
4 Number Theory and Cryptography

Introduction
Maple includes numerous capabilities for exploring number theory. In this chapter, we will see how
to use Maple’s computational abilities to compute and solve congruences, represent integers in
bases other than ten, explore arithmetic algorithms in those bases, check whether or not a number is
prime, and compute discrete logarithms. We will also see how Maple can help explore several of the
applications described in the textbook, in particular, hashing functions, pseudorandom numbers,
check digits, and, of course, cryptography.

4.1 Divisibility and Modular Arithmetic
In this section, we will use Maple to explore divisibility of integers and modular arithmetic. We will
see how to compute quotients and remainders in integer division, how to test integers for the divisi-
bility relationship, and how to perform computations in modular arithmetic. This section will con-
clude with an illustration of how to create infix addition and multiplication operators for modular
arithmetic and a demonstration of how Maple can be used to compute addition and multiplication
tables.

Quotient, Remainder, and Divisibility
Maple’s commands iquo and irem compute the quotient and remainder, respectively, obtained when
you divide two integers. For example, consider 99 divided by 13.

> iquo (99, 13)
7 (4.1)

> irem (99, 13)
8 (4.2)

These statements indicate that 99 divided by 13 results in a quotient of 7 and a remainder of 8. That
is, 99 = 13 ⋅ 7 + 8.

These commands both accept a variable as an optional third argument. In this case, the iquo
command will still return the quotient but will assign the remainder to the name, while the irem
command will return the remainder and assign the value of the quotient to the name. Putting
the name in right single quotes ensures that if the name already stores a value, it will be over-
written. Omitting the single quotes will result in an error if the name has already been assigned
a value.

> iquo (99, 13,′ remainderName′)
7 (4.3)

> remainderName
8 (4.4)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=irem
https://www.maplesoft.com/support/help/Maple/view.aspx?path=irem
https://www.maplesoft.com/support/help/Maple/view.aspx?path=irem
https://www.maplesoft.com/support/help/Maple/view.aspx?path=irem

Checking Divisibility
To test whether one integer divides another, you check to see if the remainder is 0 or not. For
example, the following shows that 3 ∣ 132.

> irem (132, 3)
0 (4.5)

Since the question of whether one integer divides another is fundamental to our study of number
theory, we create a procedure to test this for us. The IsDivisor procedure below accepts two inte-
gers as arguments. It returns true if the first argument divides the second and false otherwise. The
procedure body is only one line—it computes the remainder and compares it to 0.

1 IsDivisor := proc(a::integer, b::integer)
2 return evalb(irem(b,a) = 0);
3 end proc:

> IsDivisor (3, 132)
true (4.6)

> IsDivisor (13, 99)
false (4.7)

The mod Operator
The textbook uses the notation a mod m to represent the remainder when a is divided by m. Maple’s
mod operator works in the same way.

> 99 mod 13

8 (4.8)

Recall from the division algorithm that the remainder must always be positive, even when the divi-
dend is negative. Maple’s mod function respects that convention by default.

> −27 mod 5

3 (4.9)

However, there may be times when it is more useful to allow negative values. For example, consider
the following question: “It is now 11:00 AM. What time will it be 142 hours from now?” If we com-
pute 124 mod 24,

> 142 mod 24

22 (4.10)

we see that the time will be the same 142 hours from now as 22 hours from now. However, it is
also the case that 142 ≡ −2 (mod 24), which means that the time 142 hours from now is the same
as the time 2 hours earlier, that is, 9:00 AM. You can see that this congruence is somewhat more
convenient.

The mods command (the “s” is for symmetric) returns the integer closest to 0 that is congruent to
the value in its first argument modulo the second argument.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=mod
https://www.maplesoft.com/support/help/Maple/view.aspx?path=mod
https://www.maplesoft.com/support/help/Maple/view.aspx?path=mod

> mods (142, 24)
−2 (4.11)

The modp command returns the “positive” representation.

> modp (142, 24)
22 (4.12)

The default behavior of the mod operator is to apply the modp command to the operands. However,
this can be overridden by executing the assignment ‘mod‘ := mods;, in which case mod will act
as the symmetric modulus. Likewise, ‘mod‘ := modp; will revert to the default. Because it is
possible to modify its behavior, mod is ambiguous and thus we will typically use the explicit modp
command in procedures. This way, there is no possibility that a reassignment of ‘mod‘ could wreak
havoc on our programs.

Congruences
The first argument to modp and mods can be any algebraic expression. For example, you can com-
pute 3 + 4 ⋅ 92 mod 5 as follows.

> modp
(
3 + 4 ⋅ 92, 5

)
2 (4.13)

The first argument can also be an equation. Recall from Theorem 3 in Section 4.1 that
a ≡ b (mod m) if and only if a mod m = b mod m. If you enter an equation as the first argu-
ment to modp, Maple will evaluate both sides of the equation modulo the value given in the second
argument. For example, consider the congruence 428 ≡ 530 (mod 17). In Maple, you would enter
the following:

> modp (428 = 530, 17)
3 = 3 (4.14)

Note that the result is the equation 428 mod 17 = 530 mod 17. By applying the evalb command, we
obtain a truth value.

> evalb (modp (428 = 530, 17))
true (4.15)

> evalb (modp (289 = 311, 17))
false (4.16)

Solving Congruences
Maple can solve congruences with the msolve command. This command has two required argu-
ments. The first is an equation or set of equations representing the congruences to be solved. The
second argument is the modulus. As an example, consider Exercise 17a from Section 4.1 of the
textbook. Under the assumption that a ≡ 4 (mod 13), we need to solve c ≡ 9 a (mod 13). We can
solve this with Maple as follows:

> msolve ({a = 4, c = 9 a} , 13)
{a = 4, c = 10} (4.17)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=mod
https://www.maplesoft.com/support/help/Maple/view.aspx?path=mod
https://www.maplesoft.com/support/help/Maple/view.aspx?path=mod
https://www.maplesoft.com/support/help/Maple/view.aspx?path=mod
https://www.maplesoft.com/support/help/Maple/view.aspx?path=mod
https://www.maplesoft.com/support/help/Maple/view.aspx?path=mod
https://www.maplesoft.com/support/help/Maple/view.aspx?path=mod
https://www.maplesoft.com/support/help/Maple/view.aspx?path=mod
https://www.maplesoft.com/support/help/Maple/view.aspx?path=mod
https://www.maplesoft.com/support/help/Maple/view.aspx?path=mod
https://www.maplesoft.com/support/help/Maple/view.aspx?path=evalb
https://www.maplesoft.com/support/help/Maple/view.aspx?path=msolve

If there are no solutions, then msolve will return NULL, so that no result is displayed.

> msolve
(
n2 = 3, 4

)
On the other hand, if the solution is indeterminate, then a family of solutions may be returned.

> msolve
(
3i = 4, 7

)
{i = 4 + 6 _Z1} (4.18)

The symbol _Z1 indicates that any integer may be substituted to obtain a value for i that satisfies the
congruence. For example, substituting 5 for _Z1 and then substituting the result into 3i = 4 yields

> evalb
(
modp

(
34+6⋅5 = 4, 7

))
true (4.19)

If you prefer a particular name instead of symbols such as _Z1, you can provide a name or set of
names as an optional second argument to msolve as illustrated below.

> msolve
(
3i = 4,C, 7

)
{i = 4 + 6 C} (4.20)

Arithmetic Modulo m
In this section, we define operators based on the definitions of +m and ⋅m given in the text. Our goal
will be to get as close as possible to being able to enter 7 +11 9 and have Maple return 5.

The usual style of writing arithmetic operators in between the operands is referred to as infix
notation. In Maple, we create operators that can be used in infix style by using neutral operators.
The name of a neutral operator must begin with an ampersand (&) and be followed either by a
valid Maple name composed of letters and numbers or by one or more allowable special characters,
which include symbols such as + and *. The two forms cannot be mixed, which means that if the
name of the neutral operator includes a special character, then it cannot include letters or numbers.
We will use the names &+ and &* for our modular addition and multiplication operators.

You define a neutral operator in the same way as you normally define a procedure or functional oper-
ator, with some small differences. First, when defining the operator, the name must be enclosed in
left single quotes. Second, the function or procedure should have only one or two arguments. When
there is one argument, the operator will function as a unary operator, like negation. When two argu-
ments are allowed, the operator will function like a binary operator such as addition.

We define addition and multiplication modulo 11 as follows. The neutral operator names are
assigned to functional operators which accept two arguments, a and b, and apply modp to their sum
or product, respectively.

> ‘&+‘ ∶= (a, b)→ modp(a + b, 11)
&+ ∶= (a, b) → modp(a + b, 11) (4.21)

> ‘&*‘ ∶= (a, b)→ modp(a b, 11)
&* ∶= (a, b) → modp(b a, 11) (4.22)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=msolve
https://www.maplesoft.com/support/help/Maple/view.aspx?path=msolve
https://www.maplesoft.com/support/help/Maple/view.aspx?path=neutral
https://www.maplesoft.com/support/help/Maple/view.aspx?path=neutral
https://www.maplesoft.com/support/help/Maple/view.aspx?path=neutral
https://www.maplesoft.com/support/help/Maple/view.aspx?path=mod

This allows us to perform arithmetic modulo 11 with infix notation. (Note that these operators will
not respect the usual order of operations, so parentheses are needed.)

> 7 &+ (9 &* 2)
3 (4.23)

Addition and Multiplication Tables
We conclude Section 4.1 by producing addition and multiplication tables.

We will represent the tables with matrices whose entries represent the sums or products. In each
matrix, the first row and first column should correspond to the value 0, so that the (1, 1) entry
corresponds to 0 + 0 (mod m), the (1, 2) entry to 0 + 1 (mod m), and so on. In general, the (i, j)
entry should correspond to (i − 1) + (j − 1) (mod m).

Recall from Section 2.6 of this manual that you can define a matrix by specifying a size along with
a procedure or function that accepts two arguments indicating the row and column position in the
matrix and outputs the entry in that position. As an example with modulus 5,

> Matrix(5, (i, j) → modp((i − 1) + (j − 1), 5))⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 3 4

1 2 3 4 0

2 3 4 0 1

3 4 0 1 2

4 0 1 2 3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4.24)

> Matrix(5, (i, j) → modp((i − 1)(j − 1), 5))⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 1 2 3 4

0 2 4 1 3

0 3 1 4 2

0 4 3 2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4.25)

4.2 Integer Representations and Algorithms
In this section, we will see how Maple can be used to explore representations of integers in various
bases and algorithms for computing with integers. We begin by looking at Maple’s built-in com-
mands for converting between bases. Then, we focus our attention on binary representations of inte-
gers and the Bits package. Finally, we see how to implement algorithms for addition and multipli-
cation on binary representations. In this section, we restrict our attention to positive integers. Many
of the commands discussed here can be applied to negative integers as well, but we will not discuss
their behavior in that case.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=Bits

Base Conversion
Maple provides support for converting from one base representation to another via the convert com-
mand. The convert command has two required arguments. The first argument is an expression that
will be converted. The second required argument is a “form” that specifies what the expression is
converted into. This command is extremely general and can be used to convert a variety of Maple
objects into other objects. As a first example, the command below converts the list provided as the
first argument into a set.

> convert ([1, 2, 3], set)
{1, 2, 3} (4.26)

There are over 100 different valid forms available in Maple, and users can create additional forms in
much the same way as types are created.

Maple includes forms for binary, octal, and hexadecimal (abbreviated hex). Using the
convert command with a positive integer as the first argument and one of these forms as the
second argument will produce the expected output. Compare the following to Examples 4, 5, and 6
in the text:

> convert (12 345, octal)
30071 (4.27)

> convert (177 130, hex)
‘2B3EA‘ (4.28)

> convert (241, binary)
1111 0001 (4.29)

To convert from a base other than 10 to base 10, you use the decimal form together with a third
argument indicating the base being converted from.

> convert (30071, decimal, octal)
12 345 (4.30)

> convert (1111 0001, decimal, binary)
241 (4.31)

For bases larger than 10 but not more than 36, the characters “A” through “Z” (lowercase is also
allowed) represent digits with values 10 or larger. When letters are used as part of the representation,
the entire representation must be enclosed in quotation marks.

> convert (“2B3EA”, decimal, hex)
177 130 (4.32)

The third argument can also be given as an integer representing the base, which is particularly useful
for converting from bases other than binary, octal, and hexadecimal.

> convert (1111 0001, decimal, 2)
241 (4.33)

> convert (12, decimal, 3)
5 (4.34)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=convert
https://www.maplesoft.com/support/help/Maple/view.aspx?path=convert
https://www.maplesoft.com/support/help/Maple/view.aspx?path=convert,binary
https://www.maplesoft.com/support/help/Maple/view.aspx?path=convert,octal
https://www.maplesoft.com/support/help/Maple/view.aspx?path=convert,hex
https://www.maplesoft.com/support/help/Maple/view.aspx?path=convert,hex
https://www.maplesoft.com/support/help/Maple/view.aspx?path=convert
https://www.maplesoft.com/support/help/Maple/view.aspx?path=convert,decimal

The last example showed how to use convert to go from a base 3 representation to a decimal
representation. With the exceptions of binary, octal, and hexadecimal, which were described above,
going in the other direction and converting from a decimal representation to an arbitrary base
requires a bit more explanation.

Consider converting the decimal number 194 to base 5. Working by hand, you can use Algorithm 1
and determine that 19410 = 12345 ∧ 12345 = 194. To use Maple to obtain this representation, we
use the convert command with the base form and a third argument representing the desired base.

> convert (194, base, 5)
[4, 3, 2, 1] (4.35)

Note that this form does not return 1234. Instead, it returns a list of the digits in “reverse” order, that
is, with the least significant digit (that is, the “one’s” place) first.

This is the case even for the common bases, such as octal.

> convert (12 345, base, 8)
[1, 7, 0, 0, 3] (4.36)

By converting a decimal number to base 10, you can obtain the list of the digits.

> convert (12 345, base, 10)
[5, 4, 3, 2, 1] (4.37)

The base form can be used to convert between any two bases. To do this, the first argument must be
the list of digits in the order with least significant first. The second argument is the base keyword.
The third argument is the original base, and the fourth argument is the target base. For example, to
find the base three expansion of (123)5 you would enter the following command:

> convert ([3, 2, 1], base, 5, 3)
[2, 0, 1, 1] (4.38)

The result indicates that (123)5 = (1102)3.

Binary and the Bits Package
We will now focus on binary representations. The Bits package provides a selection of commands
that are especially suited to working with binary representations. In Chapter 2 of this manual, we
used the Bits package to compute bitwise and and or. Here, we will make more extensive use of this
package.

Split and Join
In the Bits package, the Split command is used to turn an integer into its binary representation as a
list of 0s and 1s. Note that once again the digits are listed in reverse order, that is, with the least sig-
nificant digit first.

> with(Bits)∶

> Split (241)
[1, 0, 0, 0, 1, 1, 1, 1] (4.39)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=convert,decimal
https://www.maplesoft.com/support/help/Maple/view.aspx?path=convert
https://www.maplesoft.com/support/help/Maple/view.aspx?path=convert,base
https://www.maplesoft.com/support/help/Maple/view.aspx?path=convert,octal
https://www.maplesoft.com/support/help/Maple/view.aspx?path=convert,base
https://www.maplesoft.com/support/help/Maple/view.aspx?path=convert,base
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Bits
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Bits
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Bits
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Bits,Split

The output above indicates that 241 = (1111 0001)2.

Split can accept the option bits=n, where n is a positive integer. This specifies the number of bits to
include in the result. If n is smaller than the number of bits needed to represent the integer, the bits
in higher position are ignored. If n is larger than the minimum required number of bits, then 0s are
added.

> Split (241, bits = 20)
[1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] (4.40)

The reverse operation is Join, which accepts a list of digits in reverse order and returns the base ten
representation of the integer.

> Join ([1, 0, 0, 0, 1, 1, 1, 1])
241 (4.41)

The GetBits Command
Related to Split is the more flexible GetBits command. This command has two required arguments.
The first is an integer. The second is a location, or a range, or a sequence of locations or ranges that
you want to extract. Note that for GetBits, nonnegative locations correspond to the exponent on 2 in
the binary expansion. That is, the least significant digit is considered to have location 0, the coeffi-
cient of 21 has location 1, etc. Note that this is different from the digit’s position in the list produced
by Split. Negative locations can be used, with −1 referring to the most significant digit. Note that
GetBits returns a sequence, so it must be enclosed in brackets if you need a list.

> GetBits (241, 0 .. − 1)
1, 0, 0, 0, 1, 1, 1, 1 (4.42)

> GetBits (241, 0 ..3)
1, 0, 0, 0 (4.43)

> GetBits (241, 0, 4 .. − 1)
1, 1, 1, 1, 1 (4.44)

Note in the last example, the command requested the location 0 followed by the range 4..-1. This
selected all of the 1 digits from the binary representation.

The example below uses the range -1..0 to output the digits in the usual order.

> GetBits (241,−1 ..0)
1, 1, 1, 1, 0, 0, 0, 1 (4.45)

You can also pass the equation output=number as an optional argument. This causes GetBits to
output the result as a decimal number.

> GetBits (241, 1 ..4)
0, 0, 0, 1 (4.46)

> GetBits (241, 1 ..4, output = number)
8 (4.47)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=Bits,Split
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Bits,Join
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Bits,Split
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Bits,GetBits
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Bits,GetBits
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Bits,Split
https://www.maplesoft.com/support/help/Maple/view.aspx?path=GetBits
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Bits,GetBits

Bitwise Operations
Finally, Bits contains several commands for performing bitwise logical operations: Not, And, Or,
Xor, Nand, Nor, Iff, and Implies. Each of these can be applied to two integers (excepting Not) and
returns the integer obtained as the result of applying the bitwise operation to the binary representa-
tions of the integers.

For example, consider 43 = (10 1011)2 and 44 = (10 1100)2.

> Split (43)
[1, 1, 0, 1, 0, 1] (4.48)

> Split (44)
[0, 0, 1, 1, 0, 1] (4.49)

Applying and to each pair of corresponding digits produces 0,0,0,1,0,1.

> zip (And, Split (43) , Split (44))
[0, 0, 0, 1, 0, 1] (4.50)

This corresponds to the integer (10 1000)2 = 40.

> Join ([0, 0, 0, 1, 0, 1])
40 (4.51)

This is the same result as you get from applying And to 43 and 44.

> And (43, 44)
40 (4.52)

Binary Addition
We now implement Algorithm 2 from Section 4.2, addition of integers. Our procedure will accept
two binary representations (lists of 0s and 1s with the least significant digit first). The first task for
our procedure will be to make sure that the binary representations are of the same length. To do this,
we compute the maximum of the lengths of the two lists (stored as n) and then add as many 0s to the
list as are necessary to make both lists that length.

Next, we initialize a sum list S to a list of all 0s. The sum S must have size n + 1 to allow for a carry
to surpass the lengths of the two input values. Once these initial tasks are completed, we follow
Algorithm 2.

1 Addition := proc(a::list({0,1}), b::list({0,1}))
2 local n, A, B, S, c, j, d;
3 n := max(nops(a),nops(b));
4 A := [op(a), 0 $ (n-nops(a))];
5 B := [op(b), 0 $ (n-nops(b))];
6 S := [0 $ n+1];
7 c := 0;
8 for j from 1 to n do
9 d := floor((A[j]+B[j]+c)/2);

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=Bits
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Bits,Not
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Bits,And
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Bits,Or
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Bits,Xor
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Bits,Nand
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Bits,Nor
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Bits,Iff
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Bits,Implies
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Bits,Not
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Bits,And

10 S[j] := A[j] + B[j] + c - 2*d;
11 c := d;
12 end do;
13 S[n+1] := c;
14 return S;
15 end proc:

Adding 10 = (1010)2 and 58 = (11 1010)2 with our procedure produces:

> Addition ([0, 1, 0, 1], [0, 1, 0, 1, 1, 1])
[0, 0, 1, 0, 0, 0, 1] (4.53)

> Join (%)
68 (4.54)

Binary Multiplication
Finally, we implement a multiplication algorithm, presented as Algorithm 3 in Section 4.2. Once
again, our procedure will accept the binary representations of positive integers as the inputs. This
time, however, it is not necessary for them to have the same length.

The shift that occurs when bj = 1 will be accomplished as follows. To shift the list [1,1,1,1] by 5
places, we must prepend 5 zeros on front of the list. (Remember, our binary representations have
least significant digit first, which is why 0s are added to the front of the list instead of the back.)
We do this by creating a new list that begins with 5 zeros and is followed by the elements of the
original list.

> shiftExample ∶= [1, 1, 1, 1]
shiftExample ∶= [1, 1, 1, 1] (4.55)

> [0 $ 5, op (shiftExample)]
[0, 0, 0, 0, 0, 1, 1, 1, 1] (4.56)

Note the use of the $ operator to form the sequence of 0 repeated five times.

We will store the partial products as a table of lists. Recall from Section 2.3 of this manual that we
can create a table by assigning table() to a name. We can then use the selection operation (brackets)
to both assign entries to indices and to retrieve entries.

The product p will be initialized to [0], a binary representation of 0. The addition in the final for loop
will be performed by the Addition procedure we created above.

Here is our implementation of Algorithm 3.

1 Multiplication := proc(a::list({0,1}), b::list({0,1}))
2 local j, C, p;
3 C := table();
4 for j from 1 to nops(b) do
5 if b[j] = 1 then
6 C[j] := [0 $ (j-1), op(a)];

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=dollar
https://www.maplesoft.com/support/help/Maple/view.aspx?path=table
https://www.maplesoft.com/support/help/Maple/view.aspx?path=table
https://www.maplesoft.com/support/help/Maple/view.aspx?path=selection

7 else
8 C[j] := [0];
9 end if;

10 end do;
11 p := [0];
12 for j from 1 to nops(b) do
13 p := Addition(p,C[j]);
14 end do;
15 return p;
16 end proc:

We test our procedure using Example 10 from Section 4.2.

> Multiplication ([0, 1, 1], [1, 0, 1])
[0, 1, 1, 1, 1, 0] (4.57)

4.3 Primes and Greatest Common Divisors
In this section, we will see how to use Maple to find primes, find prime factorizations, and compute
greatest common divisors and least common multiples. We will also use Maple’s capabilities to
explore the distribution of primes.

Primes
We will first introduce some of Maple’s commands for testing whether a number is prime and for
finding primes.

Testing for Primality
The isprime command accepts a single argument, an integer to be tested, and returns true or false.

> isprime (5)
true (4.58)

> isprime (10)
false (4.59)

> isprime
(
213 − 1

)
true (4.60)

Unlike the trial division algorithm discussed in the book, which checks all possible divisors to see if
a number is prime or composite, isprime uses a probabilistic primality test. This probabilistic test
gains much faster performance at the cost of a small possibility that the command will return an
incorrect result. As the help page asserts, there is no known example of an integer for which isprime
is incorrect and any such example must be exceptionally large. Therefore, isprime is reliable.

Listing Primes
The command ithprime accepts as input a positive integer i and computes the ith prime number.

> ithprime (1)
2 (4.61)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=isprime
https://www.maplesoft.com/support/help/Maple/view.aspx?path=isprime
https://www.maplesoft.com/support/help/Maple/view.aspx?path=isprime
https://www.maplesoft.com/support/help/Maple/view.aspx?path=isprime
https://www.maplesoft.com/support/help/Maple/view.aspx?path=ithprime

> ithprime (2)
3 (4.62)

> seq (ithprime (i) , i = 1 ..20)
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71 (4.63)

> ithprime (100 000)
1 299 709 (4.64)

For small prime numbers, ithprime simply looks up the result in an internal table, while for larger
arguments, it operates recursively.

Maple also provides the commands nextprime and prevprime. Both commands accept an integer
as their single argument. The nextprime command returns the smallest prime larger than the input
value, and prevprime returns the largest prime smaller than the input. For example, to find the first
prime number larger than 1000, we enter the following:

> nextprime (1000)
1009 (4.65)

Similarly, the prime number before that one is

> prevprime (%)
997 (4.66)

Both nextprime and prevprime are based on the isprime command.

Inspecting Procedure Definitions
We can see that nextprime relies on isprime by looking at its definition. To do this, we set the
interface variable verboseproc equal to 2 and then call eval on the procedure name.

> interface(verboseproc = 2)∶

> eval (nextprime)
proc (n)

option Copyright (c) 1990 by the University of Waterloo. All rights reserved.;
local i;
if type

(
n, ′integer′

)
then

if n < 2 then
2

else
i ∶= n + if (n ∶∶ even, 1, 2) ;
while not isprime (i) do i ∶= i + if (irem (i, 6) = 1, 4, 2) end do;
i

end if
elif type

(
n, ′numeric′

)
then

error “argument must be an integer, but received %1”, n
else

′procname (args)′
end if

end proc (4.67)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=ithprime
https://www.maplesoft.com/support/help/Maple/view.aspx?path=nextprime
https://www.maplesoft.com/support/help/Maple/view.aspx?path=nextprime
https://www.maplesoft.com/support/help/Maple/view.aspx?path=nextprime
https://www.maplesoft.com/support/help/Maple/view.aspx?path=nextprime
https://www.maplesoft.com/support/help/Maple/view.aspx?path=nextprime
https://www.maplesoft.com/support/help/Maple/view.aspx?path=nextprime
https://www.maplesoft.com/support/help/Maple/view.aspx?path=isprime
https://www.maplesoft.com/support/help/Maple/view.aspx?path=nextprime
https://www.maplesoft.com/support/help/Maple/view.aspx?path=isprime
https://www.maplesoft.com/support/help/Maple/view.aspx?path=interface
https://www.maplesoft.com/support/help/Maple/view.aspx?path=eval

The verboseproc variable controls how much detail is shown about procedures. A value of 2 forces
printing the full body for all procedures. The default value of 1 prints the body for user-defined pro-
cedures only.

Prime Factorization
To compute the prime factorization of an integer, we can use the Maple command ifactor.

> ifactor (100)
(2)2(5)2 (4.68)

> ifactor (123 456 789)
(3)2(3803)(3607) (4.69)

> ifactor (−987 654 321)
−(3)2(17)2(379 721) (4.70)

The letter “i” in ifactor refers to integer factorization. The factor command is used for factoring
polynomials.

The expand command can be used to reverse the process.

> expand ((4.70))
−987 654 321 (4.71)

Note that ifactor can accept optional arguments that allow you to specify the method Maple uses
to factor the integer. A discussion of these methods is beyond the scope of this manual. However,
one method, the “easy” method is worth mentioning. The example below illustrates the effect of the
easy method.

> ifactor (236 914 830 635 411 777 378 758 175 934 586 404 476 822)
(2)(197)(509)(32 129 861)2(10 459 723)3 (4.72)

> ifactor (236 914 830 635 411 777 378 758 175 934 586 404 476 822, easy)
(2)(197)(509) _c37_1 (4.73)

Without the “easy” method specified, ifactor factors the given integer into its complete prime
factorization. With the keyword easy, only the “easy” factors are produced, with the symbol _c37_1
indicating that the remaining factor has 37 digits. This gives you a way to have Maple only perform
the quick parts of factorizations, which can help ensure that your procedures run quickly during
development. Then, when you are ready to let the procedure take all the time it needs, you can
remove the easy keyword.

The ifactors command is different from the ifactor command. Instead of producing an alge-
braic expression of the form spe1

1
p2

e2 · · · pn
en , ifactors produces a list of the form [s, [[p1, e1],

[p2, e2], .., [pn, em]]], where the pi are the prime factors, the ei their multiplicities, and s is the sign
of the integer, represented as a positive or negative 1. Compare the output below to the results from
ifactor at the start of this section.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=ifactor
https://www.maplesoft.com/support/help/Maple/view.aspx?path=ifactor
https://www.maplesoft.com/support/help/Maple/view.aspx?path=factor
https://www.maplesoft.com/support/help/Maple/view.aspx?path=expand
https://www.maplesoft.com/support/help/Maple/view.aspx?path=ifactor
https://www.maplesoft.com/support/help/Maple/view.aspx?path=ifactor
https://www.maplesoft.com/support/help/Maple/view.aspx?path=ifactors
https://www.maplesoft.com/support/help/Maple/view.aspx?path=ifactor
https://www.maplesoft.com/support/help/Maple/view.aspx?path=ifactors
https://www.maplesoft.com/support/help/Maple/view.aspx?path=ifactor

> ifactors (100)
[1, [[2, 2], [5, 2]]] (4.74)

> ifactors (123 456 789)
[1, [[3, 2], [3607, 1], [3803, 1]]] (4.75)

> ifactors (−987 654 321)
[−1, [[3, 2], [17, 2], [379 721, 1]]] (4.76)

The format returned by ifactors can be easier to use in programs.

The Distribution of Primes
The Prime Number Theorem (Theorem 4 in Section 4.3 of the text) tells us that the number of

primes not exceeding x is approximated by the function
x

ln (x)
. In this section, we will use Maple’s

graphing capabilities to graph the number of primes not exceeding x.

Recall from Section 3.3 of this manual that we can graph specific points by using the plot command
applied to two lists where the first list is the list of x-values and the second list is the list of y-values.
We will consider the integers from 1 to 1000, so our first list is obtained as follows (the output has
been suppressed).

> xList ∶= [$1 ..1000]∶

To find the number of primes not exceeding x, we use the command pi found in the NumberTheory
package. The function 𝜋 (x) is the standard notation for the number of primes less than or equal to x.
To calculate the number of primes less than or equal to 1000, for example, we enter the following:

> NumberTheory[pi] (1000)
168 (4.77)

Note that the number 𝜋, the ratio of the circumference of a circle to its diameter, is denoted Pi in
Maple.

We obtain the list of values of 𝜋 (x) associated to the values of xList by

> piList ∶= [seq(NumberTheory[pi](x), x = 1 ..1000)]∶

We are going to graphically compare the values of 𝜋 (x) to the function
x

ln (x)
. We will define two

plot objects and then combine them with the display command. Refer to Chapter 3 of this manual,
particularly Section 3.3 and the solution to Computer Project 10, for detailed information about the
commands used here.

> piPlot ∶= plot(xList, piList, color = blue, view = [1 ..1000, 0 ..170],
style = point, symbol = solidcircle, symbolsize = 7, legend = “pi(x)”)∶

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=ifactors
https://www.maplesoft.com/support/help/Maple/view.aspx?path=plot
https://www.maplesoft.com/support/help/Maple/view.aspx?path=NumberTheory,PrimeCounting
https://www.maplesoft.com/support/help/Maple/view.aspx?path=NumberTheory
https://www.maplesoft.com/support/help/Maple/view.aspx?path=initialconstants
https://www.maplesoft.com/support/help/Maple/view.aspx?path=plots,display

> xlnxPlot ∶= plot
(

x
ln(x)

, x = 1 ..1000, color = red, view = [1 ..1000, 0 ..25],

legend = “x/ln(x)”

)
∶

> plots[display] (piPlot, xlnxPlot)

Notice that while the blue line representing 𝜋 (x) seems to remain above the red line representingx
ln (x)

, it is fairly clear from the graph that they grow at the same rate.

Greatest Common Divisors and Least Common Multiples
Maple provides commands igcd and ilcm for computing the greatest common divisor and the least
common multiple of integers. To compute the greatest common divisor of two integers, you apply
the igcd command to them.

> igcd (6, 9)
3 (4.78)

You can also compute the greatest common divisor of more than two integers. For more than 2
integers, the greatest common divisor is defined to be the largest integer that is a divisor of all of the
integers. For example, 3 divides 6, 9, and 12, so

> igcd (6, 9, 12)
3 (4.79)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=igcd
https://www.maplesoft.com/support/help/Maple/view.aspx?path=ilcm
https://www.maplesoft.com/support/help/Maple/view.aspx?path=igcd

The ilcm command finds the least common multiple of two or more integers. For example,

> ilcm (6, 9)
18 (4.80)

> ilcm (12, 18, 33)
396 (4.81)

Note that Maple also includes commands called gcd and lcm. These commands are more general
than igcd and ilcm, and can find the greatest common divisor and least common multiple of poly-
nomials as well as integers. The igcd and ilcm commands, however, are optimized for integer inputs
and should be the commands you use when working with integers.

Relatively Prime
Recall from the text that two numbers are said to be relatively prime if their greatest common divisor
is 1. For example, consider 10 and 21.

> igcd (10, 21)
1 (4.82)

Since igcd returned 1, we conclude that 10 and 21 are relatively prime.

The following procedure accepts two integers as input and returns true if they are relatively prime
and false otherwise.

1 AreRelPrime := proc(a::integer, b::integer)
2 if igcd(a,b) = 1 then
3 return true;
4 else
5 return false;
6 end if;
7 end proc:

> AreRelPrime (3, 6)
false (4.83)

> AreRelPrime (22, 15)
true (4.84)

Pairwise Relatively Prime
Recall that a list of integers a1, a2, .., an is said to be pairwise relatively prime if gcd

(
ai, aj

)
= 1

whenever 1 ≤ i < j ≤ n. That is, when every pair is relatively prime.

Note that the igcd command can be applied to more than two integers, but only determines the
largest divisor common to all of the values. For example, 4, 6, and 9 are not pairwise relatively
prime, but 1 is their greatest common divisor.

> igcd (4, 6, 9)
1 (4.85)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=ilcm
https://www.maplesoft.com/support/help/Maple/view.aspx?path=gcd
https://www.maplesoft.com/support/help/Maple/view.aspx?path=gcd
https://www.maplesoft.com/support/help/Maple/view.aspx?path=igcd
https://www.maplesoft.com/support/help/Maple/view.aspx?path=ilcm
https://www.maplesoft.com/support/help/Maple/view.aspx?path=igcd
https://www.maplesoft.com/support/help/Maple/view.aspx?path=ilcm
https://www.maplesoft.com/support/help/Maple/view.aspx?path=igcd
https://www.maplesoft.com/support/help/Maple/view.aspx?path=igcd

We can write a procedure to test whether or not a list of integers is pairwise relatively prime. We use
two for loops with variables i and j. The first loop, the i loop, runs from 1 to n − 1 (i is not allowed
to be equal to n because the inner loop variable will always be strictly greater than i). The inner
loop has j run from i + 1 to n so that j is always greater than i, so as to avoid testing each pair twice.
Within the two loops, we test the greatest common divisor of the entries in the input list with indices
i and j. If the gcd is ever not 1, the procedure immediately returns false. If all the pairs pass the test,
then after both loops are terminated, true is returned.

1 ArePairwisePrime := proc(A::list(integer))
2 local n, i, j;
3 n := nops(A);
4 for i from 1 to n-1 do
5 for j from i+1 to n do
6 if gcd(A[i],A[j]) <> 1 then
7 return false;
8 end if;
9 end do;

10 end do;
11 return true;
12 end proc:

Observe that 14, 39, and 55 are pairwise relatively prime.

> ArePairwisePrime ([14, 39, 55])
true (4.86)

However, 42, 165, and 182 are not pairwise relatively prime, although their common gcd is 1.

> igcd (42, 165, 182)
1 (4.87)

> ArePairwisePrime ([42, 165, 182])
false (4.88)

The Extended Euclidean Algorithm
While igcd is useful for calculating the greatest common divisor of integers, it is sometimes desir-
able to be able to express the greatest common divisor as an integral combination of the integers.
Specifically, given integers a and b, we may wish to express gcd (a, b) as sa + tb where s and t
are integers. The fact that such integers always exist is known as Bézout’s theorem, given in the
text as Theorem 6 of Section 4.3. Following the statement of the theorem, the extended Euclidean
algorithm is described, which produces not only the greatest common divisor but also the integers
s and t.

In Maple, the command igcdex is an implementation of the extended Euclidean algorithm for
integers. This command accepts two integers and two optional names. When executed, Maple
returns the greatest common divisor of the two integers. If the optional names have been included,
then the Bézout coefficients are stored in them. As an example, consider 252 and 198, the values
used in Example 17.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=do
https://www.maplesoft.com/support/help/Maple/view.aspx?path=igcd
https://www.maplesoft.com/support/help/Maple/view.aspx?path=igcdex

> igcdex (252, 198, ′s′, ′t′)
18 (4.89)

> s; t
4

−5 (4.90)

The results above indicate that gcd (252, 198) = 18 = 4 ⋅ 252 − 5 ⋅ 198. We enclose the names s and
t in single right quotes to ensure that we pass their names rather than any previously assigned values.
If the quotes were not present and one of the names had previously been assigned a value, an error
would result.

4.4 Solving Congruences
In this section, we will see how Maple can be used to solve congruences. We will begin the section
by looking at how to find inverses and solve linear congruences. We will then consider the Chinese
remainder theorem. Next, we will use Maple to find pseudoprimes, and we conclude with an explo-
ration of primitive roots and discrete logarithms.

Modular Inverses
Example 1 of Section 4.4 of the text demonstrates how Bézout coefficients can be used to find the
inverse of an integer modulo a number. In the previous section, we saw that the igcdex command
can be used to obtain the Bézout coefficients.

Finding Inverses with igcdex
For example, to find the inverse of 264 modulo 3185, we need to find s so that 264 s + 3 185 t = 1
(provided that 264 and 3185 are relatively prime).

> igcdex (264, 3185, ′s′, ′t′)
1 (4.91)

Since the statement returned 1, we know that 264 and 3185 are relatively prime.

igcdex assigns the coefficient of the first integer to the first name and the second number to the sec-
ond name.

> s
374 (4.92)

> t
−31 (4.93)

This indicates that 1 = 374 ⋅ 264 + (−31) ⋅ 3185. Thus, 374 is the inverse of 264 modulo 3185. We
can confirm this by computing the product modulo 3185.

> 374 ⋅ 264 mod 3185

1 (4.94)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=igcdex
https://www.maplesoft.com/support/help/Maple/view.aspx?path=igcdex

Finding Inverses with ˆ(-1)
Maple actually provides a simpler way to compute the modular inverse. The textbook uses the nota-
tion a to indicate the modular inverse of an integer. An alternate notation is a−1, which calls to mind
the notation used in algebra for reciprocals, as in 3−1 = 1∕3. Maple interprets an exponent of −1,
within the context of modular arithmetic, as the modular inverse. For example, we can obtain the
inverse of 264 modulo 3185 as follows.

> 264−1 mod 3185

374 (4.95)

In 2-D input mode, as above, the exponent of −1 is obtained by typing a caret followed by −1, and
then using the right-arrow key to exit the exponent. In 1-D input mode, parentheses around −1 are
required. Also note that if the integer and the modulus are not relatively prime, no inverse exists and
an error is generated.

> 4ˆ(-1) mod 10;

Error, the modular inverse does not exist

Solving Congruences
We saw in Section 4.1 of this manual the msolve command for solving congruences. We can use this
command to solve linear congruences of the form 4 x ≡ 3 (mod 11) as follows.

> msolve (4 x = 3, 11)
{x = 9} (4.96)

The first argument to msolve is the congruence expressed with an equals sign and the second is the
modulus. Maple returns a set whose elements express the solution to the congruence. If there is no
solution, Maple returns nothing (technically, the command returns NULL, which results in no out-
put being displayed).

The following attempts to solve 4 x ≡ 1 (mod 10), which is the same as finding an inverse for 4
modulo 10 and has no solution.

> msolve (4 x = 1, 10)

It is also possible to have multiple solutions. For example, 3 x ≡ 9 (mod 12).

> msolve (3 x = 9, 12)
{x = 3} , {x = 7} , {x = 11} (4.97)

The reader should refer back to Section 4.1 of this manual for information about solving systems of
congruences with the same modulus.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=msolve
https://www.maplesoft.com/support/help/Maple/view.aspx?path=msolve

The Chinese Remainder Theorem
The text describes two approaches to solving systems of congruences of the form

x ≡ a1 (mod m1)
x ≡ a2 (mod m2)

⋮

x ≡ an (mod mn).

The first approach, used in Example 5 of Section 4.4, is based on the proof of the Chinese remainder
theorem. The second approach is the technique of back substitution described in Example 6.
Maple’s command chrem is an efficient implementation of back substitution.

The chrem command accepts two lists as its arguments. The first argument is the list [a1, a2,…, an]
and the second is the list of moduli [m1,m2,…,mn]. The result is the smallest positive integer that
satisfies all of the congruences. As an example, we solve the congruences

x ≡ 2 (mod 3)
x ≡ 4 (mod 5)
x ≡ 6 (mod 7)
x ≡ 10 (mod 11).

> chrem ([2, 4, 6, 10], [3, 5, 7, 11])
1154 (4.98)

Creating Our Own Procedure
In the remainder of this section we will provide an implementation of the method for solving
systems of congruences. This implementation will be based on the construction given in the proof
of the Chinese remainder theorem. While this will be less efficient than Maple’s chrem command,
implementing the algorithm can help you to better understand the proof of the theorem.

Our procedure, which we call CRTheorem, will accept as input two lists, a and m, representing the
values and the moduli of the congruences. It will begin with two tests to check that the lists are the
same length and that the moduli are in fact pairwise relatively prime, as is required by the assump-
tions of the theorem. We use ArePairwisePrime from Section 4.3 of this manual to check that the
moduli are pairwise relatively prime.

Once the preliminary tests are complete, the procedure sets P equal to the product of the moduli.
(Note that P corresponds to m in the statement of the theorem in the text. This is the only notational
difference between our procedure and the text.) Recall that the Maple command mul computes the
product of the values obtained by evaluating the first argument at each element in the range given in
the second argument.

The procedure then needs to compute the Mk and yk. To do this, we create empty tables M and y to
store the values. Once the empty tables are initialized, the procedure enters a for loop in which the

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=chrem
https://www.maplesoft.com/support/help/Maple/view.aspx?path=chrem
https://www.maplesoft.com/support/help/Maple/view.aspx?path=chrem
https://www.maplesoft.com/support/help/Maple/view.aspx?path=add

values for M and y are calculated. The values for M are calculated by the formula Mk =
P
mk

. For y,

we use the fact that the yk are the inverses of Mk modulo mk, that is, yk = M−1
k (mod mk).

Finally, we compute the result x = a1M1y1 + a2M2y2 + · · · + anMnyn using the add command and
return the result modulo P. Here is the procedure.

1 CRTheorem := proc(a::list(integer),m::list(posint))
2 local P, M, y, i, x;
3 if not nops(a) = nops(m) then
4 error " Lists must be the same length . ";
5 end if;
6 if not ArePairwisePrime(m) then
7 error "Moduli must be pairwise relatively prime.";
8 end if;
9 P := mul(m[i],i=1..nops(m));

10 M := table();
11 y := table();
12 for i from 1 to nops(m) do
13 M[i] := P/m[i];
14 y[i] := M[i]^(-1) mod m[i];
15 end do;
16 x := add(a[i]*M[i]*y[i],i=1..nops(m));
17 return x mod P;
18 end proc:

Note that our procedure produces the same result as chrem did above.

> CRTheorem ([2, 4, 6, 10], [3, 5, 7, 11])
1154 (4.99)

Pseudoprimes
Recall from the text that a pseudoprime to the base b is a composite number n such that
bn−1

≡ 1 (mod n). We will write a procedure to find pseudoprimes. Our procedure will accept
two arguments, the base b and a maximum value for n, and will return a list of the pseudoprimes
that it identifies.

The algorithm is fairly straightforward. We will use a for loop beginning at 3, ending with the spec-
ified maximum and increasing by 2 each time (so as to skip even integers). Within the loop, we first
test the congruence. If the congruence holds, then we use isprime to check whether the number is
prime or composite. If it is composite, then it is added to the list of pseudoprimes.

1 FindPseudoprimes := proc(b::posint, max::posint)
2 local PList, n;
3 PList := [];
4 for n from 3 to max by 2 do
5 if (b &^ (n-1) mod n) = 1 then
6 if not isprime(n) then
7 PList := [op(PList),n];

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=add
https://www.maplesoft.com/support/help/Maple/view.aspx?path=chrem
https://www.maplesoft.com/support/help/Maple/view.aspx?path=isprime

8 end if;
9 end if;

10 end do;
11 return PList;
12 end proc:

Note that we used &ˆ in the calculation of the congruence instead of ˆ. The syntax &ˆ is the “inert”
version of the exponent operator. When we use ˆ, the integer exponentiation is performed first,
which can result in an extremely large number. With the inert &ˆ operator, Maple performs the
exponentiation intelligently, using techniques such as those discussed in Section 4.2 of the text for
performing efficient modular exponentiation.

Here are the pseudoprimes to the base 2 up to 100 000.

> FindPseudoprimes (2, 100 000)
[341, 561, 645, 1105, 1387, 1729, 1905, 2047, 2465, 2701, 2821

3277, 4033, 4369, 4371, 4681, 5461, 6601, 7957, 8321, 8481,
8911, 10 261, 10585, 11 305, 12801, 13 741, 13747, 13 981, 14491,
15 709, 15841, 16 705, 18705, 18 721, 19951, 23 001, 23377, 25 761,
29 341, 30121, 30 889, 31417, 31 609, 31621, 33 153, 34945, 35 333,
39 865, 41041, 41 665, 42799, 46 657, 49141, 49 981, 52633, 55 245,
57 421, 60701, 60 787, 62745, 63 973, 65077, 65 281, 68101, 72 885,
74 665, 75361, 80 581, 83333, 83 665, 85489, 87 249, 88357, 88 561,
90 751, 91001, 93 961] (4.100)

Primitive Roots and Discrete Logarithms
Maple includes several commands for computing primitive roots and discrete logarithms. The com-
mands we will discuss here are found in the NumberTheory package.

> with(NumberTheory)∶

Primitive Roots
Maple provides a command, PrimitiveRoot, that computes primitive roots. The basic form of this
command accepts one argument, the modulus, and returns the smallest primitive root. For example,
the smallest primitive root of 11 is 2.

> PrimitiveRoot (11)
2 (4.101)

The PrimitiveRoot can also accept an option. To find the smallest primitive root of the modulus that
is greater than a value, use the option greaterthan. For example, the next smallest primitive roots of
11 are

> PrimitiveRoot (11, greaterthan = 2)
6 (4.102)

> PrimitiveRoot (11, greaterthan = 6)
7 (4.103)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=NumberTheory
https://www.maplesoft.com/support/help/Maple/view.aspx?path=NumberTheory,PrimitiveRoot
https://www.maplesoft.com/support/help/Maple/view.aspx?path=NumberTheory,PrimitiveRoot

> PrimitiveRoot (11, greaterthan = 7)
8 (4.104)

> PrimitiveRoot (11, greaterthan = 8)

Error, (in NumberTheory:-PrimitiveRoot) there does not exist a primitive root modulo 11

greater than 8

Observe that the command returns an error when there are no larger primitive roots. This makes it
fairly easy to write a procedure that returns a list of all the primitive roots of a number. We initialize
an empty list and set a variable x to 0. We then create a do loop that finds the next primitive root
greater than x. The variable x is updated to this new value and the value is added to the list of
primitive roots. It is usually a bad idea to create a loop without any control like while or if, since this
is structurally an infinite loop. However, we know that the PrimitiveRoot command will eventually
raise an error. We can prevent the error raised by PrimitiveRoot from causing our procedure to
crash by enclosing the error-prone code in a try–catch structure. The basic syntax is to follow the
keyword try with a sequence of statements, which are executed. Those statements are followed
by catch:, noting that the colon is required. If an error occurs during execution of the statements
between the try and the catch:, then the statements following the catch: are executed. If there is
no error, then those statements are skipped. Here, our response to an error is to return the list of
primitive roots that we found.

1 AllPrimRoots := proc(n::posint)
2 local L, x;
3 uses NumberTheory;
4 L := [];
5 x := 0;
6 try
7 do
8 x := PrimitiveRoot(n,greaterthan=x);
9 L := [op(L),x];

10 end do;
11 catch:
12 return L;
13 end try;
14 end proc:

> AllPrimRoots (11)
[2, 6, 7, 8] (4.105)

Generally speaking, it is better to write computer code that is robust, that is to say, code that
“handles” errors to produce meaningful output rather than just crashing. The try–catch structure
is a commonly used tool for creating robust programs, and there are other elements of the syntax
allowing for more detailed error handling, including different catch statements for different kinds
of errors. However, it should be stated that creating code that depends on an error being raised is
not ideal, compared to code that first checks values to be sure they will not produce an error. In this
case, Euler’s totient function could be used to determine the number of primitive roots and control
the loop. The interested reader is encouraged to research Euler’s totient function.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=do
https://www.maplesoft.com/support/help/Maple/view.aspx?path=NumberTheory,PrimitiveRoot
https://www.maplesoft.com/support/help/Maple/view.aspx?path=NumberTheory,PrimitiveRoot
https://www.maplesoft.com/support/help/Maple/view.aspx?path=try
https://www.maplesoft.com/support/help/Maple/view.aspx?path=try

Note that Maple’s PrimitiveRoot command applies to nonprime moduli as well. Maple is using a
definition of primitive root that is more general than the definition in the text. Specifically, an integer
r is a primitive root modulo an integer n if every positive integer that is both less than n and rela-
tively prime to n can be obtained as a power of r.

Discrete Logarithms
Maple provides the command ModularLog for computing discrete logarithms. The ModularLog
command requires three arguments: the value a, the base b, and the modulus n. It solves the con-
gruence by

≡ a (mod n). Thus, to find the discrete logarithm of 3 modulo 11 to the base 2, that is,
to solve the congruence 2y

≡ 3 (mod 11), you would enter the following:

> ModularLog (3, 2, 11)
8 (4.106)

The mlog command can also accept two options. One of the options can be used to specify a solu-
tion method. The possible methods are beyond the scope of this manual and will not be discussed.

The other option is to specify the output. The default output is the smallest nonnegative solution. If
you provide the option output=[result,char], then the output will be a pair of values indicating that
all possible values of y solving the congruence are congruent to the result modulo the char (short
for characteristic). For example,

> ModularLog (3, 2, 11, output = [result, char])
8, 10 (4.107)

indicates that 8 is the smallest nonnegative solution to 2y
≡ 3 (mod 11), but that any value of y such

that y ≡ 8 (mod 10) is also a solution.

In other words, any element of the set solves the congruence. We see below the values of y that result
from assigning k to the integers between −10 and 10.

> ySet ∶= {seq (8 + 10 k, k = −10 ..10)}
ySet ∶= {−92,−82,−72,−62,−52,−42,−32,−22,−12,−2,

8, 18, 28, 38, 48, 58, 68, 78, 88, 98, 108} (4.108)

Computing 2y mod 11 for these values confirms that each is a solution to 2y
≡ 3 (mod 11).

> seq (2y mod 11, y in ySet)
3, 3 (4.109)

Exploring the Structure of Primitive Roots
Let p be a prime. Recall from the text that an integer r is a primitive root modulo p if every integer
between 1 and p − 1, inclusive, can be obtained as a power of r modulo p.

Example 12 in Section 4.4 of the text shows that 2 is a primitive root modulo 11 by computing
powers of 2 up to 210 and seeing that these generate all the integers from 1 through 10. On the other
hand, 3 is not a primitive root modulo 11 because the powers of 3 produce only 3, 9, 5, 4, and 1.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=NumberTheory,PrimitiveRoot
https://www.maplesoft.com/support/help/Maple/view.aspx?path=NumberTheory,ModularLog
https://www.maplesoft.com/support/help/Maple/view.aspx?path=NumberTheory,ModularLog
https://www.maplesoft.com/support/help/Maple/view.aspx?path=numtheory,mlog

To help better understand primitive roots, we will write a procedure that displays, for each positive
integer r less than p, all the different powers of that integer. Note that if some power of r is congru-
ent to 1, then the next higher power will be congruent to r, and thus any higher powers of r will be
redundant. This means that as we generate the powers of r, obtaining 1 indicates that we can stop.
It is left to the reader to verify the converse: if two different powers are congruent, then there is a
power congruent to 1. More precisely, if p is prime, j < i, and ri

≡ rj (mod p), then there is a k such
that rk

≡ 1 (mod p).

Our procedure, DisplayPowers, takes as input a prime number (note that prime is a Maple type).
Using a for loop, it steps through each positive integer r less than the prime. Within the for loop, a
while loop calculates successive powers of r and adds them to a list until 1 is obtained. Then, the
value of r and the list of powers is printed before moving on to the next value of r.

1 DisplayPowers := proc(p::prime)
2 local r, x, L;
3 for r from 1 to p-1 do
4 L := [r];
5 x := r;
6 while x <> 1 do
7 x := x * r mod p;
8 L := [op(L),x];
9 end do;

10 print(r,L);
11 end do;
12 end proc:

> DisplayPowers (11)
1, [1]
2, [2, 4, 8, 5, 10, 9, 7, 3, 6, 1]
3, [3, 9, 5, 4, 1]
4, [4, 5, 9, 3, 1]
5, [5, 3, 4, 9, 1]
6, [6, 3, 7, 9, 10, 5, 8, 4, 2, 1]
7, [7, 5, 2, 3, 10, 4, 6, 9, 8, 1]
8, [8, 9, 6, 4, 10, 3, 2, 5, 7, 1]
9, [9, 4, 3, 5, 1]
10, [10, 1] (4.110)

From the above, you can see that 2, 6, 7, and 8 are all primitive roots of 11.

4.5 Applications of Congruences
In this section, we will see how Maple can be used to further explore the applications of congru-
ences discussed in the text. In particular, we will see how to use a hashing function to store student
information in a list, we will create a pseudorandom number generator, and we will write a proce-
dure that will check the validity of an ISBN.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Hashing Functions
The first application we will explore is the hashing function. Suppose that a small school wants to
store information about its students. In particular, each student has a unique four digit identification
number and a GPA, which is a real number between 0 and 4.

Initial Examples
Each student record will be stored as a table with indices “ID” and “GPA”. Here are three example
students.

> student1 ∶= table ([“ID” = 7319, “GPA” = 3.21])
student1 ∶= table ([“GPA” = 3.21, “ID” = 7319]) (4.111)

> student2 ∶= table ([“ID” = 2908, “GPA” = 2.89])
student2 ∶= table ([“GPA” = 2.89, “ID” = 2908]) (4.112)

> student3 ∶= table ([“ID” = 6578, “GPA” = 3.42])
student3 ∶= table ([“GPA” = 3.42, “ID” = 6578]) (4.113)

Recall that the information in a table can be accessed by enclosing the index in brackets. For
instance, to obtain the GPA of student1, we issue the following command.

> student1[“GPA”]
3.21 (4.114)

Our student records are going to be stored in an Array. In Maple, a list is an immutable data struc-
ture, which means that when you alter the information stored in it (e.g., assign a new value to a posi-
tion), a new list is created that is a modified copy of the old list. This makes lists inefficient, partic-
ularly with regard to memory usage. Unlike a list, a Maple Array is a mutable data structure, which
means that there is only one in memory, regardless of the number of changes you make.

Because the school is small, it will suffice to allocate space for 57 records in the school’s database
and so we create an Array with 57 entries all initialized to 0. There are a variety of ways to construct
arrays, but the simplest is to apply Array to a range. The default behavior is to fill the entries in the
array with 0s.

> studentRecords ∶= Array (1 ..57)

studentRecords ∶=
⎡⎢⎢⎢⎣

1 ..57 Array
Data Type: anything
Storage: rectangular
Order: Fortran_order

⎤⎥⎥⎥⎦
(4.115)

Very small arrays will be displayed as a list or matrix. For arrays that would consume more space, a
summary is displayed. In the Context Panel, you can select “Browse” to open a window showing all
of the entries.

In order to store a student record in the array (which represents the school’s database), we need to
apply a hashing function to the unique student ID. The hashing function we will use is h (k) = k mod
57 + 1. Note that the addition of 1 is to occur after the computation of k mod 57. It is included in

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=Array
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Array
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Array
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Array

our function because the indices in our studentRecords array run from 1 to 57 while the values of
k mod 57 range from 0 to 56.

The following function accepts a student ID as input and returns the result of applying the hashing
function to the ID number.

> calculateHash ∶= id∶∶ integer → modp(id, 57) + 1∶

For example,

> calculateHash (student1[“ID”])
24 (4.116)

indicates that student1’s record should be stored in location 24. The notation for assigning a value
to a position in an array is the same as for a list.

> studentRecords[24] ∶= student1
studentRecords24 ∶= student1 (4.117)

Note that accessing location 24 returns the table student1.

> studentRecords[24]
student1 (4.118)

To access the ID and GPA stored in location 24, we use a second pair of brackets with the indices
“ID” or “GPA”.

> studentRecords[24][“ID”]
7319 (4.119)

> studentRecords[24][“GPA”]
3.21 (4.120)

We can store student2’s information in the same way.

> calculateHash (student2[“ID”])
2 (4.121)

> studentRecords[2] ∶= student2
studentRecords2 ∶= student2 (4.122)

If we try to store student3’s data, we find that a collision occurs.

> calculateHash (student3[“ID”])
24 (4.123)

Since student3 has the same hash value as student1 did, we look for the next free location. Check
location 25.

> evalb (studentRecords[25] = 0)
true (4.124)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Since location 25 is still equal to 0, we know that it has not been used and we store student3’s record
in location 25.

> studentRecords[25] ∶= student3
studentRecords25 ∶= student3 (4.125)

Printing Records
Before going any further, take a look at the current state of studentRecords.

> studentRecords⎡⎢⎢⎢⎣
1 ..57 Array

Data Type: anything
Storage: rectangular
Order: Fortran_order

⎤⎥⎥⎥⎦
(4.126)

This is not very informative. You can use the “Browse” tool from the Context Panel or apply op, but
even those options only display the name of the table in each location, not the data.

> op (studentRecords)
1 ..57, {2 = student2, 24 = student1, 25 = student3} , datatype = anything,

storage = rectangular, order = Fortran_order (4.127)

We need to write a procedure to print out the data. To do this, we loop through the entries of the
array and, for those that are nonzero, print the index and the data from the table stored in that
position. Recall that the entries command applied to a table returns the data stored in the table.

1 PrintRecords := proc()
2 local i;
3 global studentRecords;
4 for i from 1 to 57 do
5 if studentRecords[i] <> 0 then
6 print(i,entries(studentRecords[i]));
7 end if;
8 end do;
9 end proc:

> PrintRecords ()
2, [2.89], [2908]
24, [3.21], [7319]
25, [3.42], [6578] (4.128)

Note that we chose not to include the database as a parameter, but instead described the procedure in
relation to the studentRecords array that we began above. This can result in a significant improve-
ment in performance, especially when the array of records is long, particularly when it comes time
to write procedures that modify the array, because the database does not have to be passed as an

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=op
https://www.maplesoft.com/support/help/Maple/view.aspx?path=indices

argument to the procedure and then returned from it. The disadvantage, of course, is that in order to
use a different name for the database, we have to revise the procedure.

In order to use studentRecords, it must be declared in the procedure as a global variable. This
is done immediately after the local variables are declared with the keyword global. Without
this declaration, Maple will assume that we forgot to list it as a local variable and will treat the
studentRecords name inside the procedure as different from the studentRecords list we created
outside the procedure.

Storing New Records
Now, we write a procedure Store to automate the process of storing information in the array. Store
will accept two arguments, the ID and GPA of a student, and will add that student’s record to the
studentRecords array.

The first step in implementing Store will be to assign to a local variable, which we call newrecord,
the table representing the student record. Then, Store needs to determine the location in the studen-
tRecords array in which the record will be stored. In particular, it will need to avoid collision. To
do this, we use something similar to the linear probing function defined in the text. Beginning with
i = 0, we calculate h (k + i) = (k + i) mod 57 + 1. We will store that value in the local name hash
and check to see if studentRecords[hash] is 0. If so, then we know the list does not already have a
record stored in that location and we can stop our search for an open position. Otherwise, we incre-
ment i and continue looking. Once we have found an open position, we just assign our newrecord to
that position. We give return NULL; as the final command so that the procedure does not display
anything when the record is successfully stored.

Here is the completed Store procedure.

1 Store := proc(id::integer,gpa::float)
2 local hash, i, newrecord;
3 global studentRecords;
4 newrecord := table(["ID"=id,"GPA"=gpa]);
5 for i from 0 to 56 do
6 hash := calculateHash(id + i);
7 if studentRecords[hash] = 0 then
8 break;
9 end if;

10 end do;
11 studentRecords[hash] := newrecord;
12 return NULL;
13 end proc:

We now add a few records.

> Store (2216, 1.98)

> Store (1325, 3.14)

> Store (7061, 3.51)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Look again at studentRecords with op.

> op (studentRecords)
1 ..57, {2 = student2, 15 = newrecord, 24 = student1, 25 = student3,

51 = newrecord, 52 = newrecord} datatype = anything,
storage = rectangular, order = Fortran_order (4.129)

Note that the three records we just added all appear as “newrecord” in the list. This is because
newrecord was the name we used in the Store procedure. The PrintRecords procedure shows us,
however, that despite having the same names, they store the correct information.

> PrintRecords ()
2, [2.89], [2908]
15, [3.14], [1325]
24, [3.21], [7319]
25, [3.42], [6578]
51, [1.98], [2216]
52, [3.51], [7061] (4.130)

Because newrecord was declared as local within Store, Maple considers each one to be a distinct
table, even though they have the same name.

Retrieving Records
We now have procedures for storing a student record in our database and for printing all of the
records. We also need a way to retrieve the record for a particular student. Indeed, one of the
benefits of hash functions is that they provide an efficient way to look up records—given the unique
key, we need only apply the hash function to determine the memory location in which the record is
stored (subject to collision of course).

Our Retrieve procedure will accept a student ID number as its input and return the table storing the
students record. Most of the work will take place within the same for loop as was in the Store pro-
cedure. We first test to make sure the location we are looking at is nonzero. If the location is 0, that
tells us that the entry does not exist and the procedure will return FAIL.

Assuming the location is not 0, we check to see if the ID of the record in that position is the ID we
are looking for. If so, we return the table by applying eval to the entry in studentRecords. (Without
the eval, the procedure would return the name of the table rather than the table itself.) If the ID is
not the one we are searching for, it must have been the case that our record was pushed down the line
because of a collision and we continue the loop.

1 Retrieve := proc(id::integer)
2 local hash, i;
3 global studentRecords;
4 for i from 0 to 56 do
5 hash := calculateHash(id + i);
6 if studentRecords[hash] = 0 then
7 return FAIL;
8 end if;
9 if studentRecords[hash]["ID"] = id then

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=op
https://www.maplesoft.com/support/help/Maple/view.aspx?path=eval
https://www.maplesoft.com/support/help/Maple/view.aspx?path=eval

10 return eval(studentRecords[hash]);
11 end if;
12 end do;
13 return FAIL;
14 end proc:

> Retrieve (1325)
table ([“GPA” = 3.14, “ID” = 1325]) (4.131)

> Retrieve (7061)
table ([“GPA” = 3.51, “ID” = 7061]) (4.132)

Pseudorandom Numbers
Many applications require sequences of random numbers, which are important in cryptography and
in generating data for computer simulations. It is impossible to produce a truly random stream of
numbers using software only, since software employs algorithms. Anything that can be generated
by an algorithm is, by definition, not random. Fortunately, for most applications, it is sufficient to
generate a stream of pseudorandom numbers. This is a stream of numbers that, while not truly ran-
dom, exhibits some of the same properties of a truly random number stream. Effective algorithms
for generating pseudorandom numbers can be based on modular arithmetic. We will implement a
linear congruential method, as described in the text.

We must choose four integers: the modulus m, the multiplier a with 2 ≤ a < m, the increment c
with 0 ≤ c < m, and the seed x0 with 0 ≤ x0 < m. Then, we can create a sequence of pseudorandom
numbers using the recursive formula xn+1 = (axn + c) mod m. It is common to have the seed chosen
based on some physical property accessible by the computer, for instance the time. Alternately,
the seed can be based on some truly random physical process, such as radioactive decay. For this
example, we will generate a seed by multiplying the result of the time command by 1000. We apply
the floor command to be certain that we obtain an integer.

> floor(time[real]() ⋅ 1000)
96 865 119 (4.133)

Invoking the real option causes the time command to return the real time elapsed since the Maple
kernel was started, rather than the amount of CPU time that the kernel has used.

We will write two procedures that generate random student IDs and GPAs that we can use to add
some random records to our studentRecords from above. We first write the procedure randomIDs,
which will accept a positive integer as input to control the number of IDs to generate. It will return a
sequence of that number of random student IDs.

Recall that a student ID, in the context described above, is a four-digit number. Thus, our random
numbers must be between 1000 and 9999. We can obtain such numbers by generating random
integers between 0 and 8999 and adding 1000. Therefore, our modulus will be 8999. We choose a
multiplier of 57 and an increment of 328. (These values were chosen for no particular reason, but in
practice the choice of c and a can be an important consideration. See the references in the textbook
for more information.) The seed will be determined from the time as described above.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=time
https://www.maplesoft.com/support/help/Maple/view.aspx?path=floor
https://www.maplesoft.com/support/help/Maple/view.aspx?path=time

The procedure is straightforward. Worthy of note is the use of the from...to...do loop without for.
The purpose of the loop in the procedure is to repeat the same action a number of times. Since
the action does not depend on the value of a loop variable, Maple allows the variable, and the for
keyword, to be omitted. In fact, you can also omit “from 1” and Maple will assume 1 as the starting
value. Neither of these options result in any significant performance difference, but they illustrate
the flexibility of Maple’s control structures.

1 randomIDs := proc(n::posint)
2 local S, m, a, c, x;
3 S := NULL;
4 m := 8999;
5 a := 57;
6 c := 328;
7 x := modp(floor(time[real]()*1000),m);
8 from 1 to n do
9 x := modp(a*x+c,m);

10 S := S,x+1000;
11 end do;
12 return S;
13 end proc:

We generate 10 random IDs by applying the procedure to 10.

> someIDs ∶= [randomIDs (10)]
someIDs ∶= [3874, 3164, 7689, 4643, 2002, 4448, 8885,

9822, 9237, 2889] (4.134)

To generate GPAs, the approach will be essentially the same. We use the pure multiplicative gener-
ator mentioned in the text with modulus 231 − 1, multiplier 75, and increment 0. This will produce
integers between 0 and 231 − 2. To obtain numbers between 0 and 4, we divide the random integer
by 231 − 2 and multiply by 4.

1 randomGPAs := proc(n::posint)
2 local S, m, a, x, gpa;
3 S := NULL;
4 m := 2^31 - 1;
5 a := 7^5;
6 x := modp(floor(time[real]()*1000),m);
7 from 1 to n do
8 x := modp(a*x,m);
9 gpa := convert((x/(m-1))*4,float,3);

10 S := S,gpa;
11 end do;
12 return S;
13 end proc:

> someGPAs ∶= [randomGPAs (10)]
someGPAs ∶= [1.09, 0.538, 2.39, 0.933, 3.86, 1.97, 1.24,

1.23, 1.11, 1.20] (4.135)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=do

Note the use of convert. The expression (x/(m-1))*4 is being converted into a floating point number
with a precision of 3 significant digits.

Now, we add the random students to studentRecords.

> for i from 1 to 10 do
Store(someIDs[i], someGPAs[i]);

end do∶

> PrintRecords ()
2, [2.89], [2908]
3, [1.97], [4448]
4, [1.11], [9237]
8, [3.86], [2002]
15, [3.14], [1325]
19, [1.23], [9822]
24, [3.21], [7319]
25, [3.42], [6578]
27, [0.933], [4643]
30, [0.538], [3164]
40, [1.20], [2889]
51, [1.98], [2216]
52, [3.51], [7061]
53, [2.39], [7689]
54, [1.24], [8885]
56, [1.09], [3874] (4.136)

Check Digits
We conclude this section with a procedure to check the validity of an ISBN. Recall that the ISBN-10
code consists of 10 digits, the last of which is computed by the formula

x10 =
9∑

i=1

ixi (mod 11).

The symbol X is used in case x10 = 10.

Our checkISBN procedure will accept the ISBN as a string. It is necessary that we use strings in
case the ISBN contains X as the check digit. Consider the ISBN

> isbnExample ∶= “0073383090”

isbnExample ∶= “0073383090” (4.137)

Remember that, in Maple, you can use the selection operation on a string in the same way as for a
list. Therefore, the third character is obtained as follows:

> isbnExample[3]
“7” (4.138)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=convert,float

In order to perform arithmetic, we need to turn the character back into an integer. To do this, we can
use the parse command. When parse is applied to a string, Maple interprets the string as Maple
input. In this example, the string “7” will be interpreted as if we had entered 7 on an input line.

> parse (isbnExample[3])
7 (4.139)

Our procedure will compute the sum indicated by the formula above using the add command.
Recall that the first argument to add is an expression in terms of an index variable and the second
argument is the range for the variable. Once the value of x10 is determined, we compare it to the
check digit. This is only slightly complicated by the fact that a check digit of 10 corresponds to the
symbol X.

1 checkISBN := proc(isbn::string)
2 local i, check;
3 check := modp(add(i*parse(isbn[i]),i=1..9),11);
4 if check = 10 then
5 return evalb(isbn[10] = "X");
6 else
7 return evalb(parse(isbn[10]) = check);
8 end if;
9 end proc:

> checkISBN (isbnExample)
true (4.140)

> checkISBN (“084 930 149X”)
false (4.141)

> checkISBN (“232 150 031X”)
true (4.142)

4.6 Cryptography
In this section, we will see how Maple can be used to encode and decode strings using two of the
approaches described in the textbook. Specifically, we will see how to implement a classical affine
cypher and the RSA system.

Encoding Strings
Before we can implement the encryption algorithms, we need to encode strings as numbers. In this
manual, we will deviate slightly from the convention used in the textbook. Instead of assigning the
letter A to 0, B to 1, and so on with Z assigned to 25, we will assign the space character to 0, A to 1,
B to 2, and so on with Z set to 26. We will then work modulo 27 instead of 26.

Some Commands for Working with Strings
Maple’s StringTools package contains several commands that will be useful to us.

> with(StringTools)∶

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=parse
https://www.maplesoft.com/support/help/Maple/view.aspx?path=parse
https://www.maplesoft.com/support/help/Maple/view.aspx?path=add
https://www.maplesoft.com/support/help/Maple/view.aspx?path=add
https://www.maplesoft.com/support/help/Maple/view.aspx?path=StringTools

First, the UpperCase command makes all of the letters in its input string upper case.

> UpperCase (“The quick brown fox”)
“THE QUICK BROWN FOX” (4.143)

The UpperCase command is useful in this context because it means we only have to work with the
26 uppercase letters and the space character instead of the full 53 characters including both upper
and lower case letters and space.

The second command we will use is the Explode command and its inverse Implode. The Explode
command takes a string and returns a list of characters.

> Explode (“THE QUICK BROWN FOX”)
[“T”, “H”, “E”, “”, “Q”, “U”, “I”, “C”, “K”, “”,

“B”, “R”, “O”, “W”, “N”, “”, “F”, “O”, “X”] (4.144)

The Implode command does the opposite. Given a list of strings, it joins them into one string.

> Implode (%)
“THE QUICK BROWN FOX” (4.145)

Mapping Characters to Integers
To represent the function that maps characters to integers, and its inverse, we will use two tables,
CharToNum and NumToChar. In the CharToNum table, the space character and capital letters
will serve as the indices with the corresponding integers the entries. The NumToChar table will be
the reverse.

> CharToNum ∶= table([“” = 0, “A” = 1, “B” = 2, “C” = 3, “D” = 4,
“E” = 5, “F” = 6, “G” = 7, “H” = 8, “I” = 9, “J” = 10, “K” = 11,
“L” = 12, “M” = 13, “N” = 14, “O” = 15, “P” = 16, “Q” = 17,
“R” = 18, “S” = 19, “T” = 20, “U” = 21, “V” = 22, “W” = 23,
“X” = 24, “Y” = 25, “Z” = 26])∶

> NumToChar ∶= table([0 = “”, 1 = “A”, 2 = “B”, 3 = “C”, 4 = “D”,
5 = “E”, 6 = “F”, 7 = “G”, 8 = “H”, 9 = “I”, 10 = “J”, 11 = “K”,
12 = “L”, 13 = “M”, 14 = “N”, 15 = “O”, 16 = “P”, 17 = “Q”,
18 = “R”, 19 = “S”, 20 = “T”, 21 = “U”, 22 = “V”, 23 = “W”,
24 = “X”, 25 = “Y”, 26 = “Z”])∶

To compute the numeric value associate to a character, we use the CharToNum table.

> CharToNum[“K”]
11 (4.146)

In the other direction, we get the character associated to a number using the NumToChar table.

> NumToChar[18]
“R” (4.147)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=StringTools,LowerCase
https://www.maplesoft.com/support/help/Maple/view.aspx?path=StringTools,LowerCase
https://www.maplesoft.com/support/help/Maple/view.aspx?path=StringTools,Explode
https://www.maplesoft.com/support/help/Maple/view.aspx?path=StringTools,Explode
https://www.maplesoft.com/support/help/Maple/view.aspx?path=StringTools,Explode
https://www.maplesoft.com/support/help/Maple/view.aspx?path=StringTools,Explode

Converting Between a String and a Numeric Representation
We now have the tools needed to encode a string as a list of numbers and a decode the numeric rep-
resentation as a string.

In the StringToNums procedure, we will first apply UpperCase and Explode to produce a list of
uppercase characters. We then use the map command to apply the CharToNum table to each char-
acter. When map is applied to a procedure (in this case a functional operator) and a list, it returns
the list obtained by applying the procedure to each element of the list. In this case, we will use the
functional operator c -> CharToNum[c] as map’s first argument. Note that we declare Char-
ToNum as a global variable. This is not strictly necessary since Maple will infer that it is global
from context, but it is a good programming habit to always declare global variables as such.

1 StringToNums := proc(s::string)
2 local S;
3 uses StringTools;
4 global CharToNum;
5 S := Explode(UpperCase(s));
6 S := map(c -> CharToNum[c],S);
7 return S;
8 end proc:

> StringToNums (“The quick brown fox”)
[20, 8, 5, 0, 17, 21, 9, 3, 11, 0, 2, 18, 15, 23, 14, 0, 6, 15, 24] (4.148)

The NumsToString procedure begins with a list of integers and returns the string.

1 NumsToString := proc(S::list)
2 local s;
3 global NumToChar;
4 s := map(c -> NumToChar[c],S);
5 s := Implode(s);
6 return s;
7 end proc:

> NumsToString ([8, 5, 12, 12, 15, 0, 23, 15, 18, 12, 4])
“HELLO WORLD” (4.149)

Now that we have the ability to convert strings into numeric representation and back again, we are
ready to implement our encryption algorithms.

Classical Cryptography
We will now implement an affine cipher in Maple. Recall from the text that a general affine cipher
has the form

𝑓 (p) = (ap + b) (mod 27),

where p is an integer corresponding to a character that is to be encrypted. We will refer to the pair
a, b as the key to the cipher. For decryption to be feasible, the key must be chosen so that 𝑓 is a

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=StringTools,LowerCase
https://www.maplesoft.com/support/help/Maple/view.aspx?path=StringTools,Explode
https://www.maplesoft.com/support/help/Maple/view.aspx?path=map
https://www.maplesoft.com/support/help/Maple/view.aspx?path=map
https://www.maplesoft.com/support/help/Maple/view.aspx?path=operators,functional
https://www.maplesoft.com/support/help/Maple/view.aspx?path=operators,functional
https://www.maplesoft.com/support/help/Maple/view.aspx?path=map

bijection. This amounts to choosing a relatively prime to 27. (Note that the text uses a modulus of
26 where we use 27 because we are considering space to be an encodable character.)

Encrypting a string requires three simple steps. First, the string is transformed into its numeric
representation via StringToNums. Second, the function 𝑓 is applied to each number. Third, the
NumsToString procedure transforms the result back into a string. Our AffineCipher procedure
accepts as input a string and values of a and b.

1 AffineCipher := proc(s::string, a::integer, b::integer)
2 local S, T;
3 S := StringToNums(s);
4 T := map(p -> modp(a*p+b,27),S);
5 return NumsToString(T);
6 end proc:

Note the use of map to apply the function 𝑓 (p) = (ap + b) (mod 27) to each character.

We now use the cipher to encrypt “The quick brown fox” with the key (5, 3).

> AffineCipher (“The quick brown fox”, 5, 3)
“VPACG URDCMLXJSCFXO” (4.150)

To decrypt the message, we use the same procedure. The discussion following Example 4 in Section
4.5 of the text indicates that decrypting amounts to solving c ≡ (ap + b) (mod 27) for p. As the text
shows, we obtain

p ≡ a−1 (c − b) (mod 27) ≡ a−1c − a−1b (mod 27) .

In other words, to decrypt a message encrypted using the key (a, b), we use the same procedure but
with key (a−1, −a−1b).

First, compute the inverse of a = 5.

> 5−1 mod 27

11 (4.151)

Second, compute −a−1b, being sure to include the negative.

> −5−1 ⋅ 3 mod 27

21 (4.152)

Thus, the decryption key is (11, 21).

> AffineCipher ((4.150), 11, 21)
“THE QUICK BROWN FOX” (4.153)

RSA Encryption
We will now see how to use Maple to implement the RSA cryptosystem. Implementing the RSA
system involves two steps: key generation and the encryption algorithm.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=map

To construct keys in the RSA system, we need to find pairs of large primes, say with 300 digits each.
Since messages can be decrypted by anyone who can factor the product of these primes, the two
primes must be large enough so that their product is extremely difficult to factor.

Because the use of very large prime numbers would make our examples impractical as examples, we
shall illustrate the RSA system using smaller primes. We will discuss at the end of this section how
you can use Maple to generate large prime numbers.

Key Generation
The first step in key generation is to choose two distinct large prime numbers, p and q. From these,
we produce the public key, which consists of the public modulus n = pq and the public exponent e
which is relatively prime to 𝜙 (n) = (p − 1) (q − 1). We also produce the private key, consisting of
the public modulus n and the inverse of e modulo (p − 1) (q − 1). Since e is unrelated to the primes
p and q, it can be generated in a number of ways. For our implementation below, we will take e
to be 13.

Here is a Maple procedure to handle key generation. The GenerateKeys procedure accepts as
input two prime numbers. It returns a list of two lists where the sublists are the public and private
keys. That is, it returns [[n, e], [n, e−1]]. Given the primes p and q, the procedure computes n = pq,
𝜙 (n) = (p − 1) (q − 1), and d = e−1 (mod 𝜙 (n)).

1 GenerateKeys := proc(p::prime, q::prime)
2 local n, phin, e, d;
3 e := 13;
4 n := p * q;
5 phin := (p - 1) * (q - 1);
6 d := modp(e^(-1),phin);
7 return [[n,e],[n,d]];
8 end proc:

In a practical RSA implementation, we would likely use some of the techniques discussed at the end
of this section to incorporate into our GenerateKeys procedure the generation of the primes p and
q, rather than passing them as arguments.

We generate keys using the prime numbers p = 59 and q = 71.

> keys ∶= GenerateKeys (59, 71)
keys ∶= [[4189, 13], [4189, 937]] (4.154)

The public and private keys are

> publickey ∶= keys[1]
publickey ∶= [4189, 13] (4.155)

> privatekey ∶= keys[2]
privatekey ∶= [4189, 937] (4.156)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Encoding
Now that we have the keys, we turn to encoding the message. As described in the text, we encode the
message in much the same way as for affine ciphers, except that we block groups of characters into
single integers. The block length must be chosen so that, after conversion, the largest integer pro-
duced is less than the modulus n. Here, we have n = 4189 and the largest block that can be produced
is 2626 for “ZZ”.

We need to ensure that this part of the process is reversible. Consider the string “VA”. This com-
prises one block. Since “V” has code 22 and “A” has code 1, it is tempting to code “VA” as 221.
However, when you go to convert this back to a string, it is impossible to tell if it was 22 and 1
indicating “VA” or if it was 2 and 21, which represents “BU”. To avoid this, we code “A” as 01.
Or, what amounts to the same thing, when we compose the block, we multiply the value of the first
character by 100.

For a specific example, consider the message “SECRET MESSAGE”. We can use our
StringToNums procedure from above to get the numeric representation of each character.

> messageString ∶= StringToNums (“SECRET MESSAGE”)
messageString ∶= [19, 5, 3, 18, 5, 20, 0, 13, 5, 19, 19, 1, 7, 5] (4.157)

You can see that the first pair should be encoded as 1905, the second as 0318, and so on. Note that
the extra 0 is unnecessary in the second block, since 0318 and 318 are equivalent. We can obtain the
desired results by multiplying the first number in each pair by 100 as follows.

> messageCode ∶= []∶

> for i from 2 to nops(messageString) by 2 do
messageCode ∶= [op(messageCode),

100 ⋅ messageString[i − 1] + messageString[i]] ∶
end do∶

> messageCode
[1905, 318, 520, 13, 519, 1901, 705] (4.158)

Encryption
The encryption algorithm will take as input this list of integers and the public key. Each message
block mi is transformed into a ciphertext block ci with the function C ≡ Me (mod n).

1 RSA := proc(key::[posint,posint], msg::list(posint))
2 local n, e, C;
3 n := key[1];
4 e := key[2];
5 C := map(m -> modp(m &^ e,n),msg);
6 return C;
7 end proc:

Our “SECRET MESSAGE” is encrypted as

> cipherText ∶= RSA (publickey,messageCode)
cipherText ∶= [723, 3360, 2306, 1979, 2695, 917, 1863] (4.159)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Decryption is accomplished by applying the same algorithm with the private decryption key.

> RSA (privatekey, cipherText)
[1905, 318, 520, 13, 519, 1901, 705] (4.160)

Note that the result is identical to messageCode and it can be decoded into the message “SECRET
MESSAGE”.

Generating Large Primes
If you were to use small primes, as we did in the example, there would be no real security. Anyone
could factor n, the product of the primes, and then could compute the decrypting key d from the
encrypting key e.

Using Maple’s computational abilities, we can generate fairly large prime numbers for use in an
RSA key. Remember that what is needed is a pair of prime numbers, each of about 300 digits.
Moreover, they should be selected in an unpredictable fashion. To do this in Maple, we can use the
rand command to produce a random 300 digit number. Then, we use the nextprime command to
find the smallest prime number that exceeds our random number. This will guarantee that the prime
number has at least 300 digits.

The rand command can be used with or without an argument. Without an argument, it returns a ran-
dom 12 digit nonnegative integer. That is not nearly large enough for our purposes. The other way to
use rand is to give a range of integers as the argument (or a single integer which is interpreted as the
range from 0 to the given value). In our case, we want integers between 10299 and 10300. In this form,
rand does not return such an integer. Instead, its result is a procedure that produces integers in the
specified range. Therefore, we need to assign a name like bigInt to the result of rand and then call
bigInt() to produce the integers.

> bigInt ∶= rand(10299 ..10300)

> a ∶= bigInt ()
a ∶=

235 726 808 767 240 131 892 387 679 230 487 763 079 953 883 726
554 914 270 335 331 988 936 067 036 004 248 743 352 686 385 930
952 790 393 226 156 791 082 950 595 300 471 690 316 314 646 561
668 134 009 554 428 603 253 983 753 534 033 365 546 308 155 005
729 686 838 034 395 625 006 588 935 807 374 308 092 774 154 589
243 063 887 435 863 555 163 865 559 297 655 953 965 900 318 854
667 516 172 768 (4.161)

> b ∶= bigInt ()
b ∶=

152 437 929 765 352 918 510 221 499 252 192 939 125 747 817 161
311 103 686 087 626 346 460 386 764 591 409 816 784 447 234 447
040 237 967 851 784 887 467 280 704 542 118 084 668 842 861 067
385 555 997 426 820 063 761 992 732 944 467 932 964 476 405 481
212 187 426 959 784 692 692 674 837 781 675 579 996 667 516 040
022 110 392 777 999 797 121 227 204 804 954 864 379 556 266 233
780 403 407 631 (4.162)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=rand
https://www.maplesoft.com/support/help/Maple/view.aspx?path=nextprime
https://www.maplesoft.com/support/help/Maple/view.aspx?path=rand
https://www.maplesoft.com/support/help/Maple/view.aspx?path=rand
https://www.maplesoft.com/support/help/Maple/view.aspx?path=rand
https://www.maplesoft.com/support/help/Maple/view.aspx?path=rand

Now, we apply nextprime to a and b in order to produce the needed primes.

> p ∶= nextprime (a)
p ∶=

235 726 808 767 240 131 892 387 679 230 487 763 079 953 883 726
554 914 270 335 331 988 936 067 036 004 248 743 352 686 385 930
952 790 393 226 156 791 082 950 595 300 471 690 316 314 646 561
668 134 009 554 428 603 253 983 753 534 033 365 546 308 155 005
729 686 838 034 395 625 006 588 935 807 374 308 092 774 154 589
243 063 887 435 863 555 163 865 559 297 655 953 965 900 318 854
667 516 172 901 (4.163)

> q ∶= nextprime (b)
q ∶=

152 437 929 765 352 918 510 221 499 252 192 939 125 747 817 161
311 103 686 087 626 346 460 386 764 591 409 816 784 447 234 447
040 237 967 851 784 887 467 280 704 542 118 084 668 842 861 067
385 555 997 426 820 063 761 992 732 944 467 932 964 476 405 481
212 187 426 959 784 692 692 674 837 781 675 579 996 667 516 040
022 110 392 777 999 797 121 227 204 804 954 864 379 556 266 233
780 403 408 163 (4.164)

It is left to the reader to incorporate these ideas in improved versions of our GenerateKeys and RSA
procedures.

Homomorphic Encryption
The text defines what it means for a cryptosystem to be homomorphic and demonstrates, in
Example 11, that RSA is multiplicatively homomorphic. With our RSA encryption and decryption
algorithms in place, we can make this fact a bit more concrete.

Suppose that, using the same keys as above, that we have encrypted and then stored the value 23 in
the cloud.

> cloud ∶= RSA (publickey, [23]) [1]
cloud ∶= 3655 (4.165)

Note that we apply the selection operator because our RSA procedure was written to work on lists of
values, and we are focused here on storing and manipulating a single value.

Having stored this value, suppose we later need to multiply it by 45. One option, of course, would
be to retrieve and decrypt the value, perform the multiplication locally, and then encrypt and store
the product. This, though, is rather inefficient. Particularly if this multiplication is but one of a vast
number of operations we need to perform on stored data, running the computations on a very power-
ful remote machine can be desirable. That RSA is multiplicatively homomorphic means that we can,
instead, encrypt the value 45 and have the multiplication performed on the cloud server.

> cloud ∶= cloud ⋅ RSA (publickey, [45]) [1]
cloud ∶= 7 894 800 (4.166)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=nextprime

After having the computations performed remotely, we now retrieve and decrypt the result.

> RSA (privatekey, [cloud])
[1035] (4.167)

Observe that this is identical to 23 ⋅ 45.

> 23 ⋅ 45

1035 (4.168)

One issue to be aware of when performing computations this way is that, just like the message code
must be less than the modulus above, the result of the computation should be less than the modulus.

Solutions to Computer Projects and Computations and Explorations
Computer Projects 3

Given a positive integer, find the Cantor expansion of this integer (see the preamble to
Exercise 54 of Section 4.2).

Solution: Recall the definition of the Cantor expansion. Given an integer a, the Cantor expansion
of a is

a = ann! + an−1 (n − 1)! + · · · + a22! + a11!.

Observe that every term except for a11! is divisible by 2. That is,

ann! + an−1 (n − 1)! + · · · + a22! + a11! (mod 2) = a1.

Therefore, set a1 = a (mod 2), and let y1 be the remainder with the 2 divided out. In other words,

y1 =
a − a1

2
, or

y1 =
ann! + an−1 (n − 1)! + · · · + a22!

2
= an

n!
2
+ an−1

(n − 1)!
2

+ · · · + a33 + a2.

Now, every term other than the last contains a factor of 3, so set a2 = y1 (mod 3) and let

y2 =
y1 − a2

3
.

In general, ak = yk−1 (mod k + 1) and yk =
yk−1 − ak

k + 1
. It is left to the reader to verify that this pro-

cess produces the Cantor expansion of a.

The algorithm described above leads to the procedure below which accepts a positive integer as
input and returns a list of integers [a1, a2, .., an].

1 CantorExpression := proc(a::posint)
2 local A, n, y;

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

3 A := [];
4 n := 1;
5 y := a;
6 while y <> 0 do
7 A := [op(A),modp(y,n+1)];
8 y := (y-A[n])/(n+1);
9 n := n+1;

10 end do;
11 return A;
12 end proc:

> CantorExpression (471)
[1, 1, 2, 4, 3] (4.169)

Computer Projects 21
Generate a shared key using the Diffie–Hellman key exchange protocol.

Solution: Recall from Section 4.6 of the text the Diffie–Hellman key exchange protocol.

(1) Alice and Bob agree on a prime number p and a primitive root a of p. For this example, we use a
relatively small prime.

> DHprime ∶= nextprime (rand ())
DHprime ∶= 395 718 860 549 (4.170)

For the primitive root, we use PrimitiveRoot to get the smallest primitive root.

> DHroot ∶= primroot (DHprime)
DHroot ∶= 3 (4.171)

(2) Alice chooses a secret integer k1. We choose 421 since this is Computer Project 21 in Chapter 4.
We need to compute ak1 (mod p) and send the resulting value to Bob.

> AliceSends ∶= DHroot&ˆ 421 mod DHprime
AliceSends ∶= 287 654 735 840 (4.172)

Note that we are using the &ˆ exponentiation operator so that Maple will use smarter and faster
exponentiation algorithms.

(3) Bob also chooses a secret integer k2 and sends the value to Alice. From the perspective of Alice,
we do not know what value of k2 that Bob chooses, only the value of ak2 (mod p). Thus, we have
Maple choose k2 randomly in the computation.

> BobSends ∶= DHroot&ˆ rand()mod DHprime
BobSends ∶= 346 411 045 536 (4.173)

(4) and (5) Alice computes
(
ak2

)k1 (mod p) using the result that Bob transmitted and her k1. Bob
does the same using the value he got from Alice and his secret k2.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=NumberTheory,PrimitiveRoot

> sharedKey ∶= BobSends &ˆ 421 mod DHprime
sharedKey ∶= 318 885 707 608 (4.174)

At the conclusion, both Alice and Bob know this shared key, but no one else does.

Computations and Explorations 1

Determine whether 2p − 1 is prime for each of the primes not exceeding 100.

Solution: To solve this problem, we will write a Maple program that tests each prime p less than or
equal to a given value to see whether 2p − 1 is a Mersenne prime. The procedure will output a list of
those primes p for which 2p − 1 is prime.

1 CheckMersenne := proc(max::posint)
2 local p, L;
3 p := 2;
4 L := [];
5 while p <= max do
6 if isprime(2^p-1) then
7 L := [op(L),p];
8 end if;
9 p := nextprime(p);

10 end do;
11 return L;
12 end proc:

The primes p less than 100 such that 2p − 1 is prime are

> CheckMersenne (100)
[2, 3, 5, 7, 13, 17, 19, 31, 61, 89] (4.175)

For another approach, consider the IsMersenne command from the NumberTheory package. This
command is based on a table lookup. The command accepts one argument, either an integer or a
list with one integer element. If you pass an integer n to the IsMersenne command, it will compute
2n − 1. If that value is prime, the command returns it. It returns false if 2n − 1 is composite. If the
command cannot determine whether 2n − 1 is prime or not, it returns FAIL.

> IsMersenne (19)
true (4.176)

> IsMersenne (20)
false (4.177)

> IsMersenne (457 237 649 731)
FAIL (4.178)

The IthMersenne function will return the ith Mersenne prime, provided it has been found.

> IthMersenne (5)
13 (4.179)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=NumberTheory,IsMersenne
https://www.maplesoft.com/support/help/Maple/view.aspx?path=NumberTheory
https://www.maplesoft.com/support/help/Maple/view.aspx?path=NumberTheory,IsMersenne
https://www.maplesoft.com/support/help/Maple/view.aspx?path=NumberTheory,IthMersenne

> IthMersenne (100)

Error, (in NumberTheory:-IthMersenne) only 50 Mersenne primes are known

It is of note that there is a better test for checking whether a Mersenne number is prime, called the
Lucas–Lehmer test, that is more efficient and can be implemented in Maple. For a complete descrip-
tion of that algorithm, consult Rosen’s text on Number Theory.

Computations and Explorations 5
Find as many primes of the form n2 + 1 where n is a positive integer as you can. It is not
known whether there are infinitely many such primes.

Solution: We write a Maple procedure that, given a maximum n, tests the integers of the given form.

1 CE5 := proc(max::posint)
2 local n, L;
3 L := [];
4 for n from 1 to max do
5 if isprime(n^2+1) then
6 L := [op(L),n^2+1];
7 end if;
8 end do;
9 return L;

10 end proc:

To save space, we only compute up to a maximum of n = 100.

> CE5 (100)
[2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601, 2917,

3137, 4357, 5477, 7057, 8101, 8837] (4.180)

Exercises
Exercise 1. Test which is faster for computing the greatest common divisor of a collection of inte-
gers, the igcd or gcd command.

Exercise 2. Use Maple to generate the list of the first 100 prime numbers larger than one million.

Exercise 3. Use Maple to find the one’s complement of an arbitrary integer (see the prelude to
Exercise 40 of Section 4.2).

Exercise 4. For which odd prime moduli are −1 a square? That is, for which prime numbers p does
there exist an integer x such that x2

≡ −1 (mod p)?

Exercise 5. Use Maple to determine which numbers are perfect squares modulo n for various values
of the modulus n. For each perfect square s, determine how many square roots s has. That is, for how
many values of x is x2

≡ s (mod n). What conjectures can you make about the number of different
square roots an integer has modulo n? (The Maple functions ModularSquareRoot and msolve may
be of use.)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=igcd
https://www.maplesoft.com/support/help/Maple/view.aspx?path=gcd
https://www.maplesoft.com/support/help/Maple/view.aspx?path=NumberTheory,ModularSquareRoot
https://www.maplesoft.com/support/help/Maple/view.aspx?path=msolve

Exercise 6. Use Maple to find the base 2 expansion of the 4th Fermat number F4 = 65 537. Do the
following for several large integers n. Compute the time required to calculate the remainder modulo
n of various bases b raised to the power F4 (i.e., the time to calculate bF4 (mod n)) using two differ-
ent methods. First, do the calculation by a straightforward exponentiation. Second, do it using the
binary expansion of F4 with repeated squarings and multiplications. Why do you think F4 is a good
choice for the public exponent in the RSA encryption scheme?

Exercise 7. Modify the procedure GenerateKeys that we developed to produce the keys for the
RSA system to incorporate the techniques for generating random large primes. Make your pro-
cedure take as an argument a “security” parameter which measures the number of digits in the
primes.

Exercise 8. Write Maple routines to encode and decode English sentences into lists of integers
appropriate for encryption with RSA. You may ignore punctuation and insist that all letters are
uppercase. Your procedures should accept as input the block size.

Exercise 9. There are infinitely many primes of the form 4 n + 1 and infinitely many of the form
4 n + 3. Use Maple to determine for various values of x whether there are more primes of the form
4 n + 1 less than x than there are of the form 4 n + 3. What conjectures can you make from this
evidence?

Exercise 10. Develop a procedure for determining whether Mersenne numbers are prime using
the Lucas–Lehmer test as described in number theory books, such as Elementary Number Theory
and its Applications by K. Rosen. How many Mersenne numbers can you test for primality using
Maple?

Exercise 11. Repunits are integers with decimal expansions consisting entirely of 1s (e.g., 11, 111,
1111, etc.). Use Maple to factor repunits. How many prime repunits can you find? Explore the same
question for repunits in different base expansions.

Exercise 12. Compute the sequence of pseudorandom numbers generated by the linear congruential
generator xn+1 = (axn + c) (mod m) for various values of the multiplier a, the increment c, and the
modulus m. For which values do you get a period of length m (period is defined in Exercise 14) for
the sequence that you generate? Formulate a conjecture.

Exercise 13. The Maple command tau (in the NumberTheory package) implements the function
defined, for all positive integers n, by: 𝜏 (n) is the number of positive divisors of n. Use Maple to
study the function 𝜏. What conjectures can you make about it? For example, when is 𝜏 (n) odd? Is
there a formula for 𝜏 (n)? For which integers m does the equation 𝜏 (n) = m have a solution for some
integer n? Is there a formula for 𝜏 (mn) in terms of 𝜏 (m) and 𝜏 (n)?

Exercise 14. A sequence a1, a2, a3, … is called periodic if there are positive integers N and p
for which an = an+p for all N ≤ n. The least integer p for which this is true is called the period
of the sequence. The sequence is said to be periodic modulo m, for a positive integer m, if the
sequence a1 (mod m) , a2 (mod m) , a3 (mod m) ,… is periodic. Use Maple to determine whether
the Fibonacci sequence is periodic modulo m for various integers m and, if so, find the period.
Can you, by examining enough different values of m, make any conjectures concerning the
relationship between m and the period? Do the same thing for other sequences that you find
interesting.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=NumberTheory,tau
https://www.maplesoft.com/support/help/Maple/view.aspx?path=NumberTheory

Exercise 15. Write a function to implement the Paillier cryptosystem, described in the preamble
to Exercise 34 of Section 4.6 in the main text. Use your function to build a simple voting system
with Maple. Your system should store the number of votes for each candidate as a list in which the
entries are encrypted. When a user casts a vote, their vote should be encrypted and then added to the
encrypted totals, taking advantage of the fact that the Paillier system is additively homomorphic.
(Keep in mind that addition of plaintext is accomplished through multiplication of ciphertext.)

Exercise 16. (Class project) The Data Encryption Standard (DES) specifies a widely used algorithm
for private key cryptography. Find a description of this algorithm (e.g, in Cryptography, Theory and
Practice by Douglas Stinson). Implement the DES in Maple.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

