8 Advanced Counting Techniques

Introduction

In this chapter, we will describe how to apply Maple to three important topics in counting: recur-
rence relations, generating functions, and inclusion—exclusion. We begin by describing how Maple
can be used to solve recurrence relations, including the recurrence relations that describe the com-
plexity of divide-and-conquer algorithms. After studying recurrence relations, we show how to use
Maple to manipulate generating functions using the package powseries and how these capabilities
can help solve counting problems. We conclude the chapter with a discussion of the principle of
inclusion and exclusion.

8.1 Recurrence Relations

A recurrence relation describes a relationship between the members of a sequence and their prede-
cessors. For example, the famous Fibonacci sequence { f,,} satisfies the recurrence relation

fn =fn—1 +fn—2'

Together with the initial conditions f; = 1 and f, = 1, this relation is sufficient to define the entire
sequence { f,}.

To understand how we can work with recurrence relations in Maple, we have to remember that a
sequence {a,} is a function whose domain is a subset of the integers (usually the positive integers
or nonnegative integers, depending on the context) and whose codomain contains the terms of the
sequence (which can be numbers, matrices, circles, functions, etc.). (See the definition of sequence
given in Section 2.4 of the textbook.)

With this point of view, the sequence {a, } is a function a and the nth term of the sequence is the
value of the function evaluated at the integer n, that is, a, = a (n). This is only a change in notation,
but it makes it easier to see that a recurrence relation can be represented in Maple as a procedure tak-
ing integer arguments.

We can represent the Fibonacci sequence by the procedure below, which we use to compute the
first 20 terms of the Fibonacci sequence. This procedure takes one argument, a positive integer, and
returns the appropriate term in the Fibonacci sequence.

| Fibonacci :=proc (n: :posint)

2 option remember;

5 if n=1or n=2 then

4 return 1;

s end if ;

6 Fibonacci(n-1) + Fibonacci (n-2);
s end proc:

> seq (Fibonacci(n),n =1..20)
1,1, 2, 3,5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,
2584, 4181, 6765 8.1

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=powseries

Note that the remember option given in the first line instructs Maple to “remember” the values of
the procedure that have already been calculated. (To be precise, the remember option causes Maple
to store the output of the procedure in a “remember table.” If it is called with that same input again,
Maple simply looks up the result from the table rather than recomputing. You can force Maple to
delete the remember table for a procedure with the forget command.)

Sometimes, a recursive implementation of an algorithm may be too costly (specifically, in time and
memory) due to the nature of the algorithm, regardless of steps you may take to improve efficiency.
A recursive implementation of a recurrence relation can be avoided if we can find an explicit for-
mula for the general term of the sequence. The process of finding such a formula is referred to as
“solving” the recurrence relation. In the next section, we will see how to use Maple to solve certain
kinds of recurrence relations.

Tower of Hanoi Problem

In Example 2 of Section 8.1 of the textbook, the author describes the famous “Tower of Hanoi” puz-
zle and derives the recurrence relation

H,=2H, ,+1,H =1,

where H, represents the number of moves required to solve the puzzle for n disks. As discussed in
the text, this has the solution

H,=2"-1.

n

Later, we will see how to use Maple to derive this result.

Rather than just computing the values, we can illustrate the solution to the Tower of Hanoi puzzle
by writing a Maple program to compute the moves needed and to describe them to us. We will write
a small program consisting of three Maple procedures: the main procedure Hanoi, a utility routine
PrintMove, and TransferDisk, which does most of the work.

The easiest part to write is the function PrintMove, which merely displays the move to make at a
given step.

| PrintMove :=proc(src: :string, dest: :string)
> printf ("Move disk from peg %s to peg %s\n", src, dest) ;
;| end proc:

In the above, we call the Maple command printf, which is used for formatted output. The first argu-
ment to printf is the “format string,” that is, a string that contains both regular characters, format
specifications (in this case “%s”), and escape characters (such as “\n”). The format specification
“%s” tells the printf command to put the next argument in that location in the output and format

it as a string. (The first %s refers to the second argument, src and the second %s refers to the third
argument, dest.) The escape character “\n” tells printf to insert a new line. The printf command is
very flexible with many available options. You should refer to Maple’s help pages for more detailed
information. (Note: Maple’s printf command is very similar to the command of the same name in
C and other programming languages.)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=remember
https://www.maplesoft.com/support/help/Maple/view.aspx?path=remember
https://www.maplesoft.com/support/help/Maple/view.aspx?path=forget
https://www.maplesoft.com/support/help/Maple/view.aspx?path=printf
https://www.maplesoft.com/support/help/Maple/view.aspx?path=printf
https://www.maplesoft.com/support/help/Maple/view.aspx?path=printf
https://www.maplesoft.com/support/help/Maple/view.aspx?path=printf
https://www.maplesoft.com/support/help/Maple/view.aspx?path=printf
https://www.maplesoft.com/support/help/Maple/view.aspx?path=printf

Next, we write the recursive procedure TransferDisk, which does most of the work. This function
models the idea of transferring a stack of ndisks disks from the source peg, which is given as the
argument src, to the destination peg, dest, via the intermediate peg, via. As described in the text,

in order to move a stack of n disks, you first move the top n — 1 pegs to the intermediate peg (using
the destination as the intermediary), then move the bottom disk to the destination, and then move the
smaller stack from the intermediate peg to the destination. Unless, of course, there is only 1 disk, in
which you just move that disk to the destination. This is coded as follows.

TransferDisk :=proc(src: :string, via: : string, dest: :string,
ndisks: :posint)

2 if ndisks =1 then

3 PrintMove (src, dest) ;

4 else

s TransferDisk (src, dest, via, ndisks -1);

6 PrintMove (src, dest) ;

7 TransferDisk (via, src, dest, ndisks -1);

8 end if ;

end proc:

©

Finally, we package the recursive procedure in a top-level procedure, Hanoi, providing an interface
to the recursive engine.

| Hanoi :=proc(ndisks: :posint)
2 TransferDisk ("A", "B", "C", ndisks) ;
;| end proc:

Our Hanoi program can exhibit a specific solution to the Tower of Hanoi puzzle for any number of
disks:

> Hanoi (2)
Move disk frompegAtopegB
Move disk frompegAtopegC
Move disk frompegB topegC

> Hanoi (3)
Move disk frompegA topegC
Move disk frompegA topegB
Move disk frompegC topegB
Move disk frompegAtopegC
Move disk frompegB topegA
Move disk frompegB topegC
Move disk frompegA topegC

Try experimenting with different values of ndisk to get a feel for how large the problem becomes for
even moderately large numbers of disks.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Dynamic Programming

We conclude this section with an implementation of Algorithm 1 from Section 8.1 of the text. Recall
that the goal of this algorithm is to find the maximum number of attendees that can be achieved by a
schedule of talks.

We will represent each talk as a list of three elements, with the start time being the first element, the
end time in the second position, and the weight, or attendance, will be last. Time of day will be rep-
resented by a single number with whole part equal to the hour in the 24-hour system and with frac-
tional part equal to the part of an hour that corresponds to the number of minutes. For instance, 2:30
P.M. would be represented as 14.5.

As an example, consider the following eight talks.

Start Time | End Time | Attendance
9:00 AM | 11:00 AM 17
9:00 AM | 10:30 AM 15
10:00 AM | 11:30 AM 22
10:30 AM | 12:00 PM 11
11:30 AM | 1:30PM 18
12:00PM | 1:00 PM 12
1:30 PM 3:00 PM 21
2:00 PM 4:00 PM 17

We create the following list of lists to represent the talks.

> talks = [[9,11,17],[9,10.5,15],[10,11.5,22],[10.5,12,11],[11.5,13.5, 18],
[12,13,12],[13.5,15,21],[14,16,17]]
talks = [[9,11,17],[9,10.5,15],[10,11.5,22],[10.5,12, 11],

[11.5,13.5,18],[12,13,12],[13.5,15,21],[14,16,17]] 8.2)

Recall the description of Algorithm 1 from the text. We summarize the general outline of the algo-

rithm below.

1. Sort the talks in order of increasing end time.

2. For each index j, compute p (j)—the maximum index i less than j such that talk i is compatible
with talk j.

3. For each index j, compute 7 (j), which is computed by the recurrence relation
T (j) = max (w; + T (p(j)), T (j — 1)) and with initial condition T (0) = 0.

4. The maximum total number of attendees is T (), where n is the number of talks.

For step 1, we will make use of the sort command with a custom ordering procedure. Recall that
sort can accept an optional argument in the form of a Boolean procedure of two arguments. This
procedure should return true if the first argument precedes the second and false otherwise. Since we
must sort the talks in increasing order of end time (which is stored in position 2 in the lists represent-
ing the talks), we use the following procedure.

1| sortEnd :=proc(a,b)
2 return a[2] <b[2];
;| end proc:

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=sort
https://www.maplesoft.com/support/help/Maple/view.aspx?path=sort

For step 2, we must compute p (j). For this, we create a procedure that accepts the sorted list of talks
and returns a table that represents the function p. Recall that the value of p (j) is the largest index
among talks compatible with the talk with index j, so we call this procedure compatible.

After declaring local variables and initializing p to the empty table, we will loop through all the
indices, j, from 1 to the number of talks in the list. We use a local variable, jstart, to store the start
time of the current talk being analyzed and we set the value of p for j to 0. We then consider all the
talks earlier in the list beginning with the talk with index j-1 and working backward to talk 1. For
each talk, we check to see if it ends before talk j starts. When we find such a talk, we set its index
to the value of p[j] (since we are working backward, the first one found is the talk with the largest
index) and terminate the loop. If no compatible talk is found, then p[j] was already set to 0. Here is
the procedure.

| compatible :=proc(talkList)

2 local p, j, jstart, i;

3 p := table () ;

s for j from1 to nops (talkList) do
s jstart :=talkList[]j]I[1];

6 pljl =0;

7 for i from j—-1to 1 by -1 do

5 if talkList[i] [2] <= jstart then
9 plJ] ==1;

10 break ;

1 end if,‘

2 end do;

3 end do;

14 return p;

5| end proc:

For step 3, we must compute 7 (j). To do this, we create a procedure that accepts as input the sorted
list of talks and the table representing the function p. Initialize T to the empty table and set its
value at O to 0. Then, consider each integer j from 1 to the number of talks and apply the formula:

T()=max (w;+T @@, TG- D).

1| totalAttendance =proc(talkList, p)
2 local §, T;

3 T := table () ;

4 T[O] :=0,‘

s for j from 1 to nops (talkList) do

6 T[Jj] :==max(talkList[]J][3] +T[p[3]1]1,T[j-11);
7 end do;

8 return T;

o end proc:

We can now put the pieces together as outlined at the start of this subsection.

| maximumAttendees :=proc(talkList)
2 local L, p, T;
3 L = sort(talkList, sortEnd);

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

s p = compatible (L) ;

s T = totalAttendance (L, p);
6 return T [nops (L)];

7| end proc:

And thus, the maximum attendance for the talks described above is:

> maximumAttendees (talks)
61 (8.3)

8.2 Solving Linear Recurrence Relations

Maple has a very powerful recurrence solver, rsolve. Its use, however, can obscure some of the
important ideas that are involved. Therefore, we will first use some of Maple’s more fundamental
facilities to solve certain kinds of recurrence relations one step at a time.

Given a recursively defined sequence {a, }, we would like to find a formula, involving only the index
n (and, perhaps, other fixed constants and known functions) which does not depend on knowing the
value of any prior elements of the sequence.

Linear Homogeneous Recurrence Relations with Constant Coefficients

We will begin by considering recurrence relations that are linear, homogeneous, and which have
constant coefficients; that is, they have the form

a,=c¢ a,_1tc,a, ,+---+c, a,_;

where c;, ¢, ..., ¢; are real constants and ¢, is nonzero. Recall that the integer k is called the degree
of this recurrence relation. To have a unique solution, at least k initial conditions must be specified.

The general method for solving such a recurrence relation involves finding the roots of its character-
istic polynomial

- clrk_1 - czrk_2 — =GV — G

When this polynomial has distinct roots, all solutions are linear combinations of the nth powers of
these roots. When there are repeated roots, the situation is a little more complicated, as we will see.

A First Example
Consider the linear homogeneous recurrence relation with constant coefficients of degree two

a,=2a, +3a,_,,
subject to the initial conditions

a, :4andaz =2.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=rsolve

Its characteristic equation is
r*=2r-3=0.

To solve the recurrence relation, we must solve for the roots of this equation. Using Maple makes
this very easy; we use the solve function.

> solve (r2 —-2r—3= O,r)
3, —1 8.4)

The solve command computes the values of the variable r, given as the second argument, that satisfy
the equation in the first argument. Note that you may omit =0 from the command above and Maple
will interpret it the same.

> solve (r2 -2r— 3,r)

3, -1 @8.5)

Now that Maple has determined that the solutions are » = 3 and r = —1, we can write down the form
of the solution to the recurrence as

a,=a3"+p (1),

where a and f are constants that we have yet to determine.
Since the initial conditions are a; = 4 and a, = 2, we know that our recurrence relation must satisfy

the following pair of equations.

3a—p=4
Fa+p=2
To find the solution to this system of linear equations, we again use Maple’s solve/command:

> solve({3a—f=49a+p=2},{a,p})
{a=1/2,=-5/2} (8.6)

This time, we are telling Maple to solve the set of equations. Likewise, the variables to be solved for
form a set.

Now that we have the values for a and f, we see that the complete solution to the recurrence
relation is

1 5
== .3 = 2. (=)
ay =5 2()

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=solve
https://www.maplesoft.com/support/help/Maple/view.aspx?path=solve
https://www.maplesoft.com/support/help/Maple/view.aspx?path=solve

This formula allows us to write a Maple function for finding the terms of the sequence {a, }, which
can be more efficient than a recursive procedure.

. 3t 5(=1)
> a i=n::posint—> — — :

2 2

> seq(a(n),n=1..10)

4,2, 16, 38, 124, 362, 1096, 3278, 9844, 29 522 8.7)
A Second Example
Let us try another example. We will solve the recurrence relation
a, = —é a, | + 2 a
n 3 n—1 3 n—2

with initial conditions
1
a; = =-anda, =4.

To do this, we ask Maple to solve the characteristic equation of the recurrence relation, and then
solve the system of linear equations obtained from the roots of the characteristic equation and
the initial conditions. Note that this method works because this recurrence relation is linear,
homogeneous, and has constant coefficients.

> CharEgnRoots .= solve <r2 + % r— %, r)

CharEgnRoots .= %, -2 (8.8)

> solve <{alpha - CharEgnRoots[1] + beta - CharEgnRoots[2] = %,

alpha - CharEanoots[l]2 + beta - CharEanoots[Q]2 = 4} ,

{alpha, beta})

Thus, we see that the solution to the recurrence relation is

45 (1\" 23
=2 (2) +2 (-2
“=7 (3)+28()

The Fibonacci Sequence
We can derive an explicit formula for the Fibonacci sequence this way as well. The characteristic
polynomial for the Fibonacci sequence is

rr—r—1.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

We find the roots of the characteristic equation.

> CEgnRoots .= solve (r2 —r—1, r)

V5 o1 V5
CEgnRoots := — + =, —— + — 8.10
gnRoots 5 + > > + > ()

Therefore, the formula for the nth Fibonacci number is of the form

> Fn := alpha - CEgnRoots[1]" + beta - CEgnRoots[2]"

Fn = «a <£+1> +p <—£+1> (8.11)

2 2 2 2

We find the coefficients @ and f in the formula by using the initial conditions.

> alphas .= solve ({alpha - CEgnRoots[1] + beta - CEgnRoots[2] = 1,
alpha - CEanoots[l]2 + beta - CEanoots[Z]2 = 1} , {alpha, beta})

alphas := {a = g,ﬁ = —ﬁ} (8.12)

We use the lsubs/ command to substitute the values for a and f into the formula Fn.

> Fn .= subs (alphas, Fn)

V5o _v5 Y
Fn := \/§<25+2> —\/§< 52 +2> (8.13)

If we are to use such a formula to repeatedly compute values, then we should use it to define a
function. You can enter a new function definition manually, but a more convenient way is to use
the unapply command. It takes two arguments: an expression and the variable that is to be the
argument of the function. It produces a functional operator.

> Fibonacci2 := unapply (Fn,n)

B(Eey) (e
Fibonacci2 = n— 5 — 5

8.14)

The procedure Fibonacci2 is much more efficient than even the optimized recursive procedure
Fibonacci. To see this, we record the accumulated time for computing the first 100 000 Fibonacci
numbers (after, of course, clearing the remember table for the Fibonacci procedure with the forget
command).

> forget (Fibonaccti)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=subs
https://www.maplesoft.com/support/help/Maple/view.aspx?path=unapply
https://www.maplesoft.com/support/help/Maple/view.aspx?path=operators,functional
https://www.maplesoft.com/support/help/Maple/view.aspx?path=forget

> st :=time():
for i to 100 000 do
Fibonacci(i)
end do :
time () — st
1.452 (8.15)

> st :=time():
for i to 100 000 do
Fibonacci2(i)
end do :
time () — st
0.417 (8.16)

A Solver

Now, we will generalize what we have been doing and write a Maple procedure to solve a degree
two linear, homogeneous recurrence relation with constant coefficients, provided that the roots of
the characteristic polynomial are distinct. We will write a procedure RecSol2Distinct which solves
the recurrence

a, =ca,_, +da,_,
subject to the initial conditions
a,=uanda, =v

and then returns a procedure that can be used to compute terms of the sequence.

For the moment, we assume that the characteristic polynomial r* — c¢r — d has two distinct roots.
Later, we will modify the procedure to relax that restriction. With the assumption that the roots of
the characteristic polynomial are distinct, all our procedure needs to do is to repeat the steps we did
manually in the examples above.

i| RecSol2Distinct :=proc(c, d, u, v)

2 local CERoots, alphas, alpha, beta, £, n, r;

; # First solve the characteristic equation

s CERoots :=solve(r*2-c*r-d,r);

s # Next solve the equations derived from initial conditions
s alphas =solve ({

7 alpha * CERoots[1] + beta * CERoots[2] =u,

5 alpha * CERoots[1]72 + beta * CERoots[2]"2=v
9 }, {alpha,beta}l);

10 # Finally substitute the answers into the general form

1 f := subs (alphas, alpha * CERoots[1]"n + beta * CERoots [2] "n) ;
12 return unapply (£, n);

»| end proc:

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

To see how it works, we check that it gives the same result for the Fibonacci sequence that we
obtained by hand. To construct a function for computing the Fibonacci sequence, invoke the new
procedure as:

> [:= RecSol2Distinct (1,1,1,1)

V5, _v5 1y,
f ::nH\/g(szrz) —\E(52+2> (8.17)

The procedure f can be used to compute the general term of the Fibonacci sequence.
> f(n)
\/g 1 n \/g 1 n
VS(+i) V()

- _ - (8.18)

You can see that is the same formula that we derived above and correctly produces the first 10
Fibonacci numbers.

> seq (simplify (f (n)),n=1..10)
1,1, 2,3,5,8, 13, 21, 34, 55 (8.19)

A Recurrence with Repeated Roots

We will next create a procedure that can handle the case of repeated roots. First, let us look at an
example of a recurrence relation whose characteristic polynomial has a double root. The recurrence
relation

a, = 4an—1 - 4rn—2
has the characteristic equation
> charEgn = r* —4r+4=0
charEgn .= rPP—4r+4=0 (8.20)
which has roots
> CERoots .= solve (charEgn,r)
CERoots = 2,2 8.21)

We can clearly see that in this case the root is repeated, but for Maple to recognize it, we need to use
the following test.

> evalb (CERoots|1] = CERoots[2])
true (8.22)

Note that the evalb command forces evaluation as a Boolean value. This is not necessary in condi-
tional statements (like if statements) because the context of those statements causes Maple to eval-
uate the expression as a Boolean. If we call the double root (2 in this case) r,, then the recurrence
relation has the explicit solution

_ n
a,=ary+npry,

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=evalb
https://www.maplesoft.com/support/help/Maple/view.aspx?path=if

for all positive integers n, and for some constants @ and f. The initial conditions of ¢; = 1 and
a, = 4 produce the system of equations

a-2'4+1-8-2=1
a-2242--22=4

As before, we solve this system for « and f.

> Alphas := solve ({alpha~ CERoots[1] + beta - CERoots[1] =1,
alpha - CERoots[1] + 2 beta - CERoots[1]> = 4} , {alpha, beta}>
Alphas = {a=0,=1/2} (8.23)

And finally, substitute these values into the general form a,, = a rj + np ry,

> subs (Alphas, alpha - CERoots[1]" + n - beta - CERoots[1]")
n2"

> (8.24)

A More General Recurrence Solver

The steps carried out above are quite general and we can write a procedure, RecSolver2, which
solves a recurrence relation (degree two, linear, homogeneous, with constant coefficients) regard-
less of whether the characteristic polynomial has distinct roots or not. The following procedure
solves the recurrence

a, =ca,_, +da,_,,
with initial conditions

a;,=uanda, = v.

1| RecSolver?2 :=proc(c, d, u, v)

2 local CERoots, alphas, alpha, beta, £, n, r;

3 # First solve the characteristic equation

4 CERoots :=solve(r"2-c*r-d,r);

s # Then test if the roots are the same

6 if (CERoots[1l] =CERoots[2]) then

7 # the roots are the sameso follow the last example
5 alphas =solve ({

9 alpha * CERoots[1] + beta * CERoots[1] =u,

10 alpha * CERoots[1]72+2 * beta * CERoots [1]"2=v
1 }, {alpha,beta});

12 f := subs (alphas, alpha * CERoots[l]"n+n * beta *
CERoots[1]"n);

3 else

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

14 # otherwise, use the RecSol2 method

5 alphas :=solve ({

16 alpha * CERoots[1] + beta * CERoots [2] =u,

" alpha * CERoots[1] "2 + beta * CERoots [2]"2=vVv

18 }, {alpha, beta});

19 f := subs (alphas, alpha * CERoots[1]"n + beta * CERoots [2] "n) ;
20 end if,’

2 # Finally , use unapply

2 return unapply (£, n);

»| end proc:

RecSolver?2 first tests for a repeated root and then does the appropriate computation. We test this
procedure on the examples we did by hand, such as the Fibonacci sequence:

> RecSolver2(1,1,1,1)

V(g)
5

N - _ (8.25)
For the example with a double root:
> RecSolver2 (4,-4,1,4)
I ”22 (8.26)

In both of those examples, the result is consistent with what we had obtained before. We will now
use the solver to find the first 10 terms of the sequence defined by the following recurrence relation
and initial conditions.

a, = 4an—1 -3 ()

a; = 1anda2:2.

> g .= RecSolver2 (4,-3,1,2)

3 1
T= — 4+ = 8.27
gi=nro+ts (8.27)
> seq (simplify (g (n)),n =1..10)
1, 2,5, 14, 41, 122, 365, 1094, 3281, 9842 (8.28)

As another example, consider the following recurrence relation
a, = —dy_| —dy_,
with initial conditions

a, =1landa, = 2.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

> h .= RecSolver2 (-1,-1,1,2)

(V3-51) V3 (-1+22)

h :=nw 3(_1+1\/§) n
) 1\/§<—2+ 61\1/2§> <—% - ’\z—ﬁ> 529)

Notice that the solution to this recurrence is very complicated and requires the use of complex num-

bers. (Maple uses the name I to represent the imaginary unit \/ —1.) However, if we compute the first
10 terms, we notice a very simple pattern emerges.

> seq (simplify (h (n)),n =1..10)
1,2,-3,1,2,-3,1,2,-3,1 (8.30)

Maple can make this pattern explicit if we replace the numerical initial conditions with symbolic
constants.

> k := RecSolver2 (—1,—1,lambda, mu)

(\/5,1—1,1—21,,,> \/§<—§+%§)n

k :=nw—
3(—=1+11/3))
3 (21 +21V34+ 21\ 3u - 2,u> (—; - #)
8.31
+ B (8.31)
> seq (simplify (k (n)),n =1..10)
Ay, —A—p, A, u, —A—p, A, u, —A—pu, A (8.32)

Nonhomogeneous Recurrence Relations

So far, we have been restricted to homogeneous linear recurrence relations with constant coef-
ficients. However, the techniques used in solving them may be extended to provide solutions to
nonhomogeneous linear recurrence relations with constant coefficients. That is, recurrence relations
of the form

a,=ca,_; +cra, o+ -+ca,,+Fmn

with ¢, ¢,, .., ¢, real numbers and F (n) a function depending only on n. To solve this more gen-
eral form of a recurrence relation, we do two things: (1) find the solutions of the associated homoge-
neous recurrence relation (the relation obtained by removing F (n)); (2) find a particular solution for
the nonhomogeneous equation.

Consider the following example:
a,=6a, ,—9a,_,+n3",

from Example 12 of Section 8.2 in the text.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=I

The first step is to find the solutions to the associated homogeneous recurrence relation
a,=6a,_;, —9a,_,.

To do this, we can use our RecSolver2. We will use a and f for the initial conditions so that we get
all the solutions.

> HSolution := RecSolver2 (6, -9, alpha, beta)

S B 2a) ., B a\ .
HSolution .—n|—>< 9+ 3)3 +n<9 3>3 (8.33)

The second step is to find a particular solution. Theorem 6 in Section 8.2 of the text tells us how to
find the form of the particular solution. Note that F'(n) = n 3" and 3 is a root of the characteristic
polynomial with multiplicity 2 (you can verify this by solving the characteristic equation of the
associated homogeneous relation; it is also made apparent by the form of HSolution). Thus, the
theorem tells us that there is a particular solution of the form

n*(pn + q)3".

We will define a functional operator for the form of the particular solution.

> PForm :=n—n*(p-n+q)3"
PForm :=nwn*(pn+q)3" 8.34)

To find a particular solution, we need to find the values of p and ¢. To find these values, we substi-

tute the terms of PForm into the recurrence relation. This gives us an equation in terms of p and ¢
(and n).

> Pegn := PForm(n)=6-PForm(n—1)—9.-PForm(n—2)+n-3"

Peqn = n*(pn+¢)3"=6(n—1)*@pn—-1)+¢)3""!
—9 -2 (pn—-2)+q)3" > +n3" (8.35)

> Pegn := simplify (Pegn)
Peqn = n*(pn+q)3"=3" (n3p +n*g—6pn+n+6p— 2q) (8.36)

The second line in the pair of commands above replaces the equation Peqn with its simplified
form. This explicit use of the simplify command is necessary for Maple to be able to solve the
equation.

Next, we have Maple solve that equation for p and g. In order to indicate that we want Maple to find
the values of p and ¢ that satisfy the equation for all values of n, we will make use of the identity
command within the solve command as follows.

The identity command can only be used within the first argument of solve. It requires two argu-
ments. The first is an equation, such as Peqn, or an expression which is assumed to be equated to 0.
The second argument is the name of the variable that the identity is in terms of.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=simplify
https://www.maplesoft.com/support/help/Maple/view.aspx?path=solve,identity
https://www.maplesoft.com/support/help/Maple/view.aspx?path=solve
https://www.maplesoft.com/support/help/Maple/view.aspx?path=solve,identity
https://www.maplesoft.com/support/help/Maple/view.aspx?path=solve

> Pvals := solve (identity (Peqn,n),{p,q})

Pvals = {p = é,q = %} 8.37)

Thus, the particular solution is

> subs (Pvals, PForm (n))

2 (N 1) n
-+ -3 8.38
" (6 2 (5:35)
Putting it all together, we see that all solutions to the recurrence relationa, = 6 a,_; —9a,_, + n3"

are of the form

> HSolution (n) + subs (Pvals, PForm (n))

BL2a g, (B2 z(ﬁ l) .
<9+ 3)3 +n<9 3)3 +n’(2+7)3 (8.39)

Maple’s Recurrence Solver

Now that we have seen how to use Maple to implement an algorithm to solve simple recurrence rela-
tions, it is time to introduce Maple’s command for solving recurrence relations.

We have already seen the Maple command solve for working with polynomial equations and
systems of equations. Similarly, there is a Maple command rsolve, which is specially engineered
for dealing with recurrence relations. It is a much more sophisticated version of our RecSolver2
procedure and can deal with recurrence relations of arbitrary degree, repeated roots, and nonlinear
recurrence relations. To use rsolve, you need to tell it what the recurrence relation is and some
initial conditions. You must also specify the name of the recursive function to solve for.

For example, to solve the Fibonacci recurrence, you enter the following statement.

> unassign(F) :
rsove({F(O)=0,F()=1,Fmn) =Fmn-1)+Fn-2)},Fn)

\/g 1 n B \/g 1 n
Vs(F+3) V5(-9+1)
5 5
(We use the unassign command to clear the name F of anything that may have been stored in it

before. Using unassign, or a command like F :="F’, is a good idea before using rsolve, since if the
function name is already storing a value, rsolve may return an error.)

(8.40)

The rsolve command will let us solve nonhomogeneous recurrence relations like the Tower of
Hanoi problem very easily. Recall that the Tower of Hanoi problem has the recurrence relation

Hn = 2Hn_1 + 1,

with initial condition H, = 1.

> unassign(H) :
rsove({H(1)=1,Hn)=2Hn-1)+1},H)
m_ 1 (8.41)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=solve
https://www.maplesoft.com/support/help/Maple/view.aspx?path=rsolve
https://www.maplesoft.com/support/help/Maple/view.aspx?path=rsolve
https://www.maplesoft.com/support/help/Maple/view.aspx?path=unassign
https://www.maplesoft.com/support/help/Maple/view.aspx?path=unassign
https://www.maplesoft.com/support/help/Maple/view.aspx?path=rsolve
https://www.maplesoft.com/support/help/Maple/view.aspx?path=rsolve
https://www.maplesoft.com/support/help/Maple/view.aspx?path=rsolve

It is not actually necessary to specify the initial conditions for a recurrence relation. If they are not
present, Maple will still solve the equation, inserting symbolic constants (e.g., G(0) and G(1)) in
place of numeric values, as the following example illustrates.

> unassign(G) :
rsolve(G(n)=2Gn—-1)—-6G(n—-2),G(n))

I(—G(l)\/§+G(O)\/§+SIG(O)> (—1 5+ 1)”
I<G(1)\/§—G(0)\/l§)+5lG(0)> <1 5+ 1)

- 0 8.42)

The function rsolve can handle different kinds of recurrence relations, including:
e linear recurrence relations with constant coefficients,

e systems of linear recurrence relations with constant coefficients,

e divide-and-conquer recurrence relations with constant coefficients,
e many first order linear recurrence relations, and

e some nonlinear first order recurrence relations.

The capabilities of rsolve, like other Maple functions, are constantly being enhanced and extended.
However, rsolve is not a panacea—you can easily find recurrence relations that it is incapable of
solving. When rsolve is unable to solve a recurrence relation, it simply returns unevaluated, as
below.

> unassign(u) :
rsolve (u n)=wm-— 1))2 —e?un=2) y (n))

rsolve (u (n) = (u(n—1)>* — 22 y (n)) (8.43)

Problem Solving with Maple and Recurrence Relations

It is often the case that a problem, as presented, gives no clue that a solution may be found using
recurrence. Let us see how we can use Maple to solve a problem that is not explicitly expressed as
one requiring the use of recurrence for its solution.

Here is our problem: into how many regions is the plane divided by 1000 lines, assuming that no
two of the lines are parallel, and no three are coincident? Such a situation may arise in an attempt to
model fissures in the ocean floor.

To start, we might try to discover the answer for smaller numbers of lines. To generalize the prob-
lem, we may ask for the number of regions produced by 7 lines, where n is some positive integer.

It is fairly obvious that a single line (corresponding to the case n = 1) divides the plane into two
regions. Two lines, if they are not parallel, can easily be seen to divide the plane into four regions.
(Two parallel lines produce only three regions.) If we call the number of regions produced by n
lines, no two of which are parallel and no three of which are coincident, R,,, then R, = 2 and R, = 4.

What does the situation look like when n = 3? Figure 8.1 is representative of this situation. In this
case, the number of regions is 7, so R; = 7. To find R, we must add a fourth line to the diagram.
This suggests trying to compute R, in terms of R; so that we begin to think of {R,} as a recurrence
relation. Figure 8.2 shows what the situation looks like when a fourth line is added to the three

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=rsolve
https://www.maplesoft.com/support/help/Maple/view.aspx?path=rsolve
https://www.maplesoft.com/support/help/Maple/view.aspx?path=rsolve
https://www.maplesoft.com/support/help/Maple/view.aspx?path=rsolve

Figure 8.1: Three lines dividing
the plane

Figure 8.2: Four lines dividing
the plane

existing lines. From the assumptions that no two lines are parallel and no three pass through a sin-
gle point, it follows that the new line must intersect each of the existing three lines in exactly one
point. This means that the new line passes through exactly four of the regions formed by the origi-
nal three lines. Each region that it passes through is divided into two regions, so the total number of
new regions added by the fourth point is 4. Thus, R, = R; + 4. Similar arguments for a general con-
figuration of lines reveals that R, satisfies the recurrence relation R, = R,_; + n.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Furthermore, we have already computed the initial condition R, = 2. This is enough to solve the
recurrence.

> unassign(R) :
rsolve {R(1)=2,R(n)=R(n—1)+n},R(n))
(n+1)<g+1>—n (8.44)

> simplify ((8.44))
1 2 n

- —+1 8.45

57 + 5 + (8.45)

To answer the question: how many regions is the plane divided by 1000 lines with no two parallel

and no three coincident?

> R := unapply ((8.44),n)

R:=nr—>(n+1)<g+l>—n (8.46)
- R(1000)
500501 (8.47)

8.3 Divide-and-Conquer Algorithms and Recurrence Relations

A very good example of divide-and-conquer relations is the one provided by the binary search algo-
rithm. Here, we consider a practical application of this algorithm in an implementation of a binary
search on a sorted list of integers. This is an implementation of the algorithm described in Algo-
rithm 3 in Section 3.1 of the text and first presented in Section 3.1 of this manual.

| binarysearch :=proc (x: :integer, A: :list (integer))
2 local n, i, j, m, location;
3 n = nops(a);

4 i := 1,’

s j ==n;

6 while i1 < j do

7 m := floor ((i+3)/2);

$ if x> A[m] then

9 i=m+1;

10 else

n Jji==m;

12 end if,’

1 end do;

14 if x=2[1] then

5 location :=1;

6 else

i location :=0;

18 end if ;

10 return location;

»| end proc:

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

The variable A is the list of integers to search, which is assumed to be sorted in increasing order, and
x is the integer to search for. The local variables j and i are initialized to the number of elements in
the list and 1, respectively. The while loop continues as long as i and j are different from each other.
Each step of the loop serves to narrow the difference between them by calculating the middle of the
list, represented by m, and determining which half x is in. Eventually, the search will focus in on one
location in the list, which is either x or, if not, the search has failed and the algorithm returns O.

Let us now do an analysis of the algorithm to see how divide-and-conquer recurrence relations are
generated. In general, a divide-and-conquer type recurrence relation has the form

f) =af @n/b)+gn).

Each iteration of the while loop of binarysearch produces a single list half the size of the original.
Therefore, a = 1 and b = 2. The function g (n), which measures the comparisons added in imple-
menting the reduction, is identically 2. This is because one comparison is added to see which half
of the list the key is on, and one is added to see if the while loop needs to continue. Hence, for the
binarysearch algorithm, the recurrence relation is

f)= fn/2)+2.

Additionally, we can see that f (1) = 2, because if the list is of length 1, then the algorithm will do
one comparison to determine that the while loop is unnecessary and one comparison to make sure
that the element being searched for is the one element in the list. We can now use rsolve to solve this
recurrence.

> unassign(bin) :
rsolve ({bin (1) = 2, bin (n) = bin (g) + 2} ,bin (n))
2 In(n)
In(2)

(8.48)

8.4 Generating Functions

Generating functions are a powerful tool for manipulating sequences of numbers and for solving a
variety of counting problems. In this section, we will see how Maple can be used to represent and
manipulate generating functions.

The generating function G (x) for a sequence {a, } is the formal power series

o0
Y ax =ay+ax+ax fax ++ap+ -
k=0

It is called formal because we are not interested in evaluating it as a function of x. Our focus is on
finding a formula for its coefficients. In particular, this means that there are no convergence issues to
be considered.

Power Series Tools

Maple provides extensive facilities for manipulating formal power series. They belong to the Maple
package powseries.

> with(powseries) .

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=rsolve
https://www.maplesoft.com/support/help/Maple/view.aspx?path=powseries

The first thing we need to do is to learn how to create a power series with Maple, which is done with
the command powcreate. This command can be used in two ways: either by specifying a closed
form for the general coefficient or with a recurrence relation and initial conditions.

For example, to create the generating function for the sequence {3k }, we use the following code.

> unassign(e) :
powcreate (e (k) = 3¢)

Note that we use the unassign command with powcreate, just as we did with rsolve. While it is not
necessary in most situations, the unassign command can help avoid errors that may occur if these
commands are reexecuted.

Note that the powcreate command does not have a return value but has made e into a procedure
which is now Maple’s representation of the power series. We can confirm this by having Maple
display the first few terms of the series using the tpsform command (for truncated power series).
This command takes three arguments: the name of the power series, the variable to be used in the
expression, and the order. Maple displays the terms of the series whose degree is smaller than the
given order.

> tpsform (e, x,5)
1+3x4+9x°+27x +81x*+ 0 (x) (8.49)

We can also define a power series using a recurrence relation together with initial conditions. (Note:
If you do not provide sufficiently many initial conditions to guarantee a unique solution to the recur-
rence, an error will be raised.)

For example, to create the generating function for the Fibonacci sequence, which is defined by the
recurrence relation

F,=F,_+F,,,
with initial conditions
Fo=1andF, =1,
we enter the following command.
> unassign(Fibonacci3) :
powcreate(Fibonacci3 (n) = Fibonacci3 (n — 1) + Fibonacci3 (n — 2),

Fibonacci3 (0) = 1, Fibonacci3 (1) = 1)

We can then have Maple display the first few terms of the generating function for the Fibonacci
numbers.

> tpsform (Fibonacci3, x,T)
1+x42x+3X +5x"+8xX +13x°+ 0 (x') (8.50)

Maple also provides a way to access an arbitrary coefficient in a formal power series. To Maple,
each formal power series is, in fact, a procedure that takes integer arguments. The value returned

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=powseries/powcreate
https://www.maplesoft.com/support/help/Maple/view.aspx?path=unassign
https://www.maplesoft.com/support/help/Maple/view.aspx?path=powseries/powcreate
https://www.maplesoft.com/support/help/Maple/view.aspx?path=rsolve
https://www.maplesoft.com/support/help/Maple/view.aspx?path=unassign
https://www.maplesoft.com/support/help/Maple/view.aspx?path=powcreate
https://www.maplesoft.com/support/help/Maple/view.aspx?path=powseries/tpsform

when given the integer n as an argument is the coefficient of the x" term. For example, the 50th
Fibonacci number can be computed as follows.

> Fibonacci3 (50)
20365011074 (8.51)

Solving Problems with Generating Functions

Generating functions are more than just a convenient way to represent numerical sequences. They
are a powerful tool for solving recurrence relations, as well as other kinds of counting problems.
This power stems from our ability to manipulate them like ordinary power series from Calculus
and to interpret those manipulations. To illustrate Maple’s facilities for manipulating generating
functions, consider Example 12 from Section 8.4 of the text.

Use generating functions to determine the number of ways to insert tokens worth $1, $2,
and $5 into a vending machine to pay for an item that costs r dollars in both the cases
when the order in which the tokens are inserted does not matter and when the order does
matter.

Following the text, the solution to the problem when order does matter is the coefficient of x" in the
generating function

(T+x+x++) (14+2+x +20+) (1420 +x0+xP 4+,

To solve the problem, we need to create the three power series and multiply them together. To create
the three series, we could use the powcreate, command as above, but the evalpow command pro-
vides an approach that is often easier.

The evalpow command accepts one argument, an algebraic expression which may include formal
power series, polynomials, the usual arithmetic operators, and some functions compatible with
the power series package (such as powdiff and powint for differentiation and integration). From
Table 1 of Section 8.4 of the text, we see that our three generating functions can be written as
rational expressions:

1

; =l T
— X

The three generating functions that we are interested in all share this same form withr =1, r = 2,
and r = 5, respectively. Therefore, we can use evalpow to create them.

> TokenlD := evozlpow(1 !)
—X

TokenlD := proc (powparm) ...end proc (8.52)

> Token2D := evalpow(!)
1 —x?

Token2D := proc (powparm) ...end proc (8.53)

> Token5D := evalpow(! >
1 —x°

Token5D := proc (powparm) ...end proc (8.54)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=powseries/powcreate
https://www.maplesoft.com/support/help/Maple/view.aspx?path=powseries/evalpow
https://www.maplesoft.com/support/help/Maple/view.aspx?path=powseries/evalpow
https://www.maplesoft.com/support/help/Maple/view.aspx?path=powseries/powdiff
https://www.maplesoft.com/support/help/Maple/view.aspx?path=powseries/powint
https://www.maplesoft.com/support/help/Maple/view.aspx?path=powseries/evalpow

(It is worth noting that the evalpow command returns a procedure, which is how Maple represents
power series.)

We use tpsform to confirm that these are the generating functions that we were trying to create.

> tpsform (TokenlD, x, 5)
l+x+x+x +x"+0 () (8.55)

> tpsform (Token2D, x, 10)
L+ +x*+x+x3+0 (xlo) (8.56)

> tpsform (Token5D, x, 25)
L+ +x0+ x5+ +0 (xzs) (8.57)

Now, we can use evalpow again to multiply the three series together.

> Tokens .= evalpow (TokenlD - Token2D - Token5D)
Tokens := proc (powparm) ...end proc (8.58)

> tpsform (Tokens, x, 8)
1+x+2x2+2x3+3x4+4x5+5x6+6x7+0(x8) (8.59)

We can see from the above that there are six ways to pay for a $7 item (since the coefficient of x’

is 6), just as was computed in the text. If we wanted to know the number of ways to pay for an item
234

costing $234, all we would need to do is find the coefficient of x=*.
> Tokens (234)
2832 (8.60)

For the second part, the case where the order does matter, the text explains that the generating func-
tion we need is

1

1+ (x+x7+x°) + (x+x2+x5)2+-~- TG io)

We can create this power series in Maple just like we did above.

> Tokens2 := evalpow <1 “x +1x2 + x5)>

Tokens2 := proc (powparm) ...end proc (8.61)

> tpsform (Tokens2, x, 8)
L4+ x+2x +3° +5x"+9x +15x° +26x" + 0 (x*) (8.62)

We see that the coefficient of x” is 26, so there are 26 ways to pay for a $7 item when order does
matter.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=powseries/evalpow
https://www.maplesoft.com/support/help/Maple/view.aspx?path=powseries/tpsform
https://www.maplesoft.com/support/help/Maple/view.aspx?path=powseries/evalpow

8.5 Inclusion-Exclusion

In this section, we will apply the principle of inclusion and exclusion. At the heart of the principle of
inclusion and exclusion is the formula

|AUB| = |A| + |B| - |ANB],

which says that, for two finite sets A and B, the number of elements in the union A U B of the two sets
may be found by adding the sizes of A and B and then subtracting the number of elements common
to both A and B, which would otherwise be counted twice. This formula can be generalized to count
the number of elements in the union of any finite number of finite sets.

Recall that we define a set in Maple by enclosing the comma-separated list of elements in braces.

> A = {1,2,3)
A= {1,2,3) (8.63)

To find the cardinality, or size of a set, we can use the command nops|or numelems.

> nops (A)
3 (8.64)

> numelems (A)
3 (8.65)

The set operations of union and intersect are represented in Maple by writing out their names:

> X = {1,2,3,4,5}:
Y 1= {4,5,6,7,8}:

> X union Y
{1,2,3,4,5,6,7,8} (8.66)

> X intersect Y
{4,5} (8.67)

The set theoretic difference is computed by the Maple operator minus.

> X minus Y
{1,2,3} (8.68)

Let us use the operations to verify the principle of inclusion and exclusion in a particular example.

> Flintstones .= {“Fred”,“Pebbles”, “Wilma”}
Flintstones .= {“Fred”, “Pebbles”, “Wilma”} (8.69)

> Rubbles := {“BamBam”,“Barney”, “Betty”}
Rubbles .= {“BamBam”,“Barney”, “Betty”} (8.70)

> Husbands := {“Barney”,“Fred”}
Husbands := {“Barney”, “Fred”} (8.71)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=op
https://www.maplesoft.com/support/help/Maple/view.aspx?path=numelems
https://www.maplesoft.com/support/help/Maple/view.aspx?path=union
https://www.maplesoft.com/support/help/Maple/view.aspx?path=union
https://www.maplesoft.com/support/help/Maple/view.aspx?path=union

> Wives .= {“Betty”, “Wilma’}
Wives .= {“Betty”, “Wilma”} (8.72)

> Kids := {“BamBam”,“Pebbles’}
Kids := {“BamBam”, “Pebbles’} (8.73)

If this were a complete census, then the number of children living in Bedrock would be

> nops (Kids)
2 (8.74)

while the number of Bedrock inhabitants who are either Flintstones or children is

> nops (Flintstones union Kids)
4 (8.75)

According to the principle of inclusion and exclusion, this number should be the same as

> nops (Flintstones) + nops (Kids) — nops (Flintstones intersect Kids)
4 (8.76)

which, of course, it is.

As another example, consider the problem of determining the number of positive integers less than
or equal to 100 that are not divisible by either 2 or 11. First, we generate the set of positive integers
less than or equal to 100.

> hundred := {$1..100}
hundred = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18, 19, 20,
21,22,23,24,25,26,27,28,29,30,31,32,33, 34, 35,36,37, 38, 39, 40,
41,42,43,44,45,46,47,48,49,50,51, 52,53, 54,55,56,57,58, 59, 60,
61,62,63,64,65,606,67,68,69,70,71,72,73,74,75,76,77,78,79, 80,
81,82, 83, 84, 85, 86,87, 88,89,90,91,92,93,94,95,96,97, 98,99, 100} (8.77)

Next, we remove those elements that are divisible by 2:

> DivBy2 .= hundred minus {seq (2 -i,i =1..100)}
DivBy2 := {1,3,5,7,9,11,13,15,17,19,21,23,25,27,29, 31, 33,
35,37,39,41,43,45,47,49,51,53,55,57,59, 61, 63,65,67,69,71,
73,75,77,79, 81,83, 85,87,89,91,93,95,97,99} (8.78)

and those that are divisible by 11:

> DivByll := hundred minus {seq (11 -i,i=1..100)}

DivByll = {1,2,3,4,5,6,7,8,9,10,12,13,14,15,16,17,18, 19,
20,21,23,24,25,26,27,28,29, 30,31, 32,34, 35,36, 37, 38, 39, 40,
41,42,43,45,46,47,48,49,50,51,52,53,54,56,57,58,59, 60,61,
62,63,64,65,67,68,69,70,71,72,73,74,75,76,78,79, 80, 81, 82,

83,84, 85, 86,87,89,90,91,92,93,94,95,96,97,98, 100} (8.79)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

(Note the combined use of the minus and seq operators; they work very conveniently together in
this example.)

We are looking for integers that belong to either or both of A and B, that is, to their union, so we want
the size of A U B, which is

> nops (DivBy2 union DivByl1)
96 (8.80)

According to the principle of inclusion and exclusion, this value could also be computed as

> nops (DivBy2) + nops (DivByl 1) — nops (DivBy?2 intersect DivByl 1)
96 (8.81)

8.6 Applications of Inclusion-Exclusion

In this section, we will explore the following problem: Three sets of twins, Ashley and Amanda
Abel; Brandon and Benjamin Bernoulli; and Christopher and Courtney Cartan (none of whom bear
any relation to the mathematicians with the same surname), are to be seated in a row. List the ways
in which they can be seated so that no person sits next to his or her twin.

The principle of inclusion—exclusion gives us insight into how we might accomplish this task.
Rather than attempting to generate the seating arrangements in which no person sits next to
his or her twin, it will be easier to consider all the possible arrangements of the twins and then
exclude those that do not satisfy the condition. To begin, we define lists to store the names of
the twins.

> Abels = [“Ashley”, “Amanda”] :

Bernoullis := [“Brandon”, “Benjamin”] :
Cartans := [“Christopher”, “Courtney’] :

Abels = [“Ashley”, “Amanda’”]

Bernoullis := [“Brandon”, “Benjamin”]
Cartans := [“Christopher”, “Courtney”] (8.82)
> twins .= [Abels, Bernoullis, Cartans]
twins = [[“Ashley”, “Amanda”], [“Brandon”, “Benjamin’],
[“Christopher”, “Courtney’]] (8.83)

We solve the problem using two procedures. The main procedure will consider each possible
arrangement in turn and populate the list of those which satisfy the condition. The main procedure
will rely on a second procedure to test whether an arrangement satisfies the condition of having no
twins seated next to each other. We begin by writing the second procedure.

To test whether a given arrangement has a pair of twins seated next to one another, we will consider
the five pairs of seats, 1 and 2, 2 and 3, ..., 5 and 6, and check to see if the people seated in those posi-
tions are twins.

| testSeating :=proc(seating: :list)
2 global twins;
; local i, twinpair;

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=union
https://www.maplesoft.com/support/help/Maple/view.aspx?path=seq

4 for i from1 to 5 do

s for twinpairintwinsdo

s if ((seating[i]intwinpair) and (seating[i+1] intwinpair))
then

7 return false;

. end if ;

9 end do;

10 end do;

1 return true;

»| end proc:

The procedure is passed a list of the six people’s names, representing a seating, so that the person in
the third seat is seating[3]. The for loop indexed by i goes through the five pairs of seats. The inner
for loop avoids having to duplicate the if statement. We could have written one if statement check-
ing to see if the people in seats i and i+1 are both Abels, and then a second if statement to see if they
are both Bernoullis, and then a third to see if they are both Cartans. Instead, the loop sets the twin-
pair variable to each of the lists in twins in turn. Thus, twinpair represents, at each step in the loop,
one of the families. And then the if statement checks to see whether the people in the seats i and i+1
are members of that family, using the in operator. If any of these if statements are true, that the peo-
ple in the pair of consecutive seats are from the same family, then the procedure immediately returns
false, indicating that the seating is not acceptable. If the seating survives all of the if statements, then
the procedure returns true.

To check the TestSeating procedure, consider the following potential seatings.

> seatingl := [“Ashley”, “Amanda”, “Brandon”, “Benjamin”,
“Christopher”, “Courtney’’]
seatingl := [“Ashley”, “Amanda”, “Brandon”, “Benjamin”,
“Christopher”, “Courtney’’] (8.84)

> seating? := [“Ashley”, “Brandon”, “Christopher”, “Amanda”,
“Benjamin”, “Courtney”]

seating? := [“Ashley”, “Brandon”, “Christopher”, “Amanda”,
“Benjamin”, “Courtney’’] (8.85)

We see that the first seating fails but the second passes, as they should.

> testSeating (seatingl)
false (8.86)

> testSeating (seating?2)
true (8.87)

We now have a procedure to test a potential seating for the condition of not having twins seated next
to each other. To generate a list of all of such seatings, we use Maple’s permute, command (from the

combinat package) to generate all the possible permutations of the people and then test to see which

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=do
https://www.maplesoft.com/support/help/Maple/view.aspx?path=do
https://www.maplesoft.com/support/help/Maple/view.aspx?path=if
https://www.maplesoft.com/support/help/Maple/view.aspx?path=if
https://www.maplesoft.com/support/help/Maple/view.aspx?path=if
https://www.maplesoft.com/support/help/Maple/view.aspx?path=in
https://www.maplesoft.com/support/help/Maple/view.aspx?path=if
https://www.maplesoft.com/support/help/Maple/view.aspx?path=if
https://www.maplesoft.com/support/help/Maple/view.aspx?path=combinat/permute
https://www.maplesoft.com/support/help/Maple/view.aspx?path=combinat

are valid and which should be discarded. The permute command takes a list and returns all the pos-
sible permutations of the objects. (Refer to Chapter 6 of this manual for more information about the
use of the commands in the combinat package.)

Note that the permute command expects a list of objects, so we will need a list of all the people. We
use the Flatten command to turn our twins list into a list of all the names. Flatten takes a list and
removes any nesting of lists so that the result is a list of the objects.

> ListTools|Flatten] (twins)
[“Ashley”, “Amanda”, “Brandon”, “Benjamin”, “Christopher”,
“Courtney’’] (8.88)

Here is the procedure to generate all of the valid seating arrangements.

| ListSeatings :=proc/()

global twins;

3 local possibles, seating, OKseatings;

4 OKseatings :=[];

s possibles = combinat [permute] (ListTools[Flatten] (twins)) ;
6 for seatinginpossiblesdo

[

7 if testSeating(seating) then

8 OKseatings = [op (OKseatings), seating];
9 end if,‘

10 end do;

i return OKseatings;

»| end proc:

This procedure initializes OKseatings, which is what will be returned, to the empty list, and it ini-
tializes the possibles variable to all the permutations of the six people. It then checks each possible
permutation using the testSeating procedure, and the valid arrangements are added to OKseatings.
Finally, the procedure returns OKseatings.

We run this procedure and store its output in the variable twinSeatings but suppress the output.
Then, we use mops to check how many possible seatings there are. (It is generally a good idea to
suppress the output of a procedure that is listing what may be a very large number of possibilities
until you know how many there are. Otherwise you may have to wait a very long time for Maple to
print all of them out.)

> twinSeatings .= ListSeatings() :

> nops (twinSeatings)
240 (8.89)

> twinSeatings[123]
[“Benjamin”, “Ashley”, “Christopher”, “Amanda”, “Brandon”,
“Courtney’’] (8.90)
We see that there are 240 possible seatings and have displayed the 123rd seating.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=combinat/permute
https://www.maplesoft.com/support/help/Maple/view.aspx?path=combinat
https://www.maplesoft.com/support/help/Maple/view.aspx?path=combinat/permute
https://www.maplesoft.com/support/help/Maple/view.aspx?path=ListTools/Flatten
https://www.maplesoft.com/support/help/Maple/view.aspx?path=ListTools/Flatten
https://www.maplesoft.com/support/help/Maple/view.aspx?path=nops

Solutions to Computer Projects and Computations and Explorations
Computer Projects 12

Given positive integers m and n, find the number of onto functions from a set with m
elements to a set with n elements.

Solution: We have a very convenient formula:

n—1

Z (=D*C (n, k) (n — k)"

k=0

This is the number of onto functions from a set of m elements to a set of n elements, assuming

m > n. This formula is derived in the textbook from the principle of inclusion—exclusion (see
Theorem 1 of Section 8.6). The only input required in this formula are the integer parameters m
and n, which represent the sizes of the domain and codomain, respectively. Maple has a command
that corresponds to summations like the one above called add. The add command can take a

few different forms, but the one similar to standard summation notation has two arguments: an
expression in terms of an index of summation, for example, k, and an argument of the form k=a..b
indicating the bounds of the summation. For example, to compute

you would enter the following command.

I
dd(—,k - 3..8)
> d k

341

200 8.91
280 91

The add command will form the heart of our procedure, which will take the sizes of the domain and
codomain as input, check to make sure that the assumption m > n is satisfied, and then apply the
formula.

| OntoFunctions :=proc (m: : posint, n: : posint)

2 local k;

3 if m < n then

4 return O;

s end if ;

6 return add ((-1) *k * combinat [numbcomb] (n, k) * (n-k)"m, k=0..n-1) ;
end proc:

-

The if statement is necessary—and makes sense mathematically—because there are no onto func-
tions from a set to a larger set. For example:

> OntoFunctions (4,9)
0 (8.92)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=add
https://www.maplesoft.com/support/help/Maple/view.aspx?path=add
https://www.maplesoft.com/support/help/Maple/view.aspx?path=add

As an example, we can use our function to compute the number of onto functions from a set with
100 elements to a set with 20 elements.

> OntoFunctions (100, 20)

11238195910319 657928 539447038 143 170285517 894 975 095
769496294 319007 413091 913 959 828 334936 464 196 298 192
508890182316 163261067 934269 440 000 (8.93)

Computations and Explorations 2

Find the smallest Fibonacci number greater than 1 000 000, greater than 1 000 000 000, and
greater than 1 000 000 000 000.

Solution: We can solve this quite easily with Maple using a simple while loop. In this chapter,

we have seen several ways to compute Fibonacci numbers, including the procedure Fibonacci in
Section 8.1, the formula Fibonacci2 in Section 8.2, and the generating function Fibonacci3 in
Section 8.4. For this exercise, we will use Maple’s built-in function fibonacci in the combinat pack-
age. (Caution: there are other commands also called “fibonacci” in Maple, within the StringTools
package and the (deprecated) linalg package.)

The idea is to compute Fibonacci numbers until the value exceeds the target. The while loop is well-
suited to this sort of problem. We will create a procedure that takes the target values as input and
prints out the desired Fibonacci number and its index.

| FindFib :=proc(target: :integer)

2 local n;

3 n = 1,'

s while combinat [fibonacci] (n) < target do

s n:=n+1;

6 end do;

7 printf ("The %dth Fibonacci number is %d", n, combinat [fibonacci] (n)) ;
s| end proc:

As long as the n th Fibonacci number is smaller than the target value, the index is increased. Once
the target has been exceeded, the printf statement displays the index and the value of the Fibonacci
number.

The numbers called for by the question are:

> FindFib (1 000 000)
The 31th Fibonacci number is 1346269

> FindFib (1 000000 000)
The 45th Fibonacci number 11134903170

> FindFib (1 000 000 000 000)
The 60th Fibonacci number 1s1548 008 755920

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=do
https://www.maplesoft.com/support/help/Maple/view.aspx?path=combinat/fibonacci
https://www.maplesoft.com/support/help/Maple/view.aspx?path=combinat
https://www.maplesoft.com/support/help/Maple/view.aspx?path=StringTools
https://www.maplesoft.com/support/help/Maple/view.aspx?path=linalg
https://www.maplesoft.com/support/help/Maple/view.aspx?path=do
https://www.maplesoft.com/support/help/Maple/view.aspx?path=printf

Computations and Explorations 3

Find as many prime Fibonacci numbers as you can. It is unknown whether there are
infinitely many of these.

Solution: Using Maple, this sort of problem becomes fairly straightforward. We can simply use the
Maple procedure fibonacci from the combinat package to generate Fibonacci numbers and use the
isprime function to test each for primality. We will wrap this in a procedure so that we can use it in
conjunction with the timelimit function. The number of Fibonacci numbers tested will depend on
your computer and patience.

2

3

=

PrimeFib :=proc()
global primefibs;
local i, temp;
primefibs :=NULL;
for i from 1 do
temp :=combinat [fibonacci] (i) ;
if isprime (temp) then
primefibs :(=primefibs, temp;
end if ;
end do;
return primefibs;
end proc:

This produces fairly large values relatively quickly, so we limit it to a tenth of a second.

> try

timelimit(0.1, PrimeFib());
catch “time expired” :
[primefibs];
end try;

[2,3,5,13,89,233,1597,28 657,514229,433494 437,2971 215073,
99 194 853094 755497, 10663404174917105958145721609,
19 134702400093 278 081449423917,
475420437734 698220747368 027 166749382927 701417016557 193 662268 716\
376935476241,
529892711006 095 621792039 556787 784 670 197 112759 029 534 506 620 905 162\
834769955 134424 689 676 262 369,
1387277127804 783827114 186 103 186246 392258450358 171 783 690 079 918\
032136 025225954602 593712568 353,
3061719992484 545030554313848083717208 111285432353738497 131 674\
799321571238 149015933 442 805 665 949,
10597999265 301490732599 643 671 505003412515 860435409 421932 560009\
680142974 347195483 140293254396 195 769 876 129 909,
36684474316080978061473613 646275630451 100586901 195229 815270242\
868417768061 193 560857904 335017 879540515228 143777 781 065 869,
96 041200618922 553 823942 883 360924 865026 104917411 877067 816 822264\
789029014 378 308 478 864 192 589 084 185254 331 637646 183 008 074 629]

8.94)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=combinat/fibonacci
https://www.maplesoft.com/support/help/Maple/view.aspx?path=combinat
https://www.maplesoft.com/support/help/Maple/view.aspx?path=isprime
https://www.maplesoft.com/support/help/Maple/view.aspx?path=timelimit

Computations and Explorations 11

Compute the probability that a permutation of n objects is a derangement for all positive
integers not exceeding 20 and determine how quickly these probabilities approach the
number 1/e.

Solution: To solve this problem, we will make use of the formula which gives the number of
derangements of n objects, namely,

The total number of permutations of n objects is, of course, n!, so the probability that one of them is

a derangement is the ratio —;1, which is given by the expression
n!

1 1 1 n 1
1—1—!+2—!—§+-~+(—1) g

A very simple Maple function will compute these values for us.

)| DerProb :=proc (n: :posint)

2 local k;

3 return add ((-1) *k * (1/k!), k=0..n) ;
« end proc:

The probabilities that a permutation of n objects is a derangement for n < 20 are:

> seq (DerProb (n),n =1..20)

o1 13 11 53 103 2119 16687 16481 1468457

16019531 63633137 2467007773 34361893981

43545600° 172972800° 6706022400 93405312000’
15549624751 8178130767479 138547156 531409

42268262400° 22230464256000° 376610217984 000
92079694 567171 4282366656425 369

250298 560512000 11640 679 464 960 000

(8.95)

To see how these probabilities differ from 1/e, we will multiply them by e and subtract 1. To repre-
sent the number e in Maple, we use the exp command with argument 1, that is, e'.

> seq (evalf[25] (exp(1) - DerProb (n) — 1),n =1..20)

—1.0, 0.359140914229522617680144, —0.0939060571803182548799044,
0.019355685672141963260108, —0.0032966628983500803678947,
0.000478728530065260236772, —0.0000606131025655027067517,
6.804601513342661189 107, —6.862544954179352489 1077,
6.2831105458124395 1078, —5.2675855306083001 10~°,

4.07305385119424 107'°, —2.92246853211696 107",

1.956033996016 1072, —1.226806251301 10713,

7.239038692 10713, —4.032944743 10716, 2.127959000 107,

—1.066413000 108, 5.08870000010~2° (8.96)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=exp

(Note: the optional form evalf[n](expr) of evalf specifies that Maple should use n digits of preci-
sion when evaluating the expression expr. The default is 10 digits of precision.)

Exercises
Exercise 1. Implement a procedure to find the optimal schedule that maximizes total attendance.

Exercise 2. Implement a dynamic programming algorithm for finding the maximum sum of consec-
utive terms of a sequence of real numbers. (See Exercise 56 in Section 8.1.)

Exercise 3. Implement a dynamic programming algorithm for optimally computing matrix-chain
multiplication. (See Exercise 57 in Section 8.1.)

Exercise 4. Use Maple to solve the following recurrence relations.
a) a,=a, | —a,, a, =1,a, =1;

b) a,=15a,_; + Ean_z, a, = —

Exercise 5. Use Maple to solve each of the recurrence relations in Exercise 1 in Section 8.2 of the
textbook. (Solve even those that are not linear homogeneous recurrence relations with constant
coefficients.)

Exercise 6. Write a general solver in Maple for linear homogeneous recurrence relations with con-
stant coefficients of degree three with distinct roots. Your solver should check that the roots are in
fact distinct and, if they are not, should return FAIL, which is the standard return value for a Maple
function when it cannot complete a computation for some reason.

Exercise 7. Use Maple to investigate the behavior of the limit

li P
im —,
n—o0 lI/}’l

where @, is defined to be the number of prime Fibonacci numbers less than or equal to n, and y,, is
defined to be the number of Fermat numbers less than or equal to 7.

Exercise 8. Implement the recursive algorithm described in Example 12 of Section 8.3 of the text
for solving the closest-pair problem.

Exercise 9. Use Maple to find the number of square-free integers less than 100 000 000.

Exercise 10. Use Maple to find the number of onto functions from a set with 1 000 000 elements to
a set with 1000 elements.

Exercise 11. It is probably obvious that the number of onto functions from one set to another
increases with the sizes of either the domain or the range. Using Maple to experiment, explore
whether an increase in the size of the domain or the size of the range has the greater impact on the
number of onto functions.

Exercise 12. To generate the lucky numbers start with the positive integers and delete every second
integer in the list, starting the count with 1 (e.g., delete 2, 4, 6, etc., leaving 1, 3, 5,7, ...). Other than
1, the smallest integer left is 3. Continue by deleting every third integer from those that remain,

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=evalf,details
https://www.maplesoft.com/support/help/Maple/view.aspx?path=FAIL

starting the counting with 1 (since 1, 3,5, 7, 9, ... remain, 1 is the first number left, 3 is the second
one left, 5 is the third left and gets deleted, and so on). Continue the process where at each stage,
every kth integer is deleted, where k is the smallest integer left, other than the previous values of
k. The integers that remain are the lucky numbers. Develop a Maple procedure that generates the
lucky numbers up to n.

Exercise 13. Can you make any conjectures about lucky numbers by looking at a list of the first
1000 of them? For example, what sort of conjectures can you make about twin lucky numbers?
What evidence do you have for your conjectures?

Exercise 14. Generalize the ListSeatings procedure to accept one argument, a list of lists (the same
structure as the twins list), and determines the arrangements such that no two from the same sublist
are seated next to one another.

Exercise 15. Further generalize the ListSeatings procedure so that it takes two arguments: a list of
lists as before and a number n. The procedure should determine the arrangements of the people such
that no n from the same sublist are seated together.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

