CHAPTER

Supply and Demand

When there's excess demand for a product, its price tends to rise.

he stock of foodstuffs on hand at any moment in New York City's grocery stores, restaurants, and private kitchens is sufficient to feed the area's 10 million residents for at most a week or so. Since most of these residents have nutritionally adequate and highly varied diets, and since almost no food is produced within the city proper, provisioning New York requires that millions of pounds of food and drink be delivered to locations throughout the city each day.

No doubt many New Yorkers, buying groceries at their favorite local markets or eating at their favorite Italian restaurants, give little or no thought to the nearly miraculous coordination of people and resources required to feed city residents on a daily basis. But near-miraculous it is, nevertheless. Even if the supplying of New York City consisted only of transporting a fixed collection of foods to a given list of destinations each day, it would be quite an impressive operation, requiring at least a small (and well-managed) army to carry out.

Yet the entire process is astonishingly more complex than that. For example, the system must somehow ensure that not only *enough* food is delivered to satisfy New Yorkers' discriminating palates, but also the *right kinds* of food. There can't be too much pheasant and not enough smoked eel; or too much bacon and not enough eggs; or too much caviar and not enough canned tuna; and so on. Similar judgments

LEARNING OBJECTIVES

After reading this chapter, you should be able to:

- LOI Describe how the demand and supply curves summarize the behavior of buyers and sellers in the marketplace.
- LO2 Discuss how the supply and demand curves interact to determine equilibrium price and quantity.
- LO3 Illustrate how shifts in supply and demand curves cause prices and quantities to change.
- LO4 Explain and apply the Efficiency Principle and the Equilibrium Principle (also called "The No-Cash-onthe-Table Principle").

must be made *within* each category of food and drink: There must be the right amount of Swiss cheese and the right amounts of provolone, gorgonzola, and feta.

But even this doesn't begin to describe the complexity of the decisions and actions required to provide our nation's largest city with its daily bread. Someone has to decide where each particular type of food gets produced, and how, and by whom. Someone must decide how much of each type of food gets delivered to *each* of the tens of thousands of restaurants and grocery stores in the city. Someone must determine whether the deliveries should be made in big trucks or small ones, arrange that the trucks be in the right place at the right time, and ensure that gasoline and qualified drivers be available.

Thousands of individuals must decide what role, if any, they will play in this collective effort. Some people—just the right number—must choose to drive food delivery trucks rather than trucks that deliver lumber. Others—again, just the right number—must become the mechanics who fix these trucks rather than carpenters who build houses. Others must become farmers rather than architects or bricklayers. Still others must become chefs in upscale restaurants, or flip burgers at McDonald's, instead of becoming plumbers or electricians.

Yet despite the almost incomprehensible number and complexity of the tasks involved, somehow the supplying of New York City manages to get done remark-

> ably smoothly. Oh, a grocery store will occasionally run out of flank steak or a diner will sometimes be told that someone else has just ordered the last serving of roast duck. But if episodes like these stick in memory, it is only because they are rare. For the most part, New York's food delivery system—like that of every other city in the country—functions so seamlessly that it attracts virtually no notice.

> The situation is strikingly different in New York City's rental housing market. According to one estimate, the city needs between 20,000 and 40,000 new housing units each year merely to keep up with population growth and to replace existing housing that is deteriorated beyond repair. The actual rate of new construction in the city, however, is only 6,000 units per year. As a result, America's most densely populated city has been experiencing a protracted housing shortage. Yet, paradoxically, in the midst of this shortage, apartment houses are being demolished; and in the vacant lots left behind, people from the neighborhoods are planting flower gardens!

> New York City is experiencing not only a growing shortage of rental housing, but also chronically strained relations between landlords and tenants. In one all-too-typical case, for example, a photographer living in a loft on the Lower East Side waged an eight-year court battle with his landlord that generated literally thousands of pages of legal documents. "Once we put up a doorbell for ourselves," the photographer recalled, "and [the landlord] pulled it out, so we pulled out the wires to his doorbell."¹ The landlord, for his part, accused the photographer of obstructing his efforts to renovate the apartment. According to the landlord, the tenant preferred for the apartment to remain in substandard condition since that gave him an excuse to withhold rent payments.

> Same city, two strikingly different patterns: In the food industry, goods and services are available in wide variety and people (at least those with adequate income) are generally satisfied with what they receive and the choices available to them. In contrast, in the rental housing industry, chronic shortages and chronic dissatisfaction are rife among both buyers and sellers. Why this difference?

The brief answer is that New York City relies on a complex system of administrative rent regulations to allocate housing units but leaves

Why does New York City's food distribution system work so much better than its housing market?

63

the allocation of food essentially in the hands of market forces—the forces of supply and demand. Although intuition might suggest otherwise, both theory and experience suggest that the seemingly chaotic and unplanned outcomes of market forces, in most cases, can do a better job of allocating economic resources than can (for example) a government agency, even if the agency has the best of intentions.

In this chapter we'll explore how markets allocate food, housing, and other goods and services, usually with remarkable efficiency despite the complexity of the tasks. To be sure, markets are by no means perfect, and our stress on their virtues is to some extent an attempt to counteract what most economists view as an underappreciation by the general public of their remarkable strengths. But, in the course of our discussion, we'll see why markets function so smoothly most of the time and why bureaucratic rules and regulations rarely work as well in solving complex economic problems.

To convey an understanding of how markets work is a major goal of this course, and in this chapter we provide only a brief introduction and overview. As the course proceeds, we'll discuss the economic role of markets in considerably more detail, paying attention to some of the problems of markets as well as their strengths.

WHAT, HOW, AND FOR WHOM? CENTRAL PLANNING VERSUS THE MARKET

No city, state, or society—regardless of how it is organized—can escape the need to answer certain basic economic questions. For example, how much of our limited time and other resources should we devote to building housing, how much to the production of food, and how much to providing other goods and services? What techniques should we use to produce each good? Who should be assigned to each specific task? And how should the resulting goods and services be distributed among people?

In the thousands of different societies for which records are available, issues like these have been decided in essentially one of two ways. One approach is for all economic decisions to be made centrally, by an individual or small number of individuals on behalf of a larger group. For example, in many agrarian societies throughout history, families or other small groups consumed only those goods and services that they produced for themselves and a single clan or family leader made most important production and distribution decisions. On an immensely larger scale, the economic organization of the former Soviet Union (and other communist countries) was also largely centralized. In so-called centrally planned communist nations, a central bureaucratic committee established production targets for the country's farms and factories, developed a master plan for how to achieve the targets (including detailed instructions concerning who was to produce what), and set up guidelines for the distribution and use of the goods and services produced.

Neither form of centralized economic organization is much in evidence today. When implemented on a small scale, as in a self-sufficient family enterprise, centralized decision making is certainly feasible. For the reasons discussed in the preceding chapter, however, the jack-of-all-trades approach was doomed once it became clear how dramatically people could improve their living standards by specialization—that is, by having each individual focus his or her efforts on a relatively narrow range of tasks. And with the fall of the Soviet Union and its satellite nations in the late 1980s, there are now only three communist economies left in the world: Cuba, North Korea, and China. The first two of these appear to be on their last legs, economically speaking, and China has largely abandoned any attempt to control production and distribution decisions from the center. The major remaining examples of centralized allocation and control now reside in the bureaucratic agencies that administer programs like New York City's rent controls—programs that are themselves becoming increasingly rare.

At the beginning of the twenty-first century, we are therefore left, for the most part, with the second major form of economic system, one in which production and distribution decisions are left to individuals interacting in private markets. In the so-called capitalist, or free-market, economies, people decide for themselves which careers to pursue and which products to produce or buy. In fact, there are no *pure* free-market economies today. Modern industrial countries are more properly described as "mixed economies." Their goods and services are allocated by a combination of free markets, regulation, and other forms of collective control. Still, it makes sense to refer to such systems as free-market economies because people are for the most part free to start businesses, shut them down, or sell them. And within broad limits, the distribution of goods and services is determined by individual preferences backed by individual purchasing power, which in most cases comes from the income people earn in the labor market.

In country after country, markets have replaced centralized control for the simple reason that they tend to assign production tasks and consumption benefits much more effectively. The popular press and conventional wisdom often assert that economists disagree about important issues. (As someone once quipped, "If you lay all the economists in the world end to end, they still wouldn't reach a conclusion.") The fact is, however, that there is overwhelming agreement among economists about a broad range of issues. A substantial majority believes that markets are the most effective means for allocating society's scarce resources. For example, a recent survey found that more than 90 percent of American professional economists believe that rent regulations like the ones implemented by New York City do more harm than good. That the stated aim of these regulations—to make rental housing more affordable for middle- and low-income families—is clearly benign was not enough to prevent them from wreaking havoc on New York City's housing market. To see why, we must explore how goods and services are allocated in private markets, and why nonmarket means of allocating goods and services often do not produce the expected results.

BUYERS AND SELLERS IN MARKETS

Beginning with some simple concepts and definitions, we will explore how the interactions among buyers and sellers in markets determine the prices and quantities of the various goods and services traded. We begin by defining a market: The **market** for any good consists of all the buyers and sellers of that good. So, for example, the market

> for pizza on a given day in a given place is just the set of people (or other economic actors such as firms) potentially able to buy or sell pizza at that time and location.

> In the market for pizza, sellers comprise the individuals and companies that either do sell—or might, under the right circumstances, sell—pizza. Similarly, buyers in this market include all individuals who buy—or might buy—pizza.

> In most parts of the country, a decent pizza can still be had for less than \$10. Where does the market price of pizza come from? Looking beyond pizza to the vast array of other goods that are bought and sold every day, we may ask, "Why are some goods cheap and others expensive?" Aristotle had no idea. Nor did Plato, or Copernicus, or Newton. On reflection, it is astonishing that, for almost the entire span of human history, not even the most intelligent and creative minds on Earth had any real inkling of how to answer that seemingly simple question. Even Adam Smith, the Scottish moral philosopher whose *Wealth of Nations* launched the discipline of economics in 1776, suffered confusion on this issue.

> Smith and other early economists (including Karl Marx) thought that the market price of a good was determined by its cost of production. But although costs surely do affect prices, they cannot explain why one of Pablo Picasso's paintings sells for so much more than one of Jackson Pollock's.

market the market for any good consists of all buyers and sellers of that good

Why do Pablo Picasso's paintings sell for so much more than Jackson Pollock's?

Stanley Jevons and other nineteenth-century economists tried to explain price by focusing on the value people derived from consuming different goods and services. It certainly seems plausible that people will pay a lot for a good they value highly. Yet willingness to pay cannot be the whole story, either. Deprive a person in the desert of water, for example, and he will be dead in a matter of hours, and yet water sells for less than a penny a gallon. By contrast, human beings can get along perfectly well without gold, and yet gold sells for more than \$1,000 an ounce.

Cost of production? Value to the user? Which is it? The answer, which seems obvious to today's economists, is that both mat-

ter. Writing in the late nineteenth century, the British economist Alfred Marshall was among the first to show clearly how costs and value interact to determine both the prevailing market price for a good and the amount of it that is bought and sold. Our task in the pages ahead will be to explore Marshall's insights and gain some practice in applying them. As a first step, we introduce the two main components of Marshall's pathbreaking analysis: the demand curve and the supply curve.

THE DEMAND CURVE

In the market for pizza, the **demand curve** for pizza is a simple schedule or graph that tells us how many slices people would be willing to buy at different prices. By convention, economists usually put price on the vertical axis of the demand curve and quantity on the horizontal axis.

A fundamental property of the demand curve is that it is downward-sloping with respect to price. For example, the demand curve for pizza tells us that as the price of pizza falls, buyers will buy more slices. Thus, the daily demand curve for pizza in Chicago on a given day might look like the curve seen in Figure 3.1. (Although economists usually refer to demand and supply "curves," we often draw them as straight lines in examples.)

The demand curve in Figure 3.1 tells us that when the price of pizza is low—say \$2 per slice—buyers will want to buy 16,000 slices per day, whereas they will want to buy only 12,000 slices at a price of \$3 and only 8,000 at a price of \$4. The demand curve for pizza—as for any other good—slopes downward for multiple reasons. Some have to do with the individual consumer's reactions to price changes. Thus, as pizza becomes more expensive, a consumer may switch to chicken sandwiches, hamburgers, or other foods that substitute for pizza. This is called the **substitution effect** of a price change. In addition, a price increase reduces the quantity demanded because it reduces purchasing power: A consumer simply can't afford to buy as many slices of pizza at higher prices as at lower prices. This is called the **income effect** of a price change.

A Jackson Pollock painting.

demand curve a schedule or graph showing the quantity of a good that buyers wish to buy at each price

substitution effect the change in the quantity demanded of a good that results because buyers switch to or from substitutes when the price of the good changes

income effect the change in the quantity demanded of a good that results because a change in the price of a good changes the buyer's purchasing power

FIGURE 3.1

The Daily Demand Curve for Pizza in Chicago. The demand curve for any good is a downward-sloping function of its price. Cost-Benefit

buyer's reservation price the largest dollar amount the buyer would be willing to pay for a good Another reason the demand curve slopes downward is that consumers differ in terms of how much they're willing to pay for the good. The Cost-Benefit Principle tells us that a given person will buy the good if the benefit he expects to receive from it exceeds its cost. The benefit is the **buyer's reservation price**, the highest dollar amount he'd be willing to pay for the good. The cost of the good is the actual amount that the buyer actually must pay for it, which is the market price of the good. In most markets, different buyers have different reservation prices. So, when the good sells for a high price, it will satisfy the cost-benefit test for fewer buyers than when it sells for a lower price.

To put this same point another way, the fact that the demand curve for a good is downward-sloping reflects the fact that the reservation price of the marginal buyer declines as the quantity of the good bought increases. Here the marginal buyer is the person who purchases the last unit of the good sold. If buyers are currently purchasing 12,000 slices of pizza a day in Figure 3.1, for example, the reservation price for the buyer of the 12,000th slice must be \$3. (If someone had been willing to pay more than that, the quantity demanded at a price of \$3 would have been more than 12,000 to begin with.) By similar reasoning, when the quantity sold is 16,000 slices per day, the marginal buyer's reservation price must be only \$2.

We defined the demand curve for any good as a schedule telling how much of it consumers wish to purchase at various prices. This is called the *horizontal interpretation* of the demand curve. Using the horizontal interpretation, we start with price on the vertical axis and read the corresponding quantity demanded on the horizontal axis. Thus, at a price of \$4 per slice, the demand curve in Figure 3.1 tells us that the quantity of pizza demanded will be 8,000 slices per day.

The demand curve also can be interpreted in a second way, which is to start with quantity on the horizontal axis and then read the marginal buyer's reservation price on the vertical axis. Thus, when the quantity of pizza sold is 8,000 slices per day, the demand curve in Figure 3.1 tells us that the marginal buyer's reservation price is \$4 per slice. This second way of reading the demand curve is called the *vertical interpretation*.

CONCEPT CHECK 3.1

In Figure 3.1, what is the marginal buyer's reservation price when the quantity of pizza sold is 10,000 slices per day? For the same demand curve, what will be the quantity of pizza demanded at a price of \$2.50 per slice?

THE SUPPLY CURVE

In the market for pizza, the **supply curve** is a simple schedule or graph that tells us, for each possible price, the total number of slices that all pizza vendors would be willing to sell at that price. What does the supply curve of pizza look like? The answer to this question is based on the logical assumption that suppliers should be willing to sell additional slices as long as the price they receive is sufficient to cover their opportunity cost of supplying them. Thus, if what someone could earn by selling a slice of pizza is insufficient to compensate her for what she could have earned if she had spent her time and invested her money in some other way, she will not sell that slice. Otherwise, she will.

Just as buyers differ with respect to the amounts they are willing to pay for pizza, sellers also differ with respect to their opportunity cost of supplying pizza. For those with limited education and work experience, the opportunity cost of selling pizza is relatively low (because such individuals typically do not have a lot of high-paying alternatives). For others, the opportunity cost of selling pizza is of moderate value, and for still others—like rock stars and professional athletes—it is prohibitively high. In part because of these differences in opportunity cost among people, the daily supply curve of pizza will be *upward-sloping* with respect to price. As an illustration, see Figure 3.2, which shows a hypothetical supply curve for pizza in the Chicago market on a given day.

supply curve a graph or schedule showing the quantity of a good that sellers wish to sell at each price

The fact that the supply curve slopes upward may be seen as a consequence of the Low-Hanging-Fruit Principle, discussed in the preceding chapter. This principle tells us that as we expand the production of pizza, we turn first to those whose opportunity cost of producing pizza is lowest, and only then to others with a higher opportunity cost.

Like the demand curve, the supply curve can be interpreted either horizontally or vertically. Under the horizontal interpretation, we begin with a price, then go over to the supply curve to read the quantity that sellers wish to sell at that price on the horizontal axis. For instance, at a price of \$2 per slice, sellers in Figure 3.2 wish to sell 8,000 slices per day.

Under the vertical interpretation, we begin with a quantity, then go up to the supply curve to read the corresponding marginal cost on the vertical axis. Thus, if sellers in Figure 3.2 are currently supplying 12,000 slices per day, the opportunity cost of the marginal seller is \$3 per slice. In other words, the supply curve tells us that the marginal cost of producing the 12,000th slice of pizza is \$3. (If someone could produce a 12,001st slice for less than \$3, she would have an incentive to supply it, so the quantity of pizza supplied at \$3 per slice would not have been 12,000 slices per day to begin with.) By similar reasoning, when the quantity of pizza supplied is 16,000 slices per day, the marginal cost of producing another slice must be \$4. The seller's reservation price for selling an additional unit of a good is her marginal cost of producing that good. It is the smallest dollar amount for which she would not be worse off if she sold an additional unit.

CONCEPT CHECK 3.2

In Figure 3.2, what is the marginal cost of a slice of pizza when the quantity of pizza sold is 10,000 slices per day? For the same supply curve, what will be the quantity of pizza supplied at a price of \$3.50 per slice?

RECAP

DEMAND AND SUPPLY CURVES

The *market* for a good consists of the actual and potential buyers and sellers of that good. For any given price, the *demand curve* shows the quantity that demanders would be willing to buy and the *supply curve* shows the quantity that suppliers of the good would be willing to sell. Suppliers are willing to sell more at higher prices (supply curves slope upward) and demanders are willing to buy less at higher prices (demand curves slope downward).

Increasing Opportunity Cost

seller's reservation price the smallest dollar amount for which a seller would be willing to sell an additional unit, generally equal to marginal cost equilibrium a balanced or unchanging situation in which all forces at work within a system are canceled by others

equilibrium price and equilibrium quantity the price and quantity at the intersection of the supply and demand curves for the good

market equilibrium occurs in a market when all buyers and sellers are satisfied with their respective quantities at the market price

MARKET EQUILIBRIUM

The concept of **equilibrium** is employed in both the physical and social sciences, and it is of central importance in economic analysis. In general, a system is in equilibrium when all forces at work within the system are canceled by others, resulting in a balanced or unchanging situation. In physics, for example, a ball hanging from a spring is said to be in equilibrium when the spring has stretched sufficiently that the upward force it exerts on the ball is exactly counterbalanced by the downward force of gravity. In economics, a market is said to be in equilibrium when no participant in the market has any reason to alter his or her behavior, so that there is no tendency for production or prices in that market to change.

If we want to determine the final position of a ball hanging from a spring, we need to find the point at which the forces of gravity and spring tension are balanced and the system is in equilibrium. Similarly, if we want to find the price at which a good will sell (which we will call the **equilibrium price**) and the quantity of it that will be sold (the **equilibrium quantity**), we need to find the equilibrium in the market for that good. The basic tools for finding the equilibrium in a market for a good are the supply and demand curves for that good are the price and quantity at which the supply and demand curves for the good intersect. For the hypothetical supply and demand curves shown earlier for the pizza market in Chicago, the equilibrium price will therefore be \$3 per slice, and the equilibrium quantity of pizza sold will be 12,000 slices per day, as shown in Figure 3.3.

Note that at the equilibrium price of \$3 per slice, both sellers and buyers are "satisfied" in the following sense: Buyers are buying exactly the quantity of pizza they wish to buy at that price (12,000 slices per day) and sellers are selling exactly the quantity of pizza they wish to sell (also 12,000 slices per day). And since they are satisfied in this sense, neither buyers nor sellers face any incentives to change their behavior.

Note the limited sense of the term "satisfied" in the definition of **market equilibrium**. It doesn't mean that sellers wouldn't be pleased to receive a price higher than the equilibrium price. Rather, it means only that they're able to sell all they wish to sell at that price. Similarly, to say that buyers are satisfied at the equilibrium price doesn't mean that they wouldn't be happy to pay less than that price. Rather, it means only that they're able to buy exactly as many units of the good as they wish to at the equilibrium price.

Note also that if the price of pizza in our Chicago market were anything other than \$3 per slice, either buyers or sellers would be frustrated. Suppose, for example, that the price of pizza were \$4 per slice, as shown in Figure 3.4. At that price, buyers wish to buy only 8,000 slices per day, but sellers wish to sell 16,000. And since no one can force someone to buy a slice of pizza against her wishes, this means that

The Equilibrium Price and Quantity of Pizza in Chicago.

The equilibrium quantity and price of a product are the values that correspond to the intersection of the supply and demand curves for that product.

FIGURE 3.4 Excess Supply. When price exceeds equilibrium price, there is excess supply, or surplus, the difference between quantity supplied and quantity demanded.

buyers will buy only the 8,000 slices they wish to buy. So when price exceeds the equilibrium price, it is sellers who end up being frustrated. At a price of \$4 in this example, they are left with an **excess supply** of 8,000 slices per day.

Conversely, suppose that the price of pizza in our Chicago market were less than the equilibrium price—say, \$2 per slice. As shown in Figure 3.5, buyers want to buy 16,000 slices per day at that price, whereas sellers want to sell only 8,000. And since sellers cannot be forced to sell pizza against their wishes, this time it is the buyers who end up being frustrated. At a price of \$2 per slice in this example, they experience an excess demand of 8,000 slices per day.

An extraordinary feature of private markets for goods and services is their automatic tendency to gravitate toward their respective equilibrium prices and quantities. This tendency is a simple consequence of the Incentive Principle. The mechanisms by which the adjustment happens are implicit in our definitions of excess supply and excess demand. Suppose, for example, that the price of pizza in our hypothetical market was \$4 per slice, leading to excess supply as shown in Figure 3.4. Because sellers are frustrated in the sense of wanting to sell more pizza than buyers wish to buy, sellers have an incentive to take whatever steps they can to increase their sales. The simplest strategy available to them is to cut their price slightly. Thus, if one seller reduced his price from \$4 to, say, \$3.95 per slice, he would attract many of the buyers who had been paying \$4 per slice for pizza supplied by other sellers. Those sellers, in order to excess supply the amount by which quantity supplied exceeds quantity demanded when the price of a good exceeds the equilibrium price

excess demand the amount by which quantity demanded exceeds quantity supplied when the price of a good lies below the equilibrium price

FIGURE 3.5

Excess Demand.

When price lies below equilibrium price, there is excess demand, the difference between quantity demanded and quantity supplied. recover their lost business, would then have an incentive to match the price cut. But notice that if all sellers lowered their prices to \$3.95 per slice, there would still be considerable excess supply. So sellers would face continuing incentives to cut their prices. This pressure to cut prices won't go away until prices fall all the way to \$3 per slice.

Conversely, suppose that price starts out less than the equilibrium price—say, \$2 per slice. This time it is buyers who are frustrated. A person who can't get all the pizza he wants at a price of \$2 per slice has an incentive to offer a higher price, hoping to obtain pizza that would otherwise have been sold to other buyers. And sellers, for their part, will be only too happy to post higher prices as long as queues of frustrated buyers remain.

The upshot is that price has a tendency to gravitate to its equilibrium level under conditions of either excess supply or excess demand. And when price reaches its equilibrium level, both buyers and sellers are satisfied in the technical sense of being able to buy or sell precisely the amounts of their choosing.

EXAMPLE 3.1

Market Equilibrium

Samples of points on the demand and supply curves of a pizza market are provided in Table 3.1. Graph the demand and supply curves for this market and find its equilibrium price and quantity.

TABLE 3.1

Points along the Demand and Supply Curves of a Pizza Market

Demand for Pizza		Supply of Pizza	
Price (\$/slice)	Quantity demanded (1,000s of slices/day)	Price (\$/slice)	Quantity supplied (1,000s of slices/day)
I	8	I	2
2	6	2	4
3	4	3	6
4	2	4	8

The points in the table are plotted in Figure 3.6 and then joined to indicate the supply and demand curves for this market. These curves intersect to yield an equilibrium price of \$2.50 per slice and an equilibrium quantity of 5,000 slices per day.

FIGURE 3.6

Graphing Supply and Demand and Finding Equilibrium Price and Quantity.

To graph the demand and supply curves, plot the relevant points given in the table and then join them with a line. Equilibrium price and quantity occur at the intersection of these curves.

We emphasize that market equilibrium doesn't necessarily produce an ideal outcome for all market participants. Thus, in Example 3.1, market participants are satisfied with the amount of pizza they buy and sell at a price of \$2.50 per slice, but for a poor buyer this may signify little more than that he *can't* buy additional pizza without sacrificing other more highly valued purchases.

Indeed, buyers with extremely low incomes often have difficulty purchasing even basic goods and services, which has prompted governments in almost every society to attempt to ease the burdens of the poor. Yet the laws of supply and demand cannot simply be repealed by an act of the legislature. In the next section, we'll see that when legislators attempt to prevent markets from reaching their equilibrium prices and quantities, they often do more harm than good. Fortunately, there are other, more effective, ways of providing assistance to needy families.

RENT CONTROLS RECONSIDERED

Consider again the market for rental housing units in New York City and suppose that the demand and supply curves for one-bedroom apartments are as shown in Figure 3.7. This market, left alone, would reach an equilibrium monthly rent of \$1,600, at which 2 million one-bedroom apartments would be rented. Both land-lords and tenants would be satisfied, in the sense that they would not wish to rent either more or fewer units at that price.

This wouldn't necessarily mean, of course, that all is well and good. Many potential tenants, for example, might simply be unable to afford a rent of \$1,600 per month and thus be forced to remain homeless (or to move out of the city to a cheaper location). Suppose that, acting purely out of benign motives, legislators made it unlawful for landlords to charge more than \$800 per month for onebedroom apartments. Their stated aim in enacting this law was that no person should have to remain homeless because decent housing was unaffordable.

But note in Figure 3.8 that when rents for one-bedroom apartments are prevented from rising above \$800 per month, landlords are willing to supply only 1 million apartments per month, 1 million fewer than at the equilibrium monthly rent of \$1,600. Note also that at the controlled rent of \$800 per month, tenants want to rent 3 million one-bedroom apartments per month. (For example, many people who would have decided to live in New Jersey rather than pay \$1,600 a month in New York will now choose to live in the city.) So when rents are prevented from rising above \$800 per month, we see an excess demand for onebedroom apartments of 2 million units each month. Put another way, the rent controls result in a housing shortage of 2 million units each month. What is

An Unregulated Housing Market.

For the supply and demand curves shown, the equilibrium monthly rent is \$1,600 and 2 million apartments will be rented at that price.

FIGURE 3.8

Rent Controls.

When rents are prohibited from rising to the equilibrium level, the result is excess demand in the housing market.

more, the number of apartments actually available *declines* by 1 million units per month.

If the housing market were completely unregulated, the immediate response to such a high level of excess demand would be for rents to rise sharply. But here the law prevents them from rising above \$800. Many other ways exist, however, in which market participants can respond to the pressures of excess demand. For instance, owners will quickly learn that they are free to spend less on maintaining their rental units. After all, if there are scores of renters knocking at the door of each vacant apartment, a landlord has considerable room to maneuver. Leaking pipes, peeling paint, broken furnaces, and other problems are less likely to receive prompt attention—or, indeed, any attention at all—when rents are set well below market-clearing levels.

Nor are reduced availability of apartments and poorer maintenance of existing apartments the only difficulties. With an offering of only 1 million apartments per month, we see in Figure 3.8 that there are renters who'd be willing to pay as much as \$2,400 per month for an apartment. As the Incentive Principle suggests, this pressure will almost always find ways, legal or illegal, of expressing itself. In New York City, for example, it is not uncommon to see "finder's fees" or "key deposits" as high as several thousand dollars. Owners who cannot charge a market-clearing rent for their apartments also have the option of converting them to condominiums or co-ops, which enables them to sell their assets for prices much closer to their true economic value.

Even when rent-controlled apartment owners don't hike their prices in these various ways, serious misallocations result. For instance, ill-suited roommates often remain together despite their constant bickering because each is reluctant to reenter the housing market. Or a widow might steadfastly remain in her sevenroom apartment even after her children have left home because it is much cheaper than alternative dwellings not covered by rent control. It would be much better for all concerned if she relinquished that space to a larger family that valued it more highly. But under rent controls, she has no economic incentive to do so.

There's also another more insidious cost of rent controls. In markets without rent controls, landlords cannot discriminate against potential tenants on the basis of race, religion, sexual orientation, physical disability, or national origin without suffering an economic penalty. Refusal to rent to members of specific groups would reduce the demand for their apartments, which would mean having to accept lower rents. When rents are artificially pegged below their equilibrium level, however, the resulting excess demand for apartments enables landlords to engage in discrimination with no further economic penalty.

Rent controls are not the only instance in which governments have attempted to repeal the law of supply and demand in the interest of helping the poor. During the late 1970s, for example, the federal government tried to hold the price of

gasoline below its equilibrium level out of concern that high gasoline prices imposed unacceptable hardships on low-income drivers. As with controls in the rental housing market, unintended consequences of price controls in the gasoline market made the policy an extremely costly way of trying to aid the poor. For example, gasoline shortages resulted in long lines at the pumps, a waste not only of valuable time, but also of gasoline as cars sat idling for extended periods.

In their opposition to rent controls and similar measures, are economists revealing a total lack of concern for the poor? Although this claim is sometimes made by those who don't understand the issues, or who stand to benefit in some way from government regulations, there is little justification for it. *Economists simply realize that there are much more effective ways to help poor people than to try to give them apartments and other goods at artificially low prices.*

One straightforward approach would be to give the poor additional income and let them decide for themselves how to spend it. True, there are also practical difficulties involved in transferring additional purchasing power into the hands of the poor—most importantly, the difficulty of targeting cash to the genuinely needy without weakening others' incentives to fend for themselves. But there are practical ways to overcome this difficulty. For example, for far less than the waste caused by price controls, the government could afford generous subsidies to the wages of the working poor and could sponsor public-service employment for those who are unable to find jobs in the private sector.

Regulations that peg prices below equilibrium levels have far-reaching effects on market outcomes. The following concept check asks you to consider what happens when a price control is established at a level above the equilibrium price.

CONCEPT CHECK 3.3

In the rental housing market whose demand and supply curves are shown below, what will be the effect of a law that prevents rents from rising above \$1,200 per month?

PIZZA PRICE CONTROLS?

The sources of the contrast between the rent-controlled housing market and the largely unregulated food markets in New York City can be seen more vividly by trying to imagine what would happen if concern for the poor led the city's leaders to implement price controls on pizza. Suppose, for example, that the supply and demand curves for pizza are as shown in Figure 3.9 and that the city imposes a **price ceiling** of \$2 per slice, making it unlawful to charge more than that amount. At \$2 per slice, buyers want to buy 16,000 slices per day, but sellers want to sell only 8,000.

At a price of \$2 per slice, every pizza restaurant in the city will have long queues of buyers trying unsuccessfully to purchase pizza. Frustrated buyers will behave rudely to clerks, who will respond in kind. Friends of restaurant managers will begin to get preferential treatment. Devious pricing strategies will begin to emerge (such as the \$2 slice of pizza sold in combination with a \$5 cup of Coke). Pizza will be made from poorer-quality ingredients. Rumors will begin to circulate about sources of black-market pizza. And so on.

The very idea of not being able to buy a pizza seems absurd, yet precisely such things happen routinely in markets in which prices are held below the equilibrium levels. For example, prior to the collapse of communist governments, it was considered normal in those countries for people to stand in line for hours to buy bread and other basic goods, while the politically connected had first choice of those goods that were available.

RECAP MARKET EQUILIBRIUM

Market equilibrium, the situation in which all buyers and sellers are satisfied with their respective quantities at the market price, occurs at the intersection of the supply and demand curves. The corresponding price and quantity are called the *equilibrium price* and the *equilibrium quantity*.

Unless prevented by regulation, prices and quantities are driven toward their equilibrium values by the actions of buyers and sellers. If the price is initially too high, so that there is excess supply, frustrated sellers will cut their price in order to sell more. If the price is initially too low, so that there is excess demand, competition among buyers drives the price upward. This process continues until equilibrium is reached.

PREDICTING AND EXPLAINING CHANGES IN PRICES AND QUANTITIES

If we know how the factors that govern supply and demand curves are changing, we can make informed predictions about how prices and the corresponding quantities will change. But when describing changing circumstances in the marketplace, we must take care to recognize some important terminological distinctions. For example, we must distinguish between the meanings of the seemingly similar expressions **change in the quantity demanded** and **change in demand**. When we speak of a "change in the

change in the quantity

demanded a movement along the demand curve that occurs in response to a change in price

change in demand a shift of the entire demand curve

FIGURE 3.10

An Increase in the Quantity Demanded versus an Increase in Demand.

 (a) An increase in quantity demanded describes a downward movement along the demand curve as price falls.
(b) An increase in demand describes an outward shift of the demand curve.

quantity demanded," this means the change in the quantity that people wish to buy that occurs in response to a change in price. For instance, Figure 3.10(a) depicts an increase in the quantity demanded that occurs in response to a reduction in the price of tuna. When the price falls from \$2 to \$1 per can, the quantity demanded rises from 8,000 to 10,000 cans per day. By contrast, when we speak of a "change in demand," this means a *shift in the entire demand curve*. For example, Figure 3.10(b) depicts an increase in demand, meaning that at every price the quantity demanded is higher than before. In summary, a "change in the quantity demanded" refers to a movement *along* the demand curve and a "change in demand" means a *shift* of the entire curve.

A similar terminological distinction applies on the supply side of the market. A **change in supply** means a shift in the entire supply curve, whereas a **change in the quantity supplied** refers to a movement along the supply curve.

Alfred Marshall's supply and demand model is one of the most useful tools of the economic naturalist. Once we understand the forces that govern the placements of supply and demand curves, we're suddenly in a position to make sense of a host of interesting observations in the world around us.

SHIFTS IN DEMAND

To get a better feel for how the supply and demand model enables us to predict and explain price and quantity movements, it's helpful to begin with a few simple examples. The first one illustrates a shift in demand that results from events outside the particular market itself. **change in supply** a shift of the entire supply curve

change in the quantity supplied a movement along the supply curve that occurs in response to a change in price

EXAMPLE 3.2

Complements

What will happen to the equilibrium price and quantity of tennis balls if court rental fees decline?

Let the initial supply and demand curves for tennis balls be as shown by the curves *S* and *D* in Figure 3.11, where the resulting equilibrium price and quantity are \$1 per ball and 40 million balls per month, respectively. Tennis courts and tennis balls are what economists call **complements**, goods that are more valuable when used in combination than when used alone. Tennis balls, for example, would be of little value if there were no tennis courts on which to play. (Tennis balls would still have *some* value even without courts—for example, to the parents who pitch them to their children for batting practice.) As tennis courts become cheaper to use, people will respond by playing more tennis, and this will increase their demand for tennis balls. A decline in court-rental fees will thus shift the demand curve for tennis

complements two goods are complements in consumption if an increase in the price of one causes a leftward shift in the demand curve for the other (or if a decrease causes a rightward shift)

balls rightward to *D'*. (A "rightward shift" of a demand curve also can be described as an "upward shift." These distinctions correspond, respectively, to the horizontal and vertical interpretations of the demand curve.)

Note in Figure 3.11 that, for the illustrative demand shift shown, the new equilibrium price of tennis balls, \$1.40, is higher than the original price and the new equilibrium quantity, 58 million balls per month, is higher than the original quantity.

Substitutes

What will happen to the equilibrium price and quantity of overnight letter delivery service as the price of Internet access falls?

Suppose the initial supply and demand curves for overnight letter deliveries are as shown by the curves S and D in Figure 3.12 and that the resulting equilibrium price and quantity are denoted P and Q. E-mail messages and overnight letters are examples of what economists call **substitutes**, meaning that, in many applications at least, the two serve similar functions for people. (Many noneconomists would call them substitutes, too. Economists don't *always* choose obscure terms for important concepts!) When two goods or services are substitutes, a decrease in the price of one will cause a leftward shift in the demand curve for the other. (A "leftward shift" in a demand curve can also be described as a "downward shift.") Diagrammatically, the demand curve for overnight delivery service shifts from D to D' in Figure 3.12.

FIGURE 3.12

The Effect on the Market for Overnight Letter Delivery of a Decline in the Price of Internet Access.

When the price of a substitute falls, demand shifts left, causing equilibrium price and quantity to fall.

substitutes two goods are substitutes in consumption if an increase in the price of one causes a rightward shift in the demand curve for the other (or if a decrease causes a leftward shift).

EXAMPLE 3.3

As the figure shows, both the new equilibrium price, P', and the new equilibrium quantity, Q', are lower than the initial values, P and Q. Cheaper Internet access probably won't put Federal Express and UPS out of business, but it will definitely cost them many customers.

To summarize, economists define goods as substitutes if an increase in the price of one causes a rightward shift in the demand curve for the other. By contrast, goods are complements if an increase in the price of one causes a leftward shift in the demand curve for the other.

The concepts of substitutes and complements enable you to answer questions like the one posed in the following concept check.

CONCEPT CHECK 3.4

How will a decline in airfares affect intercity bus fares and the price of hotel rooms in resort communities?

Demand curves are shifted not just by changes in the prices of substitutes and complements but also by other factors that change the amounts people are willing to pay for a given good or service. One of the most important such factors is income.

The Economic Naturalist 3.1

When the federal government implements a large pay increase for its employees, why do rents for apartments located near Washington Metro stations go up relative to rents for apartments located far away from Metro stations?

For the citizens of Washington, D.C., a substantial proportion of whom are government employees, it's more convenient to live in an apartment located one block from the nearest subway station than to live in one that is 20 blocks away. Conveniently located apartments thus command relatively high rents. Suppose the initial demand and supply curves for such apartments are as shown in Figure 3.13. Following a federal pay raise, some government employees who live in less convenient apartments will be willing and able to use part of their extra income to bid for more conveniently located apartments, and those who already live in such apartments will be willing and able to pay more to keep them. The effect of the pay raise is thus to shift the demand curve for conveniently located apartments to the right, as indicated by the demand curve labeled D'. As a result, both the equilibrium price and quantity of such apartments, P' and Q', will be higher than before.

FIGURE 3.13

The Effect of a Federal Pay Raise on the Rent for Conveniently Located Apartments in Washington, D.C. An increase in income shifts demand for a normal good to the right, causing equilibrium price and quantity to rise.

Who gets to live in the most conveniently located apartments?

Incentive

normal good a good whose demand curve shifts rightward when the incomes of buyers increase and leftward when the incomes of buyers decrease

inferior good a good whose demand curve shifts leftward when the incomes of buyers increase and rightward when the incomes of buyers decrease

It might seem natural to ask how there could be an increase in the number of conveniently located apartments, which might appear to be fixed by the constraints of geography. But the Incentive Principle reminds us never to underestimate the ingenuity of sellers when they confront an opportunity to make money by supplying more of something that people want. For example, if rents rose sufficiently, some landlords might respond by converting warehouse space to residential use. Or perhaps people with cars who do not place high value on living near a subway station might sell their apartments to landlords, thereby freeing them for people eager to rent them. (Note that these responses constitute movements along the supply curve of conveniently located apartments, as opposed to shifts in that supply curve.)

When incomes increase, the demand curves for most goods will behave like the demand curve for conveniently located apartments, and in recognition of that fact, economists have chosen to call such goods **normal goods**.

Not all goods are normal goods, however. In fact, the demand curves for some goods actually shift leftward when income goes up. Such goods are called **inferior** goods.

When would having more money tend to make you want to buy less of something? In general, this happens with goods for which there exist attractive substitutes that sell for only slightly higher prices. Apartments in unsafe, inconveniently located neighborhoods are an example. Most residents would choose to move out of such neighborhoods as soon as they could afford to, which means that an increase in income would cause the demand for such apartments to shift leftward.

CONCEPT CHECK 3.5

How will a large pay increase for federal employees affect the rents for apartments located far away from Washington Metro stations?

Ground beef with high fat content is another example of an inferior good. For health reasons, most people prefer grades of meat with low fat content, and when they do buy high-fat meats it's usually a sign of budgetary pressure. When people in this situation receive higher incomes, they usually switch quickly to leaner grades of meat.

Preferences, or tastes, are another important factor that determines whether the purchase of a given good will satisfy the Cost-Benefit Principle. Steven Spielberg's film *Jurassic Park* appeared to kindle a powerful, if previously latent, preference among children for toy dinosaurs. When this film was first released, the demand for such toys shifted sharply to the right. And the same children who couldn't find enough dinosaur toys suddenly seemed to lose interest in toy designs involving horses and other present-day animals, whose respective demand curves shifted sharply to the left.

Expectations about the future are another factor that may cause demand curves to shift. If Apple Macintosh users hear a credible rumor, for example, that a cheaper or significantly upgraded model will be introduced next month, the demand curve for the current model is likely to shift leftward.

SHIFTS IN THE SUPPLY CURVE

The preceding examples involved changes that gave rise to shifts in demand curves. Next, we'll look at what happens when supply curves shift. Because the supply curve is based on costs of production, anything that changes production costs will shift the supply curve, resulting in a new equilibrium quantity and price.

Increasing Opportunity Cost

EXAMPLE 3.4

What will happen to the equilibrium price and quantity of skateboards if the price of fiberglass, a substance used for making skateboards, rises?

Suppose the initial supply and demand curves for skateboards are as shown by the curves S and D in Figure 3.14, resulting in an equilibrium price and quantity of

\$60 per skateboard and 1,000 skateboards per month, respectively. Since fiberglass is one of the materials used to produce skateboards, the effect of an increase in its price is to raise the marginal cost of producing skateboards. How will this affect the supply curve of skateboards? Recall that the supply curve is upward-sloping because when the price of skateboards is low, only those potential sellers whose marginal cost of making skateboards is low can sell boards profitably, whereas at higher prices, those with higher marginal costs also can enter the market profitably (again, the Low-Hanging-Fruit Principle). So if the cost of one of the materials used to produce skateboards rises, the number of potential sellers who can profitably sell skateboards at any given price will fall. And this, in turn, implies a leftward shift in the supply curve for skateboards. Note that a "leftward shift" in a supply curve also can be viewed as an "upward shift" in the same curve. The first corresponds to the horizontal interpretation of the supply curve, while the second corresponds to the vertical interpretation. We will use these expressions to mean exactly the same thing. The new supply curve (after the price of fiberglass rises) is the curve labeled S' in Figure 3.14.

Does an increase in the cost of fiberglass have any effect on the demand curve for skateboards? The demand curve tells us how many skateboards buyers wish to purchase at each price. Any given buyer is willing to purchase a skateboard if his reservation price for it exceeds its market price. And since each buyer's reservation price, which is based on the benefits of owning a skateboard, does not depend on the price of fiberglass, there should be no shift in the demand curve for skateboards.

In Figure 3.14, we can now see what happens when the supply curve shifts leftward and the demand curve remains unchanged. For the illustrative supply curve shown, the new equilibrium price of skateboards, \$80, is higher than the original price, and the new equilibrium quantity, 800 per month, is lower than the original quantity. (These new equilibrium values are merely illustrative. There is insufficient information provided in the example to determine their exact values.) People who don't place a value of at least \$80 on owning a skateboard will choose to spend their money on something else.

The effects on equilibrium price and quantity run in the opposite direction whenever marginal costs of production decline, as illustrated in the next example.

EXAMPLE 3.5

Reduction of Marginal Cost

What will happen to the equilibrium price and quantity of new houses if the wage rate of carpenters falls?

Suppose the initial supply and demand curves for new houses are as shown by the curves *S* and *D* in Figure 3.15, resulting in an equilibrium price of \$120,000 per

house and an equilibrium quantity of 40 houses per month, respectively. A decline in the wage rate of carpenters reduces the marginal cost of making new houses, and this means that, for any given price of houses, more builders can profitably serve the market than before. Diagrammatically, this means a rightward shift in the supply curve of houses, from *S* to *S'*. (A "rightward shift" in the supply curve also can be described as a "downward shift.")

Does a decrease in the wage rate of carpenters have any effect on the demand curve for houses? The demand curve tells us how many houses buyers wish to purchase at each price. Because carpenters are now earning less than before, the maximum amount that they are willing to pay for houses may fall, which would imply a leftward shift in the demand curve for houses. But because carpenters make up only a tiny fraction of all potential home buyers, we may assume that this shift is negligible. Thus, a reduction in carpenters' wages produces a significant rightward shift in the supply curve of houses, but no appreciable shift in the demand curve.

We see from Figure 3.15 that the new equilibrium price, \$90,000 per house, is lower than the original price and the new equilibrium quantity, 50 houses per month, is higher than the original quantity.

Examples 3.4 and 3.5 involved changes in the cost of a material, or input, in the production of the good in question—fiberglass in the production of skateboards and carpenters' labor in the production of houses. As the following example illustrates, supply curves also shift when technology changes. **The Economic Naturalist 3.2**

Why do major term papers go through so many more revisions today than in the 1970s?

Students in the dark days before word processors were in widespread use could not make even minor revisions in their term papers without having to retype their entire manuscript from scratch. The availability of word-processing technology has, of course, radically changed the picture. Instead of having to retype the entire draft, now only the changes need be entered.

In Figure 3.16, the curves labeled S and D depict the supply and demand curves for revisions in the days before word processing, and the curve S' depicts the supply curve for revisions today. As the diagram shows, the result is not only a sharp decline in the price per revision, but also a corresponding increase in the equilibrium number of revisions.

right, causing equilibrium price to fall and equilibrium quantity to rise.

Why does written work go through so many more revisions now than in the 1970s?

Note that in The Economic Naturalist 3.2 we implicitly assumed that students purchased typing services in a market. In fact, however, many students type their own term papers. Does that make a difference? Even if no money actually changes hands, students pay a price when they revise their term papers—namely, the opportunity cost of the time it takes to perform that task. Because technology has radically reduced that cost, we would expect to see a large increase in the number of term-paper revisions even if most students type their own work.

Changes in input prices and technology are two of the most important factors that give rise to shifts in supply curves. In the case of agricultural commodities, weather may be another important factor, with favorable conditions shifting the supply curves of such products to the right and unfavorable conditions shifting them to the left. (Weather also may affect the supply curves of nonagricultural products through its effects on the national transportation system.) Expectations of future price changes also may shift current supply curves, as when the expectation of poor crops from a current drought causes suppliers to withhold supplies from existing stocks in the hope of selling at higher prices in the future. Changes in the number of sellers in the market also can cause supply curves to shift.

FOUR SIMPLE RULES

For supply and demand curves that have the conventional slopes (upward-sloping for supply curves, downward-sloping for demand curves), the preceding examples illustrate the four basic rules that govern how shifts in supply and demand affect equilibrium prices and quantities. These rules are summarized in Figure 3.17.

RECAP FACTORS THAT SHIFT SUPPLY AND DEMAND

Factors that cause an increase (rightward or upward shift) in demand:

- 1. A decrease in the price of complements to the good or service.
- 2. An increase in the price of substitutes for the good or service.
- 3. An increase in income (for a normal good).
- 4. An increased preference by demanders for the good or service.
- 5. An increase in the population of potential buyers.
- 6. An expectation of higher prices in the future.

When these factors move in the opposite direction, demand will shift left.

Factors that cause an increase (rightward or downward shift) in supply:

- 1. A decrease in the cost of materials, labor, or other inputs used in the production of the good or service.
- 2. An improvement in technology that reduces the cost of producing the good or service.
- 3. An improvement in the weather (especially for agricultural products).
- 4. An increase in the number of suppliers.
- 5. An expectation of lower prices in the future.

When these factors move in the opposite direction, supply will shift left.

The qualitative rules summarized in Figure 3.17 hold for supply or demand shifts of any magnitude, provided the curves have their conventional slopes. But as the next example demonstrates, when both supply and demand curves shift at the same time, the direction in which equilibrium price or quantity changes will depend on the relative magnitudes of the shifts.

Shifts in Supply and Demand EXAMPLE 3.6

How do shifts in both demand and supply affect equilibrium quantities and prices?

What will happen to the equilibrium price and quantity in the corn tortilla chip market if both of the following events occur: (1) researchers prove that the oils in which tortilla chips are fried are harmful to human health and (2) the price of corn harvesting equipment falls?

The conclusion regarding the health effects of the oils will shift the demand for tortilla chips to the left because many people who once bought chips in the belief that they were healthful will now switch to other foods. The decline in the price of harvesting equipment will shift the supply of chips to the right because additional farmers will now find it profitable to enter the corn market. In Figures 3.18(a) and 3.18(b), the original supply and demand curves are denoted by *S* and *D*, while the new curves are denoted by *S'* and *D'*. Note that in both panels the shifts lead to a decline in the equilibrium price of chips.

FIGURE 3.18

The Effects of Simultaneous Shifts in Supply and Demand. When demand shifts left and supply shifts right, equilibrium price falls, but equilibrium quantity may either rise (b) or fall (a). But note also that the effect of the shifts on equilibrium quantity cannot be determined without knowing their relative magnitudes. Taken separately, the demand shift causes a decline in equilibrium quantity, whereas the supply shift causes an increase in equilibrium quantity. The net effect of the two shifts thus depends on which of the individual effects is larger. In Figure 3.18(a), the demand shift dominates, so equilibrium quantity declines. In Figure 3.18(b), the supply shift dominates, so equilibrium quantity goes up.

The following concept check asks you to consider a simple variation on the problem posed in the previous example.

CONCEPT CHECK 3.6

What will happen to the equilibrium price and quantity in the corn tortilla chip market if both of the following events occur: (1) researchers discover that a vitamin found in corn helps protect against cancer and heart disease and (2) a swarm of locusts destroys part of the corn crop?

The Economic Naturalist 3.3

Why do the prices of some goods, like airline tickets to Europe, go up during the months of heaviest consumption, while others, like sweet corn, go down?

Seasonal price movements for airline tickets are primarily the result of seasonal variations in demand. Thus, ticket prices to Europe are highest during the summer months because the demand for tickets is highest during those months, as shown in Figure 3.19(a), where the *w* and *s* subscripts denote winter and summer values, respectively.

FIGURE 3.19

Seasonal Variation in the Air Travel and Corn Markets.

(a) Prices are highest during the period of heaviest consumption when heavy consumption is the result of high demand. (b) Prices are lowest during the period of heaviest consumption when heavy consumption is the result of high supply.

Why are some goods cheapest during the months of heaviest consumption, while others are most expensive during those months?

By contrast, seasonal price movements for sweet corn are primarily the result of seasonal variations in supply. The price of sweet corn is lowest in the summer months because its supply is highest during those months, as seen in Figure 3.19(b).

EFFICIENCY AND EQUILIBRIUM

Markets represent a highly effective system of allocating resources. When a market for a good is in equilibrium, the equilibrium price conveys important information to potential suppliers about the value that potential demanders place on that good. At the same time, the equilibrium price informs potential demanders about the opportunity cost of supplying the good. This rapid, two-way transmission of information is the reason that markets can coordinate an activity as complex as supplying New York City with food and drink, even though no one person or organization oversees the process.

But are the prices and quantities determined in market equilibrium socially optimal, in the sense of maximizing total economic surplus? That is, does equilibrium in unregulated markets always maximize the difference between the total benefits and total costs experienced by market participants? As we'll see, the answer is "it depends": A market that is out of equilibrium, such as the rent-controlled New York housing market, always creates opportunities for individuals to arrange transactions that will increase their individual economic surplus. As we'll also see, however, a market for a good that is in equilibrium makes the largest possible contribution to total economic surplus only when its supply and demand curves fully reflect all costs and benefits associated with the production and consumption of that good.

CASH ON THE TABLE

In economics we assume that all exchange is purely voluntary. This means that a transaction cannot take place unless the buyer's reservation price for the good exceeds the seller's reservation price. When that condition is met and a transaction takes place, both parties receive an economic surplus. The **buyer's surplus** from the transaction is the difference between his reservation price and the price he actually pays. The **seller's surplus** is the difference between the price she receives and her reservation price. The **total surplus** from the transaction is the sum of the buyer's surplus and the seller's reservation price.

Suppose there is a potential buyer whose reservation price for an additional slice of pizza is \$4 and a potential seller whose reservation price is only \$2. If this buyer purchases a slice of pizza from this seller for \$3, the total surplus generated by this exchange is 4 - 2 = 2, of which 4 - 3 = 1 is the buyer's surplus and 3 - 2 = 1 is the seller's surplus.

A regulation that prevents the price of a good from reaching its equilibrium level unnecessarily prevents exchanges of this sort from taking place, and in the process reduces total economic surplus. Consider again the effect of price controls imposed in the market for pizza. The demand curve in Figure 3.20 tells us that if a price ceiling of \$2 per slice were imposed, only 8,000 slices of pizza per day would be sold. At that quantity, the vertical interpretations of the supply and demand curves tell us that a buyer would be willing to pay as much as \$4 for an additional slice and that a seller would be willing to sell one for as little as \$2. The difference—\$2 per slice—is the additional economic surplus that would result if an additional slice were produced and sold. As noted earlier, an extra slice sold at a price of \$3 would result in an additional \$1 of economic surplus for both buyer and seller.

When a market is out of equilibrium, it's always possible to identify mutually beneficial exchanges of this sort. When people have failed to take advantage of all mutually beneficial exchanges, we often say that there's **"cash on the table"**—the economist's metaphor for unexploited opportunities. When the price in a market is below the equilibrium price, there's cash on the table because the reservation price of sellers (marginal cost) will always be lower than the reservation price of buyers. In the absence of a law preventing buyers from paying more than \$2 per slice, restaurant owners would quickly raise their prices and expand their production until **buyer's surplus** the difference between the buyer's reservation price and the price he or she actually pays

seller's surplus the difference between the price received by the seller and his or her reservation price

total surplus the difference between the buyer's reservation price and the seller's reservation price

cash on the table an economic metaphor for unexploited gains from exchange

the equilibrium price of \$3 per slice were reached. At that price, buyers would be able to get precisely the 12,000 slices of pizza they want to buy each day. All mutually beneficial opportunities for exchange would have been exploited, leaving no more cash on the table.

With the Incentive Principle in mind, it should be no surprise that buyers and sellers in the marketplace have an uncanny ability to detect the presence of cash on the table. It is almost as if unexploited opportunities give off some exotic scent triggering neurochemical explosions in the olfactory centers of their brains. The desire to scrape cash off the table and into their pockets is what drives sellers in each of New York City's thousands of individual food markets to work diligently to meet their customers' demands. That they succeed to a far higher degree than participants in the city's rent-controlled housing market is plainly evident. Whatever flaws it might have, the market system moves with considerably greater speed and agility than any centralized allocation mechanisms yet devised. But as we emphasize in the following section, this does not mean that markets *always* lead to the greatest good for all.

SMART FOR ONE, DUMB FOR ALL

The socially optimal quantity of any good is the quantity that maximizes the total economic surplus that results from producing and consuming the good. From the Cost-Benefit Principle, we know that we should keep expanding production of the good as long as its marginal benefit is at least as great as its marginal cost. This means that the socially optimal quantity is that level for which the marginal cost and marginal benefit of the good are the same.

When the quantity of a good is less than the socially optimal quantity, boosting its production will increase total economic surplus. By the same token, when the quantity of a good exceeds the socially optimal quantity, reducing its production will increase total economic surplus. **Economic efficiency**, or **efficiency**, occurs when all goods and services in the economy are produced and consumed at their respective socially optimal levels.

Efficiency is an important social goal. Failure to achieve efficiency means that total economic surplus is smaller than it could have been. Movements toward efficiency make the total economic pie larger, making it possible for everyone to have a larger slice. The importance of efficiency will be a recurring theme as we move forward, and we state it here as one of the core principles:

The Efficiency Principle: Efficiency is an important social goal because when the economic pie grows larger, everyone can have a larger slice.

Incentive

Cost-Benefit

socially optimal quantity the quantity of a good that results in the maximum possible economic surplus from producing and consuming the good

efficiency (or economic

efficiency) a condition that occurs when all goods and services are produced and consumed at their respective socially optimal levels

Is the market equilibrium quantity of a good efficient? That is, does it maximize the total economic surplus received by participants in the market for that good? When the private market for a given good is in equilibrium, we can say that the cost *to the seller* of producing an additional unit of the good is the same as the benefit *to the buyer* of having an additional unit. If all costs of producing the good are borne directly by sellers, and if all benefits from the good accrue directly to buyers, it follows that the market equilibrium quantity of the good will equate the marginal cost and marginal benefit of the good. And this means that the equilibrium quantity also maximizes total economic surplus.

But sometimes the production of a good entails costs that fall on people other than those who sell the good. This will be true, for instance, for goods whose production generates significant levels of environmental pollution. As extra units of these goods are produced, the extra pollution harms other people besides sellers. In the market equilibrium for such goods, the benefit *to buyers* of the last good produced is, as before, equal to the cost incurred by sellers to produce that good. But since producing that good also imposes pollution costs on others, we know that the *full* marginal cost of the last unit produced—the seller's private marginal cost plus the marginal pollution cost borne by others—must be higher than the benefit of the last unit produced. So in this case the market equilibrium quantity of the good will be larger than the socially optimal quantity. Total economic surplus would be higher if output of the good were lower. Yet neither sellers nor buyers have any incentive to alter their behavior.

Another possibility is that people other than those who buy a good may receive significant benefits from it. For instance, when someone purchases a vaccination against measles from her doctor, she not only protects herself, but also makes it less likely that others will catch this disease. From the perspective of society as a whole, we should keep increasing the number of vaccinations until their marginal cost equals their marginal benefit. The marginal benefit of a vaccination is the value of the protection it provides the person vaccinated *plus* the value of the protection it provides all others. Private consumers, however, will choose to be vaccinated only if the marginal benefit *to them* exceeds the price of the vaccination. In this case, then, the market equilibrium quantity of vaccinations will be smaller than the quantity that maximizes total economic surplus. Again, however, individuals would have no incentive to alter their behavior.

Situations like the ones just discussed provide examples of behaviors that we may call "smart for one but dumb for all." In each case, the individual actors are behaving rationally. They are pursuing their goals as best they can, and yet there remain unexploited opportunities for gain from the point of view of the whole society. The difficulty is that these opportunities cannot be exploited by individuals acting alone. In subsequent chapters, we will see how people can often organize collectively to exploit such opportunities. For now, we simply summarize this discussion in the form of the following core principle:

The Equilibrium Principle (also called the "No-Cash-on-the-Table Principle"):

A market in equilibrium leaves no unexploited opportunities for individuals but may not exploit all gains achievable through collective action.

Equilibrium

RECAP

MARKETS AND SOCIAL WELFARE

When the supply and demand curves for a good reflect all significant costs and benefits associated with the production and consumption of that good, the market equilibrium will result in the largest possible economic surplus. But if people other than buyers benefit from the good, or if people other than sellers bear costs because of it, market equilibrium need not result in the largest possible economic surplus.

SUMMARY =

- The demand curve is a downward-sloping line that tells what quantity buyers will demand at any given price. The supply curve is an upward-sloping line that tells what quantity sellers will offer at any given price. (LO1)
- Alfred Marshall's model of supply and demand explains why neither cost of production nor value to the purchaser (as measured by willingness to pay) is, by itself, sufficient to explain why some goods are cheap and others are expensive. To explain variations in price, we must examine the interaction of cost and willingness to pay. As we've seen in this chapter, goods differ in price because of differences in their respective supply and demand curves. (LO2)
- Market equilibrium occurs when the quantity buyers demand at the market price is exactly the same as the quantity that sellers offer. The equilibrium price-quantity pair is the one at which the demand and supply curves intersect. In equilibrium, market price measures both the value of the last unit sold to buyers and the cost of the resources required to produce it. (LO2)
- When the price of a good lies above its equilibrium value, there is an excess supply of that good. Excess supply motivates sellers to cut their prices and price continues to fall until equilibrium price is reached. When price lies below its equilibrium value, there is excess demand. With excess demand, frustrated buyers are motivated to offer higher prices and the upward pressure on prices persists until equilibrium is reached. A remarkable feature of the market system is that, relying only on the tendency of people to respond in self-interested ways to market price signals, it somehow manages to coordinate the actions of literally billions of buyers and sellers worldwide. When excess demand or excess supply occurs, it tends to be small and brief, except in markets where regulations prevent full adjustment of prices. (LO2)
- The basic supply and demand model is a primary tool of the economic naturalist. Changes in the equilibrium price of a good, and in the amount of it traded in the marketplace, can be predicted on the basis of shifts in its supply or demand curves. The following four rules hold for any good with a downward-sloping demand curve and an upward-sloping supply curve:
 - 1. An increase in demand will lead to an increase in equilibrium price and quantity.
 - 2. A reduction in demand will lead to a reduction in equilibrium price and quantity.

- 3. An increase in supply will lead to a reduction in equilibrium price and an increase in equilibrium quantity.
- 4. A decrease in supply will lead to an increase in equilibrium price and a reduction in equilibrium quantity. (LO3)
- Incomes, tastes, population, expectations, and the prices of substitutes and complements are among the factors that shift demand schedules. Supply schedules, in turn, are primarily governed by such factors as technology, input prices, expectations, the number of sellers, and, especially for agricultural products, the weather. (LO3)
- The efficiency of markets in allocating resources does not eliminate social concerns about how goods and services are distributed among different people. For example, we often lament the fact many buyers enter the market with too little income to buy even the most basic goods and services. Concern for the well-being of the poor has motivated many governments to intervene in a variety of ways to alter the outcomes of market forces. Sometimes these interventions take the form of laws that peg prices below their equilibrium levels. Such laws almost invariably generate harmful, if unintended, consequences. Programs like rent-control laws, for example, lead to severe housing shortages, black marketeering, and a rapid deterioration of the relationship between landlords and tenants. (LO4)
- If the difficulty is that the poor have too little money, the best solution is to discover ways of boosting their incomes directly. The law of supply and demand cannot be repealed by the legislature. But legislatures do have the capacity to alter the underlying forces that govern the shape and position of supply and demand schedules. (LO4)
- When the supply and demand curves for a good reflect all significant costs and benefits associated with the production and consumption of that good, the market equilibrium price will guide people to produce and consume the quantity of the good that results in the largest possible economic surplus. This conclusion, however, does not apply if others, besides buyers, benefit from the good (as when someone benefits from his neighbor's purchase of a vaccination against measles) or if others besides sellers bear costs because of the good (as when its production generates pollution). In such cases, market equilibrium does not result in the greatest gain for all. (*LO4*)

CORE PRINCIPLES =

The Efficiency Principle

Efficiency is an important social goal because when the economic pie grows larger, everyone can have a larger slice.

The Equilibrium Principle (also called the "No-Cash-on-the-Table Principle")

A market in equilibrium leaves no unexploited opportunities for individuals but may not exploit all gains achievable through collective action.

KEY TERMS

- buyer's reservation price (66) buyer's surplus (85) cash on the table (85) change in demand (74) change in the quantity demanded (74) change in the quantity supplied (75) change in supply (75) complements (75) demand curve (65)
- economic efficiency (86) efficiency (86) equilibrium (68) equilibrium price (68) equilibrium quantity (68) excess demand (69) excess supply (69) income effect (65) inferior good (78) market (64) market equilibrium (68)
- normal good (78) price ceiling (73) seller's reservation price (67) seller's surplus (85) socially optimal quantity (86) substitutes (76) substitution effect (65) supply curve (66) total surplus (85)

REVIEW QUESTIONS

- 1. Explain the distinction between the horizontal and vertical interpretations of the demand curve. (LO1)
- 2. Why isn't knowing the cost of producing a good sufficient to predict its market price? (*LO2*)
- 3. In recent years, a government official proposed that gasoline price controls be imposed to protect the poor from rising gasoline prices. What evidence

could you consult to discover whether this proposal was enacted? (LO2)

- 4. Distinguish between the meaning of the expressions "change in demand" and "change in the quantity demanded." (LO3)
- 5. Give an example of behavior you have observed that could be described as "smart for one but dumb for all." (LO4)

PROBLEMS -

1. How would each of the following affect the U.S. market supply curve for corn? (LO1)

- a. A new and improved crop rotation technique is discovered.
- b. The price of fertilizer falls.
- c. The government offers new tax breaks to farmers.
- d. A tornado sweeps through Iowa.

Visit your mobile app store and download the Frank: Study Econ app today!

- 2. Indicate how you think each of the following would shift demand in the indicated market: (LO1)
 - a. The incomes of buyers in the market for Adirondack vacations increases.
 - b. Buyers in the market for pizza read a study linking pepperoni consumption to heart disease.
 - c. Buyers in the market for CDs learn of an increase in the price of downloadable MP3s (a substitute for CDs).
 - d. Buyers in the market for CDs learn of an increase in the price of CDs.
- 3. An Arizona student claims to have spotted a UFO over the desert outside of Tucson. How will his claim affect the *supply* (not the quantity supplied) of binoculars in Tucson stores? (*LO1*)
- 4. State whether the following pairs of goods are complements, or substitutes, or both. (*LO3*)
 - a. Washing machines and dryers.
 - b. Tennis rackets and tennis balls.
 - c. Ice cream and chocolate.
 - d. Cloth diapers and disposable diapers.
- 5. How will an increase in the birth rate affect the equilibrium price of land? (LO3)
- 6. What will happen to the equilibrium price and quantity of beef if the price of chickenfeed increases? (LO3)
- 7. How will a new law mandating an increase in required levels of automobile insurance affect the equilibrium price and quantity in the market for new automobiles? (*LO3*)
- 8. Predict what will happen to the equilibrium price and quantity of oranges if the following events take place. (LO3)
 - a. A study finds that a daily glass of orange juice reduces the risk of heart disease.
 - b. The price of grapefruit falls drastically.
 - c. The wage paid to orange pickers rises.
 - d. Exceptionally good weather provides a much greater than expected harvest.
- 9. Suppose the current issue of *The New York Times* reports an outbreak of mad cow disease in Nebraska, as well as the discovery of a new breed of chicken that gains more weight than existing breeds that consume the same amount of food. How will these developments affect the equilibrium price and quantity of chickens sold in the United States? (LO3)
- 10. Twenty-five years ago, tofu was available only from small businesses operating in predominantly Asian sections of large cities. Today tofu has become popular as a high-protein health food and is widely available in supermarkets throughout the United States. At the same time, tofu production has evolved to become factory-based using modern food-processing technologies. Draw a diagram with demand and supply curves depicting the market for tofu 25 years ago and the market for tofu today. Given the information above, what does the demand–supply model predict about changes in the volume of tofu sold in the United States between then and now? What does it predict about changes in the price of tofu? (*LO3*)

ANSWERS TO CONCEPT CHECKS

3.1 At a quantity of 10,000 slices per day, the marginal buyer's reservation price is \$3.50 per slice. At a price of \$2.50 per slice, the quantity demanded will be 14,000 slices per day. (*LO1*)

3.2 At a quantity of 10,000 slices per day, the marginal cost of pizza is \$2.50 per slice. At a price of \$3.50 per slice, the quantity supplied will be 14,000 slices per day. (*LO1*)

- 3.3 Since landlords are permitted to charge less than the maximum rent established by rent-control laws, a law that sets the maximum rent at \$1,200 will have no effect on the rents actually charged in this market, which will settle at the equilibrium value of \$800 per month. (LO2)
- 3.4 Travel by air and travel by intercity bus are substitutes, so a decline in airfares will shift the demand for bus travel to the left, resulting in lower bus fares and fewer bus trips taken. Travel by air and the use of resort hotels are complements, so a decline in airfares will shift the demand for resort hotel rooms to the right, resulting in higher hotel rates and an increase in the number of rooms rented. (*LO3*)
- 3.5 Apartments located far from Washington Metro stations are an inferior good. A pay increase for federal workers will thus shift the demand curve for such apartments downward, which will lead to a reduction in their equilibrium rent. (LO3)

3.6 The vitamin discovery shifts the demand for chips to the right and the crop losses shift the supply of chips to the left. Both shifts result in an increase in the equilibrium price of chips. But depending on the relative magnitude of the shifts, the equilibrium quantity of chips may either rise (left panel) or fall (right panel). (*LO3*)

APPENDIX

The Algebra of Supply and Demand

n the text of this chapter, we developed supply and demand analysis in a geometric framework. The advantage of this framework is that many find it an easier one within which to visualize how shifts in either curve affect equilibrium price and quantity.

It is a straightforward extension to translate supply and demand analysis into algebraic terms. In this brief appendix, we show how this is done. The advantage of the algebraic framework is that it greatly simplifies computing the numerical values of equilibrium prices and quantities.

Consider, for example, the supply and demand curves in Figure 3A.1, where *P* denotes the price of the good and *Q* denotes its quantity. What are the equations of these curves?

Recall from the appendix to Chapter 1 that the equation of a straight-line demand curve must take the general form $P = a + bQ^d$, where P is the price of the product (as measured on the vertical axis), Q^d is the quantity demanded at that price (as measured on the horizontal axis), a is the vertical intercept of the demand curve, and b is its slope. For the demand curve shown in Figure 3A.1, the vertical intercept is 16 and the slope is -2. So the equation for this demand curve is

$$P = 16 - 2Q^d. (3A.1)$$

Similarly, the equation of a straight-line supply curve must take the general form $P = c + dQ^s$, where *P* is again the price of the product, Q^s is the quantity supplied at that price, *c* is the vertical intercept of the supply curve, and *d* is its slope. For the supply curve shown in Figure 3A.1, the vertical intercept is 4 and the slope is also 4. So the equation for this supply curve is

$$P = 4 + 4Q^{s}.$$
 (3A.2)

If we know the equations for the supply and demand curves in any market, it is a simple matter to solve them for the equilibrium price and quantity using the method of simultaneous equations described in the appendix to Chapter 1. The following example illustrates how to apply this method.

Simultaneous Equations

EXAMPLE 3A.I

If the supply and demand curves for a market are given by $P = 4 + 4Q^s$ and $P = 16 - 2Q^d$, respectively, find the equilibrium price and quantity for this market.

In equilibrium, we know that $Q^s = Q^d$. Denoting this common value as Q^* , we may then equate the right-hand sides of Equations 3A.1 and 3A.2 and solve

$$4 + 4Q^* = 16 - 2Q^*, \tag{3A.3}$$

which yields $Q^* = 2$. Substituting $Q^* = 2$ back into either the supply or demand equation gives the equilibrium price $P^* = 12$.

Of course, having already begun with the graphs of Equations 3A.1 and 3A.2 in hand, we could have identified the equilibrium price and quantity by a simple glance at Figure 3A.1. (That is why it seems natural to say that the graphical approach helps us visualize the equilibrium outcome.) As the following concept check illustrates, the advantage of the algebraic approach to finding the equilibrium price and quantity is that it is much less painstaking than having to produce accurate drawings of the supply and demand schedules.

CONCEPT CHECK 3A.I

Find the equilibrium price and quantity in a market whose supply and demand curves are given by $P = 2Q^s$ and $P = 8 - 2Q^d$, respectively.

ANSWER TO APPENDIX CONCEPT CHECK =

3A.1 Let Q^* denote the equilibrium quantity. Since the equilibrium price and quantity lie on both the supply and demand curves, we equate the right-hand sides of the supply and demand equations to obtain

$$2Q^* = 8 - 2Q^*$$
,

which solves for $Q^* = 2$. Substituting $Q^* = 2$ back into either the supply or demand equation gives the equilibrium price $P^* = 4$.