Chapter 9 – Requirements Modeling: Scenario-Based Methods
The requirements model is the first technical representation of a system. Requirements modeling process uses a combination of text and diagrams to represent software requirements (data, function, and behavior) in an understandable way. Software engineers build requirements models using requirements elicited from customers. Building analysis models helps to make it easier to uncover requirement inconsistencies and omissions. This chapter covers scenario-based requirements modeling. Requirements modeling work products must be reviewed for completeness, correctness, and consistency.

Requirements Models

· Scenario-based (system from the user’s point of view)

· Data (shows how data are transformed inside the system)
· Class-oriented (defines objects, attributes, and relationships)

· Flow-oriented (shows how data are transformed inside the system)

· Behavioral (show the impact of events on the system states)

Requirements Model Objectives

· Describe what the customer requires.

· Establish a basis for the creation of a software design.

· Devise a set of requirements that can be validated once the software is built.

Analysis Model Rules of Thumb

· The model should focus on requirements that are visible within the problem or business domain and be written as a relatively high level of abstraction.

· Each element of the analysis model should add to the understanding of the requirements and provide insight into the information domain, function, and behavior of the system.

· Delay consideration of infrastructure and other non-functional models until design.

· Minimize coupling throughout the system.

· Be certain the analysis model provides value to all stakeholders.

· Keep the model as simple as possible.

Domain Analysis
· Umbrella activity involving the Identification, analysis, and specification of common requirements from a specific application domain, typically for reuse in multiple projects

· Object-oriented domain analysis involves the identification, analysis, and specification of reusable capabilities within a specific application domain in terms of common objects, classes, subassemblies, and frameworks
Requirements Modeling Approaches

· Structured analysis considers data and processes that transform data as separate entities

· Data objects are modeled to define their attributes and relationships

· Process are modeled to show how they transform data as it flows thought the system

· Object-oriented analysis focuses on the definition of classes and the manner in which they collaborate to effect the customer requirements

Scenario-Based Modeling
· Makes use of use cases to capture the ways in which end-users will interact with the system

· UML requirements modeling begins with the creation of scenarios in the from of use cases, activity diagrams, and swim lane diagrams
Developing Use Cases

· Use cases capture the interactions between actors (i.e. entities that consume or produce information)

· Begin by listing the activities performed by a single actor to accomplish a single function

· Continue this process for each actor and each system function

· Use-cases are written first in narrative form and then mapped to a template if more formality is required

· Each primary scenarios should be reviewed and refined to see if alternative interactions are possible

· Can the actor take some other action at this point?

· Is it possible that the actor will encounter an error condition at some point? If so, what?

· Is it possible that the actor will encounter some other behavior at some point? If so, what?
Exceptions

· Describe situations (failures or user choices) that cause the system to exhibit unusual behavior

· Brainstorming should be used to derive a reasonably complete set of exceptions for each use case

· Are there cases where a validation function occurs for the use case?

· Are there cases where a supporting function (actor) fails to respond appropriately?

· Can poor system performance result in unexpected or improper use actions?

· Handling exceptions may require the creation of additional use cases

UML Activity Diagrams

· Supplements use-case by providing graphical representation of the interaction flow within a specific scenario

· Similar to flow chart

· Rounded rectangles used to represent functions

· Diamonds used to represent decision points

· Labeled arrows represent system flow
· Solid horizontal lines indicate parallel activities

UML Swimlane Diagrams

· Variation of activity diagrams used show flow of activities in use case as well as indicating which actor has responsibility for activity rectangle actions

· Responsibilities are represented by parallel line segments that divide the diagram vertically headed by the responsible actor

