
SOLUTIONS TO SELECTED EXERCISES  111

CHAPTER SIX

Section 6.1E

 1. a. We shall prove that every sentence of SL that contains only binary 
connectives, if any, is true on every truth-value assignment on which all its 
atomic components are true. Hence every sentence of SL that contains only 
binary connectives is true on at least one truth-value assignment, and thus no 
such sentence is truth-functionally false. We proceed by mathematical induction 
on the number of occurrences of connectives in such sentences. (Note that 
we need not consider all sentences of SL in our induction but only those with 
which the thesis is concerned.)
Basis clause: Every sentence with zero occurrences of a binary connective (and 
no occurrences of unary connectives) is true on every truth-value assignment 
on which all its atomic components are true.
Inductive step: If every sentence with k or fewer occurrences of binary connec-
tives (and no occurrences of unary connectives) is true on every truth-value 
assignment on which all its atomic components are true, then the same is true 
of every sentence with k 1 1 occurrences of binary connectives (and no occur-
rences of unary connectives).

The proof of the basis clause is straightforward. A sentence with zero 
occurrences of any connective is an atomic sentence, and each atomic sentence 
is true on every truth-value assignment on which its atomic component (which 
is the sentence itself) is true.

The inductive step is also straightforward. Assume that the thesis holds 
for every sentence of SL with k or fewer occurrences of binary connectives and 
no unary connectives. Any sentence P with k 1 1 occurrences of binary con-
nectives and no unary connectives must have one of the four forms Q & R, 
Q ∨ R, Q ⊃ R, and Q ; R. In each case Q and R contain k or fewer occur-
rences of binary connectives, so the inductive hypothesis holds for both Q and 
R. That is, both Q and R are true on every truth-value assignment on which 
all their atomic components are true. Since P’s immediate components are Q 
and R, its atomic components are just those of Q and R. But conjunctions, 
disjunctions, conditionals, and biconditionals are true when both their imme-
diate components are true. So P is also true on every truth-value assignment 
on which its atomic components are true, for both its immediate components 
are then true. This completes our proof. (Note that in this clause we ignored 
sentences of the form ~ Q, for the thesis concerns only those sentences of SL 
that contain no occurrences of ‘~’.)
  b. Every sentence P that contains no binary connectives either contains 
no connectives or contains at least one occurrence of ‘~’. We prove the thesis by 
mathematical induction on the number of occurrences of ‘~’ in such sentences. 
The fi rst case consists of the atomic sentences of SL since these contain zero 
occurrences of connectives.
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Basis clause: Every atomic sentence is truth-functionally indeterminate.
Inductive step: If every sentence with k or fewer occurrences of ‘~’ (and no 
binary connectives) is truth-functionally indeterminate, then every sentence 
with k 1 1 occurrences of ‘~’ (and no binary connectives) is truth-functionally 
indeterminate.

The basis clause is obvious.
The inductive step is also obvious. Suppose P contains k 1 1 occur-

rences of ‘~’ and no binary connectives and that the thesis holds for every 
sentence with fewer than k 1 1 occurrences of ‘~’ and no binary connectives. 
P is a sentence of the form ~ Q, where Q contains k occurrences of ‘~’; hence, 
by the inductive hypothesis, Q is truth-functionally indeterminate. The nega-
tion of a truth-functionally indeterminate sentence is also truth-functionally 
indeterminate. Hence ~ Q, that is, P, is truth-functionally indeterminate. This 
completes the induction.
  c. The induction is on the number of occurrences of connectives in P. 
The thesis to be proved is

If truth-value assignments A9 and A0 assign the same truth-values to the 
atomic components of a sentence P, then P has the same truth-value 
on A9 and A0.

Basis clause: The thesis holds for every sentence with zero occurrences of 
connectives.
Inductive step: If the thesis holds for every sentence with k or fewer occurrences 
of connectives, then the thesis holds for every sentence with k 1 1 occurrences 
of connectives.

The basis clause is obvious. If P contains zero occurrences of connec-
tives, then P is an atomic sentence and its own only atomic component. P must 
have the same truth-value on A9 and A0 because ex hypothesi it is assigned the 
same truth-value on each assignment.

To prove the inductive step, we let P be a sentence with k 1 1 occur-
rences of connectives and assume that the thesis holds for every sentence 
 containing k or fewer occurrences of connectives. Then P is of the form ~ Q, 
Q & R, Q ∨ R, Q ⊃ R, or Q ; R. In each case the immediate component(s) 
of P contain k or fewer occurrences of connectives and hence fall under the 
inductive hypothesis. So each immediate component of P has the same truth-
value on A9 and A0. P therefore has the same truth-value on A9 and A0, as 
determined by the characteristic truth-tables.
  d. We prove the thesis by mathematical induction on the number of 
conjuncts in an iterated conjunction of sentences P1, . . . , Pn of SL.
Basis clause: Every iterated conjunction of just one sentence of SL is true 
on a truth-value assignment if and only if that one sentence is true on that 
assignment.
Inductive step: If every iterated conjunction of k or fewer sentences of SL is true 
on a truth-value assignment if and only if each of those conjuncts is true on 
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that assignment, then the same is true of every iterated conjunction of k 1 1 
sentences of SL.

The basis clause is trivial.
To prove the inductive step, we assume that the thesis holds for 

iterated conjunctions of k or fewer sentences of SL. Let P be an iterated 
conjunction of k 1 1 sentences. Then P is Q & R, where Q is an iterated 
conjunction of k sentences. P is therefore an iterated conjunction of all the 
sentences of which Q is an iterated conjunction, and R. By the inductive 
hypothesis, the thesis holds of Q; that is, Q is true on a truth-value assign-
ment if and only if the sentences of which Q is an iterated conjunction are 
true on that assignment. Hence, whenever all the sentences of which P is an 
iterated conjunction are true, both Q and R are true, and thus P is true as 
well. Whenever at least one of those sentences is false, either Q is false or R 
is false, making P false as well. Hence P is true on a truth-value assignment 
if and only if all the sentences of which it is an iterated conjunction are true 
on that assignment.
  e. We proceed by mathematical induction on the number of occur-
rences of connectives in P. The argument is

The thesis holds for every atomic sentence P.

If the thesis holds for every sentence P with k or fewer 
occurrences of connectives, then it holds for every sentence P 
with k 1 1 occurrences of connectives.

The thesis holds for every sentence P of SL.

The proof of the basis clause is fairly simple. If P is an atomic sentence and Q 
is a sentential component of P, then Q must be identical with P (since each 
atomic sentence is its own only atomic component). For any sentence Q1, 
then, [P](Q1//Q) is simply the sentence Q1. Here it is trivial that if Q and Q1 
are truth-functionally equivalent, so are P (which is just Q) and [P](Q1//Q) 
(which is just Q1).

In proving the inductive step, the following result will be useful: 

6.1.1. If Q and Q1 are truth-functionally equivalent and R and R1 
are truth-functionally equivalent, then the sentences in each of the 
following pairs are truth-functionally equivalent:

~ Q ~ Q1
Q & R Q1 & R1
Q ∨ R Q1 ∨ R1
Q ⊃ R Q1 ⊃ R1
Q ; R Q1 ; R1
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Proof: The truth-value of a truth-functionally compound sentence 
is wholly determined by the truth-values of its immediate compo-
nents. Hence, if there is a truth-value assignment on which some 
sentence in the left-hand column has a truth-value different from 
that of its partner in the right-hand column, then on that assign-
ment either Q and Q1 have different truth-values or R and R1 have 
different truth-values. But this is impossible because ex hypothesi 
Q and Q1 are truth-functionally equivalent and R and R1 are truth-
functionally equivalent.

To prove the inductive step of the thesis, we assume the inductive 
hypothesis: that the thesis holds for every sentence with k or fewer occurrences of 
connectives. Let P be a sentence of SL with k 1 1 occurrences of connectives, let 
Q be a sentential component of P, let Q1 be a sentence that is truth-functionally 
equivalent to Q, and let [P](Q1//Q) be a sentence that results from replacing 
one or more occurrences of Q in P with Q1. Suppose, fi rst, that Q is identical 
with P. Then, by the reasoning in the proof of the basis clause, it follows trivially 
that P and [P](Q1//Q) are truth-functionally equivalent. Now suppose that Q 
is a sentential component of P that is not identical with P (in which case we say 
that Q is a proper sentential component of P). Either P has the form ~ R or P 
has a binary connective as its main connective and has one of the four forms 
R & S, R ∨ S, R ⊃ S, and R ; S. We shall consider the two cases separately.

  i. P has the form ~ R. Since Q is a proper sentential component of 
P, Q must be a sentential component of R. Hence [P](Q1//Q) is a sentence 
~ [R](Q1//Q). But R has k occurrences of connectives, so by the inductive 
hypothesis, R is truth-functionally equivalent to [R](Q1//Q). It follows from 
6.1.1 that ~ R is truth-functionally equivalent to ~ [R](Q1//Q); that is, P is 
truth-functionally equivalent to [P](Q1//Q).
  ii. P has the form R & S, R ∨ S, R ⊃ S, or R ; S. Since Q is a proper 
component of P, [P](Q1//Q) must be P with its left immediate component 
replaced by a sentence [R](Q1//Q), P with its right immediate component 
replaced with a sentence [S](Q1//Q), or P with both replacements made. Both 
R and S have fewer than k 1 1 occurrences of connectives, and so the induc-
tive hypothesis holds for both R and S. Hence R is truth-functionally equivalent 
to [R](Q1//Q), and S is truth-functionally equivalent to [S] (Q1//Q). And, 
for the cases in which only one replacement has been made, we note that P’s 
other immediate component is truth-functionally equivalent to itself. So, what-
ever replacements are made in P, it follows by 6.1.1 that P is truth-functionally 
equivalent to [P](Q1//Q).

This completes the proof of the inductive step and thus the proof of our thesis.

  2. An example of a sentence that contains only binary connectives and 
is truth-functionally true is ‘A ⊃ A’. An attempted proof would break down in 
the proof of the inductive step (since no atomic sentence is truth-functionally 
true, the basis clause will go through).
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Section 6.2E

  1. Suppose that we have constructed, in accordance with the algorithm, 
a sentence for a row of a truth-function schema that defi nes a truth-function 
of n arguments. We proved in Exercise 1.d in Section 6.1E the result that an 
iterated conjunction (. . . (P1 & P2) & . . . & Pn) is true on a truth-value assign-
ment if and only if P1, . . . , Pn are all true on that truth-value assignment. 
We have constructed the present iterated conjunction of atomic sentences and 
negations of atomic sentences in such a way that each conjunct is true when the 
atomic components have the truth-values represented in that row. Hence for 
that assignment the sentence constructed is true. For any other assignments to 
the atomic components of the sentence, at least one of the conjuncts is false; 
hence the conjunction is also false.

  2. a. (A & ~ B) ∨ (~ A & ~ B)
   b. A & ~ A
   d. ([(A & B) & C] ∨ [(A & B) & ~ C]) ∨ [(~ A & ~ B) & C]

  3. Suppose that the table defi nes a truth-function of n arguments. We 
fi rst construct an iterated disjunction of n disjuncts such that the ith disjunct 
is the negation of the ith atomic sentence of SL if the ith truth-value in the 
row is T, and the ith disjunct is the ith atomic sentence of SL if the ith truth-
value in the row is F. Note that this iterated disjunction is false exactly when 
its atomic components have the truth-values displayed in that row. We then 
negate the iterated disjunction, to obtain a sentence that is true for those truth-
values and false for all other truth-values that may be assigned to its atomic 
components.

  4. To prove that {‘~’, ‘&’} is truth-functionally complete, it will suffi ce 
to show that for each sentence of SL containing only ‘~’, ‘∨’, and ‘&’, there is 
a truth-functionally equivalent sentence of SL that contains the same atomic 
components and in which the only connectives are ‘~’ and ‘&’. For it will 
then follow, from the fact that {‘~’, ‘∨’, ‘&’} is truth-functionally complete, that 
{‘~’, ‘&’} is also truth-functionally complete. But every sentence of the form

P ∨ Q

is truth-functionally equivalent to

~ (~ P & ~ Q)

So by repeated substitutions, we can obtain, from sentences containing ‘~’, ‘∨’, 
and ‘&’, truth-functionally equivalent sentences that contain only ‘~’ and ‘&’.

To show that {‘~’, ‘⊃’} is truth-functionally complete, it suffi ces to point 
out that every sentence of the form

P & Q
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is truth-functionally equivalent to the corresponding sentence

~ (P ⊃ ~ Q)

and that every sentence of the form

P ∨ Q

is truth-functionally equivalent to the corresponding sentence

~ P ⊃ Q

For then we can fi nd, for each sentence containing only ‘~’, ‘∨’, and ‘&’, a 
truth-functionally equivalent sentence with the same atomic components con-
taining only ‘~’ and ‘⊃’. It follows that {‘~’, ‘⊃’} is truth-functionally complete, 
since {‘~’, ‘∨’, ‘&’} is.

  5. To show this, we need only note that the negation and disjunction 
truth-functions can be expressed using only the dagger. The truth-table for 
‘A ↓ A’ is

A A ↓ A

T T F T

F F T F

The sentence ‘A ↓ A’ expresses the negation truth-function, for the column 
under the dagger is identical with the column to the right of the vertical line 
in the characteristic truth-table for negation.

The disjunction truth-function is expressed by ‘(A ↓ B) ↓ (A ↓ B)’, as 
the following truth-table shows:

A B (A ↓ B) ↓ (A ↓ B)

T T T F T T T F T

T F T F F T T F F

F T F F T T F F T

F F F T F F F T F

This table shows that ‘(A ↓ B) ↓ (A ↓ B)’ is true on every truth-value assignment 
on which at least one of ‘A’ and ‘B’ is true. Hence that sentence expresses the 
disjunction truth-function.

Thus any truth-function that is expressed by a sentence of SL contain-
ing only the connectives ‘~’ and ‘∨’ can be expressed by a sentence containing 
only ‘↓’ as a connective. To form such a sentence, we convert the  sentence 
of SL containing just ‘~’ and ‘∨’ that expresses the truth-function in question 
as follows. Repeatedly replace components of the form ~ P with P ↓ P and 
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components of the form P ∨ Q with (P ↓ Q) ↓ (P ↓ Q) until a sentence 
containing ‘↓’ as the only connective is obtained. Since {‘∨’, ‘~’} is truth- 
functionally complete, so is {‘↓’}.

  7. The set {‘~’} is not truth-functionally complete because every sentence 
containing only ‘~’ is truth-functionally indeterminate. Hence truth-functions 
expressed in SL by truth-functionally true sentences and truth-functions 
expressed in SL by truth-functionally false sentences cannot be expressed by 
any sentence that contains only ‘~’.

The set {‘&’, ‘∨’, ‘⊃’, ‘;’} is not truth-functionally complete because 
no sentence that contains only binary connectives (if any) is truth-functionally 
false. Hence no truth-function that is expressed in SL by a truth-functionally 
false sentence can be expressed by a sentence containing only binary connec-
tives of SL.

  8. We shall prove by mathematical induction that in the truth-table for 
a sentence P containing only the connectives ‘~’ and ‘;’ and two atomic com-
ponents, the column under the main connective of P has an even number of 
Ts and an even number of Fs. For then we shall know that no sentence con-
taining only those connectives can express, for example, the truth-function 
defi ned as follows (the material conditional truth-function):

T T T

T F F

F T T

F F T

In the induction remember that any sentence of SL that contains two atomic 
components has a four-row truth-table. Our induction will proceed on the 
number of occurrences of connectives in P. However, the fi rst case, that con-
sidered in the basis clause, is the case where P contains one occurrence of a 
connective. This is because every sentence that contains zero occurrences of 
connectives is an atomic sentence and thus cannot contain more than one 
atomic component.
Basis clause: The thesis holds for every sentence of SL with exactly two atomic 
components and one occurrence of (one of) the connectives ‘~’ and ‘;’.

In this case P cannot have the form ~ Q, for if the initial ‘~’ is the 
only connective in P, then Q is atomic, and hence P does not contain two 
atomic components. So P has the form Q ; R, where Q and R are atomic 
sentences. Q ; R will have to be true on assignments that assign the same 
truth-values to Q and R and false on other assignments. Hence the thesis 
holds in this case.
Inductive step: If the thesis holds for every sentence of SL that contains k or 
fewer occurrences of the connectives ‘~’ and ‘;’ (and no other connectives) 
and two atomic components, then the thesis holds for every sentence of SL that 
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contains two atomic components and k 1 1 occurrences of the connectives ‘~’ 
and ‘;’ (and no other connectives).

Let P be a sentence of SL that contains exactly two atomic components 
and k 1 1 occurrences of the connectives ‘~’ and ‘;’ (and no other connec-
tives). There are two cases to consider.

  i. P is of the form ~ Q. Then Q falls under the inductive hypothesis; 
hence in the truth-table for Q the column under the main connective contains 
an even number of Ts and an even number of  Fs. The column for the sentence 
~ Q simply reverses the Ts and Fs, so it also contains an even number of Ts 
and an even number of Fs.
  ii. P is of the form Q ; R. Then Q and R each contain k or fewer 
occurrences of connectives. If, in addition, Q and R each contain both of the 
atomic components of P, then they fall under the inductive hypothesis—Q has 
an even number of Ts and an even number of Fs in its truth-table column, 
and so does R. On the other hand, if Q or R (or both) only contains one of 
the atomic components of P (e.g., if P is ‘~ A ; (B ; A)’ then Q is ‘~ A’), 
then Q or R (or both) fails to fall under the inductive hypothesis. Suppose it 
is Q that contains exactly one atomic component. In this case, which contains 
exactly one atomic component, Q has an even number of Ts and an even 
number of Fs in its column in the truth-table for P. This is because (a) two rows 
assign T to the single atomic component of Q and, by the result in Exercise 
6.1E 1.c, Q has the same truth-value in these two rows; and (b) two rows assign 
F to the single atomic component of Q and so, by the same result, Q has the 
same truth-value in these two rows. By the same reasoning, if R contains exactly 
one atomic component then the column under its main connective contains 
an even number of Ts and Fs.

We will now show that if Q and R each have an even number of Ts 
and an even number of Fs in their truth-table columns, then so must P. Let 
us assume the contrary, that is, we shall suppose that P has an odd number 
of Ts and an odd number of Fs in its truth-table column. There are then 
two possibilities.

  a. There are 3 Ts and 1 F in P’s truth-table column. Then in three rows 
of their truth-table columns, Q and R have the same truth-value, and in one 
row they have different truth-values. So either Q has one more T in its truth-
table column than does R, or vice-versa. Either way, since the sum of an even 
number plus 1 is odd, it follows that either Q has an odd number of Ts in its 
truth-table column or R has an odd number of Ts in its truth-table column. 
This contradicts our inductive hypothesis, so we conclude that P cannot have 
3 Ts and 1 F in its truth-table column.
  b. There are 3 Fs and 1 T in P’s truth-table column. By reasoning 
similar to that just given, it is easily shown that this is impossible, given the 
inductive hypothesis.
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Therefore P must have an even number of Ts and Fs in its truth-table column.

  9. First, a binary connective whose unit set is truth-functionally com-
plete must be such that a sentence of which it is the main connective is false 
whenever all its immediate components are true. Otherwise, every sentence 
containing only that connective would be true whenever its atomic components 
were. And then, for example, the negation truth-function would not be express-
ible using that connective. Similar reasoning shows that the main column of 
the characteristic truth-table must contain T in the last row.  Otherwise, no 
sentence containing that connective could be truth-functionally true.

Second, the column in the characteristic truth-table must contain an 
odd number of Ts and an odd number of Fs. For otherwise, as the induction 
in Exercise 8 shows, any sentence containing two atomic components and only 
this connective would have an even number of Ts and an even number of Fs 
in its truth-table column. The disjunction truth-function, for example, would 
then not be expressible.

Combining these two results, it is easily verifi ed that there are only 
two possible characteristic truth-tables for a binary connective whose unit set 
is truth-functionally complete—that for ‘↓’ and that for ‘⏐’.

Section 6.3E

 1. a. {A ⊃ B, C ⊃ D}, {A ⊃ B}, {C ⊃ D}, ∅
  b. {C ∨ ~ D, ~ D ∨ C, C ∨ C}, {C ∨ ~ D, ~ D ∨ C}, {C ∨ ~ D, C ∨ C}, 
{~ D ∨ C, C ∨ C}, {C ∨ ~ D}, {~ D ∨ C}, {C ∨ C}, ∅
  c. {(B & A) ; K}, ∅
  d. ∅

 2. a, b, d, e.

 4. a.  To prove that SD* is sound, it suffi ces to add a clause for the new 
rule to the induction in the proof of Metatheorem 6.3.1.

  13. If Qk11 at position k 1 1 is justifi ed by ~ ;I, then Qk11 is a negated 
biconditional.

h P

j ~ Q
k 1 1 ~ (P ; Q)    h, j ~ ;I

By the inductive hypothesis, Gh  P and Gj  ~ Q. Since P and ~ Q are acces-
sible at position k 1 1, every member of Gh is a member of Gk11, and every 
member of Gj is a member of Gk11. Hence, by 6.3.2, Gk11  P and Gk11  ~ Q. 
But ~ (P ; Q) is true whenever P and ~ Q are both true. So Gk11  ~ (P ; Q)
as well.
  c. To show that SD* is not sound, it suffi ces to give an example of a 
derivation in SD* of a sentence P from a set G of sentences such that P is not 
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truth-functionally entailed by G. That is, we show that for some G and P, G £ P 
in SD*, but G  P. Here is an example:

1 A Assumption
2 A ∨ B Assumption

3 B 1, 2 C∨E

It is easily verifi ed that {A, A ∨ B} does not truth-functionally entail ‘B’.
  e. Yes. In proving Metatheorem 6.3.1, we showed that each rule of SD 
is truth-preserving. It follows that if every rule of SD* is a rule of SD, then every 
rule of SD* is truth-preserving. Of course, as we saw in Exercise 4.c, adding a 
rule produces a system that is not sound if the rule is not truth-preserving.

  5. No. In SD we can derive Q from a sentence P & Q by &E. But, if 
‘&’ had the suggested truth-table, then {P & Q} would not truth-functionally 
entail Q, for (by the second row of the table) P & Q would be true when P is 
true and Q is false. Hence it would be the case that {P & Q} £ Q in SD but not 
the case that {P & Q}  Q.

  6. To prove that SD1 is sound for sentential logic, we must show that 
the rules of SD1 that are not rules of SD are truth-preserving. (By Metathe-
orem 6.3.1, the rules of SD have been shown to be truth-preserving.) The 
three additional rules of inference in SD1 are Modus Tollens, Hypothetical 
 Syllogism, and Disjunctive Syllogism. We introduced each of these rules in 
Chapter 5 as a derived rule. For example, we showed that Modus Tollens is 
eliminable, that anything that can be derived using this rule can be derived 
without it, using just the smaller set of rules in SD. It follows that each of 
these three rules is truth-preserving. For if use of one of these rules can lead 
from true sentences to false ones, then we can construct a derivation in SD 
(without using the derived rule) in which the sentence derived is not truth-
functionally entailed by the set consisting of the undischarged assumptions. 
But Metatheorem 6.3.1 shows that this is impossible. Hence each of the 
derived rules is truth- preserving.

All that remains to be shown, in proving that SD1 is sound, is that 
the rules of replacement are also truth-preserving. We can incorporate this 
as a thirteenth case in the proof of the inductive step for Metatheorem 6.3.1:

  13. If Qk11 at position k 1 1 is justifi ed by a rule of replacement, then 
Qk11 is derived as follows:

h P

k 1 1 [P](Q1//Q)    h RR

where RR is some rule of replacement, sentence P at position h is accessible 
at position k 1 1, and [P](Q1//Q) is a sentence that is the result of  replacing 
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a component Q of P with a component Q1 in accordance with one of the 
rules of replacement. That the sentence Q is truth-functionally equivalent 
to Q1, no matter what the rule of replacement is, is easily verifi ed. So, by 
 Exercise 1.e in Section 6.1E, [P](Q1//Q) is truth-functionally equivalent to 
P. By the inductive hypothesis, Gk  P; and since P at h is accessible at posi-
tion k 1 1, it follows that Gk11  P. But [P](Q1//Q) is true whenever P is 
true (since they are truth-functionally equivalent), so Gk11  [P](Q1//Q); 
that is, Gk11  Qk11.

Section 6.4E

  1. Proof of 6.4.4 Assume that G ∪ {~ P} is inconsistent in SD. Then 
there is a derivation in SD of the sort

1 P1
. .

n Pn

n 1 1 ~ P

. .
m Q

. .
p ~ Q

(where P1, P2, . . . , Pn are members of G). To show that G £ P, we need 
only produce a derivation in which the primary assumptions are members 
of G and the last line is P. This is easy. Start with this derivation, but make 
~ P an auxiliary assumption rather than a primary assumption. Enter P as 
a new last line, justifi ed by Negation Elimination. The result is a derivation 
of the sort

1 P1
. .

n Pn

n 1 1 ~ P

. .
m Q

. .
p ~ Q

p 1 1 P     n 1 1 2 p  ~ E

Proof of 6.4.10. Assume G ∪ {P} is inconsistent in SD. Then there is a 
derivation in SD of the sort
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1 P1
.

n Pn

n 1 1 P

. .
m Q

. .
p ~ Q

(where P1, P2, . . . , Pn are members of G). But then there is also a derivation 
of the following sort

1 P1
. .

n Pn

n 1 1  P

  .
m  Q

p  ~ Q
p 1 1 ~ P     n 1 1 2 p  ~ I

This shows that if G ∪ {P} is inconsistent in SD, then G £ ~ P in SD.

  2. If G is inconsistent in SD then, by the defi nition of inconsistency in 
SD, there is some sentence P such that both P and ~ P are derivable in SD 
from G. Then there is a derivation in which all of the primary assumptions are 
members of G and P and ~ P both occur in the scope of only those assump-
tions. Because all derivations are fi nite in length, it follows that only a fi nite 
subset of members of G occurs as primary assumptions in this derivation. There-
fore, there is a fi nite subset of G that is inconsistent in SD.

  4. Since every rule of SD is a rule of SD1, every derivation in SD is a 
derivation in SD1. So if G  P, then G £ P in SD, by Metatheorem 6.4.1, and 
therefore G £ P in SD1. That is, SD1 is complete for sentential logic.

  7. a. Since we already know that SD is complete, we need only show 
that wherever Reiteration is used in a derivation in SD, it can be eliminated in 
favor of some combination of the remaining rules of SD. This was proved in 
Exercise 13.c in Section 5.3E. Hence SD* is complete as well.

  8. We used the fact that Conjunction Elimination is a rule of SD in 
proving (b) for 6.4.11, where we showed that if a sentence P & Q is a member 
of a set G* that is maximally consistent in SD, then both P and Q are members 
of G*.
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  9. First assume that some set G is truth-functionally consistent. Then 
obviously every fi nite subset of G is truth-functionally consistent as well, for all 
members of a fi nite subset of G are members of G, hence all are true on at 
least one truth-value assignment.

Now assume that some set G is truth-functionally inconsistent. If G is 
fi nite, then obviously at least one fi nite subset of G (namely, G itself) is truth-
functionally inconsistent. If G is infi nite, then, by Lemma 6.4.2, G would be 
truth-functionally consistent if it were consistent in SD. Since it is not truth-
functionally consistent, it is not consistent in SD. By 6.4.6, some fi nite subset 
G9 of G is inconsistent in SD—that is, for some sentence P, G9 £ P and G9 £ ~ P. 
Hence, by Metatheorem 6.3.3, G9  P and G9  ~ P, so G9 is truth-functionally 
inconsistent; hence not every fi nite subset of G is truth-functionally consistent.


