Chapter 28 – Formal Modeling and Verification
Overview

This chapter discusses two approaches to software engineering that have very low failure rates. The philosophy behind cleanroom software engineering is to develop code increments that are right the first time and verify their correctness before testing, rather than relying on costly defect removal processes. Formal methods allow software engineers to create specifications using mathematical notation that is more complete, more consistent, and unambiguous. Cleanroom software engineering involves the integrated use of software engineering modeling, program verification, and statistical software quality assurance. Under cleanroom software engineering, the analysis and design models are created using a box structure representation (black-box, state box, and clear box). A box encapsulates some system component at a specific level of abstraction. Correctness verification using formal methods is applied once the box structure design is complete. Use of formal methods reduces the number of specification errors dramatically, which means that the customer will encounter fewer errors when the product is deployed. Once correctness has been verified for each box structure, statistical usage testing commences. This involves defining a set of usage scenarios and determining the probability of use for each scenario. Random data is generated which conform to the usage probabilities. The resulting error records are analyzed, and the reliability of the software is determined for the software component.

Cleanroom Strategy

· Increment planning. The project plan is built around the incremental strategy.

· Requirements gathering. Using Chapter 5 techniques, customer requirements are refined for each increment.

· Box structure specification. Box structures isolate and separate the definition of behavior, data, and procedures at each level of refinement.

· Formal design. Specifications (black-boxes) are iteratively refined to become architectural designs (state-boxes) and component-level designs (clear boxes).

· Correctness verification. Correctness questions are asked and answered and followed by formal mathematical verification when required.

· Code generation, inspection, verification. Box structures are translated into program language; inspections (Chapter 14) are used to ensure conformance of code and boxes, as well as syntactic correctness of code; followed by correctness verification of the code.

· Statistical test planning. A suite of test cases is created to match the probability distribution of the projected product usage pattern.

· Statistical use testing. A statistical sample of all possible test cases is used rather than exhaustive testing.

· Certification. Once verification, inspection, and usage testing are complete and all defects removed, the increment is certified as ready for integration.

Functional (Box) Specification
· Black box - specifies a set of transition rules that describe the behavior of system components as responses to specific stimuli, makes use of inheritance in a manner similar to classes

· State box - generalization of a state machine, encapsulates the data and operations similar to an object, the inputs (stimuli) and outputs (responses) are represented, data that must be retained between transitions is encapsulated

· Clear box - contains the procedural design of the state box, in a manner similar to structured programming

Design Refinement
· Each clear box represents the design for a procedure required to accomplish a state box transition implemented using structured programming constructs

· At each level of refinement the cleanroom team performs formal correctness verification which involves attaching a set of correctness conditions to each structured programming construct

· Sequence (f → g, h) is refined into:

Does g followed by h do f?
· Conditional (p → if <c> then q else r) is refined into:

Whenever <c> is true does q do p and

Whenever <c> is false does r do p

· Loop (m → while <c> do n) is refined into:

Is termination guaranteed?

Whenever <c> is true does m followed by n do m and

Whenever <c> is false does skipping loop still do m
Design Verification
· Reduces verification to a finite process

· Improves quality

· Allows cleanroom teams to verify every line of code

· Results in near zero levels of defects

· Scales up to larger systems and higher levels

· Produces better code than unit testing

Statistical Use Testing

· Attempts to test software in the way that it is intended to be used by users

· Tester determine a usage probability distribution for the software

· Test cases are generated for each set of use case stimuli based on the usage probability distribution

· The sequence of test cases is also determined by the usage probability distribution, these test case sequences will match the use cases

· The test team executes these test case sequences and verifies software behavior against the system specification

Certification Steps

1. Usage scenarios must be created

2. Usage profile is specified

3. Test cases generated from the usage profile

4. Tests are executed and failure data are recorded and analyzed

5. Reliability is computed and recorded

Cleanroom Certification Models

· Sampling model - determines the number if random cases that need to be executed to achieve a particular reliability level

· Component model - allows analyst to determine the probability that a given component in a multi-component system fails prior to completion

· Certification model - projected overall reliability of system

Formal Methods

· Define the data invariant, state, and operations for each system function

· Data invariant -condition true throughout execution of function that contains a collection of data
· State- stored data accessed and altered by function

· Operations - system actions that take place when data are read or written to the state (an invariant, a precondition and a postcondition are associated with each operation)
· Specification is represented in some set theoretic type notation from some formal language (e.g. Z or OCL)

· Specification correctness can be verified using mathematical proofs (set operations, logic operations, sequences, induction)

Writing Formal Specifications

· Begin by defining state in terms of abstract items to be manipulated by the function (similar to variable declaration in a programming language)

· Define the data invariant by writing the data relations that will not change during the execution of the function using mathematical notation

· Write the precondition and postcondition for the function using mathematical notation to show the system state before and after function execution

Formal Specification Language Components

· Syntax that defines the specific notation used to represent a specification

· Semantics that help to define the universe of objects that will be used to describe the system

· Set of relations that define the rules that indicate which objects properly satisfy the specification

