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CHAPTER 14 
SOLUTION CONCEPTS FOR LINEAR PROGRAMMING 

Learning Objectives 
After completing this chapter, you should be able to 

1. Describe where an optimal solution can be located in the feasible region of a linear 
programming problem. 

2. Identify the different possibilities for how many optimal solutions a linear programming 
problem can have. 

3. Explain how a linear programming problem could have no optimal solution. 
4. Describe the role of corner points in searching for an optimal solution of a linear programming 

problem. 
5.  Summarize how the simplex method uses corner points to find an optimal solution for a linear 

programming problem. 
6. Identify the six key solution concepts that make the simplex method so efficient.  
7. Use the simplex method by hand to solve small linear programming problems. 
8. Discuss the computer implementation of the simplex method. 
9. Identify the key solution concept for the interior-point approach to solving linear programming 

problems. 
10. Describe the complementary roles of the simplex method and the interior-point approach. 

 

Chapters 2, 3, and 5 emphasized the variety of managerial problems that can be formulated and analyzed 
as linear programming problems. Now we take the next step. Once we have formulated an appropriate 
linear programming model, how do we solve it to find an optimal solution? 
 The easy answer is “click on the Solve button,” just as you started doing with the Excel Solver in 
Chapter 2. For some, that answer is sufficient. After all, managers do not need to know what makes their 
computer routines run. For those who are content with clicking on the Solve button, this entire chapter 
can be skipped. 
 This chapter is aimed instead at those students (or the students of those instructors) who wish to 
go a little deeper to gain some idea about what lies behind that Solve button. 
 In the first three sections, we will offer you an intuitive feeling for how linear programming 
problems are solved. Although the procedures are algebraic in nature, we will focus on the key geometric 
insights that make them click. The following four sections then illuminate the connections between these 
geometric insights and the algebraic procedures. 
 Although software packages for solving linear programming problems can be used without 
knowing anything about solution procedures, there are six reasons for gaining a basic intuitive 
understanding of these procedures: 

1.    To satisfy your curiosity about what are the key ideas that enable the procedures to solve 
complex problems. 

2.    To illustrate the systematic solution procedures (called algorithms) that are so widely used 
throughout management science. 

3.    To gain confidence in the validity and power of these algorithms. 

4.    To learn something about the limitations of these algorithms. 

5.    To understand the meaning of some of the unusual outcomes from using these algorithms 
(e.g., finding that the problem has no optimal solution). 
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6.    To lay the basis for further study if you intend to participate in technical aspects of 
management science studies. 

 Although these six teaching goals are being addressed in this chapter in the context of linear 
programming, many of the same ideas carry over to algorithms used in other areas of management 
science as well. 
 So how are linear programming problems typically solved? You saw in Chapter 2 that the 
graphical method is one convenient solution procedure. Alas, this method is limited to problems with just 
two decision variables. Most real problems have many more decision variables, so we need another 
approach. 
 In 1947, George Dantzig developed the simplex method for solving linear programming problems 
with any number of decision variables. Ever since, it has been the standard solution procedure for such 
problems, and it is the one used by the Excel Solver. There are two reasons why. One is that the simplex 
method is such an exceptionally efficient procedure. Although spreadsheets are not designed to deal with 
very large problems, because of the time required to formulate a large model on a spreadsheet, the Excel 
Solver will quickly solve the model once it has been formulated. With a more powerful software package 
that does not use spreadsheets (but does use modeling software for efficiently formulating the model and 
transferring data into the model), the simplex method can solve even huge problems with many thousands 
of functional constraints and many thousands of decision variables (occasionally even millions of 
functional constraints and decision variables). The other reason for the use of the simplex method is that it 
provides the information needed for conducting the what-if analysis described in Chapter 5. All the data 
given in Solver’s sensitivity report are obtained directly from the output of the simplex method. 
 However, the long reign of the simplex method as the undisputed champion of linear 
programming solution procedures has ended. In 1984, Narendra Karmarkar discovered a powerful 
interior-point approach to solving linear programming problems. Although this approach still is being 
refined many years later, it already has enabled solving some massive problems that are beyond the scope 
of the simplex method. Nevertheless, the interior-point approach will not be supplanting the simplex 
method as the usual procedure for solving routine linear programming problems. Instead, we anticipate 
that the two approaches will be playing complementary roles in the coming decades, as described in 
Section 14.9. 
 The first section provides background on the characteristics of optimal solutions. The following 
two sections explore the concepts that enable the simplex method to find an optimal solution so 
efficiently.  Sections 14.4 to 14.7 delve further into the details of the simplex method. Section 14.8 
touches on the computer implementation of the simplex method. Section 14.9 introduces the key solution 
concept for the interior-point approach, and then discusses how this approach fits into the overall picture. 
 

14.1 SOME KEY FACTS ABOUT OPTIMAL SOLUTIONS 
You saw in Section 2.4 how the graphical method can be used to find an optimal solution for linear 
programming problems with two decision variables. However, we did not take the time then to reflect 
much on the characteristics of such solutions. In this section, we will turn our attention to describing 
some key facts about the characteristics of optimal solutions. 
 Although we will continue to use the same two-variable Wyndor problem to motivate and 
illustrate these characteristics, our conclusions also apply for problems with more than two decision 
variables. Real applications of linear programming typically involve problems with hundreds or 
thousands of decision variables! These characteristics of optimal solutions will provide some valuable 
clues about how to analyze large problems. 

The Location of Optimal Solutions 
The first few key facts concern the question of where an optimal solution can (or cannot) be located in the 
feasible region. 
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Key Fact 1: An optimal solution must lie on the boundary of the feasible region. Algebraically, 
this says that an optimal solution must satisfy the boundary equation for one or more of the 
constraints (either functional or nonnegativity). 

To illustrate this key fact, consider again the Wyndor Glass Co. product-mix problem analyzed in 
Sections 2.1-2.5. Its linear programming model (in algebraic form) and feasible region are shown again in 
Figure 14.1. The five dark line segments in this figure form the boundary of the feasible region for this 
problem. Each dark line segment is a portion of the constraint boundary line for one of the five 
constraints. [Remember, the boundary lines for the two nonnegativity constraints are the W axis (for D ≥ 
0) and the D axis (for W ≥ 0).] Thus, the points on each line segment satisfy the corresponding constraint 
boundary equation (where D = 0 and W = 0 are the constraint boundary equations for D ≥ 0 and W ≥ 0, 
respectively). 
 The optimal solution for this problem was found by the graphical method to be (D, W) = (2, 6). 
This solution does indeed lie on the boundary of the feasible region in Figure 14.1. Furthermore, if the 
graphical method were to be reapplied after changing the objective function (without changing the 
constraints), the optimal solution always would be a point on this boundary. (Try it.) In fact, we will 
describe a little later how, by changing the objective function in just the right way, it is possible to make 
any specific point on this boundary an optimal solution. (Do you see how?) 
 However, the concept we want to emphasize now is that it is impossible for a point inside the 
boundary of the feasible region to be an optimal solution. For example, one point lying inside in Figure 
14.1 is (D, W) = (1, 5). From any such point, it is possible to move in any direction by at least a tiny 
amount and still be feasible. Moving in certain directions will improve the value of the objective function. 
Therefore, when starting from any point inside the boundary of the feasible region, it always is possible to 
move a tiny amount in a direction that improves the value of the objective function and thereby obtain a 
better feasible solution, so the original point cannot be optimal. This concept applies regardless of how 
many decision variables the problem has. 
 Most linear programming problems have just one optimal solution. We will describe some 
exceptions later. However, by restricting our attention for now to problems with exactly one optimal 
solution, much more can be said about just where on the boundary of the feasible region this solution 
must lie. 

Key Fact 2: If a linear programming problem has exactly one optimal solution, this solution must 
be a corner point. 

For a problem with two decision variables, the corner points are the corners of the feasible region, i.e., 
points on the boundary of the feasible region where two constraint boundary lines intersect. The Wyndor 
problem has five corner points, as shown in Figure 14.2. Since the horizontal and vertical axes are the 
constraint boundary lines for the nonnegativity constraints, one corner point, (D, W) = (0,0), lies at the 
intersection of these two axes. Each of the other four corner points also lies at the intersection of a pair of 
constraint boundary lines. 
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Figure 14.1 Graph highlighting the boundary of the feasible region for the Wyndor problem. Also 

shown is the constraint boundary equation for each of the five constraint boundary lines. 
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Figure 14.2 Graph highlighting the corner points for the Wyndor problem. Each corner point lies at 

the intersection of two constraint boundary lines while also satisfying all the other 
constraints. 

 This problem has just one optimal solution, (D, W) = (2, 6), which is one of the five corner points. 
Reviewing how the graphical method obtained this optimal solution (see Figure 2.7) suggests how 
moving the objective function line in the favorable direction as far as possible leads to the optimal 
objective function line passing through a corner point. The same thing would happen regardless of what 
the objective function is. For example, Table 14.1 gives a sampling of cases for the Wyndor problem 
where the unit profits from the two products are different from the original estimates given in Section 2.1. 
The coefficients of D and W in the objective function are simply these unit profits, as shown in the third 
column of the table. The last column gives the resulting optimal solution. Note (and check with the 
graphical method or Solver) how each of the five corner points in Figure 14.2 is the optimal solution for 
one of these five cases. 
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Table 14.1  The Optimal Solution with Different Unit Profits for the Wyndor Problem 

Unit Profit Objective Optimal 

 Doors Windows Function Solution 

 $400   $400 Profit =   400D + 400W (2, 6) 

 $500   $300 Profit =   500D + 300W (4, 3) 

 $300 - $100 Profit =   300D - 100W (4, 0) 

 - $100   $500 Profit = -100D + 500W (0, 6) 

 - $100 - $100 Profit = -100D - 100W (0, 0) 

 Key Fact 2 provides a convenient way of finding the optimal solution. You simply need to check 
each corner point, calculate its objective function value (Profit), and select the one with the largest profit. 
Since the best corner point is optimal, all other feasible solutions can be ignored. Table 14.2 illustrates the 
application of this method to the original version of the Wyndor problem. This is called the enumeration-
of-corner-points method. 

Table 14.2 Applying the Enumeration-of-Corner-Points Method to Find the Optimal 
Solution for the Wyndor Problem 

 Corner Point Profit = 300D + 500 W  

 (D, W) = (0, 0) Profit = 300 (0) + 500 (0) = 0  
 (D, W) = (0, 6) Profit = 300 (0) + 500 (6) = $3,000  

 Optimal ! (D, W) = (2, 6) Profit = 300 (2) + 500 (6) = $3,600 " Best 
 (D, W) = (4, 3) Profit = 300 (4) + 500 (3) = $2,700  
 (D, W) = (4, 0) Profit = 300 (4) + 500 (0) = $1,200  

 The enumeration-of-corner-points method also can be used to solve linear programming 
problems with more than two decision variables. Furthermore, it is possible to greatly streamline this 
method to solve such problems very efficiently. We introduce the streamlined method in Key Fact 3. 

Key Fact 3: The simplex method is an extremely efficient solution procedure for solving linear 
programming problems with many thousands (or even millions) of decision variables. It is a 
greatly streamlined version of the enumeration-of-corner-points method, since it also only 
evaluates corner points (in a very efficient way). However, the simplex method has a way of 
quickly getting to the best corner point and detecting that this point is optimal, so it then stops 
without needing to evaluate the rest of the corner points. 

 For the Wyndor problem, the simplex method evaluates the first three corner points in Table 14.2 
(in the same order), detects that (D, W) = (2, 6) is optimal, and so stops. The next two sections will 
describe the concepts that make the simplex method so efficient. 
 To apply the simplex method to problems with more than two decision variables (so the feasible 
region cannot be graphed), we need a procedure for identifying corner points. 

Key Fact 4: Let n denote the number of decision variables for a problem. (For example,  
n = 2 for the Wyndor problem.) From a geometric viewpoint, a corner point is a feasible solution 
that lies at the intersection of n constraint boundaries. From an algebraic viewpoint, a corner point 
is a feasible solution that satisfies n constraint boundary equations simultaneously.  



CD 14-7 

Thus, using the algebraic viewpoint, one procedure for obtaining a corner point is to solve a system of n 
equations (constraint boundary equations) in n unknowns (the decision variables). If this simultaneous 
solution also satisfies the other constraints (those not providing the constraint boundary equations), then it 
is a corner point. The simplex method uses a greatly streamlined variant of this procedure to move from 
the last corner point obtained to the next one. 
 Thus far, we have restricted our attention to linear programming problems that have exactly one 
optimal solution. What are all the possibilities for the number of optimal solutions? 

Key Fact 5: The only possibilities for a linear programming problem are that it has 
  (1)  exactly one optimal solution, 
 or (2)  an infinite number of optimal solutions, 
 or (3)  no optimal solution. 

 
The second case is referred to as having multiple optimal solutions. We first will describe how this case 
can arise, and why it always gives an infinite number of optimal solutions rather than just a few. Later, we 
will discuss the two ways in which the third case can occur. 

Multiple Optimal Solutions 
For the Wyndor problem, suppose that the unit profit for doors will be $200 instead of $500. This changes 
the objective function (expressed in units of dollars) to 

Profit = 300 D + 200 W. 

Note that the coefficients of both D and W now are exactly 100 times as large as for the problem’s third 
functional constraint, 

3 D + 2 W ≤ 18, 

which has the constraint boundary line given by the equation, 

3 D + 2 W = 18. 

Consequently, when the graphical method is applied to this new version of the problem, as shown in 
Figure 14.3, the optimal objective function line, Profit = $1800 = 300 D + 200 W, now coincides with this 
constraint boundary line. Therefore, two corner points, (2, 6) and (4, 3), now are optimal since they both 
produce the largest Profit. 

(D, W) = (2, 6):  Profit = 300 (2) + 200 (6) = $1800. 

(D, W) = (4, 3):  Profit = 300 (4) + 200 (3) = $1800. 

Furthermore, every point on the line segment between (2, 6) and (4, 3) also is an optimal solution with an 
objective function value of Profit = $1800. 
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Figure 14.3  Graph resulting from applying the graphical method to the Wyndor problem after the 
objective function is changed to Profit = 300 D + 200 W. Since the optimal objective 
function line (Profit = $1800 = 300 D + 200 W) passes through the entire line segment 
between (2, 6) and (4, 3), the infinite number of points on this line segment are all 
optimal. 

 Like any other line segment, there are an infinite number of points on the line segment between 
(2, 6) and (4, 3). This is what provides an infinite number of optimal solutions for this problem. However, 
this mathematically curious fact is not the important conclusion here. All that really matters is that there 
are multiple optimal solutions. It is valuable for management to have several options of product mixes 
that will maximize profitability—say (D, W) = (2, 6), or (3, 4.5), or (4, 3) — because factors not 
incorporated into the mathematical model may make one of the options more attractive than the others. 
For example, these factors might include management's desires to (1) highlight a particularly prestigious 
new product, (2) use a certain new product to initiate a family of similar products, (3) meet the needs of 
the company's most important customers, and (4) counter new products being introduced by the 
company's competitors. 
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 This example illustrates how problems with multiple optimal solutions always have two optimal 
corner points—the two end points of a line segment on the boundary of the feasible region where every 
point on that line segment is an optimal solution. When a problem has more than two decision variables, 
it even is possible to have more than two corner points that are optimal solutions. (For example, with 
three decision variables, it is possible for all three vertices of a triangle on the boundary of the feasible 
region to be optimal corner points, in which case every point in the triangle is an optimal solution.) 
 Because a linear programming problem can have multiple optimal solutions, we generally will 
speak of an optimal solution rather than the optimal solution if we don't know yet how many there are. 

Key Fact 6: If a linear programming problem has multiple optimal solutions, at least two of these 
optimal solutions must be corner points. 

Since the simplex method only evaluates corner points until it finds the best one (the one with the best 
value of the objective function), Key Fact 6 ensures that it still will find one of the optimal solutions. 
Furthermore, the next key fact points out that it provides additional information as well. 

Key Fact 7: If a linear programming problem has multiple optimal solutions, the simplex method 
automatically will find one of the optimal corner points and signal that there are one or more 
others. If desired, the simplex method also can find the other optimal corner points quickly after 
finding the first one. 

To illustrate how the simplex method signals that there are other optimal corner points, Figure 14.4 shows 
the spreadsheet model for the same version of the Wyndor problem as considered in Figure 14.3. Thus, 
both (2, 6) and (4, 3) are optimal corner points, but the simplex method as executed by the Excel Solver 
happens to show the latter one in the changing cells UnitsProduced (C12:D12). The signal that this is not 
the only optimal solution appears in the sensitivity report shown in Figure 14.5. Specifically, look at the 
last two columns in the top part of the report. The signal is that 0 appears in either of these columns. The 
fact that the objective coefficient (unit profit) for doors has an allowable decrease of 0 indicates that the 
optimal solution now shown in the third column would no longer be optimal if this unit profit is decreased 
by even a tiny amount. The same conclusion holds if the unit profit for windows is increased by even a 
tiny amount, since this objective coefficient has an allowable increase of 0. Making either or both of these 
tiny changes in the unit profits and re-solving would yield (D, W) = (2, 6), which is the only optimal 
solution after making these changes but is tied with (4, 3) as an optimal solution before making the 
changes. 
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Figure 14.4      The spreadsheet model for the Wyndor problem after the unit profit for windows is 

decreased from $500 to $200, which leads to having an infinite number of optimal 
solutions as depicted in Figure 14.3. 

 

  

Range Name Cells
HoursAvailable G7:G9
HoursUsed E7:E9
HoursUsedPerUnitProduced C7:D9
TotalProfit G12
UnitProfit C4:D4
UnitsProduced C12:D12

5
6
7
8
9

E
Hours
Used

=SUMPRODUCT(C7:D7,UnitsProduced)
=SUMPRODUCT(C8:D8,UnitsProduced)
=SUMPRODUCT(C9:D9,UnitsProduced)

11
12

G
Total Profit

=SUMPRODUCT(UnitProfit,UnitsProduced)

1
2
3
4
5
6
7
8
9
10
11
12

A B C D E F G
Wyndor Glass Co. Product-Mix Problem

Doors Windows
Unit Profit $300 $200

Hours Hours
Used Available

Plant 1 1 0 4 ≤ 4
Plant 2 0 2 6 ≤ 12
Plant 3 3 2 18 ≤ 18

Doors Windows Total Profit
Units Produced 4 3 $1,800

Hours Used Per Unit Produced

Solver Parameters 
Set Objective Cell: TotalProfit 
To: Max 
By Changing Variable Cells: 
 UnitsProduced 
Subject to the Constraints: 
 Hours Used <= HoursAvailable 
Solver Options: 
 Make Variables Nonnegative 
 Solving Method: Simplex LP 
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Figure 14.5   The sensitivity report for the spreadsheet model shown in Figure 14.4. 

 

When more than two changing cells have an objective coefficient with an allowable decrease or allowable 
increase of 0, trying the various combinations of a tiny decrease or increase and re-solving will yield the 
various optimal corner points. The other optimal solutions include every point on each line segment 
connecting a pair of optimal corner points. Since a sampling of a few optimal solutions generally is fully 
adequate for management, we will not burden you with the details of how to identify even more optimal 
solutions by interpolating simultaneously between three or more optimal corner points. 
 The example portrayed in Figure 14.3 illustrates how, by changing the objective function in a 
certain way, one of the five line segments forming the boundary of this feasible region can become 
optimal. Table 14.3 summarizes how each of the other four line segments can become optimal instead by 
changing the objective function in another way. (Check each of these four cases in Figure 14.3 to see why 
the optimal objective function line passes through the indicated line segment.) 

Table 14.3 Multiple Optimal Solutions with Different Unit Profits for the Wyndor 
Problem 

Unit Profit Objective  
 Doors Windows Function Multiple Optimal Solutions 
 $300  $200 Profit = 300 D + 200 W Line segment between (2, 6) and (4, 3) 
 $300  0 Profit = 300 D Line segment between (4, 3) and (4, 0) 
 0  $500 Profit = 500 W Line segment between (0, 6) and (2, 6) 
 0 -$100 Profit = -100 W Line segment between (0, 0) and (4, 0) 
 -$100  0 Profit = -100 D Line segment between (0, 0) and (0, 6) 

 Having seen how a linear programming problem can have more than one optimal solution, now 
let us look in turn at the two ways in which a problem can have no optimal solution at all. 

 

 

Adjustable Cells
F i n a l Reduced Object ive A l lowab le A l lowab le

C e l l Name Value Cost Coeff ic ient Increase Decrease
$C$12 Units Produced Doors 4 0 300 1E+30 0
$D$12 Units Produced Windows 3 0 200 0 200

Constraints
F i n a l Shadow Constra int A l lowab le A l lowab le

C e l l Name Value P r i c e R.H. Side Increase Decrease
$E$7 Plant 1 Used 4 0 4 2 2
$E$8 Plant 2 Used 6 0 12 1E+30 6
$E$9 Plant 3 Used 18 100 18 6 6



CD 14-12 

No Feasible Solutions 
Recall that a feasible solution is one that satisfies all the constraints —including both functional and 
nonnegativity constraints —simultaneously. Thus far, we have taken for granted that there will be some 
feasible solutions. But this is not necessarily the case. 

Key Fact 8: The constraints of a linear programming problem can be so restrictive that it is 
impossible for a solution to satisfy all the constraints simultaneously. Thus, there are no feasible 
solutions and so no optimal solution. A situation like this is readily detected by the simplex 
method. 

To illustrate how this could happen, let us introduce another consideration into the Wyndor problem. 
Suppose a substantial investment is required to initiate the production and marketing of the two new 
products. To justify this investment, management feels that the combined production rate of the two 
products should be at least 10 units per week. This consideration imposes the additional constraint, 

D + W  ≥  10. 

The resulting graph of all the constraints is shown in Figure 14.6, where each arrow indicates which side 
of the corresponding constraint boundary line is permitted by that constraint. Note how all the solutions 
permitted by the new constraint lie beyond the original feasible region. What that means is there are no 
feasible solutions. And the fact that there are no feasible solutions means that the two proposed new 
products should not be undertaken at all.  
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Figure 14.6 Graph showing that there are no feasible solutions for the Wyndor problem after 
adding the constraint D + W ≥ 10, because this constraint goes not permit any of 
the solutions in the original feasible region 
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Figure 14.7 shows the spreadsheet model for this situation. Using the previous optimal solution of (2, 6) 
in the changing cells yields a value of 8 in cell E13, which does not satisfy the constraint that this total of 
the production rates must be at least 10 (as indicated by cells E14 and E15). Clicking on the Solve button 
then brings up the message that “Solver could not find a feasible solution,” as shown in Figure 14.8.  

 

Figure 14.7 The spreadsheet model for the Wyndor problem after adding the constraint, D + W ≥ 10, 
which leads to having no feasible solutions as depicted in Figure 14.6. 

Range Name Cells
HoursAvailable G7:G9
HoursUsed E7:E9
HoursUsedPerUnitProduced C7:D9
TotalProfit G12
UnitProfit C4:D4
UnitsProduced C12:D12

5
6
7
8
9

E
Hours
Used

=SUMPRODUCT(C7:D7,UnitsProduced)
=SUMPRODUCT(C8:D8,UnitsProduced)
=SUMPRODUCT(C9:D9,UnitsProduced)

12
13

G
Total Profit

=SUMPRODUCT(UnitProfit,UnitsProduced)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

A B C D E F G
Wyndor Glass Co. Product-Mix Problem

Doors Windows
Unit Profit $300 $500

Hours Hours
Used Available

Plant 1 1 0 2 ≤ 4
Plant 2 0 2 12 ≤ 12
Plant 3 3 2 18 ≤ 18

Total
Doors Windows Produced Total Profit

Units Produced 2 6 8 $3,600
≥

Minimum Production 10

Hours Used Per Unit Produced

Solver Parameters 
Set Objective Cell: TotalProfit 
To: Max 
By Changing Variable Cells: 
 UnitsProduced 
Subject to the Constraints: 
 Hours Used <= HoursAvailable 
 TotalProduced >= MinimumProduction 
Solver Options: 
 Make Variables Nonnegative 
 Solving Method: Simplex LP 
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Figure 14.8  The message given by Solver for the model in Figure 14.7 that has no feasible solutions. 

 
 Before drawing the conclusion that the two proposed new products should not be undertaken at 
all, management probably will want to review the situation further. Are any of the constraints more 
restrictive than really needed? For example, if the minimum combined production rate permitted for the 
two products is reduced to 8 units per week, the resulting constraint is D + W ≥ 8, and the solution, (D, W) 
= (2, 6), becomes both feasible and optimal. Another possibility is to increase the production capacity 
made available to the two new products in some of the plants by cutting back on the production of a 
current product. 
 In other applications, the explanation for having no feasible solutions may be that an error was 
made in formulating the model or in inputting data into the computer. Perhaps one of the constraints was 
inadvertently made more restrictive than intended. 
 For some applications of linear programming in the public sector, certain constraints entered into 
the model may reflect restrictions requested by special-interest groups. These restrictions tend to be far 
tighter than would be considered reasonable by other affected groups, so the model with these constraints 
may well have no feasible solutions. If so, the message that “Solver could not find a feasible solution” 
then provides strong ammunition for negotiating more reasonable restrictions that will yield some feasible 
solutions. 

No Bound on the Best Objective Function Value 
So having no feasible solutions is one way a problem can have no optimal solution. We now will look at a 
second way. 
 Whereas having no feasible solutions occurs because the constraints are too restrictive, this next 
case arises when the constraints are too unrestrictive. A typical reason a set of constraints is too 
unrestrictive is that one or more of them that should have been in the model were inadvertently omitted. 
As you might guess, such an omission can cause strange things to happen in an incomplete model. One 
bizarre possibility is that there might be no limit on how much the value of the objective function can be 
improved without violating any of the constraints that were included in the model. 
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Key Fact 9: If some necessary constraints were not included in the linear programming model, it 
is possible to have no limit on the best objective function value for solutions in the (supposed) 
feasible region. If this occurs, then no feasible solution can be optimal because there always is a 
better feasible solution. This is another situation readily detected by the simplex method. 

To illustrate this case, suppose that the production capacity constraints for Plants 2 and 3 were 
inadvertently omitted from the linear programming model for the Wyndor problem. This would leave the 
nonnegativity constraints and the production capacity constraint for Plant 1, D ≤ 4, as the only constraints 
included in the model. Thus, any nonnegative value of W, no matter how large, is permitted. The feasible 
region for this (incomplete) model is the shaded region (and its extension upward off the page) shown in 
Figure 14.9, which also includes a series of objective function lines that were drawn in a vain attempt to 
reach an optimal solution. Even if D = 4 and some huge value is chosen for W (say, W = 1,000), the value 
of Profit = 300 D + 500 W can be increased even further just by making W even larger (say, W = 2,000). 
Therefore, even though there are many feasible solutions that yield a huge value of the objective function, 
none of them are the best feasible solution, so none can be classified as an optimal solution. 

 

 

Figure 14.9  Graph showing that there would be no bound on the best objective function value in the 
model for the Wyndor problem if the only constraints were D ≥ 0, W ≥ 0, and  
D ≤ 4, because nothing prevents increasing W and Profit indefinitely. 

Figure 14.10 shows the corresponding spreadsheet model. When the previous optimal solution of (2, 6) is 
entered into the changing cells UnitsProduced (C10:D10), everything appears to be normal. However, 



CD 14-17 

clicking on the Solve button then brings up the message shown in Figure 14.11, namely, “The Objective 
Cell values do not converge.” In this case, this message is saying that the process of setting the values of 
the changing cells at an optimal solution does not converge because the total profit appearing in the 
objective cell TotalProfit (G10) continues to increase indefinitely as the production rate for windows (cell 
D7) is increased. 

 

 

Figure 14.10 The spreadsheet model for the Wyndor problem if the only constraints were 
nonnegativity constraints and D ≤ 4, which leads to having no bound on the best 
objective function value as depicted in Figure 14.9. 

Range Name Cells
HoursAvailable G7
HoursUsed E7
HoursUsedPerUnitProduced C7:D7
TotalProfit G10
UnitProfit C4:D4
UnitsProduced C10:D10

5
6
7

E
Hours
Used

=SUMPRODUCT(HoursUsedPerUnitProduced,UnitsProduced)

9
10

G
Total Profit

=SUMPRODUCT(UnitProfit,UnitsProduced)

1
2
3
4
5
6
7
8
9
10

A B C D E F G
Wyndor Glass Co. Product-Mix Problem

Doors Windows
Unit Profit $300 $500

Hours Hours
Used Available

Plant 1 1 0 2 ≤ 4

Doors Windows Total Profit
Units Produced 2 6 $3,600

Hours Used Per Unit Produced

Solver Parameters 
Set Objective Cell: TotalProfit 
To: Max 
By Changing Variable Cells: 
 UnitsProduced 
Subject to the Constraints: 
 Hours Used <= HoursAvailable 
Solver Options: 
 Make Variables Nonnegative 
 Solving Method: Simplex LP 
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!
Figure 14.11 The message given by Solver for the model in Figure 14.10 that has no bound on the best 

objective function value. 

Since not even linear programming has discovered a way to generate astronomically large profits, the real 
message when there is no bound on the best objective function value is that a mistake has been made in 
formulating the model. Typically, this outcome only occurs during the stage of the study when the model 
is still being tested and refined. When it occurs, the functional constraints should be checked to ascertain 
where they do not accurately represent the restrictions in the real problem.  
 Besides omitting necessary constraints, another possibility is that constraints included in the 
model have been formulated improperly. For example, perhaps a ≥ sign has been used in a functional 
constraint when it should have been a ≤ sign. 
 The feasible region in Figure 14.9 is said to be unbounded, because there is no bound on the 
distance one can move in a certain direction (straight up in this case). Any linear programming model that 
has no bound on the best objective function value must have an unbounded feasible region. Furthermore, 
the feasible region must be unbounded in a direction that improves the objective function value. However, 
it is possible to have a model whose feasible region is unbounded only in directions that do not improve 
the objective function value, so the problem still has an optimal solution. (The feasible region shown at 
the end of the Supplement to Chapter 2 for the Profit & Gambit problem is an example.) 
 
A Managerial Perspective 
After focusing so much on optimal solutions, it would be easy to conclude that the whole point of a linear 
programming study is to find and implement an optimal solution. In reality, much more is involved. 
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Key Fact 10: An optimal solution is only optimal with respect to a particular mathematical model 
that provides only a rough representation of the real problem. A manager is interested in far more 
than just finding such a solution. The purpose of a linear programming study is to help guide 
management’s final decision by providing insights into the likely consequences of pursuing 
various managerial options under different assumptions about future conditions. Changing these 
assumptions requires changing the initial version of the linear programming model. Most of the 
important insights are gained while conducting the analysis done after finding an optimal solution 
for the initial version of the model. Management scientists often refer to this analysis as 
postoptimality analysis. Another term (the one being used in this book) is what-if analysis, 
because questions are being addressed about what would happen to the conclusions from the 
model if future conditions turn out to be such and such instead.  

Chapter 5 focused on this key type of analysis. 

REVIEW QUESTIONS 
1. What is a corner point? 
2. What can be said about the corner point with the best value of the objective function? 
3. How does the simplex method differ from the enumeration-of-corner-points method? 
4. Can a linear programming problem have exactly two optimal solutions? 
5. Can a linear programming problem have exactly two corner points that are optimal solutions? 
6. What can happen to cause a linear programming problem to have no feasible solutions? 
7. What can happen to cause a linear programming problem to have no bound on the best objective 

function value? 

 
14.2 THE ROLE OF CORNER POINTS IN SEARCHING FOR AN OPTIMAL 

SOLUTION 
In the preceding section, we presented 10 key facts about optimal solutions. We now turn to the role that 
some of these facts play in determining how to search for an optimal solution. 

Finding the Best Corner Point Solves the Problem 
Notice that half of these key facts about optimal solutions (Key Facts 2, 3, 4, 6 and 7) talk about corner 
points. This is an indication of the close relationship between corner points and optimal solutions. In fact, 
Key Fact 2 says that the optimal solution (when there is just one) for any linear programming problem 
must be a corner point. Even when the problem has multiple optimal solutions, Key Fact 6 indicates that 
some of these optimal solutions also must be corner points. 
 Key Facts 2 and 6 are important because they greatly simplify the search for an optimal solution. 
Together, they imply that this search only requires finding the best corner point (the corner point with the 
best value of the objective function): 
 

Optimality of the Best Corner Point: For any linear programming problem with an optimal 
solution1, the best corner point must be an optimal solution. (When two or more corner points tie 
for being the best one, all these best corner points must be optimal solutions.) 

The big advantage of searching for an optimal solution simply by finding the best corner point is that it 
tremendously reduces the number of solutions that need to be considered. Linear programming problems 
normally have a vast number (literally an infinite number) of feasible solutions. By contrast, the number 
of corner points is relatively small. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 It is possible (but highly unusual) for a linear programming problem not to have an optimal solution, as described in 
Key Facts 8 and 9. 



CD 14-20 

To illustrate how a linear programming problem can be solved by finding its best corner point, consider 
again the Wyndor Glass Co. case study introduced in Section 2.1. Both the linear programming model (in 
algebraic form) and the feasible region for the Wyndor problem are again shown in Figure 14.12, where 
we have highlighted the five corner points. Each corner point lies at a corner of the feasible region where 
two constraint boundary lines intersect. 

!
!

!
!

Figure 14.12   The five corner points are the key feasible solutions for the Wyndor problem. 

In the preceding section, we showed in Table 14.2 how the enumeration-of-corner-points method solves 
this problem by calculating the value of the objective function, Profit = 300 D + 500 W, for all five corner 
points. This work is summarized in Figure 14.12, which shows the value of the objective function for 
each corner point. Since (2, 6) has Profit = $3,600, which is larger than for the other corner points, (2, 6) 
is the best corner point. Therefore, (D, W) = (2, 6) is the optimal solution for this example. (Recall that 
this solution was found to be optimal by both the graphical method and the Excel Solver in Chapter 2.) 
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Like the enumeration-of-corner-points method, the simplex method only looks at corner points. However, 
the big difference is that the simplex method usually is able to identify the best corner point after 
examining only a portion (often only a tiny portion) of all the corner points, as described next. 

How the Simplex Method Solves the Wyndor Problem 
The simplex method is an algebraic procedure. However, when the problem has only two decision 
variables, we can describe what the algebra of the simplex method accomplishes in graphical terms. In 
particular, referring to Figure 14.12, here is what the simplex method does to solve the Wyndor problem. 

1.    It begins by examining the corner point at the origin, (0, 0), and concludes that this is not an 
optimal solution. 

2.    It then moves to the corner point, (0, 6), and concludes that this also is not an optimal solution. 

3.    It then moves to the corner point, (2, 6), and concludes that this is the optimal solution, so it 
stops. 

This sequence of corner points examined is shown in Figure 14.13. 

 

 

Figure 14.13  This graph shows the sequence of corner points ( ) examined by the simplex 
method for the Wyndor problem. The optimal solution, (2, 6), is found after examining 
just three points. 

Now let us look at the rationale behind these three steps and the conclusions drawn.  
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 Why start with the corner point at the origin, (0, 0)? Simply because this is a convenient place to 
begin. (When solving for corner points algebraically, this one can be identified without doing any 
algebra.) The only situation where (0, 0) cannot be chosen as the initial corner point is when it lies outside 
the feasible region and so is not a corner point. In this case, any real corner point can be chosen instead. 
 At step 1, how is the simplex method able to conclude that (0, 0) is not an optimal solution? It 
does this by checking the adjacent corner points, (4, 0) and (0, 6). Both of these points are better because 
they produce better values of the objective function than (0, 0). So (0, 0) cannot be optimal. 
 The only situation where (0, 0) would be optimal is when neither adjacent corner point is better. 
(Check how this would happen if the objective function in the model were changed to Profit = - D - W.)  
 In step 2, why does the simplex method move to (0, 6)? As discussed more fully later in this 
section, the simplex method only moves to adjacent corner points. Therefore, from (0, 0), the only 
alternatives are to move next to either (4, 0) or (0, 6). (4, 0) gives Profit = $1,200 and (0, 6) gives Profit = 
$3,000. Both are an improvement over (0, 0) with Profit = 0, so either alternative would move us toward 
an optimal solution. Since we want to move toward an optimal solution as quickly as possible, the 
simplex method compares the rate of improvement in the value of the objective function (Profit) when 
moving from (0, 0) toward (4, 0) or (0, 6). Since the unit profits for doors and windows are $300 and 
$500, respectively, increasing the production rate of windows (W) provides a better rate of improvement 
($500 per unit increase in W) than increasing the production rate of doors. Therefore, (0, 6) is chosen as 
the next corner point to consider.  
 To finish step 2, (0, 6) is not optimal because one of its adjacent corner points, (2, 6), is better 
than (0, 6). Profit = $3,600 for (2, 6) is larger than Profit = $3,000 for (0, 6).  
 To begin step 3, the simplex method notes that (0, 6) has the two adjacent corner points, (0, 0) 
and (2, 6). (0, 0) was just examined and discarded before moving to (0, 6), so (2, 6) becomes the 
automatic choice to move to next.  
 How does the simplex method then conclude that (2, 6) is the optimal solution? The reason is that 
both adjacent corner points, (0, 6) and (4, 3), are not better than (2, 6). We already know from the 
previous work that (0, 6) is not as good. Furthermore, (4, 3) gives Profit = $2,700, which is less than 
Profit = $3,600 for (2, 6). Since (4, 3) is worse than (2, 6), continuing to move clockwise beyond (4, 3) 
cannot possibly lead to a corner point better than (2, 6). 
 

A Summary of the Simplex Method 
The procedure for the simplex method we just illustrated is typical. Here is a summary for problems with 
either two or more decision variables.  

Getting Started: Select some corner point as the initial corner point to be examined. If the origin is a 
corner point of the feasible region, this is a convenient choice.  

Checking for Optimality: Check each of the corner points adjacent to the current corner point. If 
none of the adjacent corner points are better (as measured by the value of the objective function) than 
the current corner point, then stop because the current corner point is an optimal solution. However, if 
one or more of the adjacent corner points are better than the current corner point, then continue as 
described in the next step. 

Moving On: One of the adjacent corner points that is better than the current corner point needs to be 
selected as the next current point to be examined. When more than one is better, the conventional 
selection method is to choose the one that provides the best rate of improvement2 in the value of the 
objective function while moving toward that adjacent corner point. After making the selection, return 
to the Checking for Optimality step above. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2The rate of improvement is the improvement in the value of the objective function per unit of distance moved from 
the current corner point to the adjacent corner point. As an algebraic procedure, the simplex method uses a 
nongeometric definition of distance, but we will not delve into this technicality. 
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Finding Corner Points Algebraically 
For the Wyndor problem, it is easy to identify the corner points after graphing the feasible region, as 
shown in Figures 14.12 and 14.13. However, for problems with more than two (or possibly three) 
decision variables, it is not possible to find the corner points graphically. But we can have a computer do 
it algebraically (as indicated by Key Fact 4). This is what the simplex method does. The details are 
described in the box “How Are Corner Points Found Algebraically?” 
 
! How Are Corner Points Found Algebraically? 

Consider the Wyndor problem and its graphical representation in Figure 14.12. Each 
constraint has a corresponding boundary equation, as shown below. 

Table 14.4 The Constraint Boundary Equation for Each 
Constraint of the Wyndor Problem 

!

! !

! Constraint Constraint Boundary Equation !
!   D   ≥   0    D   =   0 !
!   W  ≥   0       W  =   0 !
!   D   ≤   4    D   =   4 !
!    2 W  ≤ 12    2 W  = 12 !
!  3 D + 2 W ≤ 18   3 D +    2 W  = 18 !
! !

Each constraint boundary equation is the equation for a constraint boundary line, as 
shown in Figure 14.12. 

Since each corner point lies at the intersection of two constraint boundary lines, the 
corner point must satisfy the corresponding two constraint boundary equations, as 
shown in the following table. 
!

! !
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! ! Table 14.5 The Pair of Constraint Boundary Equations   
Satisfied by Each Corner Point of the Wyndor 

Problem 
!

! !

!  Corner 
 Point  

 Corresponding Constraint 
 Boundary Equations 

 Corner Point Satisfies 
 the Equations 

 

!  (0, 0)          D  =   0 
      W  =   0 
 

  0  =   0 
  0  =   0 

 

!  (0, 6)          D  =   0 
   2 W  = 12 
 

  0  =   0 
   2 (6) = 12 

 

!  (2, 6)    2 W  = 12 
      3 D + 2 W = 18 
 

   2 (6) = 12 
               3 (2) + 2 (6) = 18 

 

!  (4, 3)       3 D + 2 W  = 18 
        D  =   4 
 

               3 (4) + 2 (3) = 18 
  4  =   4 

 

!  (4, 0)         D  =   4 
      W =   0 

  4  =   4 
  0  =   0 

 

! !
Thus, each corner point is found algebraically by simultaneously solving its 
corresponding pair of constraint boundary equations.  

! !

! ! Not every pair of constraint boundary equations yields a simultaneous solution 
which is a corner point of the feasible region. For example, the pair, 

       D       =   0 

    3 D + 2 W  = 18, 

yields D = 0, W = 9 as its simultaneous solution. Although this solution lies at the 
intersection of the constraint boundary lines corresponding to these equations, it is 
not a corner point of the feasible region because it does not satisfy the constraint, 
2W ≤ 12. (Now see if you can find the other two pairs of constraint boundary 
equations whose simultaneous solutions lie outside the feasible region.) 

Another possibility is that a pair of constraint boundary equations might yield no 
simultaneous solution at all, as illustrated by the pair, 

! ! ! ! D = 0 

    D = 4. 

Since these two equations cannot be satisfied simultaneously (the corresponding two 
lines never intersect), this pair of equations cannot yield a corner point. (See if you 
can find the one other pair of constraint boundary equations that does not have a 
simultaneous solution.) 

!

! !!

 
! !
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! When a problem has more than two decision variables, the procedure for finding its 
corner points algebraically is basically the same as the one here (as described by 
Key Fact 4). However, instead of solving just a pair of constraint boundary 
equations simultaneously, the number of constraint boundary equations must equal 
the number of decision variables. If this number of constraint boundary equations 
yields a simultaneous solution that is a feasible solution, that solution is a corner 
point. 

!

 
Adjacent Corner Points 
One key to the efficiency of the simplex method is the order in which it examines corner points. As 
indicated earlier, each corner point in this order always is "adjacent" to the preceding one. We now will 
focus on the characteristics of adjacent corner points and how they impact efficiency.   
 To review what we mean by adjacent corner points, look at Figure 14.12. Suppose that you start 
at any of the corner points in this figure and then begin moving around the boundary of the feasible region 
(in either direction). The first corner point you reach is adjacent to the one from which you started. Thus, 
each corner point has two adjacent corner points —the first one reached in the clockwise direction and 
the first one reached in the counter-clockwise direction. Table 14.6 identifies these adjacent corner points. 
 

Table 14.6 Adjacent Corner Points for Each Corner Point of the Wyndor Problem 

 Corner Point Its Adjacent Corner Points  
       (0, 0)  (0, 6) and (4, 0)  
       (0, 6)  (2, 6) and (0, 0)  
       (2, 6)  (4, 3) and (0, 6)  
       (4, 3)  (4, 0) and (2, 6)  
       (4, 0)  (0, 0) and (4, 3)  

 
A useful feature of adjacent corner points is that they share some of the same constraint boundaries. For 
example, the corner point (0, 0) lies on the constraint boundaries, D = 0 and W = 0. The adjacent corner 
point (0, 6) also lies on the constraint boundary D = 0 (along with 2W = 12). The other adjacent corner 
point (4, 0) shares the constraint boundary W = 0 (its other constraint boundary is D = 4).  
 This Wyndor example has just two decision variables. However, regardless of the number of 
decision variables, adjacent corner points have the same characteristics, as summarized in the following 
definition. 

Two corner points are adjacent corner points if they share all but one of the same constraint boundaries. 
(The number of shared constraint boundaries is one less than the number of decision variables in the 
model.) The two adjacent corner points are connected by a line segment that lies on these same shared 
constraint boundaries. Such a line segment is referred to as an edge of the feasible region. 

With two decision variables, this definition implies that two adjacent corner points always share one 
constraint boundary. Check this out in Figure 14.12. In this same figure, you should also be able to see 
that the edge of the feasible region connecting each pair of adjacent corner points lies on the shared 
constraint boundary. 
 Because adjacent corner points share all but one of the same constraint boundaries, they also 
share all but one of the same constraint boundary equations. This fact greatly streamlines the algebra 
when the simplex method solves the system of constraint boundary equations to identify the corner point 
being moved to next. Rather than having to solve the entire system of equations from scratch, only a few 
quick algebraic operations are needed to modify the solution of the previous system of equations after 
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replacing just one of the equations. This great streamlining of the algebra adds greatly to the efficiency of 
the simplex method. 

The Number of Corner Points 
Focusing solely on corner points tremendously reduces the number of solutions that need to be considered 
in the search for an optimal solution. This concept is another of the keys to the efficiency of the simplex 
method. 
 However, this concept by itself does not nearly explain the remarkable efficiency of the simplex 
method. The enumeration-of-corner-points method introduced in the preceding section also only 
considers corner points. But it is so inefficient that it is only capable of solving rather small problems with 
even a fast computer. 
 The difficulty is that the number of corner points tends to grow very rapidly as the problem size is 
increased. For example, the Wyndor problem with its 2 decision variables and 3 functional constraints has 
only 5 corner points. By contrast, a similar problem with 20 decision variables and 30 functional 
constraints might have more than a billion corner points! Imagine the vast number of corner points with 
100 decision variables and 100 functional constraints. Nevertheless, the simplex method routinely solves 
problems with even many thousands of decision variables and functional constraints! 
 How is this possible? How can the simplex method solve problems with astronomical numbers of 
corner points? The secret lies in the clever way it is able to reach and identify the optimal corner point for 
a large problem after examining only a tiny, tiny fraction of all the corner points. For example, on a 
problem with a billion corner points, it probably will examine less than a hundred of them before finding 
the optimal solution. 
 We next turn to outlining the solution concepts that make the simplex method so efficient. 

REVIEW QUESTIONS 
1. When is the best corner point (the one with the best value of the objective function) an optimal 

solution? 
2. What is the advantage of only considering corner points when searching for an optimal solution? 
3. When the simplex method is ready to move from the current corner point to the next one, which 

corner points are candidates to be this next one? 
4. How does the simplex method determine if the current corner point is an optimal solution? 
5. When is the simultaneous solution of a set of constraint boundary equations a corner point? 
6. When are two corner points adjacent to each other? 
7. The simplex method examines corner points in an order such that each one has what relationship to 

the preceding one? Why? 
8. How many corner points might a problem with 20 decision variables and 30 functional constraints 

have? 
9. Why is the simplex method able to solve problems with astronomical numbers of corner points when 

the enumeration-of-corner-points method cannot? 

 
14.3 SOLUTION CONCEPTS FOR THE SIMPLEX METHOD 
In the preceding section, you have seen an outline of how the simplex method solves linear programming 
problems. Now we will review this same material from a broader perspective, focusing on the six key 
ideas —the solution concepts —that make the simplex method so efficient. 

The Key Role of Corner Points 
The preceding section began with a description of the key role of corner points in searching for an optimal 
solution. Recall that the simplex method only examines corner points, because finding the best corner 
point solves the problem. Thus: 
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Solution Concept 1: Focus solely on the corner points. For any linear programming problem with 
an optimal solution, the best corner point must be the best feasible solution of any kind, i.e., an 
optimal solution. 

This eliminates the need to consider all those feasible solutions that are not corner points. 

The Simplex Method Is an Iterative Algorithm 
The next solution concept concerns the general nature of the simplex method. 
 You probably have heard the term algorithm used before. It is one of those technical terms that 
have been entering the common vocabulary in this computer age. So exactly what is an algorithm? 
 

An algorithm is a systematic procedure for solving a mathematical problem. The steps of an 
algorithm are so well specified that it can be (and frequently is) executed on a computer. 

 
You can see from the definition that this term fits some solution procedures that you learned in school 
years ago. For example, the familiar procedure for long division is an algorithm because it is a systematic 
solution procedure and its steps are so well specified that it could be programmed for execution on a 
computer. 
 Remember that the long division algorithm involves performing some calculations to find each 
digit of the answer (quotient) in turn, moving from left to right. Each time a digit is found, a prescribed 
series of steps then is used to find the next digit. An important characteristic of the algorithm is that the 
same series of steps is repeated (iterated) over and over again to find the succession of digits. Each 
execution of the prescribed series of steps is called an iteration, so the algorithm is referred to as an 
iterative algorithm. 
 Iterative algorithms also include a procedure for getting started (the initialization step) and a 
criterion for determining when to stop (the stopping rule), as depicted in the following diagram: 
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Structure of Iterative Algorithms 

! !
For the long division algorithm, the initialization step involves writing down the problem in the usual 
format, moving the decimal point (if any) of the divisor and dividend to the right as needed, and 
identifying the initial digit of the quotient. Iterations then find the additional digits needed. The last digit 
of the quotient is the one over the last digit of the dividend, so the stopping rule says to stop iterating 
when that digit is found. The remainder (if any) is then attached to the quotient, and the algorithm is 
finished. 
 Management science algorithms typically are iterative algorithms. For most of these algorithms, 
each iteration begins with a trial solution for the problem under consideration, and then the series of steps 
constituting an iteration lead to finding a better trial solution. The goal is to find a trial solution that is an 
optimal solution. Therefore, the "desired result" specified in the stopping rule is that the current trial 
solution is optimal. This means that the stopping rule actually is an optimality test, as shown below. 

Structure of Most Management Science Algorithms 

!
As summarized in our next solution concept, the simplex method fits right into this structure of most 
management science algorithms. In this case, the trial solutions being examined are corner points . 

Initialization step :  Set up to start iterations.

Stopping Rule :  Has the desired result been obtained?

If no  __    If yes  Stop.

Iterative step :  Perform an iteration.
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Solution Concept 2: The simplex method is an iterative algorithm . The initialization step finds 
an initial corner point. Each iteration then consists of a prescribed series of steps for moving from 
the current corner point to a new corner point. The optimality test stops the algorithm when the 
new corner point is an optimal solution. 

Thus, the three components of the simplex method are the initialization step, the optimality test, and the 
iterative step. Most of the time typically is spent repeating the iterative step. Each execution of the 
iterative step is one iteration of the algorithm.  
 The summary of the simplex method in the preceding section further describes these components, 
using the following less technical names: 

Getting Started = Initialization  

Moving On = Iteration 

Checking for Optimality = Optimality test 

The subsequent solution concepts clarify how the components of the simplex method achieve their 
objectives. 

Find an Initial Corner Point Quickly 
One reason the simplex method is so efficient is that it achieves the objectives of its components with a 
minimum of computational effort. This is illustrated by the initialization step, which often finds an initial 
corner point without doing any computations at all! 

Solution Concept 3: Whenever possible, the initialization step of the simplex method chooses the 
origin to be the initial corner point (trial solution). Thus, this corner point has all the decision 
variables equal to zero, so no work is required to solve algebraically for the corner point. 

The one situation where it is not possible to choose the origin in this way is when the origin is not in the 
feasible region because it violates one or more of the functional constraints. We saw an example of this 
with the Profit & Gambit problem in Section 2.6 (see the end of the Supplement to Chapter 2 for graphs 
of the feasible region for this problem). In this situation, the simplex method uses another more 
complicated procedure (called "Phase 1") to find an initial corner point quickly. We will not dwell on this 
technicality. 

Focus on Adjacent Corner Points to Perform an Iteration 
The preceding section discusses the relationship between a corner point and its adjacent corner points. 
Our next solution concept describes why this relationship is such a useful one. 

Solution Concept 4: Given a corner point, it is much quicker computationally to gather 
information about its adjacent corner points than about other corner points. Therefore, each time 
the simplex method performs an iteration to move from the current corner point, it always chooses 
to move to an adjacent corner point. Other corner points are ignored. Consequently, the path being 
followed to an optimal solution is along the edges of the feasible region. 

The simplex method never needs to take the time to “look” beyond the adjacent corner points. This 
partially explains the great efficiency of the simplex method. 
 Another reason the simplex method is so efficient is the clever way in which the iterative step 
chooses the next corner point. Among all the corner points that are adjacent to the current corner point, 
the iterative step chooses one that is on a “quick path” to an optimal solution, as described next. 
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Improve the Value of the Objective Function Rapidly 
The simplex method seeks to follow a path that will reach an optimal solution as quickly as possible. On 
large problems, the chosen path normally will reach this optimal solution after passing through only a 
tiny, tiny fraction of all the corner points. (This fraction can be much larger on very small problems, 
where the total number of corner points is relatively small.) The reason that the simplex method reaches 
an optimal solution so quickly is because it focuses on improving the value of the objective function 
rapidly. 

Solution Concept 5: After identifying the current corner point, the simplex method uses algebra 
to next examine each of the edges of the feasible region that emanate from this corner point. Each 
of these edges leads to an adjacent corner point at the other end, but the simplex method does not 
even take the time to do the algebra needed to identify the adjacent corner point. Instead, it simply 
identifies the rate of improvement in the value of the objective function that would be obtained by 
moving along the edge. Among the edges with a positive rate of improvement in the value of the 
objective function, it then chooses the one with the largest rate of improvement to actually move 
along. The iteration is completed by identifying the adjacent corner point at the other end of this 
one edge, and then relabeling this adjacent corner point as the current corner point for the next 
iteration. 

To conclude, we'll now see how the optimality test is performed efficiently by comparing the current 
corner point with its adjacent corner points.  

Focus on Adjacent Corner Points to Perform the Optimality Test 
The final key to the efficiency of the simplex method is its simple optimality test. To check whether the 
current corner point is optimal, it is only necessary to determine whether any of its adjacent corner points 
are better (a more favorable value of the objective function). If none are better, then the current corner 
point is optimal and the algorithm is finished. 
 The simplex method has a very quick way of checking whether any adjacent corner points are 
better, as follows. 

Solution Concept 6: Solution Concept 5 describes how the simplex method examines each of the 
edges of the feasible region that emanate from the current corner point. This examination of an 
edge leads to quickly identifying the rate of improvement in the value of the objective function 
that would be obtained by moving along the edge toward the adjacent corner point at the other 
end. A positive rate of improvement implies that the adjacent corner point is better than the current 
corner point, whereas a negative rate of improvement implies that the adjacent corner point is 
worse. Therefore, the optimality test consists simply of checking whether any of the edges give a 
positive rate of improvement in the value of the objective function. If none do, then the current 
corner point is optimal. 

Our goal in presenting these six solution concepts has been to give you some intuitive insight into how 
the simplex method operates and what makes it so efficient. We feel that gaining this insight is important 
before learning the algebraic details of the simplex method. The next four sections lead into the 
connections between this insight and the algebraic details. 

REVIEW QUESTIONS 
1. The simplex method focuses solely on what kind of solutions? 
2. What does an iteration of the simplex method consist of? 
3. What is the structure of most management science algorithms, including the simplex method? 
4. Whenever possible, the initialization step of the simplex method chooses which solution to be the 

initial corner point to be examined? 
5. When the simplex method finishes examining a corner point, it is relatively quick computationally to 

then gather information about which other corner points? What information is gathered? 
6. How is the optimality test for the simplex method performed? 
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14.4   THE SIMPLEX METHOD WITH TWO DECISION VARIABLES 
The simplex method is an algebraic procedure that examines a sequence of corner points until the best one 
(the optimal solution) is found. However, when the problem has just two decision variables, the simplex 
method can be simplified to a geometric procedure that examines these corner points graphically. This 
section focuses on the latter procedure. We will continue using the example of the Wyndor Glass Co. case 
study introduced in Section 2.1. 
 
How the Simplex Method Solves the Wyndor Problem 
Section 14.2 discusses the key role that corner points play in searching for an optimal solution for the 
Wyndor problem (or any other linear programming problem). Figure 14.12 shows the feasible region for 
this problem and highlights the corner points. 
 
Here is what the simplex method does with Figure 14.12 to solve the Wyndor problem. 
 

1. It begins by examining the corner point at the origin, (0, 0), and concludes that this is not an 
optimal solution. 

 
2. It then moves to the corner point, (0, 6), and concludes that this also is not an optimal solution. 
 
3. It then moves to the corner point, (2, 6), and concludes that this is the optimal solution, so it 

stops. 
 

This sequence of corner points examined is shown in Figure 14.14. 
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Figure 14.14  This graph shows the sequence of corner points (  ) examined by the 

simplex method for the Wyndor problem. The optimal solution, (2, 6) is found 
after examining just three points. 

 
 
Now let us look at the rationale behind these three steps and the conclusions drawn.  
 Why start with the corner point at the origin, (0, 0)? Simply because this is a convenient place to 
begin. (When solving for corner points algebraically, this one can be identified without doing any 
algebra.) The only situation where (0, 0) cannot be chosen as the initial corner point is when it lies outside 
the feasible region and so is not a corner point. In this case, any real corner point can be chosen instead. 
 At step 1, how is the simplex method able to conclude that (0, 0) is not an optimal solution? It 
does this by checking the two adjacent corner points,  
(4, 0) and (0, 6). Both of these points are better because they produce higher values of Profit (the 
objective function) than (0, 0). So (0, 0) cannot be optimal. 
 The only situation where (0, 0) would be optimal is when neither adjacent corner point is better. 
Check how this would happen if the objective in the model were changed to minimize Cost = 3 D + 5 W.  
 In step 2, why does the simplex method move to (0, 6)? We pointed out in Section 14.2 that one 
key to the efficiency of the simplex method is that it only moves to adjacent corner points. Therefore, 
from (0, 0), the only alternatives are to move next to either (4, 0) or (0, 6). (4, 0) gives Profit = 1,200 
and (0, 6) gives Profit = 3,000. Both are an improvement over (0, 0) with Profit = 0, so either alternative 
would move us toward an optimal solution. Since we want to move toward an optimal solution as 
quickly as possible, we choose the better adjacent corner point (the one with the larger value of Profit), 
namely, (0, 6). (Further discussion of this criterion and an alternate criterion for selecting the adjacent 
corner point is given in the box entitled "Which Adjacent Corner Point Should Be Chosen?".) 
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      Which Adjacent Corner Point Should Be Chosen? 
 
When the simplex method is ready to move from the current corner point to an 
adjacent corner point, either of the following criteria can be used to choose the 
adjacent corner point. 
 
The Best Adjacent Corner Point Criterion: Choose the best adjacent corner 
point, i.e., the one with the most favorable value of the objective function.  
(Most favorable means largest when the objective is to maximize Profit, 
whereas it means smallest when the objective is to minimize Cost.) 
 
The Best Rate of Improvement Criterion: Determine the "rate of 
improvement" for each adjacent corner point. This rate of improvement is 
defined as the improvement in the value of the objective function per unit of 
distance moved along the edge of the feasible region from the current corner 
point to the adjacent corner point. (Improvement in this value means increase in 
Profit when the objective is to maximize Profit, and it means decrease in Cost 
when the objective is to minimize Cost.) Choose the adjacent corner point with 
the best (largest) rate of improvement. 
 
To illustrate the second criterion, consider the Wyndor example when the 
current point is (0, 0) and the adjacent corner points are (4, 0) and (6, 0). Since 
the objective function to be maximized is  
Profit = 300 D + 500 W, each unit increase in D increases Profit by  300, 
whereas each unit increase in W increases Profit by 500. Therefore, the rate of 
improvement from moving from (0, 0) toward (4, 0) is 300, and the rate of 
improvement from moving from (0, 0) toward (0, 6) is 500. Since 500 is larger 
than 300, this criterion says to select (0, 6) as the adjacent corner point to move 
to next. 
 The algebraic form of the simplex method normally uses the best rate 
of improvement criterion. The reason is that the algebraic procedure has a very 
efficient method for identifying rates of improvement without even solving 
algebraically for the adjacent corner points and calculating their values of the 
objective function. (This method uses a special definition for unit of distance, 
as we will clarify in Section 14.7.) 
 However, the best rate of improvement criterion is not very convenient 
for the graphical form of the simplex method being presented here. Except 
when the current corner point is (0, 0), this criterion usually would require 
somewhat more work than the best adjacent corner point criterion. Therefore, 
we will use the best adjacent corner point criterion when applying the simplex 
method graphically. 

 

 
 
To finish step 2, (0, 6) is not optimal because one of its adjacent corner points, (2, 6), is better than (0, 6). 
Profit = 3,600 for (2, 6) is larger than Profit = 3,000 for (0, 6).  
 To begin step 3, the simplex method notes that (0, 6) has the two adjacent corner points, (0, 0) and 
(2, 6). (0, 0) was just examined and discarded before moving to (0, 6), so (2, 6) becomes the automatic 
choice to move to next. (Once the decision has been made to begin moving around the boundary of the 
feasible region in either the clockwise or counter-clockwise direction, all subsequent movement will be in 
the same direction.) 
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 How does the simplex method then conclude that (2, 6) is the optimal solution? The reason is that 
both adjacent corner points, (0, 6) and (4, 3), are not better than (2, 6). We already know from the previous 
work that (0, 6) is not as good. Furthermore, (4, 3) gives Profit = 2,700, which is less than Profit = 3,600 for 
(2, 6). Since (4, 3) is worse than (2, 6), continuing to move clockwise beyond (4, 3) cannot possibly lead to 
a corner point better than (2, 6). 
 
 
A Summary of the Simplex Method 
The procedure for the simplex method we just illustrated is typical. Here is a summary for problems with 
either two or more decision variables.  
 

Getting Started:  Select some corner point as the initial corner point to be examined. This choice 
can be made arbitrarily. However, if the origin is a corner point of the feasible region, this is a 
convenient choice. Wherever you choose to start, label it (temporarily) as the current corner point 
and continue as described in the following step. 
 
Checking for Optimality:  Check each of the corner points adjacent to the current corner point. If 
none of the adjacent corner points are better (as measured by the value of the objective function) 
than the current corner point, then stop because the current corner point is an optimal solution. (Any 
adjacent corner point with a value of the objective function equal to this optimal value also is an 
optimal solution.) However, if one or more of the adjacent corner points are better than the current 
corner point, then continue as described in the next step. 
 
Moving On: One of the adjacent corner points that is better than the current corner point needs to 
be selected as the next current point to be examined. When executing this procedure graphically, 
choose the best adjacent corner point according to the value of Profit. (When executing this 
procedure algebraically, as described in Section 14.7, the best rate of improvement criterion is used 
instead to make this choice.) Label it the new current corner point and return to the Checking for 
Optimality step above. 

 
These three steps apply equally well whether the problem has two decision variables or more than two. 
However, when there are just two decision variables, the procedure can be streamlined somewhat, as 
follows. 
 

A Shortcut with Just Two Decision Variables:  When the current corner point still is the initial 
corner point, the Moving On step leads to selecting one of the adjacent corner points as the next 
corner point to be examined. This corner point is reached by moving from the initial corner point 
along the boundary of the feasible region in either the clockwise or counter-clockwise direction. 
The procedure thereafter involves moving further around the boundary of the feasible region in the 
same direction (clockwise or counter-clockwise), from corner point to corner point, until the 
optimal solution is reached. Thus, each time the procedure returns to the Checking for Optimality 
step, only the next adjacent corner point in this direction needs to be checked. This adjacent corner 
point then is automatically selected as the next corner point to be examined in the Moving On step. 
 

We refer to this streamlined procedure with two decision variables as the graphical simplex method.  
 To solidify your understanding of the graphical simplex method, we suggest that you now go 
back and check how this description fits what we did with the Wyndor example in the preceding 
subsection. 
 Although the Wyndor example is a maximization problem, this summary also applies to 
minimization problems, as you'll see in the next example. 
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A Minimization Example 
Consider the Profit & Gambit advertising-mix problem back in Section 2.7 (see Figure 2.22 and the 
Supplement to Chapter 2 for the application of the graphical method to this problem). The linear 
programming model and the corresponding graph  are repeated here as Figure 4.15. The feasible region is 
unbounded and has just three corner points. 
 

 
Figure 14.15 The three corner points to be considered by the simplex method to find the 

optimal solution for the Profit and Gambit advertising-mix problem. 
 
Let's apply the simplex method in the format just given. 
 

Getting Started: Since (0, 0) is not a corner point of the feasible region, we select the 
initial corner point arbitrarily, say, (0, 9) with Cost = 18. 
 
Checking for Optimality: (0, 9) has just one adjacent corner point, (4, 3), since the feasible 
region is unbounded above (0, 9). Since (4, 3) gives Cost = 10, which is better than Cost = 
18 for (0, 9), we conclude that (0, 9) is not optimal. (Remember the objective is to 
minimize Cost = TV + 2 PM.) 
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Moving On: (4, 3) is the best (and only) adjacent corner point of (0, 9), so the simplex 
method moves from (0, 9) to (4, 3). (Since this movement is along the boundary of the 
feasible region in the counter-clockwise direction, any subsequent movement will be in 
this same direction.) 
 
Checking for Optimality: For (4, 3), we only need to check the adjacent corner point in 
the counter-clockwise direction, (8, 3). Since (8, 3) gives Cost = 14, which is worse than 
Cost = 10 for (4, 3), we conclude that (4, 3) is the optimal solution and the simplex 
method is finished. 
 

You may check for yourself that the simplex method would have come to this same conclusion if the 
corner  point selected  to be the initial corner point had  been either  (4, 3)  or  (8, 3) instead of  (0, 9). 
!
!
REVIEW QUESTIONS 
1. Does the simplex method examine all the corner points of a linear programming problem in order to 

find an optimal solution? 
2. When the simplex method is ready to move from the current corner point to the next one, which 

corner points are candidates to be this next one? 
3. What are the names of two criteria for selecting the next corner point? 
4. How does the simplex method get started? 
5. How does the simplex method determine if the current corner point is an optimal solution? 
6. How does the graphical simplex method determine whether to move around the boundary of the 

feasible region in a clockwise or a counter-clockwise direction? 
7. How does a minimization problem differ from a maximization problem when the graphical simplex 

method chooses the corner point to move to next? 
!
!
14.5   THE SIMPLEX METHOD WITH THREE DECISION VARIABLES 
Our main purpose in describing the simplex method with two decision variables is to provide a good 
intuitive insight into how it operates on linear programming problems with more than two decision 
variables. In fact, the summary given in Section 14.4 applies to larger problems as well. However, there 
are certain aspects of dealing with larger problems that are not well illuminated by looking at examples 
with two decision variables. Therefore, it is instructive to take a brief look at the case of three decision 
variables. 
 
Thinking Three-Dimensionally 
To illustrate the case of three decision variables, consider the case study of the Super Grain Corp. 
advertising-mix problem in Section 3.1. The linear programming model for this problem is 
 
 Maximize    Exposure = 1,300 TV + 600 M + 500 SS, 
subject to 
     300 TV +  150 M +  100 SS  ≤  4,000 
       90 TV +    30 M  +    40 SS  ≤  1,000 
  TV    ≤         5 
and 
  TV ≥ 0,   M ≥ 0,   SS ≥ 0. 
 
By taking some care, it is possible to graph the feasible region for this problem as shown in Figure 14.16. 
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 Figure 14.16 This three-dimensional graph shows the feasible region and its corner points for 

the Super Grain Corp. advertising-mix problem. 

 
 
To help visualize this three-dimensional graph, think of yourself as standing in the middle of a room and 
looking toward one corner where two walls and the floor meet. The edge where the wall on your right 
meets the floor is the TV axis, and the edge where the wall to the left meets the floor is the M axis. The 
SS axis coincides with the edge where the two walls meet. 
 Now look at the feasible region drawn in Figure 14.16 and think of this as a solid, three-
dimensional object that sits in this corner of the room. This object lies flat on the floor (the constraint 
boundary SS = 0) and has two vertical sides that are flush against the two walls (constraint boundaries TV 
= 0 and M = 0). The object also has a third vertical side that is parallel to the left-side wall and five units 
of distance from this wall (the constraint boundary TV = 5). Finally, the object has a roof with two 
slanting sections. The larger slanting section (given by the constraint boundary equation, 
90 TV + 30 M + 40 SS = 1,000) has corners at (0, 0, 25), (5, 0, 13.75), (5, 15, 2.5), and (0, 20, 10). The 
smaller and steeper section (given by the constraint boundary equation, 300 TV + 150 M + 100 SS = 
4,000) has corners at (0, 20, 10), (5, 15, 2.5), (5, 16.667, 0), and (0,  26.667, 0). The two sections meet at 
the edge between (0, 20, 10) and (5, 15, 2.5). The entire solid object (all the way back to the hidden sides) 
is the feasible region. 
 The object has eight corners that are highlighted by dots — the six corners of the two sections of 
the roof plus the two corners at floor level in the back, (0,0,0) and (5, 0, 0). These corners are the eight 
corner points of the feasible region for the linear programming problem. 
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 Table 14.7 summarizes these corner points and their values of the objective function. Note that 
(5, 15, 2.5) is the corner point with the best value of the objective function. By examining all eight corner 
points and comparing their objective function values, the enumeration-of-corner-points method presented in 
Section 14.1 would conclude that (TV, M, SS) = (5, 15, 2.5) must be the optimal solution. 
 
Table 14.7 The Corner Points and Their Objective Function Values for the Super Grain 

Problem 
 

Corner Point 
Value of  

Objective Function 
(0, 0, 0) 0 

(0, 26.667, 0) 16,000 
(5, 16.66 , 0) 16,500 
(5, 15, 2.5) 16,750 
(0, 20,10) 17,000 
(0, 0, 25) 10,000 

(5, 0, 13.75) 13,375 
(5, 0, 0) 6,500 

 
 
 
Now let's see how the simplex method finds this same optimal solution without examining all the corner 
points. 
 
 
Applying the Simplex Method 
The following steps outline the application of the simplex method to this problem. 
 

Getting Started: Since (0, 0, 0) is a corner point of the feasible region, it is selected to be 
the initial corner point to be examined. 
 
Checking for Optimality: (0, 0, 0) has three adjacent corner points: (5, 0, 0) with Exposure 
= 6,500, (0, 26.667, 0) with Exposure = 16,000, and (0, 0, 25) with Exposure = 12,500. 
[Note that these three corner points indeed are adjacent to (0, 0, 0) since they each lie on all 
but one of the (0, 0, 0) constraint boundaries: TV = 0, M = 0, and SS = 0.] All three 
adjacent corner points are better than (0, 0, 0) with Exposure = 0, so (0, 0, 0) is not optimal. 
 
Moving On: Since we are executing the procedure graphically, we choose the best adjacent 
corner point, (0, 26.667, 0) with Exposure = 16,000. The simplex method then moves along 
the edge of the feasible region from (0, 0, 0) to (0, 26.667, 0). 
 
Checking for Optimality: (0, 26.667, 0) has three adjacent corner points: (0, 0, 0), (5, 16.667, 
0), and (0, 20, 10). We already know from the preceding steps that (0, 0, 0) is not better than 
(0, 26.667, 0) with Exposure = 16,000. However, we need to check (5, 16.667, 0) with 
Exposure = 16,500 and (0, 20, 10) with Exposure = 17,000. Both are better than (0, 26.667, 
0), so (0, 26.667, 0) is not optimal. 
 
Moving On: We now want to choose the best adjacent corner point, which is (0, 20, 10) 
with Exposure = 17,000. With this choice, the simplex method moves along the edge of 
the feasible region from (0, 26.667 , 0) to (0, 20, 10). 
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Checking for Optimality: We now compare  
 
   Exposure = 17,000 for (0, 20, 10) 
 
with the value of Exposure for the three adjacent corner points: 
 
  Exposure = 16,500 for (0, 26.667, 0) 
  Exposure = 16,750 for (5, 15, 2.5) 
  Exposure = 10,000 for (0, 0, 25) 
 

Since all these adjacent corner points are worse than (0, 20, 10), we conclude that (0, 20, 10) is 
the optimal solution and the simplex method is finished. 

 
To summarize, here is the path that was followed by the simplex method to reach this optimal solution. 
 
  Path: (0, 0, 0)  →   (0,  26.667 , 0)  →    (0, 20 , 10)   
         Exposure:      0                   16,000          17,000     
 
When executing the simplex method algebraically, the best rate of improvement criterion is used instead 
of the best adjacent corner point criterion to choose the next corner point to be examined. The best rate of 
improvement criterion focuses on the objective of maximizing Exposure = 1,300 TV + 600 M + 500 SS. 
When starting from (0, 0, 0), this criterion says to begin by increasing TV because this gives the best rate 
of improvement in Exposure (1,300 is larger than either 600 or 500). This leads us along the edge of the 
feasible region from (0, 0, 0) to the adjacent corner point with TV increased from zero, (5, 0, 0). The 
simplex method with this criterion then follows the path to the optimal solution shown below. 
 
 Path: (0, 0, 0)   →     (5, 0 , 0)  →    (5,  16.667, 0)  →   (5, 15, 2.5)   →  (0, 20, 10) 
    Exposure:        0                  7,000                   16,500                  16,750               17,000 
 
Note that this path with the best rate of improvement criterion involves examining two more corner points 
than the previous path with the best adjacent corner point criterion. On another problem, the reverse could 
well happen. Neither criterion has a substantial advantage in terms of the average number of corner points 
that need to be examined to reach an optimal solution. 
 
General Characteristics 
In Section 14.4, we saw what happens when a problem has just two decision variables: The constraint 
boundaries are simply lines, where each corner point lies at the intersection of two such lines. Solving 
algebraically for the corner point requires solving a system of two constraint boundary equations. There 
are two (at most) adjacent corner points. The corner point shares all but one (namely, 2 - 1 = 1) of its 
constraint boundaries with each of its adjacent corner points. Therefore, the edge of the feasible region 
connecting the corner point and any particular adjacent corner point lies on the shared constraint 
boundary. 
 In this section, we have illustrated how these characteristics change when a problem has three 
decision variables: The constraint boundaries now are planes, where each corner point lies at the 
intersection of three such planes. Solving algebraically for the corner point requires solving a system of 
three constraint boundary equations. There are three (at most) adjacent corner points. The corner point 
shares all but one (namely, 3 - 1 = 2) of its constraint boundaries with each of its adjacent corner points. 
Therefore, the edge of the feasible region connecting the corner point and any particular adjacent corner 
point lies at the intersection of these shared constraint boundaries. 
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 The situation is very analogous when the number of decision variables exceeds three. In fact, 
every statement in the preceding paragraph still holds when the number three is replaced throughout by 
the actual number of decision variables. The only exception is that, in the second sentence, the word 
planes should be replaced by hyperplanes. (A "hyperplane" is a "flat" surface in higher dimensions that is 
analogous to a plane in three dimensions.) 
 Rest assured that we do not expect you to be able to visualize the geometry of higher dimensions. 
(We have trouble with that ourselves.) You are doing very well if you can visualize the three-dimensional 
graph in Figure 14.16. For problems with more than three decision variables, the important point is that 
the characteristics of the simplex method are very analogous to the characteristics with three decision 
variables. 
 To reinforce this point, it would be helpful for you to review the solution concepts for the simplex 
method presented in Section 14.3. 
!
!
REVIEW QUESTIONS 
1. Looking at the origin of a three-dimensional graph is analogous to doing what while standing in the 

middle of a room? 
2. When a linear programming problem has three decision variables, how many adjacent corner points 

can a corner point have? 
3. Is it possible for the best rate of improvement criterion and the best adjacent corner point criterion to 

follow a different path to an optimal solution? 
4. With three decision variables, the constraint boundaries have what geometric form? 
5. With n decision variables, solving algebraically for a corner point requires solving a system of how 

many constraint boundary equations? 
 
 
14.6   THE ROLE OF SUPPLEMENTARY VARIABLES 
In addition to decision variables, the simplex method also considers slack variables and surplus variables 
— supplementary variables that provide additional information and simplify the algebraic operations.  
 
Slack Variables 
To illustrate slack variables, consider again the Wyndor problem and its linear programming model 
summarized in Figure 14.12. The slack variables involve just the functional constraints. The three 
functional constraints for this problem are  
 
   D    ≤   4 
   2 W  ≤ 12 
               3D   + 2 W  ≤ 18. 
 
These three constraints specify the restrictions on the amount of production time that can be used in the 
three plants of the company for the two new products (special doors and windows) under consideration, 
where D is the number of doors produced per week and W is the number of windows produced per week. 
The numbers on the right-hand side of the constraints are the number of hours of production time 
available per week in the three respective plants. The left-hand sides represent the number of hours of 
production time per week actually used for the two products in the respective plants. 
 If we subtract the time used from the time available, we obtain: 
 
 Unused production time in Plant 1  =  4 - D. 
 Unused production time in Plant 2  =  12 - 2W. 
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 Unused production time in Plant 3  =  18 - 3 D - 2W. 
 
Let's introduce algebraic symbols — s1, s2, and s3 — to be the slack variables that represent these 
quantities.  
 

 Slack variable for first constraint:  s1 =   4 - D. 
 Slack variable for second constraint:  s2 = 12 - 2W. 
 Slack variable for third constraint:  s3 = 18 - 3 D - 2W. 
 

The name derives from the fact that the slack variable for a ≤ constraint represents the slack (gap) 
between the two sides of the inequality. In this case, the slack is the unused production time. 
 For example, for the optimal solution,  (D, W) = (2, 6), the slack variables have the values: 
 
 s1 = 4 - D = 4 - 2 = 2, 
 s2 = 12 - 2W = 12 - 2 (6) = 0, 
 s3 = 18 - 3 D - 2W = 18 - 3 (2)  - 2 (6) = 0. 
 
Thus, this solution would leave Plant 1 with some unused production time (2 hours per week), but none 
for Plants 2 and 3. 
 For any linear programming problem, the slack variable for a ≤ constraint is a variable that 
equals the right-hand side minus the left-hand side. The constraint is satisfied as long as the slack variable 
is nonnegative, since this implies that the left-hand side is not larger than the right-hand side. 
 There are several reasons why it is useful to introduce slack variables. One is that the values of 
the slack variables provide valuable information to management. For the Wyndor problem, management 
would like to know the impact of a proposed product mix on the unused production times in the various 
plants. 
 A second reason is that slack variables enable converting ≤ constraints into equations. The 
functional constraints with slack variables for the Wyndor problem are 
                                  
 Plant 1:   D +   s1    =    4 
 Plant 2:  2 W +    s2   =   12 
 Plant 3: 3 D +  2 W +     s3  =   18, 

 
where all the decision variables (D, W) and slack variables (s1, s2, s3) also are  required to be nonnegative. 
This is a very convenient form of the problem for the simplex method, because it is much simpler for an 
algebraic procedure to deal with equations than with inequalities. For example, whenever two of the five 
variables in these three equations are set equal to zero, it is then straightforward on a computer to solve 
the system of three equations for the three remaining variables. 
 Still another reason is that having a slack variable equal zero for a solution immediately 
identifies a constraint boundary on which the solution must lie. For example, consider the optimal 
solution, (D, W) = (2, 6), for the Wyndor problem. Since we already have calculated that s2 = 0 and s3 = 0 
for this corner point, the above equations for Plants 2 and 3 immediately indicate that the corner point 
must satisfy 
 
    2 W  = 12 
            3 D  +  2 W  = 18. 
 
These are the constraint boundary equations for the constraints, 2W ≤ 12 and 3 D + 2W ≤ 18, 
respectively, so the corner point must lie on these two constraint boundaries. 
 In fact, the simplex method always identifies the current corner point being examined for this 
problem by setting two of the five variables equal to zero. To begin, it sets D = 0 and W = 0 (the origin 
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lies on the constraint boundaries, D = 0 and W = 0). After an iteration, it substitutes s2 = 0 for W = 0, since 
the new corner point (0, 6) lies on the constraint boundaries, D = 0 and 2W = 12. After one more iteration, 
it reaches the optimal solution (2, 6) by substituting s3 = 0 for D = 0, which gives the constraint 
boundaries, 2 W = 12 and 3 D + 2W = 18. 
 Table 14.8 summarizes these iterations of the simplex method. The first two columns show the 
corner points in the order in which they are examined (just as was depicted in Figure 14.14). The third 
column indicates which two variables have been set equal to zero. The next column gives the solution of 
the system of three equations (Plants 1, 2, and 3) for the three remaining variables. The final column 
shows the equations of the constraint boundaries on which the corner point lies. 
 
 
Table 14.8   The Progression of the Simplex Method on the Wyndor Problem 
 

 
Order 

 
Corner Point 

 
Variables = 0 

 
Other Variables 

Corresponding Constraint 
Boundary Equations 

1 (D, W) = (0, 0) D = 0 
W = 0 

  s1 =   4 
 s2 = 12 
 s3 = 18 

 D   = 0 
  W  = 0 

2 (D, W)  = (0, 6) D = 0 
s2 = 0 

 s1 =   4 
        W  =   6 

 s3  =   6 

 D   = 0 
  2 W  = 12 

3 (D, W)  = (2, 6)  s3 = 0 
 s2 = 0 

 s1 =   2 
W =   6 
D =   2 

  2 W = 12 
          3 D + 2 W = 18 

 
 
The variables that the simplex method currently has set equal to zero (whether decision variables and/or 
slack variables) are called nonbasic variables. (These are the variables in the third column of Table 2.) 
The other variables (those in the fourth column) are called basic variables. The resulting solution for all 
the variables, including the slack variables, is called a basic feasible solution. (This solution combines 
the third and fourth columns.) A basic feasible solution is simply a corner point that has been augmented 
by including the values of the slack variables. 
 To illustrate these terms, consider the optimal solution for the Wyndor problem. This optimal 
solution can be expressed as either a corner point (no slack variables) or as a basic feasible solution 
(include the slack variables), as summarized below. 
 
    Optimal Solution 
 Corner point:  D  = 2,  W  = 6. 
 Basic feasible solution:  D  = 2,  W  = 6,  s1 = 2,  s2 = 0,  s3 = 0. 
 Nonbasic variables:  s2 = 0,   s3 = 0. 
 Basic variables:  D  = 2,  W  = 6,   s1 = 2. 
 
The solution is the same either way. The only difference is in the amount of information being given 
about the solution. The two names, corner point and basic feasible solution, are used just to differentiate 
between the amount of information being provided. 
 After it is initialized, the simplex method does not need to distinguish between decision 
variables and slack variables. All variables are treated alike. 
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Surplus Variables 
Surplus variables can be thought of as the mirror image of slack variables. Surplus variables arise with ≥ 
functional constraints, whereas slack variables arise with ≤ constraints. Specifically, a surplus variable 
gives the amount by which the left-hand side of a  ≥  constraint exceeds the right-hand side — the surplus 
on the left-hand side over the right-hand side. By contrast, a slack variable gives the slack by which the 
right-hand side of a  ≤  constraint exceeds the left-hand side. 
 To illustrate, consider the Profit & Gambit advertising-mix problem that is graphed in Figure 
14.15. Management has prescribed that the advertising campaign being planned must yield an increase in 
sales of at least 3%, 18%, and 4% for the stain remover, liquid detergent, and powder detergent, 
respectively. These requirements led to the following three functional constraints:  
                                     
 Stain remover:      PM    ≥   3 
 Liquid detergent:  3 TV + 2 PM    ≥ 18 
 Powder detergent:   - TV + 4 PM    ≥   4 
 
where TV is the number of units of advertising on television and PM is the number of units of advertising 
in the print media. 
 
Let s1, s2, and s3 denote the corresponding surplus variables, as summarized below. 
 
 Surplus variable for first constraint:  s1 = PM - 3. 
 Surplus variable for second constraint:  s2 = 3 TV + 2 PM - 18. 
 Surplus variable for third constraint:  s3 =  - TV + 4 PM - 4. 
 
Thus, each surplus variable represents the surplus in the actual increase in sales over the minimum 
required increase in sales for that product. Note that the three functional constraints are satisfied as long 
as the corresponding surplus variables are nonnegative. 
 For example, at the optimal solution, (TV, PM) = (4, 3), the surplus variables have the values: 
 
                  s1 = PM - 3 = 3 - 3 = 0, 
 s2 = 3 TV + 2 PM - 18 = 3 (4) + 2 (3) - 18 = 0, 
 s3 = -TV + 4 PM - 4 = -4 + 4 (3) - 4 = 4. 
 
The fact that these three surplus variables are nonnegative (along with TV and PM) immediately indicates 
that this solution is indeed feasible. The fact that s1 = 0 and s2 = 0 also indicates that the optimal solution 
is the corner point that lies on the constraint boundaries for the first two functional constraints. In other 
words, this corner point is the simultaneous solution of the two constraint boundary equations, 
 
        PM =   3 
    3 TV +  2 PM = 18 
 
 All the discussion in the preceding subsection about why it is useful to introduce slack variables 
also applies equally well to surplus variables, and will not be repeated here. The terminology introduced 
there about nonbasic variables, basic variables, and basic feasible solutions also applies with surplus 
variables. To illustrate, the optimal solution for the example can be expressed as either a corner point 
(without surplus variables) or a basic feasible solution (with surplus variables), as shown below. 
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    Optimal Solution 
 Corner point:     TV = 4,  PM = 3. 
 Basic feasible solution:    TV = 4,  PM = 3,  s1 = 0,   s2 = 0,  s3 = 4. 
  Nonbasic variables:      s1 = 0,      s2 = 0. 
  Basic variables:   TV = 4,   PM = 3,  s3 = 4. 
 
 
 
REVIEW QUESTIONS 
1. The name slack variable is derived from what? 
2. Why does a slack variable being nonnegative imply that the corresponding functional constraint is 

satisfied? 
3. What do the slack variables for the Wyndor problem represent? 
4. Why is it more convenient for the simplex method to have ≤ constraints converted into equations by 

introducing slack variables? 
5. What value does a nonbasic variable have? 
6. What is the difference between a corner point and the corresponding basic feasible solution? 
7. What does a surplus variable for a ≥ constraint represent? 
!
!
14.7   SOME ALGEBRAIC DETAILS FOR THE SIMPLEX METHOD 
In Sections 14.4 and 14.5, we described the simplex method from a geometric viewpoint. The goal was to 
give a good intuitive feeling for what the simplex method does, and why, without worrying about the 
algebraic details. This section fills in these details. 
 We continue to use the Wyndor Co. problem summarized in Figure 14.12 to illustrate these 
details. 
 
Connecting the Geometry and Algebra of the Simplex Method 
Figure 14.12 shows that the feasible region for the Wyndor problem has five constraint boundaries. The 
Constraint Boundary Equation (CBE) for each one is 
 
 CBE 1:   D  =   4 
 CBE 2:  2W = 12 
 CBE 3: 3D + 2W = 18 
 CBE 4:   D  =   0 
 CBE 5:    W =   0. 
 
Each corner point satisfies two of these constraint boundary equations, i.e., it lies at the intersection of the 
corresponding two constraint boundaries. 
 As described in Section 14.6, the simplex method begins by introducing slack variables (s1, s2, s3) 
into the functional constraints to obtain the following system of equations: 
 
 (1)   D  +  s1   =   4 
 (2)    2W  +  s2  = 12 
 (3) 3D +2W   +  s3 = 18, 
 
where all five variables must be nonnegative. At each iteration, the simplex method sets two of the five 
variables equal to zero (the nonbasic variables) and then solves this system of three equations for the 
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three remaining variables (the basic variables). The resulting solution, called a basic feasible solution, is  
a corner point that has been augmented by including the values of the slack variables.   
 Section 14.6 also describes how setting a slack variable equal to zero (by choosing that slack 
variable to be a nonbasic variable) immediately identifies a constraint boundary on which the solution for 
the decision variables must lie. Choosing a decision variable to be a nonbasic variable does the same 
thing. This relationship between nonbasic variables and constraint boundaries is: 
 
 If  s1 is a nonbasic variable ( s1 = 0), then CBE 1 is satisfied. 
 If  s2 is a nonbasic variable ( s2 = 0), then CBE 2 is satisfied. 
 If  s3 is a nonbasic variable ( s3 = 0), then CBE 3 is satisfied. 
 If D is a nonbasic variable (D = 0), then CBE 4 is satisfied. 
 If W is a nonbasic variable (W = 0), then CBE 5 is satisfied. 
 
Thus, the choice of the two variables to be the current nonbasic variables determines the two constraint 
boundaries on which the current corner point will lie. 
 As described in Section 14.4 (see Figure 14.14), the geometric path followed by the simplex 
method for this problem is from the initial corner point (0, 0) to the adjacent corner point (0, 6) to its 
adjacent corner point (2, 6). The left side of Table 14.9 summarizes this sequence, including the pair of 
constraint boundary equations yielding each of these corner points, where the first column indicates the 
number of completed iterations. The right side shows the same sequence when the slack variables also are 
included for the algebraic execution of the simplex method. Thus, the last column gives the current value 
of D, W, s1, s2, s3 in that order. Note how each pair of nonbasic variables corresponds to the pair of 
constraint boundary equations in the manner prescribed in the immediately preceding paragraph. Also 
note how each basic feasible solution is just the corresponding corner point plus the resulting values of 
the slack variables. 
 
 
Table 14.9   The Path Followed by the Simplex Method for the Wyndor Problem 
 Geometric Progression  Algebraic Progression   

     Basic Feasible 
 

Iteration 
 

Corner Point 
 

CBE 
Nonbasic 
Variables 

Basic 
Variables 

 Solution 
(D, W, s1, s2, s3) 

0 (0, 0) 4, 5 D, W s1, s2, s3 (0, 0, 4, 12, 18) 
1 (0, 6) 4, 2 D, s2 s1, W, s3  (0, 6, 4, 0, 6) 
2 (2, 6) 3, 2 s3, s2 s1, W, D (2, 6, 2, 0, 0) 

 
 
Now focus on the columns of Table 14.9 giving the nonbasic variables and the basic variables. When 
moving from the first row of the table to the second (i.e., performing the first iteration), one nonbasic 
variable (W) becomes a basic variable and one basic variable (s2) becomes a nonbasic variable. When 
moving from the second row to the third (i.e., performing the second iteration), the same pattern recurs. 
One nonbasic variable (D) becomes a basic variable and one basic variable (s3) becomes a nonbasic 
variable. This pattern is no coincidence. During any iteration of the simplex method for any problem, 
exactly one nonbasic variable becomes a basic variable and one basic variable becomes a nonbasic 
variable. (The reason is that an iteration always moves from the current corner point to an adjacent  
corner point, i.e., a corner point that shares all but one of the same constraint boundaries with the current 
corner point.) 
 When performing an iteration, the nonbasic variable that becomes a basic variable is called the 
entering basic variable. The basic variable that becomes a nonbasic variable is called the leaving basic 
variable. Thus, for the first iteration for the Wyndor problem, W is the entering basic variable and s2  is 
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the leaving basic variable. For the second iteration, D is the entering basic variable and s3 is the leaving 
basic variable. 
 
Each iteration of the simplex method consists of the steps outlined below.  
 
 OUTLINE OF AN ITERATION OF THE SIMPLEX METHOD 
  1. Determine the entering basic variable. 
  2. Determine the leaving basic variable. 
  3. Solve for the new basic feasible solution. 
 
The overall flow of the algorithm, including these iterations, is summarized next. 
 

 
 

STRUCTURE OF THE SIMPLEX METHOD 
 

 
 
 
Table 14.9 has summarized the path followed by the simplex method for the Wyndor problem, 
but not how this path is found. We now describe how each of the steps are performed. 
 
The Initialization Step 
To simplify the notation, we now will let the symbol P represent the value of the objective function, i.e.,  
 
        P  = Profit per week from the doors and windows 
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      = 300 D + 500 W. 
 
This objective function, P = 300 D + 500W, can be rewritten with the decision variables on the left-hand 
side as 
 

P - 300D - 500W = 0, 
 

where P can be viewed as an additional variable in this equation. The initialization step begins by writing 
this equation along with the equations obtained by introducing slack variables into the functional 
constraints. This leads to the following equivalent statement of the original problem. 
 
  Maximize P, 
 
subject to satisfying the following system of equations: 
 
 (0)         P - 300 D -   500W     =   0 
 (1)   D  + s1   =   4 
 (2)               2W    + s2  = 12 
 (3)            3 D  +     2W      + s3  = 18 
and 
  D ≥ 0,  W ≥ 0,   s1 ≥ 0,  s2  ≥ 0,  s3  ≥ 0. 
 
(You will see after the first iteration why it is useful to include equation 0 in this system of equations.) 
 The initialization step next uses equations 1 - 3 to find a convenient initial basic feasible solution. 
This involves selecting two of the five variables (D,  W, s1 , s2 , s3 ) to be nonbasic variables (so set equal 
to zero) and the other three to be basic variables.  These equations are then used to solve for the values of 
the basic variables. 
 The most convenient choice (since it avoids doing any algebra) is to select the decision variables  
(D, W) to be the nonbasic variables, and the slack variables to be the basic variables.  After setting D = 0 
and W = 0, equations 1 - 3 immediately yield: 
 
  Initial Basic Feasible Solution 
  Nonbasic variables: D = 0, W = 0 
  Basic variables: s1 = 4, s2 = 12, s3 = 18 
  Value of objective function: P = 0. 
 
Note why this solution for the basic variables can be read directly from equations 1 - 3, without 
performing any algebraic operations. The reason is that each of these equations has just one basic 
variable, which has a coefficient of 1, and this basic variable does not appear in any other equation 
(including equation 0). You will soon see that when subsequent iterations change the set of basic 
variables, the simplex method uses an algebraic procedure (Gaussian elimination) to convert the 
equations into this same convenient form for reading every subsequent basic feasible solution as well. 
This form is called proper form from Gaussian elimination. 
 
The Optimality Test 
The optimality test is applied quickly and easily by using the current equation 0 given above, 
 
  (0)  P - 300 D -  500W  =   0. 
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The question being asked in examining this equation is whether the value of P can be increased by 
increasing the value of any of the nonbasic variables  (D, W) from 0. The rule for answering this question 
is the following. 
 

Rule for the Optimality Test: Examine the current equation 0, which contains only  P and the 
nonbasic variables (no basic variables) on the left-hand side along with a constant on the right-
hand side. If none of the nonbasic variables have a negative coefficient, then the current basic 
feasible solution is optimal. If one or more  of these coefficients are negative, then the current 
basic feasible solution is not optimal. 
 

Since both D and W have a negative coefficient (-300 and -500), this test concludes that the current basic 
feasible solution (D = 0,  W = 0, s1 = 4, s2 = 12, s3 = 18) is not optimal. 
 The reasoning behind this test becomes more apparent when the nonbasic variables in the 
equation are brought over to the right-hand side (so negative coefficients become positive and vice-versa), 
 
   P = 0 + 300 D + 500W. 
 
At this point (before any iterations are performed), this just gives the original objective function. For the 
current basic solution, both D = 0 and W = 0, so P = 0. Increasing either D or W increases P, where the 
coefficient of that variable (300 or 500) gives the rate at which P increases per unit increase in the 
variable. Furthermore, either D or W can be increased by at least a small amount and still yield a feasible 
solution by adjusting the values of the basic variables to satisfy the system of equations. (Adjusting the 
values of the basic variables does not affect the value of P, because the basic variables are not present in 
equation 0.) For example, increasing the value of D from 0 to 1 changes the current solution from D = 0, 
W = 0, s1 = 4, s2 = 12, s3 = 18 (with P = 0) to D = 1, W = 0, s1 = 3, s2 = 12, s3 = 15 (with P = 300).  
Therefore, the former solution cannot be optimal. 
 Increasing the value of one of the nonbasic variables from 0 while adjusting the values of the 
basic variables accordingly corresponds to moving along an edge of the feasible region from the current 
corner point to one of its adjacent corner points. This leads to the interpretation of the optimality test 
given in Solution Concept 6 at the end of Section 14.3. 
 
Determining the Entering Basic Variable 
To begin the first iteration, the first step is to determine the entering basic variable (the current nonbasic 
variable that should become a basic variable for the next basic feasible solution). Since there currently are 
two nonbasic variables, D and W, one of these two variables must be chosen. 
 Just as for the optimality test, this step is executed by using the current equation 0, 
 
  (0) P - 300 D - 500 W = 0. 
 
The question being addressed at this step is which nonbasic variable would increase P the most by 
increasing the value of that nonbasic variable from 0 to 1.  This question is answered as follows. 
 

Rule for Determining the Entering Basic Variable: Examine the current equation 0, which 
contains only P and the nonbasic variables (no basic variables) on the left-hand side along with a 
constant on the right-hand side. Among the nonbasic variables with a negative coefficient, choose 
the one whose coefficient has the largest absolute value to be the entering basic variable. 
 

Remember that one or more of the nonbasic variables currently must have a negative coefficient, since 
this is how the optimality test determined that the current basic feasible solution is not optimal. 
 In the current equation 0 of the example, both D and W have a negative coefficient (-300 and -
500). The absolute value of a negative number is obtained by dropping the negative sign, so these 
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coefficients have the absolute value, 300 and 500, respectively. Since 500 is larger than 300, W is chosen 
to be the entering basic variable. 
 As for the optimality test, the reasoning behind this rule becomes more apparent when the 
nonbasic variables in the equation are brought over to the right-hand side, 
 
   P  = 0 + 300 D + 500 W. 
 
Increasing D from 0 to 1 increases P by 300, whereas increasing W from 0 to 1 increases P by 500. 
(Increasing either D or W also necessitates adjusting the values of the basic variables to satisfy the system 
of equations, but these adjustments do not affect the value of P because the basic variables are not present 
in equation 0.) These increases in P actually are rates of improvement in P per unit increase in the 
nonbasic variable involved. Thus, increasing  W gives a better rate of improvement in P than increasing 
D. 
 Referring back to Figure 14.12 in Section 14.2, increasing W from 0 corresponds to moving along 
the edge of the feasible region from the current corner point, (0, 0) with P = 0, toward one of the adjacent 
corner points, (0, 6) with P = 500 (6) = 3,000. Increasing D from 0 corresponds to moving along the edge 
of the feasible region from (0, 0) toward the other adjacent corner point, (4, 0) with P = 300 (4) = 1,200. 
Solution Concept 5 in Section 14.3 describes how the former alternative would be chosen because it gives 
the larger rate of improvement in P. Thus, the rule for determining the entering basic variable is based on 
the best rate of improvement criterion . (This criterion was first described in Section 1, but now we can be 
more specific in defining the rate of improvement in P as the increase in P per unit increase in the 
nonbasic variable involved.) 
 
Determining the Leaving Basic Variable 
The second step of an iteration involves determining the leaving basic variable (the current basic variable 
that should become a nonbasic variable for the next basic feasible solution). The current candidates are 
the three basic variables s1, s2 , s3. 
 This step uses all the equations in the current system of equations except equation 0, 
 
 (1)   D  + s1   =   4 
 (2)               2W    + s2  = 12 
 (3)            3 D  +     2W  + s3  = 18 
 
The question being asked this time is which basic variable decreases to 0 first as the entering basic 
variable is increased. The answer is provided by the following rule. 
 

Minimum Ratio Rule for Determining the Leaving Basic Variable: For each equation that has 
a strictly positive coefficient (neither zero nor negative) for the entering basic variable, take the 
ratio of the right-hand side to this coefficient. Identify the equation that has the  minimum ratio,  
and select the basic variable in this equation to be the leaving basic variable. 
 

Notice how the last part of this rule (“select the basic variable in this equation”) uses the fact that the 
system of equations is in proper form from Gaussian elimination. This form ensures that there is exactly 
one basic variable in each of these equations, namely, s1 in equation 1, s2 in equation 2, and s3 in equation 
3. 
 Since W is the entering basic variable, only equations 2 and 3 have a strictly positive coefficient 
for this variable. The resulting ratios for these equations are 
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Since equation 2 has the minimum ratio, its basic variable   becomes the leaving basic variable. 
 The reasoning behind this rule is based on increasing the entering basic variable (and so 
increasing P) as much as possible without causing the resulting solution to become infeasible. From 
equation 2,  
 
   s2 = 12 -2W, 
 
which implies that 12/2 = 6 is the upper bound on W without violating the nonnegativity constraint, s2 ≥ 0. 
Since D = 0,  equation 3 yields 
 
  s3 = 18 - 2W, 
 
so 18/2 = 9 is the upper bound on W without violating s3 ≥ 0. However, using W = 9 would make s2 = -6, 
which is not feasible. Therefore, the minimum ratio is used to select W = 6 and s2 = 0 (a nonbasic 
variable) to be part of the next basic feasible solution (along with D = 0, s1 = 4, s3 = 6). Equation 1 does 
not enter into this analysis because it does not contain W, so increasing W would never cause s1 to become 
negative. 
 The graphical interpretation of this line of reasoning is provided by referring back to Figure 
14.12. Starting from (0, 0) and increasing W leads up the W axis toward the adjacent corner point (0, 6). 
Increasing W to  W = 6  reaches (0, 6),  which lies on the constraint boundary line,  2 W = 12,  so s2 = 0. 
Increasing W further would take you out of the feasible region. For example, increasing W to W = 9 
would take you to the infeasible point (0, 9) which lies on the constraint boundary line, 3D + 2 W = 18 (so 
s3 = 0). Therefore, in order to stop at the adjacent corner point, the minimum ratio is used to determine the 
leaving basic variable. 
 When applying the rule for determining the leaving basic variable, one rare possibility is that 
none of the equations have a strictly positive coefficient for the entering basic variable. Having this 
possibility occur means that both the entering basic variable and P can be increased indefinitely without 
ever leaving the feasible region. This circumstance is the one described in Key Fact 9 in Section 14.1. 
 
Solving for the New Basic Feasible Solution 
After determining the entering basic variable and the leaving basic variable, the final step of an iteration is 
to solve for the new basic feasible solution. 
 Actually, when we finished determining the leaving basic variable, we already were able to look 
ahead and see what this new basic feasible solution would be. In the third paragraph from the end of the 
preceding subsection, we identified this solution as D = 0, W = 6, s1 = 4, s2  = 0, s3= 6. What the current 
step does is to convert the system of equations into a form that (1) clearly exhibits the new basic feasible 
solution and (2) enables the optimality test and (if needed) the next iteration to be performed on this new 
solution. This form for the system of equations is called proper form from Gaussian elimination (as 
introduced earlier). The procedure used to obtain this form is called Gaussian elimination. Gaussian 
elimination is a standard algebraic procedure for finding a simultaneous solution of a system of linear 
equations. 
 Earlier in this section, we showed the initial system of equations as follows: 
 

  

(2)   12
2 = 6   ←  minimum

(3)   18
2 = 9.
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 (0)    P  - 300  D  -   500W     =   0 
 (1)  D                     +  s1    =   4 
 (2)              2W               + s2   = 12 
 (3)                  3 D    +    2W                       + s3  = 18, 
 
where the initial basic variables (s1, s2, s3) now are shown in bold type. We also gave the following 
requirements to have proper form from Gaussian elimination. 
 

REQUIREMENTS FOR PROPER FORM FROM GAUSSIAN ELIMINATION 
 

1.  Equation 0 does not contain any basic variables. 
2.  Each of the other equations contains exactly one basic variable. 
3.  An equation’s one basic variable has a coefficient of 1. (This coefficient is not shown 

explicitly.) 
4.  An equation’s one basic variable does not appear in any other equation (so each basic 

variable appears in exactly one equation). 
 

Note how these four requirements are satisfied for the initial systems of equations when the basic 
variables were s1, s2 , s3. However, for the new basic feasible solution, W has replaced s2 as a basic 
variable.  This system of equations no longer is in proper form from Gaussian elimination in terms of the 
new set of basic variables (s1, W, s3 ). Requirement 1 is violated because equation 0 contains W. 
Requirement 2 is violated because equation 3 contains both W and s3. The fact that W  has a coefficient of 
2 in equation 2 violates requirement 3. Requirement 4 is violated because W appears in two equations 
besides equation 2. 
 To restore proper form, Gaussian elimination performs algebraic operations to accomplish two 
kinds of changes in the system of equations. First, since the entering basic variable W  is replacing the 
leaving basic variable s2 as the one basic variable in equation 2, we need to obtain a coefficient of 1 for W  
in this equation. This is accomplished by dividing equation 2, 
 
 (2) 2 W + s2 = 12, 
 
by 2, the coefficient of W.  This yields 
 
 (2)    W + 0.5 s2  =  6. 
 
Second, W  must be eliminated from the other equations (0 and 3) in which it appears. This is 
accomplished by subtracting the appropriate multiple of the new equation 2 from each of these other 
equations. The appropriate multiple is the coefficient of W  in the other equation.  (When this coefficient is 
negative, subtracting this multiple is equivalent to adding the absolute value of this multiple.)  
 In particular, consider equation 0. Since its coefficient of W  is  -500, we want to add 500 times 
the new equation 2. (This is equivalent to subtracting  (-500) times this equation.) 500 times the new 
equation 2 is 
 
  500 (new eq. 2): 500 W  +  250 s2  = 3,000. 
 
Therefore, the complete algebraic operations are 
 
 Old eq. 0:     P - 300 D  - 500 W   = 0 
 + 500 (new eq. 2): +(           500 W + 250 s2 = 3,000) 
                                                __________________________________                                    ___ 

 = new eq. 0:    P - 300 D          + 250 s2 = 3,000. 



CD 14-52 

 
Since W has a coefficient of 2 in equation 3, the algebraic operations needed to eliminate this coefficient 
are 
 
 Old eq. 3:    3D   + 2 W  + s3  = 18 
 –2 (new eq. 2): –(  2 W  + s2  = 12) 
                                                _____________________________________________________ 
 = new eq. 3:    3D   -  s2  =   6. 
 
Combining all these results gives the following new system of equations. 
 
 (0)  P - 300 D   + 250  s2   = 3,000 
 (1)   D      + s1     =        4 
 (2)          W                 + 0.5   s2   =        6 
 (3)             3D                               -   s2  + s3  =        6 
 
Note that this system of equations does satisfy all the requirements to be in proper form from Gaussian 
elimination for the current set of basic variables (shown in bold type). Therefore, you can immediately 
read the value of each basic variable from the right-hand side of its equation to obtain the new basic 
feasible solution summarized below. 
 

Second Basic Feasible Solution 
Nonbasic variables: D = 0, s2 = 0 
Basic variables: s1 = 4, W = 6, s3 = 6 
Value of objective function: P = 3,000 
 

Furthermore, this system of equations now is in the form needed to perform the optimality test (no basic 
variables in equation 0) and the next iteration. 
 
 
Summary of the Procedure for Solving for the New Basic Feasible Solution: 

1.  For the equation containing the leaving basic variable, divide that equation by the 
coefficient of the entering basic variable. The entering basic variable now becomes the 
one basic variable contained in this equation. 

2.  Now subtract the appropriate multiple of this equation from each of the other 
equations that contain the entering basic variable. The appropriate multiple is the 
coefficient of the entering basic variable in the other equation. 

3.  The system of equations now is in proper form from Gaussian elimination, so read the 
value of each basic variable from the right-hand side of its equation to obtain the new 
basic feasible solution. 

 
 

Completing the Example 
You now have seen all the parts of the simplex method (the initialization step, the optimality test, and the 
three steps of an iteration) in action in the Wyndor problem. To finish solving the problem, the simplex 
method now recycles through these parts (except for the initialization step) repeatedly until it completes 
its pilgrimage by reaching an optimal solution. We briefly outline the remainder of this pilgrimage below, 
using the summary (or rule) already given for each part of the simplex method. 
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Optimality Test for the Second Basic Feasible Solution:  
 
Since the current equation 0, 
 
 (0) P - 300D  + 250 s2  = 3,000, 
 
has one negative coefficient (-300 for D), we conclude that the second basic feasible solution is not 
optimal. Because this equation contains no basic variables (the first requirement for proper form from 
Gaussian elimination), this negative coefficient implies that P can be increased by increasing the nonbasic 
variable D from its current value of D = 0, so another iteration is needed. 
 
 
Determining the Entering Basic Variable:  
 
Since the nonbasic variable D is the only variable with a negative coefficient in the current equation 0, D 
is the entering basic variable for the second iteration. 
 
 
Determining the Leaving Basic Variable: 
 
Referring back to the preceding subsection, look at the current system of equations that gives the current 
(second) basic feasible solution. The entering basic variable D has a strictly positive coefficient (1 and 3) 
in equations 1 and 3, so for each of these equations we take the ratio of the right-hand side to the 
coefficient.  
 

  

 

(1)  4
1
= 4

(3)  6
3
= 2  ←  minimum

  

  
Since equation 3 has a minimum ratio, we select the basic variable in this equation (s3) to be the leaving 
basic variable. 
 
 
Solving for the New Basic Feasible Solution: 
 
Since equation 3 is the one containing the leaving basic variable, we begin by dividing that equation by 3, 
the coefficient of the entering basic variable (D) in that equation. This yields  
 

  
   
(3)  D− 1

3
s2 +

1
3

s3 = 2   

  
Second, to eliminate D from the other equations that contain it (equations 0 and 1), we now subtract the 
appropriate multiple of this new equation 3 from these other equations. For equation 0, this appropriate 
multiple is -300, the coefficient of D in this equation. (Equivalently, this amounts to adding the multiple 
300 of equation 3 to equation 0.) For equation 1, this appropriate multiple is 1, since this is the coefficient 
of D in this equation. After completing these algebraic operations to restore proper form from Gaussian 
elimination in terms of the new set of basic variable shown in bold type (s1, W, D), the system of 
equations becomes 
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(0) P 150s2 +100s3 = 3,600

(1) s1 + 1
3

s2 − 1
3

s3 = 2

(2) W + 1
2

s2 = 6

(3) D − 1
3

s2 + 1
3

s3 = 2

    

  
 
Therefore, the value of each basic variable in the new basic feasible solution now can be read from the 
right-hand side of its equation, as summarized below. 
 

Third Basic Feasible Solution: 
Nonbasic variables: s3 = 0, s2 = 0 
Basic variables: s1 = 2, D = 6, W = 2 
Value of objective function: P = 3,600 

 
Optimality Test for the Third Basic Feasible Solution:  
 
Since the current equation 0 given above has no negative coefficients, the current basic feasible solution 
is optimal, so the simplex method is finished. 
 
 
The Tabular Form of the Simplex Method 
After understanding the logic of the simplex method, some people prefer to switch to a more compact 
form of this method for solving small problems by hand. This more compact form is called the tabular 
form of the simplex method. The tabular form performs exactly the same steps as the “algebraic form” of 
the simplex method presented in this section, but records the information more compactly. Instead of 
writing down each system of equations in full detail, the tabular form uses a simplex tableau to record 
only the essential information. The simplex tableau is simply a table, where each row gives the essential 
information for one of the equations. For a particular row (equation), the various columns of the table 
record (1) the basic variable appearing in that equation, (2) the coefficients of the variables, and (3) the 
constant on the right-hand side of the equation. This saves writing the symbols for the variables in each of 
the equations. More importantly, it permits highlighting the numbers involved in the arithmetic 
calculations and recording the computations compactly. 
 We will not describe the tabular form further here. However, if your instructor presents this form, 
keep in mind that it is using exactly the same procedure in a shorthand way as the algebraic form outlined 
in this section. 
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REVIEW QUESTIONS 
1. What is the three-step outline of an iteration of the simplex method? 
2. What is meant by the entering basic variable during an iteration? What is the rule for determining 

the entering basic variable? 
3. What is meant by the leaving basic variable during an iteration? What is the rule for determining the 

leaving basic variable? 
4. What is accomplished during the initialization step? 
5. What is the rule for the optimality test? 
6. What are the requirements for proper form from Gaussian elimination? 
7. How does the tabular form of the simplex method differ from the algebraic form? 

 
 

14.8  COMPUTER IMPLEMENTATION OF THE SIMPLEX METHOD 
If the electronic computer had never been invented, you undoubtedly would have never heard of linear 
programming and the simplex method. Even though it is possible to apply the simplex method by hand to 
solve tiny linear programming problems, the calculations involved are just too tedious to do this on a 
routine basis. However, the simplex method is ideally suited for execution on a computer. It is the 
computer revolution that has made possible the widespread application of linear programming in recent 
decades.  
 Computer codes for the simplex method, such as the one in the Excel Solver, now are widely 
available for essentially all modern computer systems. In fact, a considerable number of powerful 
software packages for linear programming have been developed by various software development 
companies.  
 The simplex method is used routinely to solve large linear programming problems. For example, 
a problem with many thousands of functional constraints and an even larger number of decision variables 
is not considered particularly large for a mainframe computer or for some workstations, and personal 
computers are not lagging too far behind. Occasionally, even vastly larger problems with millions of 
functional constraints and decision variables now are being successfully solved on fast computers, but not 
on a routine basis yet.  The primary limiting factor is the number of functional constraints, since the 
number of decision variables does not affect the computation time very much. 
 With large linear programming problems, it is inevitable that some mistakes and faulty decisions 
will be made initially in formulating the model and inputting it into the computer. Therefore, a thorough 
process of testing and refining the model (model validation) is needed. The usual end-product is not a 
single static model that is solved once by the simplex method. Instead, the management science team and 
management typically consider a long series of variations on a basic model to examine different scenarios 
as part of the what-if analysis discussed in Chapter 5. 
 Imagine trying to do all this—both formulate a basic model and then repeatedly modify it for 
what-if analysis—when the model has thousands of functional constraints and decision variables. You 
certainly would not accomplish this by trying to fill in the millions of cells needed on an Excel 
spreadsheet. A much more powerful software package would be needed. One key requirement for this 
package is that it must help perform “model management." Model management encompasses a variety 
of activities, including formulating the model, inputting the model into the computer, modifying the 
model, analyzing solutions from the model, and presenting results in the language of management. The 
package commonly includes a modeling language to efficiently generate the model from existing 
databases. Such packages are widely available today and are frequently used by management scientists. 
 Until the mid-1980s, linear programming problems were solved almost exclusively on mainframe 
computers. Since then, there has been an explosion in the capability of doing linear programming on both 
workstations and personal computers.  
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REVIEW QUESTIONS 
1. The simplex method routinely can solve linear programming problems of what size on a fast 

computer? 
2. When dealing with large problems, the software package needs to help perform what kinds of model 

management activities? 

 
14.9  THE INTERIOR-POINT APPROACH TO SOLVING LINEAR PROGRAMMING 

PROBLEMS 
The most dramatic new development in management science during the 1980s was the discovery of the 
interior-point approach to solving linear programming problems. This discovery was made in 1984 by a 
young mathematician at AT&T Bell Laboratories, Narendra Karmarkar, when he successfully developed 
a new algorithm for linear programming with this kind of approach. Although this particular algorithm 
experienced only mixed success in competing with the simplex method, the key solution concept 
described below appeared to have great potential for solving huge linear programming problems beyond 
the reach of the simplex method. Many top researchers subsequently worked on modifying Karmarkar’s 
algorithm to fully tap this potential. Much progress was made and a number of powerful algorithms using 
the interior-point approach have been developed. Today, the more powerful software packages that are 
designed for solving really large linear programming problems (such as CPLEX) include at least one 
algorithm using the interior-point approach along with the simplex method. As research continues on 
these algorithms, their computer implementations continue to improve.  
 Now let us look at the key idea behind Karmarkar’s algorithm and its subsequent variants that use 
the interior-point approach. 

The Key Solution Concept 
Although radically different from the simplex method, Karmarkar’s algorithm does share a few of the 
same characteristics. It is an iterative algorithm. It gets started by identifying a feasible trial solution. At 
each iteration, it moves from the current trial solution to a better trial solution in the feasible region. It 
then continues this process until it reaches a trial solution that is (essentially) optimal. 
 The big difference lies in the nature of these trial solutions. For the simplex method, the trial 
solutions are corner points, so all movement is along edges on the boundary of the feasible region. For 
Karmarkar’s algorithm, the trial solutions are interior points, i.e., points inside the boundary of the 
feasible region. For this reason, Karmarkar’s algorithm and its variants are referred to as interior-point 
algorithms. (The name barrier algorithm now is also commonly used for such algorithms.) 

Solution Concept: Interior-point algorithms shoot through the interior of the feasible region toward an 
optimal solution instead of taking a less direct path around the boundary of the feasible region. 

Your MS Courseware includes a routine for generating the output of a typical interior-point algorithm for 
selected problems. To illustrate, Figure 14.17 shows the path followed by this algorithm when it is 
applied to the Wyndor problem, starting from the initial trial solution (1, 2). Note how all the trial 
solutions (dots) on this path are inside the boundary of the feasible region until the path reaches the 
optimal solution (2, 6). Contrast this path with the path followed by the simplex method (see Figure 
14.13) around the boundary of the feasible region from (0, 0) to (0, 6) to (2, 6). 
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Figure 14.17 The curve from (1, 2) to (2, 6) shows a typical path followed by in interior-point 
algorithm, right through the interior of the feasible region for the Wyndor problem. 

 

Figure 14.18 shows the output of this algorithm for this problem when using 15 iterations to obtain 15 
new trial solutions. Note how the successive trial solutions keep getting closer and closer to the optimal 
solution, but never literally get there. However, the deviation becomes so infinitesimally small that the 
final trial solution can be taken to be the optimal solution for all practical purposes. 
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Figure 14.18 The output of the interior-point algorithm in your MS Courseware when performing 15 
iterations starting from the initial trial solution (D, W) = (1, 2). 

 

Comparison with the Simplex Method 
Interior-point algorithms are far more complicated than the simplex method. Considerably more extensive 
computations are required for each iteration to find the next trial solution. Therefore, the computer time 
per iteration for an interior-point algorithm is many times longer than for the simplex method. 
 For fairly small problems, the number of iterations needed by an interior-point algorithm and the 
simplex method tend to be somewhat comparable. For example, on a problem with 10 functional 
constraints, roughly 20 iterations would be typical for either kind of algorithm. Consequently, on 
problems of similar size, the total computer time for an interior-point algorithm will tend to be many 
times longer than for the simplex method. 
 On the other hand, a key advantage of interior point algorithms is that large problems do not 
require many more iterations than small problems, For example, a problem with 10,000 functional 
constraints probably will require well under 100 iterations. Even considering the very substantial 
computer time per iteration needed for a problem of this size, such a small number of iterations makes the 
problem reasonably easy to solve. By contrast, the simplex method might need 20,000 iterations, and so 
might struggle to finish within a reasonable amount of computer time. Therefore, interior-point 
algorithms often are faster than the simplex method for such huge problems. 
The reason for this very large difference in the number of iterations on huge problems is the difference in 
the paths followed. At each iteration, the simplex method moves from the current corner point to an 
adjacent corner point along an edge on the boundary of the feasible region. Huge problems have an 
astronomical number of corner points. The path from the initial corner point to an optimal solution may 
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be a very circuitous one around the boundary, taking numerous small steps to the next adjacent corner 
point. By contrast, an interior-point algorithm bypasses all this by shooting through the interior of the 
feasible region toward an optimal solution. Adding more functional constraints adds more constraint 
boundaries to the feasible region, but has little effect on the number of trial solutions needed on this path 
through the interior. This makes it possible for interior-point algorithms to solve problems with a huge 
number of functional constraints. 
 A final key comparison concerns the ability to perform the various kinds of what-if analysis 
described in Chapter 5. The simplex method and its variants are very well suited and are widely used for 
this kind of analysis by providing the kind of information given in Excel Solver’s sensitivity report. 
Unfortunately, the interior-point approach currently has limited capability in this area (although research 
progress is being made). Given the great importance of what-if analysis, this is a crucial drawback of 
interior-point algorithms. However, we point out below how the simplex method can be combined with 
the interior-point approach to overcome this drawback. 

The Complementary Roles of the Simplex Method and the Interior-Point Approach 
We anticipate that the simplex method will continue to be the standard algorithm for the routine use of 
linear programming. It should continue to be the most efficient algorithm for problems of moderate size 
(say, less than 10,000 functional constraints) and occasionally for considerably larger problems as well. 
However, the interior-point approach should be faster than the simplex method for many really big 
problems. As the size grows huge (say, hundreds of thousands of functional constraints), the interior-point 
approach sometimes may be the only one capable of solving the problem with today's computers. It is 
dangerous to generalize, however, since recent research advances have enabled the latest state-of-the-art 
computer packages for linear programming to use the simplex method and its variants to solve some 
problems with hundreds of thousands, or even millions, of functional constraints and decision variables! 
 To overcome the drawback of the interior-point approach that it has limited capability for 
performing what-if analysis, researchers have developed procedures for switching over to the simplex 
method after an interior-point algorithm has finished. Recall that the trial solutions obtained by an 
interior-point algorithm keep getting closer and closer to an optimal solution (the best corner point), but 
never quite get there. Therefore, a switching procedure requires identifying a corner point that is very 
close to the final trial solution. 
 For example, by looking at Figures 14.17 and 14.18, it is easy to see that the final trial solution in 
the latter figure is very near the corner point (2, 6). Unfortunately, on problems with thousands of 
decision variables (so no graph is available), identifying a nearby corner point is a very challenging and 
time-consuming task. However, good progress has been made in developing procedures to do this. 
 Once this nearby corner point has been found, the optimality test for the simplex method is 
applied to check whether it actually is the corner point that is an optimal solution. If it is not optimal, 
some iterations of the simplex method are conducted to move from this corner point to an optimal 
solution. Generally, only a very few iterations (perhaps one) are needed because the interior-point 
algorithm has brought us so close to an optimal solution. Therefore, doing these iterations should be quite 
fast even on problems that are too huge to be solved from scratch. After actually reaching an optimal 
solution, the simplex method and its variants then are applied to help perform what-if analysis. 
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REVIEW QUESTIONS 
1. Who developed a new linear programming algorithm using the interior-point approach in 1984? 
2. Do today's more powerful software packages for linear programming typically include an interior-

point algorithm? Do they include the simplex method? 
3. What is the key solution concept for interior-point algorithms? 
4. How do interior-point algorithms and the simplex method compare regarding the computer time 

needed per iteration? 
5. How do interior-point algorithms and the simplex method compare regarding the number of iterations 

needed on small problems (say, 10 functional constraints)? On huge problems (say, 10,000 functional 
constraints)? What accounts for the difference on huge problems? 

6. How do interior-point algorithms and the simplex method compare regarding their capability for 
performing what-if analysis? 

7. What drawback of an interior-point algorithm can be overcome by switching over to the simplex 
method after the interior-point algorithm is finished? 

8. Switching over in this way begins by identifying what kind of solution? 

 
14.10 SUMMARY 
The simplex method continues to be the main procedure for routinely solving linear programming 
problems. In addition, good progress has been made on developing powerful interior-point algorithms that 
often are more efficient than the simplex method for solving very big problems, including even huge 
problems with hundreds of thousands, or even millions,  of functional constraints and decision variables. 
 The simplex method is an algebraic procedure that focuses on corner points of the feasible 
region, since the best corner point must be an optimal solution (unless the problem has no optimal 
solutions). At each iteration, the simplex method moves along an edge of the boundary of the feasible 
region from the current corner point to a better adjacent corner point. It continues these iterations until it 
reaches a corner point that has no better adjacent corner points. The optimality test then says that this 
corner point is an optimal solution.  
 The simplex method uses supplementary variables to convert inequality constraints  into 
equations called constraint boundary equations. By setting certain decision variables and supplementary 
variables to zero (the nonbasic variables), the simplex method solves for a basic feasible solution that 
corresponds to a particular corner point of the feasible region by solving this system of constraint 
boundary equations for the remaining variables (the basic variables). To move to a better adjacent corner 
point, the simplex method performs an iteration that consists of determining the entering basic variable 
(the nonbasic variable that will become a basic variable), then determining the leaving basic variable (the 
basic variable that will become a nonbasic variable), and then solving for the new basic feasible solution. 
 Interior-point algorithms follow a very different path than the simplex method. They shoot 
through the interior of the feasible region toward an optimal solution. Even on huge problems, this path 
enables these algorithms to reach what is essentially an optimal solution after a relatively small number of 
iterations (trial solutions). This characteristic explains why interior-point algorithms often is considerably 
faster than the simplex method on huge problems despite being slower on smaller problems. 
 Software packages based on the simplex method and its extensions are widely available for 
mainframes, workstations, and personal computers. Packages that include the interior-point approach are 
commonly available as well. 
 The simplex method and interior-point algorithms now play complementary roles for solving 
linear programming problems. For problems of small to moderate size (even with many thousands of 
functional constraints and decision variables), the simplex method should be used. For much larger 
problems, an interior-point algorithm may be the best option.  It also would be reasonable on such 
problems to use an interior-point algorithm to approach an optimal solution and then to switch over to the 
simplex method to finish finding this solution and to perform what-if analysis. 



CD 14-61 

 

Glossary 
Adjacent corner points: Corner points that share all but one of the same constraint boundaries. (Section 
14.2) 

Algorithm: A systematic solution procedure for solving a mathematical problem (frequently on a 
computer). (Section 14.3) 

Basic feasible solution:  A  solution that the simplex method obtains by setting the nonbasic variables 
equal to zero and solving for the basic variables. The resulting solution is a corner point that has been 
augmented by the values of the supplementary variables. (Section 14.6) 

Basic variable:  One of the variables that the simplex method solves for after setting the nonbasic 
variables equal to zero. (Section 14.6) 

Best adjacent corner point criterion:  When applying the simplex method graphically, this criterion 
chooses the next corner point by selecting the adjacent corner point that gives the most favorable value of 
the objective function. (Section 14.4) 

Best rate of improvement : A simplex method criterion for choosing the next corner point by selecting 
the adjacent corner point that gives the best rate of improvement in the value of the objective function per 
unit of distance moved. (Sections 14.2 and 14.4) 

Constraint boundary equation:  The equation that gives the boundary of a  ≤  or ≥  constraint by 
replacing the  ≤  or  ≥  by an  =. (Section 14.6) 

Corner point: A point that lies at a corner of the feasible region. From an algebraic viewpoint, if the 
problem has n decision variables, a corner point is a feasible solution that satisfies n constraint boundary 
equations simultaneously. (Section 14.1) 

Edge of the feasible region: A line segment on the boundary of the feasible region that connects a pair of 
adjacent corner points. (Section 14.2) 

Entering basic variable: The nonbasic variable that is converted into a basic variable during an iteration 
of the simplex method. (Section 14.7) 

Enumeration-of-corner-points method: A method for finding an optimal solution by enumerating all 
the corner points and choosing the one with the best value of the objective function. (Section 14.1) 

Gaussian elimination:  The algebraic procedure used by the simplex method for finding a simultaneous 
solution (the current basic feasible solution) of a system of linear equations. (Section 14.7) 

Graphical simplex method:  A streamlined procedure for applying the simplex method graphically when 
the problem has just two decision variables. (Section 14.4) 

Initialization step: The procedure for getting set up to start the iterations of an iterative algorithm. 
(Sections 14.3 and 14.7) 

Interior point: A point inside the boundary of the feasible region. (Section 14.9) 
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Interior-point algorithm: An iterative algorithm that moves through the interior (inside the boundary) of 
the feasible region. (Section 14.9) 

Iteration: A prescribed series of steps (e.g., to find the next trial solution) to be repeated over and over 
again by an iterative algorithm until the desired result (e.g., an optimal solution) has been obtained. 
(Sections 14.3 and 14.7) 

Iterative algorithm: An algorithm that repeats iterations until the desired result has been obtained. 
(Section 14.3) 

Leaving basic variable:  The basic variable that is converted into a nonbasic variable during an iteration 
of the simplex method. (Section 14.7) 

Minimum ratio rule:  The rule used by the simplex method for determining the leaving basic variable for 
the current iteration. (Section 14.7) 

Model management: The management of a large mathematical model being formulated, inputted, 
modified, and analyzed in a computer. (Section 14.8) 

Model validation: The process of testing and refining a model to ensure its validity. (Section 14.8) 

Modeling language:  A computer language designed to expedite the formulation and generation of a 
mathematical model from exiisting databases.  (Section 14.8) 

Nonbasic variable:  A decision variable or supplementary variable that the simplex method currently has 
set equal to zero. (Section 14.6) 

Optimality test: The test used by an iterative algorithm to determine whether a trial solution is optimal. 
(Sections 14.3 and 14.7) 

Postoptimality analysis: Analysis done after finding an optimal solution for the initial version of the 
model. (Section 14.1) 

Proper form from Gaussian elimination: The form for the system of equations that the simplex method 
uses to display the current basic feasible solution. (Section 14.7) 

Simplex method: A standard method for finding an optimal solution (and for providing information for 
what-if analysis) for a linear programming problem. (Section 14.1) 

Simplex tableau:  A special kind of table used for performing the tabular form of the simplex method. 
(Section 14.7) 

Slack variable:  A supplementary variable that gives the slack by which the right-hand side of a ≤ 
constraint exceeds the left-hand side. (Section 14.6) 

Stopping rule: The rule used by an iterative algorithm to determine whether the desired result has been 
obtained. (Section 14.3) 

Surplus variable:  A supplementary variable that gives the surplus by which the left-hand side of a ≥ 
constraint exceeds the right-hand side. (Section 14.6) 
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Tabular form of the simplex method:  A form of the simplex method that uses a series of tables called 
simplex tableaux to perform and record all the necessary steps. (Section 14.7) 

What-if analysis: Analysis addressing questions about what would happen to the conclusions from a 
model if future conditions turn out to differ from what has been assumed in the model. (Section 14.1) 

 
Learning Aids for This Chapter in Your MS Courseware 
Chapter 14 Excel Files: 

Wyndor Examples 

 Interior-Point Algorithm 

 
Problems 
The symbols to the left of some of the problems (or their parts) have the following meaning: 

E*: Use Excel. 

R*: Use the routine listed above. 

An asterisk on the problem number indicates that at least a partial answer is given at the end of all the 
problems. 
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14.1. A certain linear programming model involving two activities has the feasible region shown 
below. 

  

The objective is to maximize the total profit from the two activities. The unit profit for activity 1 
is $1,000 and the unit profit for activity 2 is $2,000. Apply the enumeration-of-corner-points 
method to find an optimal solution. 
 

14.2. Reconsider the Profit & Gambit advertising-mix problem presented in Section 2.7. Refer to its 
feasible region —including the three corner points at (0, 9), (4, 3), and (8, 3) —shown in Figure 
2.22. Use the enumeration-of-corner-points method to show that (4, 3) is the optimal solution. 
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14.3. Consider a resource-allocation problem having the following data: 

  Resource Usage Per Unit of 
Each Activity 

 

  
Resource 

Activity 
 1 2 

Amount of Resource 
Available 

 A  1  0 5 
 B  0  1 4 
 C  2  1 9 
 D  3  4 21 
 Unit profit  $30  $20  

The objective is to determine the number of units of each activity to undertake so as to maximize 
the total profit. 

E* a. Formulate a spreadsheet model for this problem. 
 b. Graph the feasible region. Use this graph to identify all the corner points. 
E* c. Use the spreadsheet to determine the total profit for each of these corner points. Then use this 

information to identify an optimal solution. 
E* d. Use Solver (which applies the simplex method) to confirm this optimal solution. 
 e. Use the graphical method to confirm this optimal solution. 
 
14.4. Follow the instructions of Problem 14.3 for the following resource-allocation problem having the 

objective of maximizing the total profit from the two activities. 

  Resource Usage Per Unit of 
Each Activity 

 

  
Resource 

Activity 
 1 2 

Amount of Resource 
Available 

 A  5  3 30 
 B  2  3 21 
 C  0  1 6 
 Unit profit  $300  $200  

 

14.5. Consider the five variations of the Wyndor problem given in Table 14.1. 
a. Redraw the feasible region for this problem, as given in Figure 2.6. Then find and draw the 

optimal objective function line for each of these variations in order to verify that the optimal 
solution given in the table actually is optimal. 

b. For each variation, verify that the optimal solution given in the table actually is optimal by 
applying the enumeration-of-corner-points method. 
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14.6. The shaded area in the following graph represents the feasible region of a linear programming 
problem whose objective function is to be maximized, where x1 and x2 represent the level of the 
two activities. 

!
Label each of the following statements as True or False, and then justify your answer based on 
the graphical method. In each case, give an example of an objective function that illustrates your 
answer. 

a.  If (3,3) produces a larger value of the objective function than (0, 2) and (6, 3), then (3, 3) 
must be an optimal solution. 

b.  If (3, 3) is an optimal solution and multiple optimal solutions exist, then either (0, 2) or (6, 3) 
must also be an optimal solution. 

c.  The point (0, 0) cannot be an optimal solution. 
 

14.7. Reconsider the preceding problem.  
a. Use the graph of the feasible region to identify all the constraints for the linear programming 

model. 
b. Construct a table like Table 14.3 that gives examples of objective functions that together give 

all the possibilities for multiple optimal solutions. 
c. Suppose that the objective function is Profit =-x1 + 5x2. Use the enumeration-of-corner-points 

method to find the optimal solution. 
d. Now suppose that the objective function is Profit = -x1 + 2x2. Use the enumeration-of-corner-

points method to find all the optimal solutions. 
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14.8. Consider the following resource-allocation problem that has the objective of maximizing the total 
profit from the two activities. 

  Resource Usage Per Unit of 
Each Activity 

 

  
Resource 

Activity 
 1 2 

Amount of Resource 
Available 

 A  5  4 20 
 B  6  9 30 
 C  2  5 15 
 Unit profit $20 million        $30 million  

 
E* a. Formulate and solve a spreadsheet model for this problem. Also obtain the sensitivity report. 

b. Explain why this sensitivity report indicates that the problem has other optimal solutions in 
addition to the one found in part a. Alter the spreadsheet slightly as needed to find another 
optimal solution with Solver. 

c. Since the optimal solutions found in parts a and b are both corner points (Solver only 
considers corner points), describe how these solutions can be used to find other optimal 
solutions. 

d. Use the graphical method to find all optimal solutions. 
 

14.9. Follow the instructions of Problem 14.8 for the following resource-allocation problem, which 
again has the objective of maximizing the total profit from the two activities. 

  Resource Usage Per Unit of 
Each Activity 

 

  
Resource 

Activity 
 1 2 

Amount of Resource 
Available 

 A  15  5 300 
 B  10  6 240 
 C  8  12 450 
 Unit profit  $500  $300  
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14.10. Consider the following linear programming model in algebraic form, where x1 and x2 are the 
decision variables representing the levels of the two activities, and where the coefficients of these 
decision variables in the objective function (c1 and c2) have not yet been ascertained. 

Maximize      Profit = c1x1 + c2x2, 
subject to 

     2 x1 +   x2 ≤ 11 
   -x1 + 2 x2  ≤ 2 

and  
   x1 ≥ 0, x2 ≥ 0. 

Use graphical analysis to determine the optimal solution(s) for (x1, x2) for the various possible 
values of c1 and c2. (Hint: Separate the cases where c2 = 0, c2 > 0, and c2 < 0. For the latter two 
cases, focus on the ratio of c1 to c2.) 
 

14.11. Consider the following cost-benefit-tradeoff problem. 

  Benefit Contribution Per Unit 
of Each Activity 

 

  
Benefit 

Activity 
 1 2 

Minimum Acceptable 
Level 

 1  -2  1 1 
 2  1  -2 1 
 Unit cost  $5,000  $7,000  

E* a. Formulate a spreadsheet model for this problem. 
E* b. Use Solver (which applies the simplex method) to find that the model has no feasible 

solutions. 
c. Use the graphical method to demonstrate that the model has no feasible solutions. 
 

14.12. The following linear programming model (in algebraic form) has one resource constraint, one 
benefit constraint, and two decision variables (A1 and A2) representing the levels of the two 
activities. 

Maximize      Profit = 90A1 + 70A2, 
subject to 

Resource: 2A1 + A2 ≤ 2  (amount available) 
Benefit:  A1 – A2 ≥ 2  (minimum acceptable level) 

and 
A1≥ 0, A2 ≥ 0. 

Follow the instructions of Problem 14.11 for this model. 
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14.13. Suppose that the following constraints have been provided for a linear programming model with 
decision variables x1 and x2. 
 –x1 + 3x2 ≤ 30 
 –3x1 + x2 ≤ 30 

 and 
x1 ≥ 0, x2 ≥ 0 

a. Demonstrate graphically that the feasible region is unbounded. 
b. If the objective is to maximize Profit = -x1 + x2 does the model have an optimal solution? If 

so, find it. If not, explain why not. 
c. Repeat part b when the objective is to maximize Profit = x1 –x2. 
d. For objective functions where this model has no optimal solution, does this mean that there 

are no good solutions according to the model? Explain. What probably went wrong when 
formulating the model? 

E* e. Select an objective function for which this model has no optimal solution. Formulate the 
corresponding model on a spreadsheet. Then apply Solver. Explain the meaning of the 
message given by Solver. 

 
14.14. Follow the instructions of Problem 14.13 when the constraints are the following: 

 2x1 – x2 ≤ 20 
 x1 – 2x2 ≤ 20 

  and 
x1 ≥ 0, x2 ≥ 0 
 

14.15. Consider the following algebraic form of a linear programming model with decision variables x1 
and x2. 

Maximize      Profit = x1 + 2 x2, 
subject to 

   x1     ≤ 2 
    x2    ≤ 2 

   x1 + x2      ≤ 3 
and 

x1 ≥ 0, x2 ≥ 0 

a. Plot the feasible region and circle all the corner points. 
b. For each corner point, identify the pair of constraint boundary equations that it satisfies. 
c. For each corner point, use this pair of constraint boundary equations to solve algebraically for 

the values of x1 and x2 at the corner point. 
d. For each corner point, identify its adjacent corner points. 
e. For each pair of adjacent corner points, identify the constraint boundary they share by giving 

its equation. 
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14.16.* Reconsider Problem 2.6 about investing $6,000 in entrepreneurial ventures. 
a. Use the graphical method to solve this problem. Circle all the corner points on the graph. 
b. For each corner point, identify its adjacent corner points. 
 

14.17. Consider the following algebraic form of a linear programming model with decision variables x1 
and x2. 

Maximize      Profit = 3x1 + 2x2,  
subject to 

 2x1 + x2  ≤ 6 
 x1 + 2x2  ≤ 6 

and 
 x1 ≥ 0, x2 ≥ 0. 

a. Use the graphical method to solve this model. Circle all the corner points on the graph. 
b. Fill out a table like Table 14.5 for these corner points. 
c. Also fill out a table like Table 14.6. 
d. Use the enumeration-of-corner-points method to solve the model. 
e. Describe graphically what the simplex method does step by step to solve the model. 
 

14.18. Follow the instructions of Problem 14.17 for the following model: 
Maximize       Profit = x1 + 2x2,  

subject to 
    x1 +  3x2  ≤ 8 
    x1 +    x2  ≤ 4 

and 
x1 ≥ 0,  x2 ≥ 0. 
 

14.19. Follow the instructions of Problem 14.17 for the following model: 
Maximize       Profit = 3x1 + 2x2,  

subject to 
    x1  ≤ 4 
     x1 + 3x2  ≤ 15 
   2x1  +  x2  ≤ 10 

and 
x1 ≥ 0, x2 ≥ 0. 
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14.20.* Describe graphically what the simplex method does step by step to solve the following model:  
  Maximize  Profit = 10x1 +  20x2, 
 subject to 
      -x1 +  2x2 ≤ 15 
       x1  +   x2 ≤ 12  
     5x1 +   3x2 ≤ 45 
 and 
    x1 ≥ 0,   x2 ≥ 0. 
 
14.21. Describe graphically what the simplex method does step by step to solve the following model: 

Maximize      Profit = 2x1 + 3x2,  
subject to 

 -3x1 + x2  ≤ 1 
 4x1 + 2x2  ≤ 20 
 4x1 – x2  ≤ 10 
 -x1 + 2x2  ≤ 5 

and 
x1 ≥ 0, x2 ≥ 0. 
 

14.22. Describe graphically what the simplex method does step by step to solve the following model. 
  Minimize  Cost = 15x1 +  20x2, 
 subject to 
       x1 +  2x2 ≥ 10 
     2x1 -   3x2 ≤   6 
       x1 +    x2  ≥   6 
 and 
     x1 ≥ 0,   x2 ≥ 0. 
 
14.23. Describe graphically what the simplex method does step by step to solve the following model. 

Minimize      Cost = 5x1 + 7x2,  
subject to 

2x1 + 3x2  ≥ 42 
3x1 + 4x2  ≥ 60 
  x1 +   x2  ≥ 18 

and 
x1 ≥ 0, x2 ≥ 0. 
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14.24. Label each of the following statements about linear programming problems as True or False, and 
then justify your answer. 
a.  For minimization problems, if the objective function evaluated at a corner point is at least as 

small as its value at every adjacent corner point, then that solution is optimal. 
b.  Only corner points can be optimal, so the number of optimal solutions cannot exceed the 

number of corner points. 
c. An optimal corner point may have an adjacent corner point that also is optimal (the same 

value of the objective function). 
 

14.25. Each of the following statements is true under most circumstances, but not always. In each case, 
indicate when the statement will not be true and why. 
a. The best corner point is an optimal solution. 
b. An optimal solution is a corner point. 
c. A corner point is the only optimal solution if none of its adjacent corner points are better (as 

measured by the value of the objective function). 
 

14.26. The following statements give inaccurate paraphrases of the six solution concepts presented in 
Section 14.3. In each case, explain what is wrong with the statement. 
a. The best corner point always is an optimal solution. 
b. The iterative step of the simplex method checks whether the current corner point is optimal 

and, if not, moves to a new corner point. 
c. Although any corner point can be chosen to be the initial corner point, the simplex method 

always chooses the origin. 
d. When the simplex method is ready to choose a new corner point to move to from the current 

corner point, it only considers adjacent corner points because one of them is likely to be an 
optimal solution. 

e. To choose the new corner point to move to from the current corner point, the simplex method 
identifies all the adjacent corner points and determines which one gives the largest rate of 
improvement in the value of the objective function. 
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14.27. Consider the following resource-allocation problem that has the objective of maximizing the total 
profit from the two activities. 

  Resource Usage Per Unit of 
Each Activity 

 

  
Resource 

Activity 
 1 2             

Amount of Resource 
Available 

 A  3  1             15 
 B  1  2             10 
 Unit profit    $2 million           $1 million  

You are given that the corner points of the feasible region are (0, 0), (5, 0), (4, 3), and (0, 5). 

E* a. Formulate a spreadsheet model for this problem. 
E* b. Use the enumeration-of-corner-points method with this spreadsheet to solve the model. 
E* c. Use Solver (which applies the simplex method) to confirm your answer for the optimal 

solution in part b. 
d. Draw a graph of the feasible region and then identify the sequence of corner points examined 

by the simplex method in part c to solve the model. 
 

14.28. Consider the following algebraic form of a linear programming model where x1 and x2 are the 
decision variables and Z is the value of the objective function. 

Maximize Z = 3x1 + x2, 
subject to 

x1 + x2 ≤ 4  
and 

x1 ≥ 0, x2 ≥ 0. 
a. Draw the feasible region and identify all the corner points. 
b. Identify the sequence of corner points examined by the simplex method to reach the optimal 

solution. 
R* c. Apply the routine for the interior-point algorithm in your MS Courseware to this problem to 

perform 10 iterations when starting from the initial trial solution (x1, x2) = (1, 1).  (Obtain 
these results by going to Textbook Spreadsheets for Chapter 14 on the book’s website.) 
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14.29. Consider the following algebraic form of a linear programming model where x1 and x2 are the 
decision variables and Z is the value of the objective function. 

Maximize Z = x1 + x2,  
subject to 

x1 + 2x2 ≤ 9 
2x1 + x2 ≤ 9  

and 
x1 ≥ 0, x2 ≥ 0. 

a. Use the graphical method to solve the model. 
b. Identify all the corner points of the feasible region. 
c. Because x1 and x2 have the same coefficient in the objective function, there is a tie in the first 

iteration of the simplex method when choosing whether to increase x1 or x2 for moving away 
from the initial corner point at the origin. For each of these two possible choices, identify the 
sequence of corner points that then would be examined by the simplex method to reach the 
optimal solution. 

R* d. Apply the routine for the interior-point algorithm in your MS Courseware to this problem to 
perform 10 iterations when starting from the initial trial solution (x1, x2) = (1, 1).  (Obtain 
these results by going to Textbook Spreadsheets for Chapter 14 on the book’s website.) 

R* e. Repeat part d when starting from the initial trial solution (x1, x2) = (3, 1). 
 
14.30. Consider the following algebraic form of a linear programming model where x1, x2, and x3 are the 

decision variables and Z is the value of the objective function. 
Maximize Z = 2 x1 + 5 x2 + 7 x3,  

subject to 
x1 + 2 x2 + 3 x3 = 6 

and 
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0. 

E* a. Use Solver (which applies the simplex method) to solve the model. 
R* b. Apply the routine for the interior-point algorithm in your MS Courseware to this problem to 

perform 10 iterations when starting from the initial trial solution (x1, x2, x3) = (1, 1, 1).  
(Obtain these results by going to Textbook Spreadsheets for Chapter 14 on the book’s 
website.) 
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14.31. Consider the following algebraic form of a linear programming model where x1, x2, x3, and x4 are 
the decision variables and Z is the value of the objective function. 

 
  Maximize     Z = 50 x1 + 60 x2 + 40 x3 + 30 x4, 
 subject to 
  3 x1 + 5 x2+ 2 x3 + 3 x4   ≤  130 
  4 x1 + 3 x2+ 5 x3 + x4       ≤  130 
  2 x1 + 6 x2+ 4 x3 + 7 x4   ≤  190 
 and 
  x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0. 
E* a. Use Solver (which applies the simplex method) to solve the model. 
R* b.  Apply the routine for the interior-point algorithm in your MS Courseware to this problem to 

perform 10 iterations when starting from the initial trial solution (x1, x2, x3, x4) = (5, 6, 4, 3).  
(Obtain these results by going to Textbook Spreadheets for Chapter 14 on the book’s 
website.) 

 
14.32.   Use the graphical simplex method to solve the linear programming model given in Problem 

14.17. 
 
14.33.   Use the graphical simplex method to solve the linear programming model given in Problem 

14.18. 
 
14.34.   Use the graphical simplex method to solve the linear programming model given in Problem 

14.19. 
 
14.35.   Consider the following model: 
 
  Maximize     Z = 2x1 + x2,  
 subject to 
     x1    ≤  2 
     x2  ≤  5  
 and 
      x1 ≥ 0,   x2 ≥ 0.  

a. Plot the feasible region by hand. Then use this graph to apply the graphical simplex method. 
b. Repeat part a but use the best rate of improvement criterion instead of the best adjacent 

corner point criterion. 
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14.36.   Consider the following model: 
 
  Maximize   Profit = x1 + 2 x2 + 3 x3, 
 subject to 
   x1 ≤ 1,    x2 ≤ 1,    x3 ≤ 1 
 and 
   x1 ≥ 0,     x2 ≥ 0,    x3 ≥ 0. 
 

a. Draw a three-dimensional graph similar to Figure 14.16 that shows the feasible region. 
b. Identify all the corner points. 
c. Use the enumeration-of-corner-points method to find an optimal solution. 
d. Outline the steps that the simplex method (with the best adjacent corner point criterion) 

would take to find an optimal solution. 
 
14.37.   Follow the instructions of Problem 14.36 for the following model:  
 
  Maximize   Profit = 2 x1 + x2 - x3 , 
 subject to 
   x1 ≤ 2,    x2 ≤ 3,   x3  ≤ 2 
  x1 + x2  ≤ 4 
 and 
   x1 ≥ 0,     x2 ≥ 0,     x3 ≥ 0. 
 
14.38.   Consider the following functional constraints: 
 
               x2  ≤ 10 
     2 x1 + x2 ≤ 20 
 

a. Define the slack variables for these constraints algebraically. 
b. Which values of these slack variables cause the constraints to be satisfied? 
c. Show these constraints after they have been converted into equations by incorporating the 

slack variables. 
d. Assume that x1 and have nonnegativity constraints and consider the corner point, 

(x1, x2 ) = (10, 0). What are the values of the slack variables at this corner point? What are the 
equations of the constraint boundaries on which it lies? What is the corresponding basic 
feasible solution? Identify the nonbasic variables and the basic variables for this solution. 
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14.39.   By introducing a slack variable s, a functional constraint in ≤ form has been converted into the 
following equation: 

 
  25 x1 + 40 x2  + 50 x3 + s = 500 
 

a. What was the functional constraint before introducing the slack variable? 
b. Which values of the slack variable cause the constraint to be satisfied? 
c. A solution for (x1, x2, x3 ) lies on the boundary of this constraint when the slack variable has 

which value? 
 
14.40.   Consider the following model: 
 
  Maximize Profit = 2x1 + x2,  
 subject to 
              3x1 +   x2 ≤ 15 
      x1 + 2x2  ≤ 10   
 and 
           x1 ≥ 0,    x2 ≥ 0.  
 
 You are given that its corner points are (0, 0), (5, 0), (4, 3), and (0, 5). 
 

a. Use the enumeration-of-corner-points method to solve the model. 
b. Use the information developed in part a to identify the path that the graphical simplex method 

would follow to solve the model. 
c. Convert the functional constraints into equations by introducing slack variables. 
d. Identify all the basic feasible solutions for the problem with slack variables. For each such 

solution, identify both the nonbasic variables and the basic variables. 
e. What is the sequence of basic feasible solutions obtained by the simplex method when 

following the path identified in part b? 
 
14.41.   Consider the following functional constraints: 
 
     2x1  +  3x2   ≥  21 
    5x1  +  3x2   ≥  30 
 

a. Define the surplus variables for these constraints algebraically. 
b. Which values of these surplus variables cause the constraints to be satisfied? 
c. Show these constraints after they have been converted into equations by incorporating the 

surplus variables. 
d. Consider the corner point, (x1, x2) = (3, 5). What are the values of the surplus variables at this 

corner point? What are the equations of the constraint boundaries on which it lies? What is 
the corresponding basic feasible solution? Identify the nonbasic variables and the basic 
variables for this solution? 
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14.42.   By introducing a surplus variable s, a functional constraint in ≥ form has been converted into the 

following equation: 
 
   20 x1 + 10 x2 - s = 100 
 

a. What was the functional constraint before introducing the surplus variable? 
b. Which values of the surplus variable cause the constraint to be satisfied? 
c. A solution for (x1, x2) lies on the boundary of this constraint when the surplus variable has 

which value? 
 
14.43.   Consider the following model: 
 
  Minimize   Cost = 2 x1 + x2, 
 subject to 
  5 x1 + 3 x2  ≥ 60 
  3 x1 + 2 x2  ≤ 48 
     x1 +    x2  ≥ 15 
 and 
  x1 ≥ 0, x2 ≥ 0. 
 

a. Starting with the corner point, (x1, x2) = (16, 0), use the graphical simplex method to solve the 
model. 

b. Convert the functional constraints into equations by introducing slack variables and surplus 
variables as needed. 

c. What is the sequence of basic feasible solutions obtained by the simplex method when 
following the path identified in part a? 
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14.44.  Consider the following model: 
 

          Maximize   Profit = x1 + 3 x2, 
subject to 

       x1  ≤ 7 
           x2 ≤ 2 
 and 
  x1 ≥ 0,         x2 ≥ 0. 
 

a. Plot the feasible region by hand. Then use this graph to apply the graphical simplex method. 
b. Repeat part a but use the best rate of improvement criterion instead of the best adjacent 

corner point criterion. 
c. Introduce slack variables to convert the functional constraints into equations. 
d. Fill out a table like Table 14.9 that shows both the geometric progression and algebraic 

progression of the simplex method when following the path identified in part b. 
e. Flesh out the algebraic progression found in part d by applying the simplex method (in 

algebraic form) to solve the model. 
 
14.45.   Follow the instructions of Problem 14.44 for the model in Problem 14.15. 
 
14.46.  Consider the following model: 
 
  Maximize   Profit = 2x1 + x2, 
 subject to 
    x1 + x2 ≤   40 
  4x1 + x2 ≤ 100 
 and 
  x1 ≥ 0,  x2 ≥ 0. 
 

a. Use the graphical simplex method to solve the model. 
b. Introduce slack variables to convert the functional constraints into equations. 
c. Fill out a table like Table 14.9 that shows both the geometric progression and algebraic 

progression of the simplex method when following the path identified in part a. 
d. Flesh out the algebraic progression found in part c by applying the simplex method (in 

algebraic form) to solve the model. 
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14.47.   Follow the instructions of Problem 14.46 for the following model: 
 
  Maximize   Profit = 2x1 + 3x2, 
 subject to 
  x1 + 2x2 ≤ 30 
  x1 +   x2 ≤ 20 
 and 
  x1 ≥ 0,  x2 ≥ 0. 
 
14.48.   Consider the following model: 
 
  Maximize      Profit = 4x1 + 3x2 + 6x3,  
 subject to 
  3x1 +    x2 + 3 x3   ≤  30 
  2x1  +   2 x2 + 3 x3  ≤  40  
 and 
  x1 ≥ 0,     x2 ≥ 0    x3 ≥ 0.  
 

a. Use the simplex method (in algebraic form) to solve this model. 
b. Use Solver to verify the optimal solution you obtained in part a. 

 
 
  x1 ≥ 0,  x2 ≥ 0,  x3 ≥ 0. 
 
 

Cases 
Any of the cases at the end of Chapter 3 can also be used in conjunction with this chapter. Although those 
cases do not focus on solution concepts for linear programming, they do require solving linear 
programming models of substantial size. 
!
!
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PARTIAL ANSWERS TO SELECTED PROBLEMS 
14.16.  a. Optimal Solution: (x1, x2) = (0.667, 0.667) and Profit = $6,000. 
 

   
   -Note: Corner points will be called A, B, C, D, E, and F going clockwise from (0,1). 
  b. -Corner Point  A: F and B are adjacent. 
    B: A and C are adjacent. 
    C: B and D are adjacent. 
    D: C and E are adjacent. 
    E: D and F are adjacent. 
    F: E and A are adjacent. 
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14.20.! !
!
!

!
! !

Corner Point Profit = 10x1 + 20x2  Next Step 
(0,0) 0 Check (0,7.5) and (9,0). 

(0,7.5) 
(9,0) 

150 
90 

Move to (0,7.5). 
Check (3,9). 

(3,9) 210 Move to (3,9) 
Check (4.5,7.5). 

(4.5,7.5) 195 Stop, (3,9) is optimal. 
!


