Chapter 4 – Process Models
Overview

· The roadmap to building high quality software products is software process.

· Software processes are adapted to meet the needs of software engineers and managers as they undertake the development of a software product.

· A software process provides a framework for managing activities that can very easily get out of control.

· Modern software processes must be agile, demanding only those activities, controls, and work products appropriate for team or product.

· Different types of projects require different software processes.

· The software engineer's work products (programs, documentation, data) are produced as consequences of the activities defined by the software process.

· The best indicators of how well a software process has worked are the quality, timeliness, and long-term viability of the resulting software product.

Prescriptive Process Models

· Originally proposed to bring order to the chaos of software development

· They brought to software engineering work and provide reasonable guidance to software teams

· They have not provided a definitive answer to the problems of software development in an ever changing computing environment

Software Process Models

· Waterfall Model (classic life cycle - old fashioned but reasonable approach when requirements are well understood)

· Incremental Models (deliver software in small but usable pieces, each piece builds on pieces already delivered)

· Evolutionary Models

· Prototyping Model (good first step when customer has a legitimate need, but is clueless about the details, developer needs to resist pressure to extend a rough prototype into a production product)
· Spiral Model (couples iterative nature of prototyping with the controlled and systematic aspects of the Waterfall Model)
· Concurrent Development Model (concurrent engineering - allows software teams to represent the iterative and concurrent element of any process model)
Specialized Process Models

· Component-Based Development (spiral model variation in which applications are built from prepackaged software components called classes)

· Formal Methods Model (rigorous mathematical notation used to specify, design, and verify computer-based systems)

· Aspect-Oriented Software Development (aspect-oriented programming - provides a process for defining, specifying, designing, and constructing software aspects like user interfaces, security, and memory management that impact many parts of the system being developed)

Unified Process

· Use-case driven, architecture centric, iterative, and incremental software process

· Attempts to draw on best features of traditional software process models and implements many features of agile software development

· Phases

· Inception phase (customer communication and planning)

· Elaboration phase (communication and modeling)

· Construction phase

· Transition phase (customer delivery and feedback)

· Production phase (software monitoring and support)

Personal Software Process (PSP)

· Emphasizes personal measurement of both work products and the quality of the work products

· Stresses importance of indentifying errors early and to understand the types of errors likely to be made
· Framework activities

· Planning (size and resource estimates based on requirements)

· High-level design (external specifications developed for components and component level design is created)

· High-level design review (formal verification methods used to uncover design errors, metrics maintained for important tasks)

· Development (component level design refined, code is generated, reviewed, compiled, and tested, metric maintained for important tasks and work results)

· Postmortem (effectiveness of processes is determined using measures and metrics collected, results of analysis should provide guidance for modifying the process to improve its effectiveness)

Team Software Process

· Objectives

· Build self-directed teams that plan and track their work, establish goals, and own their processes and plans

· Show managers how to coach and motivate their teams and maintain peak performance

· Accelerate software process improvement by making CCM Level 5 behavior normal and expected

· Provide improvement guidance to high-maturity organizations

· Facilitate university teaching of industrial team skills

· Scripts for Project Activities

· Project launch

· High Level Design

· Implementation

· Integration and system testing

· Postmortem

Process Technology Tools

· Used to adapt process models to be used by software project team

· Allow organizations to build automated models of common process framework, task sets, and umbrella activities

· These automated models can be used to determine workflow and examine alternative process structures

· Tools can be used to allocate, monitor, and even control all software engineering tasks defined as part of the process model

