Chapter 7 – Principles that Guide Practice
Overview

This chapter describes professional practice as the concepts, principles, methods, and tools used by software engineers and managers to plan and develop software. Software engineers must be concerned both with the technical details of doing things and the things that are needed to build high-quality computer software. Software process provides the project stakeholders with a roadmap to build quality products. Professional practice provides software engineers with the detail needed to travel the road. Software practice encompasses the technical activities needed to produce the work products defined by the software process model chosen for a project.

Software Practice Core Principles

1. Software exists to provide value to its users

2. Keep it simple stupid (KISS)

3. Clear vision is essential to the success of any software project

4. Always specify, design, and implement knowing that someone else will have to understand what you have done to carryout his or her tasks

5. Be open to future changes, don’t code yourself into a corner

6. Planning ahead for reuse reduces the cost and increases the value of both the reusable components and the systems that require them

7. Placing clear complete thought before any action almost always produces better results

Principles that Guide Process

1. Be agile

2. Focus on quality at every step

3. Be ready to adapt

4. Build an effective team

5. Establish mechanisms for communications and control

6. Manage change

7. Assess risk

8. Create work products that provide value for others
Principles that Guide Practice

1. Divide and conquer

2. Understand the use of abstraction

3. Strive for consistency

4. Focus of the transfer of information

5. Build software that exhibits effective modularity

6. Look for patterns

7. When possible, represent the problem and its solution from a number of different perspectives

8. Remember that someone will maintain the software

Principles of Effective Communication

1. Listen

2. Prepare before you communicate

3. Have a facilitator for any communication meeting

4. Face-to-face communication is best

5. Take notes and document decisions

6. Strive for collaboration

7. Stay focused and modularize your discussion

8. Draw a picture if something is unclear

9. Move on once you agree, move on when you can’t agree, move on if something unclear can’t be clarified at the moment

10. Negotiation is not a contest or game

Planning Principles

1. Understand scope of project

2. Involve customer in planning activities

3. Recognize that planning Is iterative

4. Make estimates based on what you know

5. Consider risk as you define the plan

6. Be realistic

7. Adjust the granularity as you define the plan

8. Define how you intend to measure quality

9. Describe how you intend to accommodate change

10. Track the plan frequently and make adjustments as required

Modeling Classes

· Requirements (analysis) models – represent customer requirements by depicting the software in three domains (information, function, behavior)

· Design models – represent characteristics of software that help practitioners to construct s it effectively (architecture, user interface, component-level detail)
Agile Modeling Principles

1. Primary goal of the software team is to build software not create models

2. Don’t create any more models than you have to

3. Strive to produce the simplest model that will describe the problem or software

4. Build models in a way that makes them amenable to change

5. Be able to state the explicit purpose for each model created

6. Adapt models to the system at hand

7. Try to build useful models, forget about trying to build perfect models

8. Don’t be dogmatic about model syntax as long as the model communicates content successfully

9. If your instincts tell you there is something wrong with the model then you probably have a reason to be concerned

10. Get feedback as soon as you can

Requirements Modeling Principles

1. Problem information domain must be represented and understood

2. Functions performed by the software must be defined

3. Software behavior must be represented as a consequence of external events

4. Models depicting the information, function, and behavior must be partitioned in manner that uncovers detail in a hierarchical fashion

5. The analysis task should move from essential information toward implementation detail
Design Modeling Principles

1. Design should be traceable to the requirements model

2. Always consider the architecture of the system to be built

3. Data design is as important as algorithm design

4. Internal and external interfaces must be designed with care

5. User interface design should be tuned to the needs of the end-user and must focus on use of use

6. Component-level design should be functionally independent

7. Components should be loosely coupled to one another and to the external environment

8. Design representations should be easy to understand

9. Design should be developed iteratively and designer should strive to simplify design with each iteration
10. Creation of a design model does not preclude the use of agile approaches

Living Modeling Principles
1. Stakeholder centric models should target specific stakeholders and their tasks

2. Models and code should be closely coupled

3. Establish bidirectional information flow between models and code

4. Create a common system view

5. The information model must be persistent to allow system change tracking

6. Information across all levels of the model must be verified

7. Each model element has assigned stakeholder rights and responsibilities

8. The states of the various model elements should be represented.

Construction Activities

· Coding includes

· Direct creation of programming language source code

· Automatic generation of source code using a design-like representation of component to be built

· Automatic generation of executable code using a “fourth generation programming language
· Testing levels

· Unit testing

· Integration testing

· Validation testing

· Acceptance testing

Coding Principles

· Preparation - before writing any code be sure you:

· Understand problem to solve

· Understand basic design principles

· Pick a programming language that meets the needs of the software to be built and the environment

· Select a programming environment that contains the right tools

· Create a set of unit tests to be applied once your code is completed

· Coding - as you begin writing code be sure you:

· Use structured programming practices

· Consider using pairs programming

· Select data structures that meet the needs of the design

· Understand software architecture and create interfaces consistent with the architecture

· Keep conditional logic as simple as possible

· Create nested loops in a way that allows them to be testable

· Select meaningful variable names consistent with local standards

· Write code that is self-documenting

· Use a visual layout for your code that aids understanding

· Validation - after your complete your first coding pass be sure you:

· Conduct a code walkthrough when appropriate

· Perform unit tests and correct uncovered errors

· Refactor the code

Testing Objectives
· Testing is the process of executing a program with the intent of finding an error

· A good test is one that has a high probability of finding an undiscovered error

· A successful test is one the uncovers and undiscovered error

Testing Principles

1. All tests should be traceable to customer requirements

2. Tests should be planed long before testing begins

3. Pareto Principle applies to testing (80% of errors are found in 20% of code)

4. Testing should begin “in the small” and progress toward testing “in the large”

5. Exhaustive testing is not possible

6. Apply a testing effort to each system module effort commensurate with expected fault density

7. Static testing techniques can yield high returns

8. Track defects uncovered by testing and look for defect patterns

9. Include test cases that demonstrate software is behaving correctly

Deployment Actions

· Delivery

· Support

· Feedback

Deployment Principles

1. Customer software expectations must be managed

2. Complete delivery package should be assembled and tested

3. Support regime must be established before software is delivered

4. Appropriate instructional materials must be supplied to end-users

5. Buggy software should be fixed before it is delivered

Successful Software Engineer Traits

1. Loves to code

2. Gets things done

3. Continuously refactors code

4. Uses design patterns

5. Writes tests

6. Leverages existing code

7. Focuses on usability

8. Writes maintainable code

9. Can code in any language

10. Knows computer science

Important Software Engineering Concepts
1. Interfaces

2. Conventions and templates

3. Layering

4. Algorithmic complexity

5. Hashing

6. Caching

7. Concurrency
8. Cloud computer

9. Security

10. Relational databases

