level), and that

R charts are used to monitor and stabilize the process variability. In

particular, we studied how to construct and R charts by using con-
trol chart constants, how to recognize out-of-control conditions

x

x

by employing zone boundaries and pattern analysis, and how to

use and R charts to get a process into statistical control.

While it is important to bring a process into statistical control,

we learned that it is also necessary to meet the customer’s or

manufacturer’s requirements (or specifications). Because statisti-

cal control does not guarantee that the process output meets speci-

fications, we must carry out a capability study after the process has

been brought into control. We studied how this is done by comput-

ing natural tolerance limits, which are limits that contain almost

all the individual process measurements. We saw that, if the natural

tolerance limits are inside the specification limits, then the process

is capable of meeting the specifications. We also saw that we can

measure how capable a process is by using sigma level capability,
and we learned that a number of major businesses now orient their

management philosophy around the concept of six sigma capabil-
ity. In particular, we learned that, if a process is in statistical con-

trol and if the process has six sigma or better capability, then the

defective rate will be very low (3.4 per million or less).

We continued by studying p charts, which are charts for

fraction nonconforming. Such charts are useful when it is not

possible (or when it is very expensive) to measure the quality

characteristic of interest.

We concluded this chapter with an optional section on how to

construct cause-and-effect diagrams and defect concentration
diagrams. These diagrams are used to identify opportunities for

process improvement and to discover sources of process variation.

It should be noted that two useful types of control charts not

discussed in this chapter are individuals charts and c charts.
These charts are discussed in Appendix L in the Online Learning

Center www.mhhe.com/bowerman7e.

x
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Glossary of Terms

acceptance sampling: A statistical sampling technique that

enables us to accept or reject a quantity of goods (the lot) without

inspecting the entire lot. (page 15-3)

assignable causes (of process variation): Unusual sources of

process variation. Also called special causes or specific causes of

process variation. (page 15-7)

capable process: A process that has the ability to produce prod-

ucts or services that meet customer or manufacturer requirements

(specifications). (page 15-29)

cause-and-effect diagram: A diagram that enumerates (lists)

the potential causes of an undesirable effect. (page 15-42)

common causes (of process variation): Sources of process

variation that are inherent to the process design—that is, sources

of usual process variation. (page 15-6)

conforming unit (nondefective): An inspected unit that meets a

set of desired criteria. (page 15-36)

control chart: A graph of process performance that includes a

center line and two control limits—an upper control limit, UCL,

and a lower control limit, LCL. Its purpose is to detect assignable

causes. (page 15-12)

CPk index: A process’s sigma level capability divided by 3.

(page 15-34)

defect concentration diagram: An illustration of a product that

depicts the locations of defects that have been observed. (page 15-43)

ISO 9000: A series of international standards for quality assur-

ance management systems. (page 15-5)

natural tolerance limits: Assuming a process is in statistical

control and assuming process measurements are normally distrib-

uted, limits that contain almost all (approximately 99.73 percent)

of the individual process measurements. (page 15-29)

nonconforming unit (defective): An inspected unit that does

not meet a set of desired criteria. (page 15-36)

pattern analysis: Looking for patterns of plot points on a control

chart in order to find evidence of assignable causes. (page 15-21)

p chart: A control chart on which the proportion nonconforming

(in subgroups of size n) is plotted versus time. (page 15-36)

quality of conformance: How well a process is able to meet the

requirements (specifications) set forth by the process design.

(page 15-2)

quality of design: How well the design of a product or service

meets and exceeds the needs and expectations of the customer.

(page 15-2)

quality of performance: How well a product or service per-

forms in the marketplace. (page 15-2)

rational subgroups: Subgroups of process observations that are

selected so that the chances that process changes will occur

between subgroups is maximized. (page 15-9)

R chart: A control chart on which subgroup ranges are plotted

versus time. It is used to monitor the process variability (or

spread). (pages 15-12 and 15-15)

run: A sequence of plot points on a control chart that are of the

same type—for instance, a sequence of plot points above the cen-

ter line. (page 15-22)

sigma level capability: The number of estimated process stan-

dard deviations between the estimated process mean, , and the

specification limit that is closest to . (page 15-32)

statistical control: A state in which process measurements dis-

play a constant amount of variation around a constant mean (or

level). (page 15-6)

statistical process control (SPC): A systematic method for

analyzing process data in which we monitor and study the pro-

cess variation. The goal is continuous process improvement.

(page 15-6)

subgroup: A set of process observations that are grouped

together for purposes of control charting. (page 15-9)

total quality management (TQM): Applying quality principles

to all company activities. (page 15-4)

variables control charts: Control charts constructed by using

measurement data. (page 15-12)

chart (x-bar chart): A control chart on which subgroup means

are plotted versus time. It is used to monitor the process mean (or

level). (pages 15-12 and 15-15)

x

x
x

Important Formulas

Center line and control limits for an chart: page 15-15

Center line and control limits for an R chart: page 15-15

Zone boundaries for an chart: page 15-22

Zone boundaries for an R chart: page 15-22

Natural tolerance limits for normally distributed process 

measurements: page 15-29

x

x Sigma level capability: page 15-32

index: page 15-34

Center line and control limits for a p chart: page 15-37

Zone boundaries for a p chart: page 15-39

Cpk

Supplementary Exercises

Exercises 15.40 through 15.43 are based on a case study adapted from an example presented in the paper

“Managing with Statistical Models” by James C. Seigel (1982). Seigel’s example concerned a problem

encountered by Ford Motor Company.

THE CAMSHAFT CASE Camshaft

An automobile manufacturer produces the parts for its vehicles in many different locations and transports

them to assembly plants. In order to keep the assembly operations running efficiently, it is vital that all

parts be within specification limits. One important part used in the assembly of V6 engines is the engine

camshaft, and one important quality characteristic of this camshaft is the case hardness depth of its

eccentrics. A camshaft eccentric is a metal disk positioned on the camshaft so that as the camshaft turns,

the eccentric drives a lifter that opens and closes an engine valve. The V6 engine camshaft and its

DS
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eccentrics are illustrated in Figure 15.31. These eccentrics are hardened by a process that passes the

camshaft through an electrical coil that “cooks” or “bakes” the camshaft. Studies indicate that the hard-

ness depth of the eccentric labeled in Figure 15.31 is representative of the hardness depth of all the

eccentrics on the camshaft. Therefore, the hardness depth of this representative eccentric is measured at

a specific location and is regarded to be the hardness depth of the camshaft. The optimal or target

hardness depth for a camshaft is 4.5 mm. In addition, specifications state that, in order for the camshaft

to wear properly, the hardness depth of a camshaft must be between 3.0 mm and 6.0 mm.

The automobile manufacturer was having serious problems with the process used to harden the

camshaft. This problem was resulting in 12 percent rework and 9 percent scrap, or a total of 21 percent

out-of-specification camshafts. The hardening process was automated. However, adjustments could be

made to the electrical coil employed in the process. To begin study of the process, a problem-solving team

selected 30 daily subgroups of n � 5 hardened camshafts and measured the hardness depth of each

camshaft. For each subgroup, the team calculated the mean and range R of the n � 5 hardness depth

readings. The 30 subgroups are given in Table 15.9. The subgroup means and ranges are plotted in

Figure 15.32. These means and ranges seem to exhibit substantial variability, which suggests that the

hardening process was not in statistical control; we will compute control limits shortly.

x
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Screw
Thrust plate

Camshaft gear

Camshaft PlugEccentric

Key

Spacer

Front bearing Intermediate bearings Rear bearing

Date 6�7 8 9 10 11 14 15 16 17 18 21 22 23 24 25
1 3.7 5.5 4.0 4.5 4.7 4.3 5.1 4.3 4.0 3.7 4.4 5.0 7.2 4.9 4.7

2 4.3 4.0 3.8 4.1 4.7 4.5 4.4 4.1 4.5 4.2 4.6 5.9 6.9 5.1 4.0

3 5.5 4.3 3.0 3.5 5.0 3.6 4.0 3.7 4.1 4.9 5.4 6.5 6.0 4.5 3.9

4 4.6 3.5 1.7 4.2 4.3 3.8 3.6 3.9 3.5 5.5 5.5 9.4 5.4 4.0 4.2

5 4.9 3.6 0 3.9 4.4 4.1 3.7 4.0 3.0 5.9 6.3 10.1 5.5 4.2 3.7

Subgroup Mean 4.6 4.2 2.5 4.0 4.6 4.1 4.2 4 3.8 4.8 5.2 7.4 6.2 4.5 4.1

Subgroup Range R 1.8 2.0 4.0 1.0 0.7 0.9 1.5 0.6 1.5 2.2 1.9 5.1 1.8 1.1 1.0

Date 28 29 30 7�1 2 5 6 7 8 9 12 13 14 15 16
1 3.7 3.5 4.7 4.0 5.0 5.8 3.6 4.0 3.5 4.1 6.2 5.5 4.4 4.0 3.9

2 3.9 3.8 5.0 3.7 4.1 6.3 3.9 3.6 5.5 4.8 5.1 5.0 4.0 3.6 3.5

3 3.4 3.6 4.1 3.9 4.2 3.8 4.1 3.5 5.0 3.8 5.4 3.9 3.7 3.7 3.3

4 3.0 4.1 3.9 4.4 5.2 5.2 3.0 5.5 4.0 3.9 3.9 4.2 3.9 3.5 1.7

5 0 4.4 4.3 4.2 5.5 3.9 1.7 3.5 3.5 4.4 4.7 4.4 3.6 3.7 0

Subgroup Mean 2.8 3.9 4.4 4 4.8 5 3.3 4 4.3 4.2 5.1 4.6 3.9 3.7 2.5

Subgroup Range R 3.9 0.9 1.1 0.7 1.4 2.5 2.4 2.0 2.0 1.0 2.3 1.6 0.8 0.5 3.9

x

x
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T A B L E 1 5 . 9 Hardness Depth Data for Camshafts (Coil #1) CamshaftDS

F I G U R E 1 5 . 3 1 A Camshaft and Related Parts
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Supplementary Exercises 15-48

Although control limits had not yet been established, the problem-solving team took several actions to

try to stabilize the process while the 30 subgroups were being collected:

1 At point A, which corresponds to a low average and a high range, the power on the coil was increased

from 8.2 to 9.2.

2 At point B the problem-solving team found a bent coil. The coil was straightened, although at point B
the subgroup mean and range do not suggest that any problem exists.

3 At point C, which corresponds to a high average and a high range, the power on the coil was 

decreased to 8.8.

4 At point D, which corresponds to a low average and a high range, the coil shorted out. The coil was

straightened, and the team designed a gauge that could be used to check the coil spacing to the

camshaft.

5 At point E, which corresponds to a low average, the spacing between the coil and the camshaft was

decreased.

6 At point F, which corresponds to a low average and a high range, the first coil (Coil #1) was replaced.

Its replacement (Coil #2) was a coil of the same type.

15.40 Using the data in Table 15.9: Camshaft

a Calculate and and then find the center lines and control limits for and R charts for the

camshaft hardness depths.

b Set up the and R charts for the camshaft hardness depth data.

c Are the and R charts in statistical control? Explain.

Examining the actions taken at points A through E (in Figure 15.32), the problem-solving team learned

that the power on the coil should be roughly 8.8 and that it is important to monitor the spacing between

the camshaft and the coil. It also learned that it may be important to check for bent coils. The problem-

solving team then (after replacing Coil #1 with Coil #2) attempted to control the hardening process by

using this knowledge. Thirty new daily subgroups of n � 5 hardness depths were collected. The and R
charts for these subgroups are given in Figure 15.33 on the next page.

15.41 Using the values of and in Figure 15.33: Camshaft

a Calculate the control limits for the chart in Figure 15.33.

b Calculate the upper control limit for the R chart in Figure 15.33.

c Are the and R charts for the 30 new subgroups using Coil #2 (which we recall was of the

same type as Coil #1) in statistical control? Explain.

15.42 Consider the and R charts in Figure 15.33. Camshaft

a Calculate the natural tolerance limits for the improved process.

b Recalling that specifications state that the hardness depth of each camshaft must be between

3.0 mm. and 6.0 mm., is the improved process capable of meeting these specifications? Explain.

c Use and to estimate the fraction of hardness depths that are out of specification for the

improved process.
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F I G U R E 1 5 . 3 2 Graphs of Performance ( and R) for Hardness Depth Data (Using Coil #1)x
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Because the hardening process shown in Figure 15.33 was not capable, the problem-solving team

redesigned the coil to reduce the common cause variability of the process. Thirty new daily subgroups

of n � 5 hardness depths were collected using the redesigned coil, and the resulting and R charts are

given in Figure 15.34.

15.43 Using the values of and given in Figure 15.34: Camshaft

a Calculate the control limits for the and R charts in Figure 15.34.

b Is the process (using the redesigned coil) in statistical control? Explain.

c Calculate the natural tolerance limits for the process (using the redesigned coil).

d (1) Is the process (using the redesigned coil) capable of meeting specifications of 3.0 mm. to

6.0 mm.? Explain. (2) Find and interpret the sigma level capability.

15.44 A bank officer wishes to study how many credit cardholders attempt to exceed their established

credit limits. To accomplish this, the officer randomly selects a weekly sample of 100 of the

cardholders who have been issued credit cards by the bank, and the number of cardholders who

have attempted to exceed their credit limit during the week is recorded. The numbers of 

cardholders who exceeded their credit limit in 20 consecutive weekly samples of 100 cardholders

are, respectively, 1, 4, 9, 0, 4, 6, 0, 3, 8, 5, 3, 5, 2, 9, 4, 4, 3, 6, 4, and 0. (1) Construct a control

chart for the data and determine if the data are in statistical control. (2) If 12 cardholders in next

week’s sample of 100 cardholders attempt to exceed their credit limit, should the bank regard this

as unusual variation in the process? CredLimDS
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Appendix 15.1 ■ Control Charts Using MegaStat

X-bar and R charts in Figure 15.15 on page 15-25
(data file: HotChoc.xlsx):

• In cells A1, A2, and A3, enter the column labels
Temp1, Temp2, and Temp3.

• In columns A, B, and C, enter the hot chocolate
temperature data as 24 rows of 3 measurements,
as laid out in the columns headed 1, 2, and 3 in
Table 15.5 on page 15-25. When entered in this
way, each row is a subgroup (sample) of three
temperatures. Calculated means and ranges (as
in Table 15.1 on page 15-10) need not be
entered—only the raw data are needed.

• Select Add-Ins : MegaStat : Quality Control
Process Charts.

• In the “Quality Control Process Charts” dialog
box, click on “Variables (Xbar and R).”

• Use the AutoExpand feature to select the range
A1: C25 into the Input Range window. Here each
row in the selected range is a subgroup (sample)
of measurements.

• Click OK in the “Quality Control Process Charts”
dialog box.

• The requested control charts are placed in an
output file and may be edited using standard
Excel editing features. See Appendix 1.1 
(page 18) for additional information about
editing Excel graphics.

p control chart in Figure 15.23 on page 15-38 (data
file: Invoice.xlsx):

• Enter the 30 weekly error counts from Table 15.7
(page 15-38) into Column A with the label In-
voice in cell A1.

• Select Add-Ins : MegaStat : Quality Control
Process Charts.

• In the “Quality Control Process Charts” dialog
box, select “Proportion nonconforming (p).”

• Use the AutoExpand feature to enter the range
A1: A31 into the Input Range window.

• Enter the subgroup (sample) size (here equal to
100) into the Sample size box.

• Click OK in the “Quality Control Process Charts”
dialog box.

bow20530_ch15_001-052.qxd  11/14/13  2:00 PM  Page 51 CONFIRMING PAGES



Appendix 15.2 ■ Control Charts Using MINITAB

15-51 Chapter 15 Process Improvement Using Control Charts

Combined X-bar and R control charts for the hole
location data in Figure 15.4 on page 15-16 (data file: 
HoleLoc.MTW):

• In the Data window, enter the hole location 
measurements from Figure 15.1 (page 15-10) into
columns C1 through C5 as shown in the screen
with the measurements for each subgroup in a
single row of columns C1 through C5—columns
C1 through C5 have variable names Meas1,
Meas2, Meas3, Meas4, and Meas5, which 
correspond to the five measurements in a single
subgroup.

• Select Stat : Control Charts : Variables 
Charts for Subgroups : Xbar-R.

• In the Xbar-R Chart dialog box, select the 
“Observations for a subgroup are in one row of
columns” option from the pull-down menu.

• Select Meas1–Meas5 into the variables window
below the pull-down menu.

• Click on the “Xbar-R Chart - Options…” button.

• In the “Xbar-R Chart—Options” dialog box, click
on the Estimate tab and select the Rbar option
for “Method for estimating standard deviation.”

• Click OK in the “Xbar-R Chart - Options” dialog
box.

• Click OK in the Xbar-R Chart dialog box.

• The combined X-bar and R charts are displayed in
a graphics window and can be edited using the
usual MINITAB editing features.

To delete subgroups of data from the control chart (as
in Figure 15.7 on page 15-18):

• In the Xbar-R Chart dialog box, click on the Data
Options… button.

• Select the “Specify which rows to exclude” option
under “Include or Exclude.”

• Under “Specify Which Rows To Exclude,” select
the “Row numbers” option.

• In the Row numbers window, enter the subgroups
that are to be deleted—subgroups 7 and 17 in the
case of Figure 15.7.

• Follow the previously given steps to construct the
X-bar and R charts.
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p control chart similar to Figure 15.23 on page 15-38
(data file: Invoice.MTW):

• In the Data window, enter the 30 weekly error
counts from Table 15.7 (page 15-38) into column
C1 with variable name Invoice.

• Select Stat : Control Charts : Attributes 
Charts : p.

• In the P Chart dialog box, enter Invoice into the
Variables window.

• Enter 100 in the “Subgroup sizes” window to 
indicate that each error count is based on a 
sample of 100 invoices.

• Click OK in the P Chart dialog box.

• The p control chart will be displayed in a 
graphics window.
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