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A Guide to Proof-Writing
by Ron Morash, University of Michigan–Dearborn

At the end of Section 1.8, the text states, “We have not given a procedure that can be used for proving theorems in

mathematics. It is a deep theorem of mathematical logic that there is no such procedure.” This is true, but does

not mean that proof-writing is purely an art, so that only those with exceptional talent and insight can possibly

write proofs. Most proofs that students are asked to write in elementary courses fall into one of several categories,

each calling for a systematic approach that can be demonstrated, imitated, and eventually mastered. We present

some of these categories and techniques for working within them, organized as follows. This material supplements

that found in the text and is intended to help get you started creating your own proofs. Also, studying the material

in this Guide will help you understand better the proofs you read.

1. Deducing conclusions having the form “For every x , if P (x), then Q(x).”

1.1 Direct proof

1.1.1 Propositions having no hypothesis

1.1.2 Propositions having one or more hypotheses

1.1.3 Disproving false propositions having conclusions of the form “∀x[P (x)→ Q(x)]”

1.1.4 The tactic of division into cases

1.1.5 Proving equality of sets

1.2 Indirect proof

1.2.1 Proof by contraposition

1.2.2 Proof by contradiction

1.2.3 Deriving conclusions of the form “q or r”

2. Remarks on additional methods of proof

2.1 Deducing conclusions having the form “For every x , there exists y such that P (x, y).”

2.2 Proof by mathematical induction

1. Deducing conclusions having the form “For every x , if P (x), then Q(x).”

Many defining properties in mathematics have the form ∀x[P (x) → Q(x)] , representing the idea “All P ’s are

Q ’s.” (Cf. Examples 23, 26, and 27 in Section 1.4 of the text.) Some definitions involving this form are:

(i) A set A is a subset of a set B : In symbols, A ⊆ B if and only if ∀x[(x ∈ A) → (x ∈ B)] . This is read in

words, “A is a subset of B if and only if, for every x , if x ∈ A , then x ∈ B .” Less formally, A is a subset

of B if and only if every element of A is also an element of B . (Cf. Definition 3 in Section 2.1 of the text.)

(ii) A function f is one-to-one: f is one-to-one if and only if, for every x1 and x2 in the domain of f , if

f(x1) = f(x2), then x1 = x2 . (Cf. Definition 5 in Section 2.3 of the text.)

(iii) A relation R on a set A is symmetric: R is symmetric if and only if, for every x, y ∈ A , if (x, y) ∈ R , then

(y, x) ∈ R . (Cf. Definition 4 in Section 9.1 of the text.)

Many mathematical propositions that students are asked to prove have as their conclusion a statement involv-

ing a definition of the form just described. Some examples are:

(a) Prove that for all sets A and B , A ⊆ A ∪B .

(b) Prove that for all sets X , Y , and Z , if X ⊆ Y , then X ∩ Z ⊆ Y ∩ Z .
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(c) Prove that for every function f whose domain and codomain are subsets of the set of real numbers, if f is

strictly increasing (cf. Definition 6 in Section 2.3), then f is one-to-one.

(d) Prove that for all relations R1 and R2 on a set A , if R1 and R2 are symmetric, then the relation R1 ∩R2

is symmetric.

Note that the desired conclusion in each of the propositions (a)–(d) is a statement involving one of the

definitions (i)–(iii). Furthermore, propositions (b), (c), and (d) each have a hypothesis, a statement we are allowed

to assume true and whose assumed truth, presumably, will play a role in deriving the conclusion. We begin our

study of proof-writing methods by considering the very broad category known as direct proof .

1.1. Direct proof

An argument in which we prove a proposition in its originally-stated form is called a direct proof . Some forms of

direct proof are discussed in Sections 1.7 and 1.8 of the text. In the sections of this Guide that follow, we present

various techniques for creating direct proofs. Attempting to write a direct proof of a proposition is usually our first

line of attack. Direct proof contrasts with indirect proof , in which we prove a proposition by proving a different,

but logically equivalent, form of the original proposition. We will introduce indirect proofs later, but will focus, in

Examples 1–11, on various approaches to direct proofs.

1.1.1. Propositions having no hypothesis

Direct proofs of propositions like (a), having no hypothesis, tend to be simpler in their structure than the proofs

that are required for propositions (b)–(d). Examples 1 and 2 demonstrate proofs for this simpler case.

Example 1. Prove Proposition (a): For all sets A and B , A ⊆ A ∪B .

Solution. The proof proceeds as follows: Let A and B be arbitrary sets. To prove A ⊆ A ∪ B , let x be an

arbitrarily chosen element of A . [Note: We are assuming that x ∈ A .] We must prove that x ∈ A ∪ B . By the

definition of “union,” this means we must prove that either x ∈ A or x ∈ B . Since we know x ∈ A , by our

assumption, the desired conclusion x ∈ A or x ∈ B follows immediately.

Let’s dissect the proof in Example 1 and analyze what we did. Our starting point “. . . assume x ∈ A . . . ”

is an application of one of the most widely-used approaches to proof-writing, known as the choose method . The

basic approach to deriving a conclusion of the form ∀x[P (x)→ Q(x)] , is to begin by choosing an arbitrary object

(giving it a specific name such as “x”) for which it is assumed that P (x) is true. Our goal is to deduce that

Q(x) must consequently also be true. In Example 1, P (x) is the assumption “x ∈ A” and Q(x) is the desired

conclusion “x ∈ A ∪B .” We make the following additional observations:

• The object x is a fixed, but arbitrarily chosen, element of the universe of discourse of P (x) and Q(x). We

do not assign any specific value to x ; rather we give the name “x” to a generic object [that is assumed to

satisfy the propositional function P (x)] and use that name to keep track of the object as we proceed through

the steps of the proof. The power of this approach is that any conclusion we draw about “this x” applies to

every object a for which the assumption P (a) is true. This is valid by the rule of universal generalization; see

Table 2 of Section 1.6.

• In the first part of a proof of a conclusion of the form ∀x[P (x)→ Q(x)] , called the “setting-up” of the proof,

we choose x , assume P (x) is true, and then write out what it would mean for Q(x) to be true (in our

example, “. . . we must prove that either x ∈ A or x ∈ B ”). Learning the process of setting up a proof in this

category provides a fairly standardized, predictable, and almost mechanical beginning of a prospective direct

proof. Furthermore, once we have written out these details, the remainder of the proof—the path from the

assumption P (x) to the desired conclusion Q(x)—is sometimes clear.

• In the proof in Example 1, the path from what we assumed (i.e., x ∈ A) to the conclusion (i.e., x ∈ A ∪ B )

was obvious. In our proof, we stated that the conclusion “follows immediately.” But was there something more

than just “common sense” to justify that conclusion? Yes! The rule of inference p→ p∨q (“Law of Addition”)

is the underlying logical tool that justifies this step. This rule and other rules of inference are stated in the
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text, in Table 1 of Section 1.6. In the sample proofs that follow, we will make explicit reference to the rules

of inference used (in an increasingly less obvious way as the proofs become more complex), even though it is

common practice to apply these rules only implicitly, that is, without specific mention. To become proficient

at writing proofs, you need to know how to use these rules of inference and when to use them.

Example 2. Prove that for all sets X and Y , X ∩ (Y ∪X) ⊆ Y .

Discussion. Let X and Y be arbitrary sets. To prove X ∩ (Y ∪X) ⊆ Y , let a be an arbitrarily chosen element

of X ∩ (Y ∪ X). [We could also say “Assume a ∈ X ∩ (Y ∪ X).”] We must prove a ∈ Y . [This concludes the

setting-up of the proof. Now we must figure out how to get from the assumption to the conclusion. To do that,

we begin by analyzing what our assumption means.]

Since a ∈ X ∩ (Y ∪X), we know that a ∈ X and a ∈ Y ∪X . The latter, in turn, tells us that either a ∈ Y or

a ∈ X , that is, either a ∈ Y or a /∈ X . [Note that the preceding sentence makes the first mention of the desired

conclusion a ∈ Y .] Now, can we infer the conclusion a ∈ Y from the known “either a ∈ Y or a /∈ X ”? This would

require a rule of inference “(p ∨ q)→ p” (the converse of the Law of Addition). This is not a valid inference since

(p ∨ q)→ p is not a tautology, so this approach does not work. Note, however, that not only do we know “either

a ∈ Y or a /∈ X ” from our assumption, but we also know that a ∈ X . Thus, what we know from our assumption

has the form (p∨ q)∧¬q . [Note: p is “a ∈ Y ” and q is “a /∈ X ,” so ¬q is “a ∈ X .”] Does Table 1 in Section 1.6

give us a conclusion that follows from this premise? It does! The Law of Disjunctive Syllogism, [(p∨ q)∧¬q]→ p ,

enables us to draw the conclusion p , that is, a ∈ Y , the desired conclusion. [Note: As stated in Table 1, the roles

of p and q are reversed from what we have here, but that is of no consequence.]

Before moving on, we rewrite the preceding proof, leaving out explanatory comments. What remains provides

a representative view of what a typical proof looks like:

“Let X and Y be arbitrary sets. To prove X ∩ (Y ∪X) ⊆ Y , assume a ∈ X ∩ (Y ∪X). We must

prove a ∈ Y . By our assumption, we know a ∈ X and a ∈ Y ∪X ; therefore a ∈ X and either a ∈ Y

or a ∈ X . Thus we know that either a ∈ Y or a /∈ X ; but we also know that a ∈ X , so a /∈ X is

false. Hence we conclude a ∈ Y , as desired.”

At this point, you may wish to try some relevant exercises in the text, such as Exercises 16(a,c) and 20(a,b,c)

in Section 2.2. You should find the principles from Examples 1 and 2 helpful in attempting these exercises.

1.1.2. Propositions having one or more hypotheses

As we work through the steps of a prospective proof, the tools at our disposal in moving toward a desired conclusion

are

• the assumption(s) we are entitled to make at the outset in setting up the proof,

• assumed axioms and previously-proved theorems (if any), and

• rules of inference from logic, such as p→ (p∨q), used in Example 1, and [(p∨q)∧¬q]→ p , used in Example 2.

(See Table 1 in Section 1.6 for additional rules of this type.)

In addition to these, most propositions we are asked to prove contain

• one or more hypotheses, statements whose truth is to be assumed in the proof and which, we expect, will be

used as part of the argument leading to the conclusion.

Example 3 provides our first instance of a proposition in which a hypothesis is to be assumed in deriving a

conclusion of the form ∀x[P (x)→ Q(x)] .

Example 3. Prove Proposition (b): For all sets X , Y , and Z , if X ⊆ Y , then X ∩ Z ⊆ Y ∩ Z .

Proof. Let X , Y , and Z be sets such that X ⊆ Y . To prove X ∩ Z ⊆ Y ∩ Z , assume b ∈ X ∩ Z . To prove

b ∈ Y ∩ Z , we must prove b ∈ Y and b ∈ Z . [This marks the end of “setting up the proof.” Now we must return

to our assumption and the hypothesis, and begin to analyze what they mean and what information we can draw

from them.] By our assumption, we know that b ∈ X and b ∈ Z , so, in particular, b ∈ Z , one of our two desired
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conclusions. Furthermore, since b ∈ X (part of our assumption) and since X ⊆ Y [here we are, for the first time,

bringing in the hypothesis], we may conclude that b ∈ Y , our other desired conclusion.

The following feature of the proof in Example 3 is very important. In setting up the argument at the outset,

we applied the choose method to the desired conclusion, not the hypothesis. Thus our initial statement was “. . .

assume b ∈ X∩Z .” A common mistake by beginning students is to begin with “. . . assume b ∈ X . . . ,” erroneously

focusing at the start of the proof on the hypothesis rather than on the desired conclusion. Note that we did not

employ the hypothesis until the very end of the proof!

In the last sentence of the proof in Example 3, we concluded b ∈ Y from knowing b ∈ X and X ⊆ Y . Let us

consider why this conclusion is justified. The truth of X ⊆ Y means that the proposition ∀x[(x ∈ X)→ (x ∈ Y )]

is true. Thus, in particular, the proposition (b ∈ X) → (b ∈ Y ) is true, where b is the specific object we are

working with in the proof. Since b ∈ X is true and the “if. . . then” statement (b ∈ X) → (b ∈ Y ) is true, the

truth of b ∈ Y follows from the rule of inference modus ponens (cf. Table 1 in Section 1.6 of the text). Note, once

again, that a rule of inference has played an important, though implicit, role in a proof!

The principles discussed thus far apply to every proof of a proposition whose conclusion has the logical form

∀x[P (x)→ Q(x)] , and not just to proofs that one set is a subset of another. Examples 4 and 5 illustrate this.

Example 4. Prove that every nonconstant linear function f(x) = Mx + B , M 6= 0, is one-to-one.

Proof. Let M be a nonzero real number. Let x1 and x2 be real numbers and assume that f(x1) = f(x2). We

must prove that x1 = x2 . Since f(x1) = Mx1 + B and f(x2) = Mx2 + B , we have Mx1 + B = Mx2 + B . By

a rule of elementary algebra, if Mx1 + B = Mx2 + B , then Mx1 = Mx2 . Since Mx1 = Mx2 and M 6= 0, by

hypothesis, we conclude by another rule of elementary algebra that x1 = x2 , as desired.

Example 5. Prove Proposition (d): For all relations R1 and R2 on a set A , if R1 and R2 are symmetric, then

the relation R1 ∩R2 is symmetric.

Proof. Let A be an arbitrary set and let R1 and R2 be symmetric relations on A . To prove that the relation

R1 ∩R2 is symmetric, let x and y be arbitrary elements of A and assume that (x, y) ∈ R1 ∩R2 . We must prove

(y, x) ∈ R1∩R2 , that is, (y, x) ∈ R1 and (y, x) ∈ R2 . [End of set-up!] Now since (x, y) ∈ R1∩R2 (by assumption),

we know that (x, y) ∈ R1 and (x, y) ∈ R2 . Since (x, y) ∈ R1 and R1 is symmetric (by hypothesis), (y, x) ∈ R1 .

This is one of our desired conclusions. Since (x, y) ∈ R2 and R2 is symmetric (by hypothesis), (y, x) ∈ R2 , the

second of our two desired conclusions. With this, the proposition is proved.

At this point, you may want to practice applying the principles from Examples 3–5 in the following exercises:

• Prove that for all sets A and B , if A ∩B = A , then A ⊆ B .

• Prove that for all sets A , B , and C , if A ⊆ B and B ⊆ C , then A ⊆ C . (This is Exercise 19 in Section 2.1

of the text.)

• Prove that the function g(x) = x3 is one-to-one.

1.1.3. Disproving false propositions having conclusions of the form ∀x[P (x)→ Q(x)]

Sometimes we are faced with a proposition that we must either “prove or disprove.” We are not told in advance

whether the proposition is true. If it is false, then it will of course be impossible to write a correct proof of the

proposition. Time spent trying to do so may provide insight, but cannot ultimately lead to a valid proof. Example 6

illustrates how we should approach this type of problem.

Example 6. Prove or disprove the converse of Proposition (b): For all sets X , Y , and Z , if X ∩ Z ⊆ Y ∩ Z ,

then X ⊆ Y . (Cf. Example 3.)

Discussion. Suppose we try first to approach this proposition in the manner of previous examples. Our setting

up of a “proof” would read as follows: “Let X , Y , and Z be arbitrary sets such that X ∩ Z ⊆ Y ∩ Z . To prove

X ⊆ Y , let w ∈ X ; we must prove w ∈ Y .” At this point, we must return to the hypothesis X ∩ Z ⊆ Y ∩ Z and

ask whether, in combination with the assumption w ∈ X , it leads to the conclusion w ∈ Y . If we could get w to

lie in X ∩Z , then we could invoke the hypothesis to conclude w ∈ Y ∩Z , which would imply w ∈ Y , the desired
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conclusion. However, we know from our assumption only that w ∈ X ; in order to conclude w ∈ X ∩ Z , we would

need to know that w ∈ Z , which we do not!

With this, our attempt to write a direct proof breaks down, leaving us with two possibilities. Either there is

another route to a proof, or perhaps, the proposition we are trying to prove is false. If we do not know whether a

general proposition is true or false, and our initial attempts at a proof fail, we should do some experimenting to

see whether we can find a counterexample, i.e., a specific example that contradicts the truth of the proposition.

Before we can do that, we must formulate precisely the negation of the proposition. Logically the negation of a

proposition “for every x , if P (x), then Q(x)” is “there exists x such that P (x) but not Q(x).” In symbols,

¬∀x[P (x) → Q(x)] is equivalent to ∃x[P (x) ∧ ¬Q(x)] . In this example, the negation is “there exist sets X , Y ,

and Z such that X ∩Z ⊆ Y ∩Z , but X is not a subset of Y .” Can we find specific sets X , Y , and Z satisfying

this statement? Consider the sets X = {4, 7, 8, 11} , Y = {2, 7, 8, 9, 11} , and Z = {1, 7, 8, 9, 10, 11, 12} . Note that

X ∩ Z = {7, 8, 11} and Y ∩ Z = {7, 8, 9, 11} , so X ∩ Z ⊆ Y ∩ Z . However X is clearly not a subset of Y . Hence

we have a counterexample; the proposition in question is false!

Note that a single counterexample to a general proposition is sufficient to prove that proposition false. This

is a far cry from what is required to prove a general proposition true, when the domain (universe of discourse) is

infinite. Since we can never exhaust all the possible examples, no number of specific cases that affirm a proposition

are sufficient to establish its truth in general. We must write a general proof in order to do that—the process of

writing such proofs is the major topic you are now studying, and one to which we will return shortly.

In the last sentence of the Discussion of Example 6, we stated that “X is clearly not a subset of Y .” How

do we justify this statement formally? Recall that “X ⊆ Y ” is defined by “∀w[(w ∈ X)→ (w ∈ Y )] .” Hence the

proposition “∃w[(w ∈ X)∧ (w /∈ Y )]” corresponds to “X is not a subset of Y .” For the sets X = {4, 7, 8, 11} and

Y = {2, 7, 8, 9, 11} , we note that, choosing w = 4, we have 4 ∈ X , but 4 /∈ Y . This particular example is all that

is needed to conclude that X is not a subset of Y . (Note incidentally that the choice of w used to prove that X

is not a subset of Y , w = 4, has the property that w /∈ Z . This is not surprising since, in our initial attempt to

prove the false proposition in Example 6, the obstacle we could not overcome was that our arbitrarily chosen w

did not need to lie in Z .)

The following exercises are germane to the issues raised by Example 6 and the paragraphs following it.

• Prove or disprove: For all sets X , Y , and Z , X ∪ (Y ∩ Z) ⊆ (X ∪ Y ) ∩ Z .

• Prove or disprove: For all sets X , Y , and Z , if X ⊆ Z , then X ∪ (Y ∩ Z) ⊆ (X ∪ Y ) ∩ Z .

1.1.4. The tactic of division into cases

As propositions we are asked to prove become more complex, we must expand our arsenal of tools that are effective

for proceeding toward the desired conclusion of a proposition, once we have finished setting up the argument. The

applications of the choose method that occur in Examples 7 and 8, which follow, demonstrate a new such tool,

known as division into cases, which is useful in some proofs.

Example 7. Prove that for all sets A and B , (A ∩B) ∪ (A ∩B) ⊆ A .

Proof. Let A and B be arbitrary sets. To prove (A ∩ B) ∪ (A ∩ B) ⊆ A , assume x ∈ (A ∩ B) ∪ (A ∩ B). We

must prove x ∈ A . By our assumption, we know that either x ∈ A ∩ B or x ∈ A ∩ B , that is, either x ∈ A and

x ∈ B , or else x ∈ A and x ∈ B . [Note: We don’t know which of these two is the case, but we do know that at

least one of them must be true.] Hence, at this point, we divide the argument into two exhaustive cases:

Case I Suppose that x ∈ A and x ∈ B . Then, in particular, x ∈ A [by the rule of inference (p ∧ q) → p ], so

the desired conclusion obtains in this case.

Case II Suppose that x ∈ A and x ∈ B . Then, again, x ∈ A , so the desired conclusion is again verified.

Under either of the only two possible cases, we have x ∈ A , the desired conclusion.

Example 8. Prove that for all sets A and B , A ⊆ (A ∩B) ∪ (A ∩B).

Proof. Let A and B be arbitrary sets. To prove A ⊆ (A ∩ B) ∪ (A ∩ B), assume x ∈ A . We must prove
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x ∈ (A ∩B) ∪ (A ∩B). To do this, we must prove that either x ∈ A ∩B or x ∈ A ∩B , that is, either x ∈ A and

x ∈ B , or else x ∈ A and x ∈ B . [Recall that our assumption is that x ∈ A . This assumption involves only the

set A . The problem we must solve is how to bring the relationship between x and the set B into the discussion.]

We note that, necessarily, either x ∈ B or x /∈ B , by the tautology p ∨ ¬p . Having noted this, we consider two

cases:

Case I Suppose that x ∈ B . Then, since x ∈ A [by our assumption], we have x ∈ A and x ∈ B , one of the

two alternatives in our desired conclusion.

Case II Suppose that x /∈ B . Equivalently, x ∈ B . Then, since x ∈ A , we have x ∈ A and x ∈ B , the other of

the two alternatives in our desired conclusion.

Compare the proofs in Examples 7 and 8, both involving division into cases. The second proof illustrates

somewhat more creativity than does the first. It requires a slightly more active role on our part, involving the

tautology p∨¬p . The truth of this tautology is “common sense.” Once the idea of bringing this division into cases

into the argument is suggested, virtually anyone would agree that it is correct and, furthermore, is an effective

step at this stage. The difficult part for you, as a beginning student just learning to write proofs, is thinking of

this idea on your own.

Many complex proofs require that some creative idea be brought in from outside the basic structure (i.e.,

the setting up) of the argument. This is the aspect of proof-writing that is not mechanical. It is learned from

experience and by an active interest in the “why” in mathematics. It is fostered by developing the habit of having

firmly in mind all the statements, pertaining to the problem at hand, that we know to be true, and by being willing

to try to apply these statements until we find one that works.

Here are some exercises that involve the choose method and division into cases:

• Prove that for all sets X , Y , and Z , if X ⊆ Z and Y ⊆ Z , then X ∪ Y ⊆ Z .

• Prove that for all sets A , B , and C , if A ⊆ B , then A ∪ C ⊆ B ∪ C .

• Prove that for all sets X , Y , and Z , if X ∩ Z ⊆ Y ∩ Z and X ∩ Z ⊆ Y ∩ Z , then X ⊆ Y .

1.1.5. Proving equality of sets

Three approaches to proving equality of sets are discussed in Examples 12–14 in Section 2.2 of the text. Of these,

the first, known as mutual inclusion (introduced in Example 10), is the most generally applicable. In addition, it

expands naturally on the earlier material in this Guide, so we give that approach additional emphasis here.

A formal version of the definition of equality of sets given in the text (cf. Definition 2 in Section 2.1) is

A = B if and only if ∀x[(x ∈ A)↔ (x ∈ B)].

The latter proposition is equivalent to

∀x{[(x ∈ A)→ (x ∈ B)] ∧ [(x ∈ B)→ (x ∈ A)]},

which, in turn, is equivalent to

{∀x[(x ∈ A)→ (x ∈ B)]} ∧ {∀x[(x ∈ B)→ (x ∈ A)]},

which is the definition of

A ⊆ B and B ⊆ A.

We may prove that two sets are equal by proving that each is a subset of the other. We illustrate this approach

in Examples 9 and 10.

Example 9. Prove that for all sets A and B , (A ∩B) ∪ (A ∩B) = A .

Proof. We may prove the desired equality by proving mutual inclusion, i.e., that each of the two sets is a subset

of the other. The inclusion (A ∩ B) ∪ (A ∩ B) ⊆ A , however, is precisely what we proved already in Example 7.
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The other inclusion A ⊆ (A ∩ B) ∪ (A ∩ B) was proved in Example 8. Having written these two proofs, we have

established the desired equality.

In Example 10, we encounter a conclusion of equality that is preceded by a hypothesis.

Example 10. Prove that for all sets A and B , if A ⊆ B , then A ∪B = B .

Proof. Let A and B be arbitrary sets such that A ⊆ B . We may prove A∪B = B by proving B ⊆ A∪B and

A ∪B ⊆ B .

1. B ⊆ A ∪ B is essentially Proposition (a), proved earlier in Example 1. [Note that the hypothesis of the

theorem is not required to establish this inclusion. Like Example 7 in Section 1.7 of the text, the proof in

this direction is trivial .]

2. To prove A ∪B ⊆ B , given the hypothesis A ⊆ B , we proceed by the choose method. Assume x ∈ A ∪B .

We must prove that x ∈ B . By our assumption, we know that either x ∈ A or x ∈ B . Since we do not

know which of these two statements is true, we divide the argument into cases:

Case I Suppose that x ∈ A . Then, since A ⊆ B , by hypothesis, we have x ∈ B , as desired. [Recall the

middle paragraph of the discussion between Examples 3 and 4, on the role of modus ponens.]

Case II Suppose that x ∈ B . Since this is the desired conclusion, the result is trivially true in this case.

We conclude x ∈ B , as desired.

In some circumstances, it is possible to prove set equality using a single chain of valid equations, thus avoiding

the sometimes cumbersome mutual-inclusion approach. One such circumstance is in proving any of the set identities

in Table 1 in Section 2.2 of the text. Each of these results is a set-theory version of a corresponding equivalence of

propositions in logic, covered in Section 1.3. Each can be proved using the approach of Example 11 in Section 2.2

of the text.

Another approach to proving an equality of sets is to use other equalities proved previously. Suppose the

following identities of set theory have already been proved:

For all sets A, B, and C, A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C). [1]

For every set B, B ∪B = U (U represents the universal set.) [2]

For every set C, C ∩ U = C. [3]

On these bases, we can give a proof of the proposition proved in Example 9 that does not use mutual inclusion.

Example 11. Prove that for all sets A and B , (A ∩B) ∪ (A ∩B) = A .

Proof. Let A and B be arbitrary sets. Then we have

(A ∩B) ∪ (A ∩B) = A ∩ (B ∪B) (by [1])

= A ∩ U (by [2])

= A, (by [3])

as desired.

Note that, in applying the result [1], we used the special case C = B of the identity [1] (which is the property

of distributivity of intersection over union—see Table 1 in Section 2.2 of the text). The technique of using a special

case of a known result is called specialization. Whenever you find yourself saying “in particular,” in making an

inference from a known general fact in the course of an argument, you are using the specialization tactic. Like

division into cases, specialization is a sometimes-useful technique for proceeding beyond the initial setting up of a

proof toward the desired conclusion. Formally, it is justified by the rule of universal instantiation, shown in Table 2

of Section 1.6.

1.2. Indirect proof
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Sometimes it is convenient, or even necessary, to prove a form of a proposition that is different from the original,

but logically equivalent to it. Whenever we write a proof in such a form, we are writing an indirect proof . Three

common forms of indirect proof are based on three logical equivalences of pairs of propositions:

• (¬q)→ (¬p) is equivalent to p→ q [4]

• (¬p)→ (q ∧ ¬q) is equivalent to p [5]

• (p ∧ ¬q)→ r is equivalent to p→ (q ∨ r). [6]

The equivalence [4] is the basis for the form of an indirect proof known as proof by contraposition. The equivalence

[5] justifies the form of an indirect proof called proof by contradiction. The equivalence [6] underlies a standard

approach to deriving a conclusion involving alternatives, i.e., having the form “either q or r .”

1.2.1. Proof by contraposition

Sometimes it is difficult to see how to prove a proposition of the form ∀x[P (x) → Q(x)] by starting with the

assumption that P (x) is true. (Recall Section 1.1.2 of this Guide.) What can you do if you cannot see how to

deduce the conclusion Q(x) from the assumption P (x) and any additional given hypotheses (if there are any)?

Sometimes, in such cases, assuming the negation ¬Q(x) of the conclusion provides a better match with known facts

or the other given hypotheses, and the two together lead readily to the negation ¬P (x) of the original assumption.

An argument in this form is an instance of proof by contraposition. See Example 3 in Section 1.7 of the text for

an example of such a proof. Our Example 12 provides another illustration of the method.

Example 12. Prove Proposition (c): For every function f whose domain and codomain are subsets of the set of

real numbers, if f is strictly increasing, then f is one-to-one.

Discussion. Let f be any function that is strictly increasing. To show that f is one-to-one using the original

form of the definition, we would let x1 and x2 be real numbers in the domain of f and assume f(x1) = f(x2).

We would then have to prove x1 = x2 . We have completed the setting up of a direct proof, but have no way of

using the hypothesis that f is strictly increasing [i.e., “. . . if x1 < x2 , then f(x1) < f(x2)”]. The assumption

f(x1) = f(x2) simply does not “match up” with the “if part” of the hypothesis in a way that permits us to proceed

anywhere from that hypothesis.

However, suppose we decide instead to derive the contrapositive of the definition of one-to-one. Under this

approach, we will begin by assuming that x1 6= x2 . Our goal will then be to prove that f(x1) 6= f(x2). We

proceed from here as follows. Since x1 6= x2 (by assumption), then it must be that either x1 < x2 or x2 < x1 .

We consider two cases:

Case I If x1 < x2 , then since f is strictly increasing, we may conclude f(x1) < f(x2), so, in particular,

f(x1) 6= f(x2), as desired.

Case II If x2 < x1 , then since f is strictly increasing, we may conclude f(x2) < f(x1), so f(x1) 6= f(x2), again

as desired.

Another situation in which a proof by contraposition is sometimes called for is one in which the conclusion

of the proposition has a much simpler logical form than does the hypothesis. We illustrate this in the following

example.

Example 13. Suppose that a is a real number satisfying the property ∀M>0 (|a| < M). Then a = 0.

Discussion. Note the simple form of the conclusion. Rather than involving a definition having an “if. . . then”

form, as in most of our earlier examples, it is simply the flat statement that a = 0. If we try to begin a direct

proof by focusing on the desired conclusion, then there is really no place to begin, no basis for making the kind of

assumption that is needed to get the proof “off the ground.”

So instead we proceed by contraposition. Our approach will be to assume a 6= 0 and try to deduce the

negation of the hypothesis. This negation may be formulated (cf. Table 2 in Section 1.4 of the text)

∃M>0 (|a| ≥M). [7]

We need only produce a positive M whose value does not exceed that of the absolute value of the nonzero a . We
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take M = |a| , noting that this value of M clearly satisfies the condition [7].

Here is a third circumstance in which a proof by contraposition is appropriate. Suppose a proposition of the

form “if p and q , then r” is known to be true, and we are asked to prove that p and the negation of r together

imply the negation of q . We may always proceed, using contraposition, by assuming that the negation of q is

false, that is, that q is true. Then since p is true, by hypothesis, we have that p and q are both true, so, by the

known proposition, we may conclude that r is true, contradicting the fact that ¬r is one of the hypotheses. You

will have an opportunity to apply this approach in the third and fourth of the exercises that follow.

• Prove that for all sets A and B , if A ⊆ B , then B ⊆ A .

• Prove that if a linear function f(x) = Mx + B is one-to-one, then M 6= 0.

• Suppose it is known that “every sum or difference of two integers is an integer.” Use this result to prove that

for all real numbers x and y , if x is an integer and x + y is an integer, then y is an integer. Prove also that

the sum of an integer and a noninteger must be a noninteger.

• Prove that for all sets A and B and for every object x , if x ∈ A and x /∈ A ∩B , then x /∈ B .

1.2.2. Proof by contradiction

The idea behind the equivalence [5] is that we may prove a conclusion p by showing that the denial of p leads to

a contradiction. Actually, proof by contraposition is a form of proof by contradiction. For if, in a proof that p

implies q , we assume the truth of p (as we are entitled to do) and then use the negation of q to derive ¬p , then

we have obtained the contradiction p∧¬p . Another circumstance in which proof by contradiction is the standard

approach is any proof of a theorem in set theory in which the conclusion asserts that some set equals the empty

set.

Example 14. Prove that for all sets A and B , if A ⊆ B , then A ∩B = ∅ .

Discussion. A direct approach would be to establish the equality A ∩ B = ∅ using mutual inclusion. Indeed

the containment in one direction, ∅ ⊆ A ∩ B , is true automatically, based on the principle that the empty set is

a subset of every set (this result is vacuously true—recall Example 5 in Section 1.7 of the text). However, for the

containment in the other direction, A ∩ B ⊆ ∅ , the approach “assume x ∈ A ∩ B . . . we must prove x ∈ ∅” is

doomed to failure, since the conclusion “x ∈ ∅” can never be reached.

Since we are unable to write a direct proof, we proceed by contradiction. Let A and B be arbitrary sets such

that A ⊆ B . Assume that A ∩ B 6= ∅ . Then there exists some object that lies in A ∩ B ; let us call it c . Since

c ∈ A∩B , we know that c ∈ A and c ∈ B . Since c ∈ A and A ⊆ B , by hypothesis, we have c ∈ B . Thus we have

c ∈ B and c ∈ B , so c ∈ B and c /∈ B . This is a contradiction of the form p ∧ ¬p , so our proof is complete.

A classic example of a proof by contradiction is provided in the text in Example 11 of Section 1.7, which shows

that
√

2 is irrational. Here are some exercises:

• Prove that for every set A , A ∩A = ∅ .

• Prove that for all sets A and B , if (B ∩A) ∪ (B ∩A) = B , then A = ∅ .

• Prove that for all sets A and B , (A ∪B) ∩ (A ∪B) ∩ (A ∪B) ∩ (A ∪B) = ∅ .

1.2.3. Deriving conclusions of the form “q or r”

The equivalence [6] becomes relevant to the writing of proofs when we must derive a conclusion involving alterna-

tives, q or r . For a proposition of this type, there may be no circumstance under which we can be sure which of the

alternatives is true, only that at least one of them must be true under every circumstance in which the hypothesis

is true. Because of this, we are unable to determine whether to set up a direct proof based on the conclusion q or

on the conclusion r . (Indeed, usually no such proof is possible.) Fortunately there is an indirect approach, based

on the equivalence [6], that enables us to get around this difficulty. Rather than attempting to prove directly that

q or r follows from p , we may replace this problem by the problem of showing that r follows from p and ¬q (or

else that q follows from p and ¬r—either approach will do the job).
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A classic example of a proof in this category is the following theorem from elementary algebra: “For all real

numbers x and y , if xy = 0, then x = 0 or y = 0.” Clearly we should set up this proof by letting x and y be

real numbers such that xy = 0. But at this point there is no evident way of proceeding toward the conclusion that

one or the other of x and y (we know not which) equals 0. The escape is to make the additional assumption that

x 6= 0, with the goal of proving that therefore y must equal 0. Since x 6= 0, its reciprocal 1/x must exist, and

we may write the chain of equations y = 1 · y = [(1/x)(x)](y) = (1/x)(xy) = (1/x)(0) = 0, so y = 0, as desired.

[Note that this chain of equations also uses the facts that multiplication of real numbers is associative and that

the product of every real number with 0 equals 0.]

A problem in set theory in which this approach is sometimes useful is proving that one set is a subset of the

union of two other sets. This is demonstrated in Example 15.

Example 15. Prove that for all sets A and B , A ⊆ B ∪ (A ∩B).

Proof. Let A and B be arbitrary sets. To prove A ⊆ B ∪ (A ∩ B), assume that x ∈ A . We must prove that

x ∈ B ∪ (A ∩ B), that is, either x ∈ B or x ∈ A ∩ B . Since our desired conclusion is now seen to have the

form “either q or r ,” we take the approach suggested by the equivalence [6], and assume that x /∈ B . Our goal

now becomes to prove that, on the basis of this additional assumption, it must be true that x ∈ A ∩ B , that is,

x ∈ A and x ∈ B . We already know x ∈ A , by our initial assumption in the proof. As for x ∈ B , that follows

immediately from our additional assumption x /∈ B .

If a desired conclusion has more than two alternatives, the strategy suggested by [6] is generalized as follows:

Assume the negation of all but one of the alternative conclusions and, on that basis, try to prove that the remaining

one must be true. We illustrate this in Example 16.

Example 16. Prove that for all sets A and B , if A×B = B ×A , then either A = ∅ or B = ∅ or A = B .

Sketch of proof. [Note first that the notation A×B refers to the cartesian product of sets A and B , defined as

the set of all ordered pairs (a, b), where a ∈ A and b ∈ B . This definition is the basis of the content of Chapter 9

of the text, on relations.] Let A and B be any sets such that A × B = B × A . Assume further that A 6= ∅ and

B 6= ∅ . With these two additional assumptions, our goal then becomes to prove that the third alternative A = B

must be true. The remainder of this proof is left as an exercise.

The following exercises provide the opportunity to use the strategy suggested by the equivalence [6].

• Complete the proof in Example 16.

• Prove that if A , B , and C are any sets such that A×B = A× C , then either A = ∅ or B = C .

• Prove that if A and B are any sets such that A×B = ∅ , then either A = ∅ or B = ∅ .

• Prove that for all sets X , Y , and Z , (X ∪ Y ) ∩ Z ⊆ X ∪ (Y ∩ Z).

2. Remarks on additional methods of proof

Not all propositions we may wish to prove have conclusions involving the form ∀x[P (x) → Q(x)] . Nonetheless,

beginning students who are able to write correctly the proofs called for in the exercises in Section 1 of this Guide

are well prepared to deal with the new issues that arise in writing other types of proofs. One reason for this is

that many of the tactics (e.g., division into cases, specialization) and strategies (e.g., the choose method, indirect

proof), highlighted in Section 1, have application beyond proving propositions whose conclusion is of the form

∀x[P (x)→ Q(x)] . In this section, we discuss briefly two additional types of propositions.

2.1. Deducing conclusions having the form “For every x , there exists y such that P (x, y).”

Many defining properties in mathematics have one of the forms ∃xP (x) or ∀x∃y P (x, y). Elementary definitions

of these types include:

(i) Let m and n be integers. We say that m divides n , denoted m | n , if and only if there exists an integer p

such that n = mp . (Cf. Definition 1 in Section 4.1 of the text.)

(ii) A function f is onto if and only if, for every y in the codomain of f , there exists x in the domain of f
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such that f(x) = y . (Cf. Definition 7 in Section 2.3 of the text.)

(iii) A real number x is said to be rational if and only if there exist integers p and q , with q 6= 0, such that

x = p/q .

Many important mathematical propositions whose proofs should be within the capabilities of students working

through this Guide have as their conclusion a statement involving one of the preceding definitions. Some examples

are:

(a) Prove that if m , n , and p are integers such that m divides n and m divides p , then m divides n + p .

(b) Prove that if functions f and g , having the real numbers as their domain and codomain, are both onto,

then their composition f ◦ g is also onto.

(c) Prove that if x and y are rational, then xy and x + y are rational.

The new issue involved in proving propositions like (a)–(c) is existence. At a key point of each of these

proofs, we must “produce,” or define, an appropriate object of the type whose existence is asserted in the desired

conclusion. In doing this, it is important to realize that, for a conclusion of the form ∀x∃y P (x, y), the y whose

existence is to be proved usually depends on the given x ; we should expect it to be defined in terms of x or else

in terms of some other object that is defined in terms of x . This principle is demonstrated in Examples 17 and 18,

which follow.

Example 17. Prove the first part of Proposition (c): If x and y are rational, then xy is rational.

Discussion. Assume that real numbers x and y are rational. To prove that their product xy is rational, we

must show that xy = p/q , where p and q are integers with q 6= 0. Our job in this proof is to produce, literally

to build, the integers p and q whose quotient p/q equals xy . As in most proofs, once the argument is set up,

we must next assess what we have available to work with. In the case of a proof of existence, this includes asking

whether what we have to work with provides any “building blocks.” We have at our disposal only the hypotheses

that x and y are rational. This means we can state that there exist integers p1 and q1 , with q1 6= 0, such that

x = p1/q1 ; and there exist integers p2 and q2 , with q2 6= 0, such that y = p2/q2 . We note that, therefore,

xy = (p1/q1)(p2/q2), which, by rules of algebra, equals (p1p2)/(q1q2). Noting that p1p2 and q1q2 are necessarily

integers and that q1q2 6= 0 (Why?), we declare that p = p1p2 and q = q1q2 are the required integers.

Example 18. Prove Proposition (b): If functions f and g , having the real numbers as their domain and codomain,

are both onto, then their composition f ◦ g is also onto.

Proof. Assume that the functions f and g are onto. To prove that their composition f ◦ g is onto, let z be an

arbitrary real number. We must prove that there exists x ∈ R such that (f ◦ g)(x) = z . Now since f is onto,

we know that, corresponding to the given z , there exists a real number y such that z = f(y). Next, since g is

onto, then corresponding to this y , there must exist a real number w such that y = g(w). Note therefore that

z = f(y) = f(g(w)) = (f ◦ g)(w). Hence our choice of the desired real number x becomes evident, namely choose

x = w .

Theorem 1 in Section 4.1 of the text contains several propositions related to Definition (i), including a proof

of Proposition (a). You should study that proof, noting its similarities to the proofs in Examples 17 and 18, and

then attempt the following exercises.

• Prove parts (ii) and (iii) of Theorem 1 in Section 4.1 of the text.

• Prove that for every integer n , there exists an integer m such that m | n .

• Prove that for every positive integer m , there exists a positive integer n such that m | n .

• Prove the second part of Proposition (c): If x and y are rational, then x + y is rational.

• Prove that if f and g are functions having the real numbers as their domain and codomain, and if f ◦ g is

onto, then f is onto.

2.2. Proof by mathematical induction

We use mathematical induction to prove a proposition whose conclusion has the form ∀nP (n), where n is a positive

integer (or, sometimes, a nonnegative integer). Thus, proof by induction is an appropriate approach when the
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universe of discourse for a predicate quantified by “for every” is the set of all positive integers. If you review earlier

sections of this Guide, you will note that this has not usually been the case in most of the examples and exercises

covered, so induction would not have been an appropriate approach at those earlier stages.

Note that the inductive step in every proof by mathematical induction involves a proposition of the form

∀n[P (n) → Q(n)] , where Q(n) is P (n + 1). Thus the basic approach to be taken in the second part of a proof

by induction is the same approach that was emphasized throughout Section 1 of this Guide, namely the choose

method. We start by letting n be an arbitrary positive integer for which it is assumed that P (n) is true. We must

prove, on the basis of that assumption and whatever else is available (e.g., hypotheses), that P (n+ 1) is also true.

For more on mathematical induction, see Sections 5.1 and 5.2 of the text.
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