10 Graphs

Introduction

In this chapter, we consider ways in which Maple can help you explore and understand graph the-
ory. In particular, we describe how to do computations on graphs using Maple and how Maple can
be used to visualize graphs.

Throughout the first half of this chapter, pseudographs are a recurring theme. Recall that pseu-
dographs are graphs that may contain loops and may contain multiple edges between vertices.
Maple includes numerous and powerful commands for representing, manipulating, and calculating
with simple graphs, both undirected and directed. Each section in what follows will introduce you
to these useful tools so that you can more easily explore the concepts described in the textbook.
However, Maple does not support pseudographs (or their directed counterparts). Therefore,

parts of several sections in this chapter are devoted to extending Maple’s existing functionality to
pseudographs. This will serve to give you tools that you can use to explore these kinds of graphs.
More than that, seeing how to create the procedures for pseudographs will also help you to better
understand how the procedures work in the slightly “simpler” case of simple graphs.

10.1 Graphs and Graph Models

Recall that a simple graph, as defined in Section 10.1 of the textbook, is a set V of vertices and a set
E of unordered pairs of elements of V, called the edges of the graph, and where each edge connects

two different vertices and no two edges connect the same pair of vertices. That is, the edges are undi-
rected, there are no loops, and there are no multiple edges.

Maple has a large collection of commands related to graph theory contained in the GraphTheory
package. In order to access the short forms of these commands, we use the with command.

> with(GraphTheory) :

Creating and Modifying Graphs

The GraphTheory package includes commands that allow us to create new graphs and then add or
delete edges and vertices or even contract edges. Subsets of the vertices can be used to induce sub-
graphs. Some of the commands are used to create special kinds of graphs such as complete graphs,
hyper-cubes, the Petersen graph, and random graphs. Other commands compute some of the impor-
tant characteristics of a given graph, such as its maximum degree, its diameter, or its planarity.

To create a new graph, we use the Graph command. There are a variety of forms of the Graph
command, but the most natural uses two arguments: a list of vertices and a set of edges. The edges
are given as either sets or lists (e.g., {1,2} or [1,2]) depending on whether the graph is undirected
or directed. We demonstrate the creation of a graph by constructing the graph in Exercise 3 in
Section 10.1.

> Exercise3 := Graph([“a”,“b”,“c”,“d”],
{{G‘a”’ G‘b?’} , {‘Ca’7’ “C”} , {‘Gb’?’ “C”} , {“b’?’ “d’?} })
Exercise3 = Graph I: an undirected unweighted graph with 4 vertices and 4 edge(s)
(10.1)
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Note that Maple always expects the vertices to be given in a list and the edges in a set. This is how
Maple differentiates between them in alternate forms of the command.

The Vertices and Edges commands can be used to recover the vertices and edges of a graph.

> Vertices (Exercise3)

[Géa”’ ‘6b9” “C”’ ‘6d9’] (10.2)
> Edges (Exercise3)

{ {£6a39, ‘Gb”} , {‘Ga’9’ “C”} , {G‘b”’ “C”} , {G‘b”’ G‘d”} } (10.3)

Note that explicitly specifying the vertices when defining a graph is often unnecessary, as Maple can
determine the vertices from the definition of the edges. The easiest way to define a graph is to call
Graph with only one argument, the set of edges.

> Ex3again :: Graph({{“a7,’ G‘b”} , {6‘a7’, “C”} , {“b”’ “C”} , {GGb”’ “d”}})
Ex3again := Graph 2: an undirected unweighted graph with 4 vertices and 4 edge(s)

(10.4)
> Vertices(Ex3again);
Edges (Ex3again)
[4‘a7” “b”’ “C”’ “d”]
{{G4a7” 64b7’} , {64a7” “C”} , {“b”, “C”} , {‘6b’7’ “d”} } (10.5)

Graphs can be visualized in Maple by applying the command DrawGraph to the name assigned to
the graph.

> DrawGraph (Ex3again)
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We will explore this command and options for changing the appearance of graphs in more detail
shortly.

We can modify existing graphs by adding and deleting edges and vertices using the commands
AddEdge, AddArc, AddVertex, DeleteEdge, DeleteArc, and DeleteVertex. (Note: Maple refers
to a directed edge as an arc, so the edge commands are used in the case of an undirected graph, and
the arc commands are used for directed graphs.)

First, we add two vertices to Ex3again.

> Ex3plus := AddVertex (Ex3again, [*y”,“z”])

Ex3plus := Graph 3: an undirected unweighted graph with 6 vertices and 4 edge(s)
(10.6)

Now, we add edges to connect the new vertices with the rest of the graph.

> AddEdge (Ex:))plus’ { {“a’9’ “y,’} , {‘Ga7,’ “Z”} , {“y7” “Z”} })
Graph 3: an undirected unweighted graph with 6 vertices and 7 edge(s) (10.7)

> DrawGraph (Ex3plus)

Finally, we delete one of the old edges before once again drawing the graph.

> DeleteEdge (Ex3plus, {{*b”,“c”}})
Graph 3: an undirected unweighted graph with 6 vertices and 6 edge(s) (10.8)

> DrawGraph (Ex3plus)
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It is important to be aware of a slight inconsistency in the operation of these commands. The
AddVertex and Delete Vertex commands do not modify the original graph, while the edge and arc
commands, by default, do modify the original. The edge commands can be made to not modify the
original by giving the equation inplace=false as an argument. The vertex commands cannot be
made to replace the original except through the usual method of reassignment.

Finally, note that deleting a vertex also deletes all the edges incident with that vertex.

> Ex3plus := DeleteVertex (Ex3plus, [“y”])

Ex3plus := Graph 4: an undirected unweighted graph with 5 vertices and 4 edge(s)
(10.9)

> DrawGraph (Ex3plus)
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Visualizing Graphs in Maple

The usefulness of graphs is realized partly through our ability to draw diagrams representing them.
Visual representations of graphs sometimes lead to a clearer understanding of the underlying rela-
tionships represented by the graphs. The beauty of some of the resulting diagrams is also one of the
things that helps to make this such a popular subject.

In Maple, we present a graph visually using the DrawGraph command. We have already seen that
this command can simply be applied to the graph to be displayed.

> DrawGraph (Exercise3)

Without any other arguments, Maple does its best to arrange the vertices in reasonable positions.
The style option allows you to explicitly select a method of arranging the vertices. There are five
possible styles: circle, tree, bipartite, spring, and planar. The circle style places the vertices on a
circle, equally spaced. This is the style Maple automatically selected for the graph of Exercise 3 and
our modifications of it, so specifying the option appears to have no effect.

> DrawGraph (Ex3plus, style = circle)
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The tree style is available only when the graph is, in fact, a tree—connected and with no circuits
(refer to Chapter 11 of the text for more information on trees). Ex3plus is a tree.

> DrawGraph (Ex3plus, style = tree)

@

The bipartite style can be used when the graph is bipartite, that is, the vertices can be separated into
two sets such that every edge has one end in one set and the other end in the other (see Section 10.2.4
of the textbook). Maple places the vertices of a bipartite set in two rows indicating the two sets.

> DrawGraph (Ex3plus, style = bipartite)
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The spring style simulates a model where the vertices are taken to be particles repelling each other
and the edges are springs pulling vertices together.

> DrawGraph (Ex3plus, style = spring)

Finally, the planar style attempts to draw the graph as a planar graph, that is, with no edges crossing
each other (see Section 10.7 of the main text for more on planar graphs). If the graph is nonplanar,
then the command will result in an error.

> DrawGraph (Ex3plus, style = planar)

Pseudographs: Loops and Multiple Edges

As mentioned above, Maple’s GraphTheory package does not support graphs that have loops or
multiple edges. For example, if we try to add a loop to our Ex3plus graph, we get an error.

> AddEdge (Ex3plus, {{c’}})

Error, (in GraphTheory:-AddEdge) invalid edge {*“c”}
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We also get an error if we try to create a directed graph with a loop.
> Graph({[ﬁ6a’9, G‘a’9]’ [G‘a’,’ 4‘b?’]})

Error, (in GraphTheory:-Graph) invalid edge/arc: [“a”, “a”]

On the other hand, multiple edges are merely ignored.

> Edges (Ex3plus)
{{‘437” 6‘b7’} , {66a7’, “C”} , {G‘a’7’ “Z’,} , {6‘b’7’ 46d,7}} (10.10)

> Ex3plus := AddEdge (Ex3plus, {{“a”,“c”’}})
Ex3plus := Graph 4: an undirected unweighted graph with 5 vertices and 4 edge(s)
(10.11)

> Edges (Ex3plus)
{{‘Ga’?’ ‘Gb”} , {64a’?’ “C”} , {“a”’ “Z”} , {4‘b9” 66d”} } (10.12)

> DrawGraph (Ex3plus)

There are ways to, at least partially, get around these two limitations. By way of illustration, we will
attempt to create Exercise 5 in Section 10.1. We begin with the simple version of the graph, that is,
the graph with the loops and multiple edges omitted.

> Exercise5 := G}"aph({{“a”’“b”}’{“a”’“c”}’{“b”’“d”},{“C”,“d”}})
Exercise5 := Graph 5: an undirected unweighted graph with 4 vertices and 4 edge(s)
(10.13)
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> DrawGraph (Exercise5, style = planar)

Loops

With regards to loops, we can mark vertices as having a loop by setting an attribute. An attribute can
be used to store arbitrary information about a vertex (or an edge, or for the graph as a whole) in the
form tag=value. The tag and value can be nearly anything at all. In this case, we will use the tag
“loop” and the value will be true or false.

The SetVertexAttribute command takes three arguments: the name of the graph, the name of the
vertex, and the attribute in the tag=value format.

> SetVertexAttribute (Exercise5, “a”, “loop” = true)
> SetVertexAttribute (Exercise5, “b”, “loop” = true)

> SetVertexAttribute (Exercise5, “d”, “loop” = true)

We check the value of an attribute with the GetVertexAttribute. command, which accepts a graph,
a vertex, and the tag whose value is desired. Note that if the attribute has not been set, this returns
FAIL. You can also list all the tags set for a given vertex using the ListVertexAttributes command.
Note that this does not display the values, only the tags.

> GetVertexAttribute (Exercise5, “a”, “loop”)

true (10.14)
> GetVertexAttribute (Exercise3, “c”, “loop”)

FAIL (10.15)
> ListVertexAttributes (Exercise3, “b”)

[“draw-pos-planar”, “loop”] (10.16)
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We will use attributes to write a program that marks the vertices that have loops by changing

their color to red. The color change will be done with the HighlightVertex command. The
HighlightVertex command requires two arguments: the name of the graph and a vertex or list or set
of vertices to be highlighted. It optionally accepts a color to use as the highlight.

Here is the procedure to highlight loops.

i| DrawLoops =proc(G: :Graph)

2 local v;

3 uses GraphTheory;

" for v in Vertices (G) do

s if GetVertexAttribute (G, v, "loop") then
6 HighlightVertex (G, v, "Red") ;

7 end if ;

§ end do;

0 DrawGraph (G) ;

0| end proc:

> DrawLoops (Exercise5)
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Note that the color changes remain in effect until they are changed again. For instance, if we draw
the graph in the planar style, the vertices with loops remain red.

> DrawGraph (Exercise3, style = planar)

You might not be surprised to discover that, in fact, HighlightVertex sets a vertex attribute.

> ListVertexAttributes (Exercise3, “a”)

9

[“draw-pos-planar”, “loop”, “draw-vertex-color”,

“draw-pos-default”] (10.17)
> GetVertexAttribute (Exercise5, “a”, “draw-vertex-color”)
COLOR (RGB, 1.00000000,0.,0.) (10.18)
Multiple Edges

We now turn our attention to the representation of multiple edges, which we will do with edge
weights. Here is a graph with one weighted edge.

> Graph({[{“a”’ééb’9}’2]})
Graph 6: an undirected weighted graph with 2 vertices and 1 edge(s) (10.19)

> DrawGraph((10.19))
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Note that the edge above is specified as the list [{*a”,*b’’},2]. This list consists of two elements: first

is the set consisting of the endpoints of the edge, and second is the weight of the edge. Maple dis-
plays the edge weight next to the edge.

For an existing graph, we can assign weights to edges with the SetEdgeWeight command, which
takes as arguments the name of the graph, the edge to be weighted, and the weight. It returns the
previous weight of the edge. The SetEdge Weight command can only be used with a graph that
Maple considers to be weighted. To add weights to an unweighted graph, we first must use the
MakeWeighted command. (Note that MakeWeighted does not change the original graph, it
creates a weighted copy of the graph.)

> Exercise5 := MakeWeighted (Exercise5)
Exercise5 .= Graph 7: an undirected weighted graph with 4 vertices and 4 edge(s)

(10.20)

> SetEdgeWeight (Exercise5, {*“a”,“b”} ,2)
1 (10.21)

> SetEdgeWeight (Exercise5, {“b”,“d”},2)
| (10.22)

> SetEdgeWeight (Exercise5, {“c”,“d”},2)
1 (10.23)

> DrawGraph (Exercise3, style = planar)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.


https://www.maplesoft.com/support/help/Maple/view.aspx?path=GraphTheory,SetEdgeWeight
https://www.maplesoft.com/support/help/Maple/view.aspx?path=GraphTheory,SetEdgeWeight
https://www.maplesoft.com/support/help/Maple/view.aspx?path=GraphTheory,MakeWeighted
https://www.maplesoft.com/support/help/Maple/view.aspx?path=GraphTheory,MakeWeighted

While we cannot easily draw multiple edges with multiple lines in Maple, we can represent edge
multiplicity as the thickness of the lines. The “draw-edge-thickness” edge attribute changes the
thickness of the line representing an edge. We expand on our DrawLoops procedure above to not
only set the color of vertices which have loops but to also give a visual representation of multiple
edges by thickening them. We set the thickness of edges to 3 n — 2 where n is the weight of the edge
(i.e., the number of edges) so that a single edge has thickness 1, and each additional edge increases
the thickness by 3.

i| DrawPseudograph =proc(G: :Graph)

2 local vertexcolor, v, e, w;

3 uses GraphTheory;

s vertexcolor :=ToPlotColor (ColorTools[Color] ("LightCoral")) ;
s for vin Vertices (G) do

6 if GetvertexAttribute (G, v, "loop") then

7 SetVertexAttribute (G, v, "draw—vertex—color'=vertexcolor) ;
8 end if ;

o end do;

10 if TsWeighted (G) then

i for e in Edges (G) do

2 if GetEdgeWeight (G, e) > 1 then

" w = 3*GetEdgeWeight (G, e) - 2;

14 SetEdgeAttribute (G, e, "draw—edge—thickness"=w) ;
15 end if,'

16 end do;

17 end if,’

18 DrawGraph (G) ;

| end proc:
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Note that HighlightEdges|/does not allow us to set edge thickness, only color. For consistency, we
replaced the use of HighlightVertex with a call to SetVertexAttribute. We also use the ColorTools
package to select a different color for the vertices with loops. Note that when using attributes to set
colors of vertices or edges, the value of the attribute must be in a format understood by the plot com-
mands. In particular, while ""Red" is an acceptable argument to HighlightVertex, '"Red'' cannot be
used directly as the value of the vertex attribute. You can obtain a list of defined colors by executing
ColorTools[ GetColorNames]().

> DrawPseudograph (Exercise5)

> DrawGraph (Exercise5, style = planar)
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Directed Graphs

Next, we consider an example of a directed graph. Specifically, we will reproduce, as far as possible,
Exercise 7 in Section 10.1. We will create this graph with the Digraph command, which works like
Graph but emphasizes that the graph is directed.

We also use the Trail command in this example. This command is used to specify a sequence of
edges. For instance, Trail(1,2,3,1) is a shorter way to specify the edges [1,2], [2,3], and [3,1]. The
Digraph and Graph commands allow us to include applications of Trail alongside a set containing
additional edges.

> Exercise7 :: Digraph ([‘Ga”, ‘Gb”, ‘GC”, ‘Gd”, ‘Ge”]’
Trail (“e”, G‘a”, G‘b”, “e”, G‘d”’ “C”, G‘b”) , { [“C”’ ‘Gd”] })
Exercise7 = Graph 8: a directed unweighted graph with 5 vertices and 7 arc(s) (10.24)

> DrawGraph (Exercise7)

Notice that the edge between ¢ and d has two arrows representing the pair of edges between them.

Now, we add the loops. Note that DrawPseudograph works perfectly well even though there are not
multiple edges.

> SetVertexAttribute (Exercise7, ‘c”, “loop” = true)
> SetVertexAttribute (Exercise7, ‘€, “loop” = true)
> DrawPseudograph (Exercise?7)
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While this image displays all of the information contained in the graph, the positions of the vertices
makes it look very different from the drawing in the textbook. We can override Maple’s choice of
vertex positions with the SetVertexPositions command. This command takes two arguments: the
graph and a list of pairs specifying the x and y coordinates of each vertex. The first pair specifies the
location of the first vertex, the second pair the second vertex, etc.

> SetVertexPositions (Exercise7,[[0,0],[1,1],[2,1],[2,0],[1,0]])

> DrawGraph (Exercise?7)

@

Semantic Networks

The textbook defines semantic networks at the end of Section 10.1. While Maple cannot under-
stand the meanings of words and thus cannot decide whether two terms should or should not be
connected, representing a semantic network in Maple can be useful in a variety of ways, including
being able to easily draw the graph, make modifications to it, and perform calculations and check
properties like those described throughout Chapter 10.
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As an example, we will construct a word graph around the word “program,” which can refer to a
computer program, or more generally to instructions for accomplishing a task, or an ordering of
elements in an event (as in a program for a performance). Some of the words related to program are:
agenda, code, design, docket, malware, package, plan, policy, program, routine, scheme, system,
arrangement, function, methodology, procedure, schedule, software.

Our first step will be to assign a name for the list of words. This will be the vertex list for our graph.

> wordList := [“agenda”, “code”, “design”, “docket”, “malware”, “package”,
“plan”, “policy”, “program” “routine”, “scheme”, “system”,
“arrangement”, “function”, “methodology”, “procedure”, “schedule”,

“software”] :

While it is not necessary to store the words in a list, it can be useful to refer to them by their posi-
tion in the list. For example, the words that most clearly refer to a set of instructions followed by a
computer are:

> wordList[[2,6,9, 10, 14, 16, 18]]
[“code”, “package”, “program”, “routine”, “function”, “procedure”,
“software”] (10.25)

29 ¢

Next, we create the graph on this set of vertices and with no edges. As we determine what pairs of
words should be considered related, we will add edges to the graph.

> wordGraph .= Graph(wordList)

wordGraph := Graph 9: an undirected unweighted graph with 18 vertices and 0 edge(s)
(10.26)

First, consider the seven words mentioned above that refer to computer instructions. These words
all have a similar meaning, and so each should be considered closely related to each of the others.
This is referred to as a clique in graph theory (see preamble to Exercise 19 in the Supplementary
Exercises for Chapter 10). We will need to add C (7,2) = 21 edges. We would rather not enter all
these edges by hand, so instead we will use the choose command from the .combinat package.
Recall that choose will accept a set or list as its first argument and, given an integer as the second
argument, produces all subsets or sublists of that size. Since edges in a word graph are undirected,
we convert our list of words into a set in the first argument.

> combinat|choose] ({op (wordList[[2, 6,9, 10, 14,16, 18]])},2)

29 ¢

{{“code”, “package”}, {“code”, “program™} , {“code”, “routine”} ,

{“code”, “function”} , {“code”, “procedure”} , { “code”, “software”} ,

{“package”, “program™} , { “package”, “routine” } ,

{“package”, “function”} , {“package”, “procedure”} ,

{“package”, “software”} , {“program”, “routine” } ,

{“program”, “function”} , { “program”, “procedure”} ,

{“program”, “software”} , { “routine”, “function”} ,

{“routine”, “procedure”} , { “routine”, “software”} ,

{“function”, “procedure”} , { “function”, “software”} ,

{“procedure”, “software” } } (10.27)
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These are the first edges we add to our graph. Recall that AddEdge|can accept a single edge or a set
of edges as its second argument and that it modifies the graph given as the first argument.

> AddEdge (wordGraph, {{“code”, “package”} , {“code”, “program™} ,

{*code”, “routine”} , {“code”, “function”}, {“‘code”, “procedure”} ,
{“code”, “software”} , { “package”, “program™} ,

{“package”, “routine” } , { “package”, “function”} ,

{“package”, “procedure”} , { “package”, “software”} ,

{“program”, “routine”} , { “program”, “function”} ,

{“program”, “procedure”} , { “program”, “software”} ,

99 ¢

{“routine”, “function”} , {“routine”,
{“routine”, “software”} , {“function”,

{“function”, “software”} , { “procedure”,

Graph 9: an undirected unweighted graph with 18 vertices and 21 edge(s) (10.28)

procedure”} ,
7, “procedure”} ,
7, “software” } })

Likewise, agenda, docket, program, and schedule all refer to a list or timeline of events or items
(e.g., a concert or theater program).

> AddEdge (wordGraph,
combinat|choose| ({op (wordList[[1,4,9,-2]1])},2))
Graph 9: an undirected unweighted graph with 18 vertices and 27 edge(s) (10.29)

The words arrangement, design, plan, program, scheme, and system all have meanings related to a
method for solving a certain kind of problem or for accomplishing a goal.

> AddEdge (wordGraph,
combinat|choose] ({op (wordList[[13,3,7,9,11,12]])},2))

Graph 9: an undirected unweighted graph with 18 vertices and 42 edge(s) (10.30)

Similarly, methodology, policy, program, and procedure all refer to a proscribed behavior (e.g., stan-
dard operating procedure). Observe that procedure was also in the list of words referring to com-
puter code, creating a link between the two cliques.

> AddEdge (wordGraph,
combinat[choose] ({op (wordList[[—4, 8, 3,91}, 2))
Graph 9: an undirected unweighted graph with 18 vertices and 47 edge(s) (10.31)

Now that we have taken care of the major cliques, we should look back at the original list of words
and see what other connections might exist. Here is the list of words again.

> wordList
[“agenda”, “code”, “design”, “docket”, “malware”, “package”, “plan”,
pohcy” “program”, “routine”, “scheme”, “system”, “arrangement”,
“function”, “methodology”, “procedure”, “schedule”, “software”] (10.32)

First, note that malware has not yet been used, but is closely related to software, so we add that edge.

> AddEdge (wordGraph, {“malware”, “software” })
Graph 9: an undirected unweighted graph with 18 vertices and 48 edge(s) (10.33)
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Second, the word system brings to mind the term operating system, suggesting a link between
system and software.

> AddEdge (wordGraph, {*“system”, “software”})
Graph 9: an undirected unweighted graph with 18 vertices and 49 edge(s) (10.34)

Now we draw the graph we have developed. Note that the spring style is a natural choice

for drawing word graphs. This will make the image better represent the clique structure. The
spring style can be combined with the redraw option. When using the spring style, vertex
locations are chosen based on a simulation of the graph modeled as a collection of vertices
repelling each other connected by springs that attract adjacent vertices. The image is partially
dependent on random starting positions for the vertices which then stabilize. Giving the option
redraw=true means that reexecuting the command will choose different starting positions and
thus produce different graphs. You might also wish to experiment with the animate=true option
which allows you to see the process that leads to the final vertex positions. We use the label-
style=offset option so that the labels will appear next to the vertices, rather than inside them,
so that the vertices will be smaller. If you wish to turn off display of the words, you can use the
showlabels=false option.

> DrawGraph (wordGraph, style = spring, redraw = true, labelstyle = offset)

software

Of course, you may recognize other connections that you may wish to add to the graph. Unless you
choose an external authority, such as a dictionary or thesaurus, to make the decision of whether

or not two words are related rigorous, some element of opinion is involved. Since the goal of this
example is to illustrate some of the ways that Maple can be used in this process, we have not chosen
an authority.

10.2 Graph Terminology and Special Types of Graphs

In this section, we will see how to use Maple to perform computations related to some of the basic
terminology of graphs, such as calculating degree and checking for isolated vertices. We will also
look at some of the special families of graphs that Maple has built-in support for. In addition, we dis-
cuss subgraphs and unions of graphs in Maple.
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Degree

Maple’s GraphTheory package has a Degree command for determining the degree of a vertex.
Given a graph and one of the graph’s vertices, the function returns the number of edges incident to
that vertex. For example, we can check the degrees of vertices a and z of Ex3plus from above.

> DrawGraph (Ex3plus)

> Degree (Ex3plus, “a”)
3

> Degree (Ex3plus,“z”)
1

(10.35)

(10.36)

For a directed graph, the Degree command calculates the number of edges incident to the given
vertex without regard for their direction. For calculating degrees in directed graphs, Maple also

provides InDegree and OutDegree commands. As an example, consider vertex d in the Exercise7
graph from the previous section.

> DrawGraph (Exercise?7)

©

@
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> Degree (Exercise7,“d”)

3 (10.37)
> InDegree (Exercise7,“d”)

2 (10.38)
> QutDegree (Exercise7,“d”)

1 (10.39)

Degree in Pseudographs

Note that Maple’s built-in commands for degree cannot take into account loops or multiple edges.
We will write a procedure to rectify this, at least for pseudographs (undirected graphs which may
have loops and multiple edges). The procedures for directed graphs are left to the reader.

First, we reproduce Exercise 2 in Section 10.2 to use as an example. Note that for the multiple edges,
we use the weighted-edge format [{v1,v2},w], which indicates an undirected edge between v1 and
v2 with weight w. For the single edges, we use the usual {v1,v2} format. The presence of weighted
edges tells Maple that the graph is weighted and causes it to assign weight 1 to edges that are not
given a specific weight.

> Exercise2 :: Graph ({ [{(‘a’?’ “b”} , 3]’ [{“C”’ 6‘d”} , 3]’ {“a”’ “e”} ,
{‘Gb”’ “C”} , {Géb”’ ‘Gd”} , {‘Gb”’ “e”} , {‘4d’9’ ‘Ge’?} })
Exercise2 = Graph 10: an undirected weighted graph with 5 vertices and 7 edge(s)
(10.40)

\%

SetVertexPositions (Exercise2,[[0, 1], [1, 1],[2,0],[1, 0], [0, 0]])

\%

SetVertexAttribute (Exercise2, “a”, “loop” = true)

\%

SetVertexAttribute (Exercise2, “c”, “loop” = true)

\%

DrawPseudograph (Exercise2)

To calculate the degree of a vertex, we first check to see if the graph is weighted or not using the
IsWeighted command. If it is not weighted (i.e., there are no multiple edges), then we just use the
built-in Degree function. If it is weighted, then we use the command IncidentEdges to determine
the edges incident to the given vertex. The add command adds up the weights for us. Then, we just
have to check to see if there is a loop and, if so, add 2 to the degree.
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1| PseudoDegree =proc(G: :Graph, v)

2 local e, d;

3 uses GraphTheory;

s if IsWeighted (G) then

s d := add (GetEdgeWeight (G, e),ein IncidentEdges (G, Vv)) ;
6 else

7 d := Degree (G, V) ;

8 end if ;

9 if GetVertexAttribute (G, v, "loop") then
10 d:=d+ 2,’

n end if ;

12 return d;

»| end proc:

> PseudoDegree (Exercise2,“a”)
6 (10.41)

> PseudoDegree (Exercise2,“d”)
5 (10.42)

Some Special Simple Graphs

The textbook discusses several families of graphs, including complete graphs, cycles, wheels, and
n-cubes. Maple provides commands for easily creating these and other special simple graphs.

We begin with complete graphs. Recall that a complete graph is a simple, undirected graph on a
given number of vertices that has all possible edges between those vertices. The complete graph on
n vertices is denoted K,,. The function CompleteGraph generates complete graphs. For example,
we can generate and display K, the complete graph on 5 vertices.

> DrawGraph (CompleteGraph (5))
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Similarly, we may construct a cycle C, with the CycleGraph command.

> DrawGraph (CycleGraph (9))

For both the complete and cycle graphs, if you prefer the vertices to be labeled with something other
than the integers 1 through n, you can call the commands with a list of vertices instead.

> DrawGraph (CompleteGraph ([“a”, “b”, “c”, “d”, “e”, “f’]))

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.


https://www.maplesoft.com/support/help/Maple/view.aspx?path=GraphTheory,CycleGraph

A wheel W, is obtained from the cycle graph C, by adding one additional vertex adjacent to all n of
the original vertices. In Maple, the WheelGraph command is part of the SpecialGraphs package.

> DrawGraph (SpecialGraphs[WheelGraph] (5))

To construct the n-cube Q,, we use the HypercubeGraph command. Recall the definition of the
hypercube graph given in Example 8 in Section 10.2. There are 2" vertices labeled with the binary
representations of the numbers O through 2" — 1. Two vertices are adjacent if their binary represen-
tations differ in only one digit.

> DrawGraph (SpecialGraphs[HypercubeGraph] (3))

010 Q11>
«y
G\K
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The help page for the SpecialGraphs package lists all of the available graphs. The reader is encour-
aged to spend some time exploring that package.

Bipartite Graphs

Another important class of graphs is the bipartite graphs. A bipartite graph is one whose vertex
set can be partitioned into two disjoint sets such that every edge has one vertex in each of the
partitioning sets. In other words, no two vertices in the same partitioning set are adjacent. We write
V = (A, B) to indicate that the vertex set V is partitioned into the sets A and B.

The complete bipartite graph K, , is a bipartite graph with bipartition V = (A, B) such that there are
m vertices in A and n in B and such that there is an edge for every pair of verticesa € A and b € B.

The CompleteGraph command that was discussed earlier can be used to create complete bipartite

graphs by entering the two integers m and n.

> DrawGraph (CompleteGraph (3, 4))

Notice that Maple draws the complete bipartite graph with the two partitioning sets {1,2,3} and
{4,5,6,7} along the top and bottom of the graph, respectively, to make the partition visually
clear.

Maple can also produce complete multipartite graphs. A k-partite graph is a graph in which the ver-
tices can be partitioned into k disjoint sets so that no two vertices in any one of the partitioning sets
are adjacent.

> DrawGraph (CompleteGraph (2, 3,4))
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Maple has a built in command for determining whether a graph is bipartite: IsBipartite. This com-
mand takes two arguments: the name of a graph and an optional unused name in which the biparti-
tion is stored in the case the graph is bipartite.

> IsBipartite (SpecialGraphs|HypercubeGraph] (3), 'examplePart")
true (10.43)

> examplePart
[[6‘000”, ‘601 19’, ‘6101”, 6‘1 10’9], [6‘001”, ‘60109” ‘6100”, 6‘1 1 1’9]] (10.44)

Visualizing Bipartite Graphs

It is worthwhile, however, recreating a version of IsBipartite from scratch in order to better under-
stand the algorithm that determines whether the graph is bipartite and finds a bipartition. Instead of
just returning true, our procedure will, if the graph is bipartite, display the graph with the vertices
colored red and blue to represent the partitioning. Of course, if the graph is not bipartite, the proce-
dure will return false.

This procedure will make use of the Neighbors command. Given a graph and a vertex, this com-
mand returns the list of vertices adjacent to the given vertex. For a directed graph, like Degree, the
output of Neighbors is irrespective of the direction of edges. The Arrivals and Departures com-
mands return the lists of vertices with edges towards and away from, respectively, the given vertex.
We illustrate with the graph from Exercise 7.

> DrawGraph (Exercise?7)
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&

> Neighbors (Exercise7,‘Dd”)
[4‘a75’ “C”’ “e7’] (10.45)

> Arrivals (Exercise7,“b”)

[“a”, “c”] (10.46)

> Departures (Exercise7,“b”)
[G‘e”] (10.47)

The idea of our procedure for coloring the vertices of bipartite graphs is as follows. (Note that this
method is based on forming a spanning tree of the graph, a concept discussed in Section 11.4 of the
textbook.)

1. Pick a vertex v from the vertex set and place it in the set A.

2. Place all of v’s neighbors in set B.

3. For each vertex w in the set B that has not already been processed, place all of w’s neighbors that
are not already in either set into the set A.

4. Repeat step 3, reversing A and B until no more vertices remain to be processed.

5. Once step 4 is complete, we have formed a disjoint partition of the vertices. We then examine
each edge of the graph and ensure that no edge has both ends in A or both ends in B. If some edge
fails that test, then the graph is not bipartite. If all of the edges do pass the test, then the graph is
bipartite and (A, B) is a bipartition.

Here is the implementation of our procedure DrawBipartite.

| DrawBipartite i=proc(G: :Graph)
2 local vV, E, AB, i, T, w, e;
3 uses GraphTheory;

4 V = {op(Vertices (G)) };
s E := Edges (G) ;

6 w:=VI[1];

7 AB[O] = {w};

8 AB[1] :=={};

9 i:=0;

10 while vV <> {} do

" T :=V intersect AB[i];
12 i:=i+1m0d2;

13 for win T do
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14 AB[i] :=AB[i] union ({op (Neighbors (G, w)) } minus (AB[0] union
AB[11));

s end do;

16 V = Vminus T;

i end do;

8 for e in E do

19 if ((e[1]inAR[0]) and (e[2]inAB[0O])) or ((e[l]inAB[1]) and

(e[2]InAB[1])) then

20 return false;

21 end if,’

2 end do;

3 HighlightVertex (G,AB[0], "LightCoral") ;

2 HighlightVertex (G,AB[1], "LightBlue") ;

25 DrawGraph (G) ;

x| end proc:

> DrawBipartite (SpecialGraphs|HypercubeGraph] (3))

010 011
110> K
100D (101

000 001

> DrawBipartite (CompleteGraph (6))
false (10.48)

> DrawBipartite (SpecialGraphs|PrismGraph] (6))
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Bipartite Graphs and Matchings

Maple can help us find maximal matchings in a bipartite graph. We will use Figure 10a in Section
10.2 of the text as an example. To improve readability, we have abbreviated the names to their first
letter and shortened the descriptions of the jobs.

> FigurelOa := Graph({{“A”,“req”}, {“A”, “test”}, {“B”, “arch”},
{“B”, “imp”}, {“B”, “test”}, {“C”, “arch”}, {“C”, “imp”} ,
(“C7,“req”}, {“D”, “req”} )
FigurelOa := Graph 11: an undirected unweighted graph with 8 vertices and 9 edge(s)
(10.49)

> DrawGraph (FigurelOa)

CAD B C DB >

Carch> imp req Ctest >
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To find a maximal matching, we use the command BipartiteMatching. The only allowed argument
to this command is the name of the graph. It returns a sequence with two elements: (1) the size of a
maximal matching, that is, the largest possible number of edges in a matching; and (2) a set of edges
which forms one maximal matching.

> FigurelOaResult .= BipartiteMatching (FigurelOa)
FigurelOaResult := 4, {{“A”,“test’}, {“B”, “arch”}, {“C”, “imp”},
{“D”, “req”} } (10-50)

The above output indicates that one maximal matching has Alvarez assigned to testing, Berkowitz
to architecture, Chen to implementation, and Davis to requirements. (Note that Maple has produced
a different matching than the one given in the text.)

We can visualize this matching by having Maple highlight the edges that form the matching.

The edges of the matching are the second element in the output, so we access the set of edges as
follows.

> FigurelOaResult[2]
{{GéA”’ “test”} , {‘GB”’ “arch”} , {‘GC”’ GGimp7’} , {64D7’, GGI_eq”}} (10.51)

We use that as the second argument to the HighlightEdges command. Given a graph and a set of
edges, HighlightEdges changes the color of the specified edges. It can also take an optional third
argument specifying the color to use.

> HighlightEdges (FigurelOa, FigurelOaResult[2])

> DrawGraph (FigurelOa)

CAD B C Db >

Carch> imp reg Ctest >
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Subgraphs and Induced Subgraphs

Maple provides two primary methods for creating subgraphs. The Subgraph command takes two
arguments: a graph and a list of edges. It returns the graph whose edge set is the given set of edges
and whose vertex set is the vertices that are an endpoint of one of the given edges.

> hyper .= SpecialGraphs|HypercubeGraph)] (3)
hyper .= Graph 12: an undirected unweighted graph with 8 vertices and 12 edge(s)
(10.52)

> subhyper := Subgraph (hyper, {{*100”,“101”}, {*100”,“110"},
{‘41019” 6‘111”} , {6‘110’?’ “111”}})

subhyper .= Graph 13: an undirected unweighted graph with 4 vertices and 4 edge(s)

(10.53)
> Vertices (subhyper)
[“1007, 101,110, “1117’] (10.54)
> Edges (subhyper)
{ {“100?’, 64101”} , {6‘100”’ 4‘1 10”} , {66101”, 661 1 1”} ,
{“110”,“1117}} (10.55)

The second method for creating subgraphs is the InducedSubgraph command. This command
expects a graph and a set (or list) of vertices of the graph. It returns the graph induced by the given
vertices, that is, the graph consisting of the given vertices and all the edges from the original graph
with endpoints in the set of vertices.

\

prism = SpecialGraphs[PrismGraph] (6)
prism .= Graph 14: an undirected unweighted graph with 12 vertices and 18 edge(s)
(10.56)

\

subprism .= InducedSubgraph (prism,{7,8,9,10,11,12})
subprism = Graph 15: an undirected unweighted graph with 6 vertices and 6 edge(s)

(10.57)
> Vertices (subprism)
[7,8,9,10,11, 12] (10.58)
> FEdges (subprism)
{{7,8},{7,12},{8,9},{9,10},{10,11}, {11,12}} (10.59)

Maple also provides the command HighlightSubgraph to help visualize the structure of a subgraph
as part of the original graph. By default, the vertices of the subgraph are set to green and the edges
to red. Those color choices can be changed by passing colors to the command.

> HighlightSubgraph (hyper, subhyper)

> DrawGraph (hyper)
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> HighlightSubgraph (prism, subprism, blue, “LightCoral”)

9

> DrawGraph (prism)

6
12
10
4

Deleting Vertices and Edges

Subgraphs can also be produced by deleting vertices or edges. The Delete Vertex and DeleteEdge
commands were described in the previous section, but are worth revisiting. The DeleteVertex
command takes two arguments: a graph and a vertex or list of vertices. It returns a new graph with
the vertex or vertices and all incident edges removed. Here, we highlight in green the subgraph of
the complete graph K, that is obtained by deleting a vertex.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.


https://www.maplesoft.com/support/help/Maple/view.aspx?path=GraphTheory,DeleteVertex
https://www.maplesoft.com/support/help/Maple/view.aspx?path=GraphTheory,DeleteEdge
https://www.maplesoft.com/support/help/Maple/view.aspx?path=GraphTheory,DeleteVertex

\%

ExDeleteVStart := CompleteGraph (5)

ExDeleteVStart .= Graph 16: an undirected unweighted graph with 5 vertices
and 10 edge(s) (10.60)

ExDeletedV .= DeleteVertex (ExDeleteVStart, 1)

ExDeletedV := Graph 17: an undirected unweighted graph with 4 vertices and 6 edge(s)
(10.61)

\

\

HighlightSubgraph (ExDeleteVStart, ExDeletedV, “LightGreen”, “LightGreen”)

\

DrawGraph (ExDeleteVStart)

DeleteEdge also takes two arguments, a name of an undirected graph and an edge or a set of edges.
The set of edges can also be specified as aTrail. Recall from above that a Trail is a way to specify a
set of edges by simply listing all of the vertices, in the order that the sequence of edges pass through
them. For example, we can specify the outer ring of K5 as follows:

> Trail (1,2,3,4,5,1)
Trail (1,2,3,4,5,1) (10.62)

Note that the Trail command does not seem to evaluate. This is because the command is inert and
only operates as a part of another command. We delete these edges from a complete graph.

> ExDeleteE := CompleteGraph (5)

ExDeleteE := Graph 18: an undirected unweighted graph with 5 vertices and 10 edge(s)
(10.63)

> DeleteEdge (ExDeleteE, Trail (1,2,3,4,5,1))
Graph 18: an undirected unweighted graph with 5 vertices and 5 edge(s) (10.64)
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> DrawGraph (ExDeleteE)

Observe that the DeleteEdge command modified its argument, as opposed to the DeleteVertex
command which did not. To prevent modification of the graph, you can give the inplace=false
option to DeleteEdge.

Adding Vertices and Edges

The commands for adding vertices and edges have very similar forms. AddVertex accepts a graph
and either a vertex or a list of vertices to add to the graph. Again, the original is not modified.

> ExAddV .= AddVertex (CompleteGraph (5),“a”)
ExAddV := Graph 19: an undirected unweighted graph with 6 vertices and 10 edge(s)
(10.65)
> DrawGraph (ExAddV)

4 3
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AddEdge acts on undirected graphs and accepts one edge, a set of edges, or a trail. Note that without
the inplace=false option, this command will alter the original graph.

> ExAddE := CycleGraph (6)
ExAddE := Graph 20: an undirected unweighted graph with 6 vertices and 6 edge(s)
(10.66)

> AddEdge (ExAddE, {{1,3},{1,5},{2,4},{2,6},{3,5},{4,6}})
Graph 20: an undirected unweighted graph with 6 vertices and 12 edge(s) (10.67)

> DrawGraph (ExAddE)

DeleteEdge and AddEdge apply only for undirected graphs. For directed graphs, use the com-
mands DeleteArc and AddArc. The syntax and behavior of these commands are exactly the same
as their undirected counterparts, although keep in mind that directed edges are represented as
2-element lists, rather than sets.

Edge Contraction

Recall that an edge contraction for an edge e with endpoints u and v consists of deleting the edge,
merging u and v into a new vertex w, and preserving all edges (other than e ) which had u or v as an
endpoint by setting w as the new endpoint. As an illustration, consider the following graph:

> ExContraction := Graph({{1,2},{1,3},{2,3},{3,4},{4,5},{4,7},
{5.6}.,{6,7}})
ExContraction = Graph 21: an undirected unweighted graph with 7 vertices
and 8 edge(s) (10.68)
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> SetVertexPositions (ExContraction, [[0, 1], [0, 0], [1, 0], [2, 0], [3, 0],
(3,11,[2,1]])

> HighlightEdges (ExContraction, {3,4})

> DrawGraph (ExContraction)

2 (3 &)

We will perform an edge contraction on the edge {3,4}, which is highlighted in the image. The
Contract command takes as arguments the name of the graph and an edge and performs the edge
contraction. Note that the merged vertices will be represented by one of the vertices in the original
pair, in this case vertex 3 will represent the pair. Also note that this command does not modify the
original graph, which means that any style specifications or attributes will need to be reset.

> ExContracted .= Contract (ExContraction, {3,4})

ExContracted .= Graph 22: an undirected unweighted graph with 6 vertices and 7 edge(s)
(10.69)

> SetVertexPositions (ExContracted, [0, 1],]0,0],[1.5,0],[3,0],[3,1],[2, 1]])
> DrawGraph (ExContracted)

N i
2 3 S

Unions and Complements of Graphs

Recall that the union of two graphs is the graph obtained by taking the union of the sets of vertices
and the sets of edges from the two graphs.

As an example, we will “fill in” a prism graph by computing the union of the prism with the com-
plete graph on the vertices in the inner ring.

> unionA .= SpecialGraphs|[PrismGraph](6) :
> unionB := CompleteGraph([7,8,9,10,11,12]):

> unionAB .= GraphUnion(unionA, unionB) :
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To get this graph to display in the way we described it, as the prism filled in with the complete graph
on the inner set of vertices, we need to set the positions of the vertices. Otherwise, Maple will sim-
ply draw it in the circular style. We can access the vertex locations used in the display of the prism
and impose those locations on this graph.

> SetVertexPositions (unionAB, GetVertexPositions (unionA))

> DrawGraph (unionAB)

Finally, we consider graph complements, described in Exercise 61 in Section 10.2. The comple-
ment, G, of a graph G is the graph whose vertex set is the same as that of G, but whose edge set is
the set of all pairs of G that have no edge between them. In other words, if G has n vertices, then the
edge set of G is the complement of the edge set of G relative to K,,, the complete graph on n vertices.
Maple has a command to compute the complement of a graph: GraphComplement.

> DrawGraph (SpecialGraphs|WheelGraph] (7))
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> DrawGraph (GraphComplement (SpecialGraphs[WheelGraph] (7)))

10.3 Representing Graphs and Graph Isomorphism

In this section, we will see how to represent graphs in terms of adjacency lists, adjacency matrices,
and incidence matrices. We will then use the adjacency matrix representation to help determine
whether two graphs are isomorphic.

Adjacency Lists

Recall that a representation of a graph as an adjacency list consists of the lists of neighbors of each
vertex.

In order to define a graph in Maple using an adjacency list, you apply the Graph command to a list
of sets or a list of lists. For example,

> Graph([{2,3},{1,3,4},{1,2},{2,5},{4}]D
Graph 23: an undirected unweighted graph with 5 vertices and 5 edge(s) (10.70)

indicates that vertex 1 is incident to vertices 2 and 3; vertex 2 is incident to vertices 1, 3, and 4;
vertex 3 is incident to vertices 1 and 2; and so on.

Note that graphs constructed this way are undirected or directed depending on the content of the
adjacency lists. For example, in the previous example, removing 1 from the second set would make
vertex 1 incident to vertex 2, but not vice versa. This would cause Maple to consider the graph
directed.
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Also note that the vertex labels can be specified by providing a list of the labels, but the adjacency
list always needs to consist of integers corresponding to the index of the vertex.

> adjacenCyEx : — Graph ([“a75’ “b”’ “C”’ “d”’ é‘e”]’
[{2,3},{1,3,4},{1,2},{2,5}, {4}])
adjacencyEx := Graph 24: an undirected unweighted graph with 5 vertices and 5 edge(s)
(10.71)

> DrawGraph (adjacencyEx)

In the other direction, we can use the Maple command Departures. For a directed graph, Depar-
tures(G,v) returns a list of all of the terminal vertices for edges whose initial vertex is v. If G is
undirected, the same command returns all of v’s neighbors, or you can use the Neighbors com-
mand. Omitting the second argument returns a list of lists, where each sublist consists of the vertices
adjacent to the vertex in the corresponding position of the graph’s list of vertices.

> Vertices (adjacencyEx)
[G‘a7,’ ‘6b97’ “C”’ ‘6d97’ G‘e7,] (10.72)

> Departures (adjacencyEx)
[[“b”’ “C”], [‘43”’ “C”’ 6‘d”]’ [66a”’ ‘6b9’], [‘6b9” 666”]’ [‘Gdﬂ’]] (10.73)

Interpreting the output from Departures requires knowing the order of the vertices. We will write a
procedure that, given a graph G, will produce more descriptive output. In order for the procedure to
work with both undirected and directed graphs, we will use the Maple command Departures. Our
procedure will also allow for loops by checking the “loop” attribute and listing the vertex as adjacent
to itself when the “loop” attribute is true.
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1| AdjacencyLists :=proc(G: :Graph)

2 local v, AList;

3 uses GraphTheory;

s for vin Vertices (G) do

s AList :=Departures (G, V) ;

6 if GetvVertexAttribute (G, v, "loop") then
7 AList :=[v, op(AList)];

8 end if ;

9 printf ("Vertex %ais adjacent to %a\n", v, AList) ;
10 end do;

u| end proc:

> AdjacencylLists (adjacencyEx)

Vertex "a" is adjacent to ["b", "c"]
Vertex "b" is adjacent to ["a", "c", "d"]
Vertex "c" is adjacent to ["a", "b"]
Vertex "d" is adjacent to ["b", "e"]
Vertex "e" is adjacent to ["d"]

> AdjacencylLists (Exercise?)
Vertex "a" is adjacent to ["b
Vertex "b" isadjacent to ["e
Vertex "c" is adjacent to ["c", "b", "d"]
Vertex "d" is adjacent to ["c
Vertex "e" is adjacent to ["e", "a", "d"]

Adjacency Matrices

The adjacency matrix of a graph G with n vertices is the n X n matrix whose (i, j) entry is 1 if there

is an edge from vertex i to vertex j and O if not. As with adjacency lists, you can define a graph by
passing an adjacency matrix to the Graph command.

As an example, we reproduce Example 4 in Section 10.3.

> exAdiM := Matrix([[0, 1, 1,0],[1,0,0, 1],[1,0,0, 1], [0, 1, 1, 0]])
[0110]
1001
exAdiM = (10.74)
1001

0110

> exAdiMGraph = Graph([“a”,“b”,“c”, “d”], exAdjM,
vertexpositions = [[0, 1],[1, 1], [1,0], [0,0]]) :

> DrawGraph (exAdjMGraph)
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Notice that this is the same graph as is produced in the textbook.

Maple also provides a command, AdjacencyMatrix, for computing the adjacency matrix of a sim-

ple graph.

> AdjacencyMatrix (SpecialGraphs|WheelGraph] (7))
(011 11111]

1

1
1
1
1
1
1

0100001
1010000
0101000
0010100
0001010
0000101

1000010 |

Incidence Matrices

(10.75)

The third representation of graphs we are considering is the incidence matrix. For a graph G with
n vertices and m edges, the associated incidence matrix is the n X m matrix whose (i, j) entry is 1 if

vertex i is an endpoint of edge j.

Unlike the other representations, Maple does not provide support for creating a graph from an inci-

dence matrix. We will write a procedure to do so, at least for simple graphs.

To write this procedure, recall that the columns of the incidence matrix correspond to the edges of
the graph. Therefore, we will use the columns to produce the list of edges. For each column, check
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each entry and add the row index to a set representing the edge. Assuming the incidence matrix is
properly formed, each column will have only two 1s so each column will produce a two-element set
representing an edge. The set of all of these forms the set of edges, which we can pass to the Graph

command.

| GraphFromIncidence :=proc (M: : Matrix)

2 local r, c, e, E;

3 E = { } H

" for c from1 to LinearAlgebra[ColumnDimension] (M) do
5 e ={};

6 for r from 1 to LinearAlgebra[RowDimension] (M) do
7 if M[r,c] =1 then

8 e = e union {r};

9 end if,

10 end do;

I E := E union {e};

2 end do;

13 return GraphTheory [Graph] (E) ;

| end proc:

As an example of our procedure, we reverse Example 6 in Section 10.3 and use the incidence matrix
given in the solution in order to reproduce the graph.

> exIncMatrix .= Matrix([[1,1,0,0,0,0],[0,0,1,1,0,1],[0,0,0,0, 1, 1],
[1,0,1,0,0,0],[0,1,0,1,1,0]])
(110000 ]
001101
exIncMatrix :={00001 1 (10.76)
101000
010110

> exIncMGraph := GraphFromlIncidence (exIncMatrix)

exIncMGraph := Graph 25: an undirected unweighted graph with 5 vertices and 6 edge(s)
(10.77)

> SetVertexPositions (exIncMGraph, [0, 1], [1, 1], [2, 1],[0.5, 0], [1.5, 0]])
> DrawGraph (exIncMGraph)
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On the other hand, Maple does provide a command for computing the incidence matrix for a graph:
IncidenceMatrix.

> IncidenceMatrix (exIncMGraph)
(110000 ]
001110
001001
100100
010011

(10.78)

For a directed graph, the IncidenceMatrix command returns a matrix with a 1 in position (i, j) indi-
cating that the vertex i is the head of edge j and an entry of —1 indicating that the vertex is the tail of

the edge.
> directedIncidence .= Digraph(Trail (1,2,3,1),Trail (2,4, 1))

= Graph 26: a directed unweighted graph with 4 vertices and 5 arc(s)

directedlIncidence
(10.79)

> SetVertexPositions (directedIncidence, [[0,0], [1, 1], [0, 1], [1,0]])

> DrawGraph (directedIncidence)

& 2

@ &

> IncidenceMatrix (directedIncidence)
-10 0 1 1
1 -1-1 0 O
(10.80)
0O 1 0 -10
0O 01 0 -1
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Isomorphism of Graphs

We conclude this chapter with a brief discussion of isomorphisms of graphs and graph invariants.
Determining whether two graphs are isomorphic is a difficult problem. The naive approach (exhaus-
tively checking each possible mapping) can require exponential time.

Graph invariants are useful tools for confirming that two graphs are not isomorphic. While there is
no complete collection of graph invariants that will definitively conclude whether two graphs are or
are not isomorphic, they can, for many pairs of graphs, quickly demonstrate the impossibility of an
isomorphism. We will now create a procedure that will check some of the basic invariants that we
have seen in this chapter: number of vertices, number of edges, whether the graph is directed, and
whether it is bipartite. We also introduce another invariant: the degree sequence.

For a graph G, the degree sequence is the list of the degrees of the vertices of the graph sorted

in ascending order. The Maple command DegreeSequence returns a list of the degrees of the
vertices of a graph, listed in order of the vertices. Since this depends on the order in which Maple
stores the vertices, it is not an invariant. However, applying the sort command to the result of the
DegreeSequence command returns the degree sequence for the graph, as we defined it, which is an
invariant.

The procedure defined below checks, one at a time, the invariants we have described. If any of the
invariants indicate that the graphs are not isomorphic, the procedure prints a statement to that effect.

1| CheckInvariants :=proc(Gl::Graph, G2::Graph)

2 local notIso;

3 uses GraphTheory;

4 notlIso :=false;

s if not (nops (Vertices(Gl)) =nops (Vertices (G2))) then
6 notIso :=true;

7 print ("Different numbers of vertices ") ;

8 end if ;

0 if not (nops (Edges (Gl)) =nops (Edges (G2))) then
10 notIso :=true;

1 print ("Different numbers of edges") ;

12 end if,’

1 if IsDirected(Gl) <> IsDirected (G2) then

14 notIso :=true;

5 print ("Oneis directed, one is undirected") ;

16 end if,’

" if IsBipartite(Gl) <> IsBipartite (G2) then
18 notIso :=true;

19 print ("Oneis bipartite and the other is not") ;

20 end if,‘

2 if sort (DegreeSequence (Gl))<>sort (DegreeSequence (G2) ) then
n notIso :=true;

2 print ("Degree sequences do not match") ;

24 end if,'

25 if notIso then

% print ("The graphs are not isomorphic") ;

2 else
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% print ("The graphs MAY be isomorphic") ;
29 end if,‘
»| end proc:

> CheckInvariants (directedIncidence, exIncMGraph)
“Different numbers of vertices”
“Different numbers of edges”
“One is directed, one is undirected”
“Degree sequences do not match”
“The graphs are not isomorphic” (10.81)

> CheckInvariants (SpecialGraphs[HypercubeGraph] (3),
SpecialGraphs| PrismGraph] (4))
“The graphs MAY be isomorphic” (10.82)

Maple provides a command, IsIsomorphic, for definitively determining whether or not two graphs
are isomorphic. For weighted graphs, the weights are ignored. The IsIsomorphic command accepts
three arguments. The first two arguments are the two graphs to be compared. The third, optional,
argument is a variable name in which the isomorphism, if it exists, is to be stored.

> IsIsomorphic (SpecialGraphs|HypercubeGraph] (3) ,
SpecialGraphs|PrismGraph) (4),' hyperprismiso’)
true (10.83)

> hyperprismiso
[“000” = 1,“001” = 2,“010” = 4,“011” = 3,“100” = 5,“101” = 6,
“110” = 8,“111” = 7] (10.84)

We can make an isomorphism visible by coloring corresponding vertices the same color. To choose
the colors, we will make use of Maple’s built-in color schemes. The ColorTools package includes
definitions of color palettes—predefined lists of colors. The PaletteNames command will produce
a list of all the available palettes.

> ColorTools|PaletteNames] ()

[“Niagara”, “Nautical”, “Spring”, “OldPlots”, “Mono”, “Dalton”,
“Executive”, “Bright”, “Patchwork”, “CSS”, “HTML”, “MapleV”,
“X11”, “Resene”, “Generic”] (10.85)

We will make use of the Spring palette. You obtain a palette by applying the GetPalette command
to the string naming the palette.

> springcolors .= ColorTools|GetPalette] (“spring”)

springcolors .= (Palette Spring: gL BXNE

Violet Yellow Qxiig) RGN | GreenBlue
Purple -

PaleBlucGreen ) (10.86)
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With the palette assigned to a name, individual colors can be obtained through the usual selection
operator, as if it were a list.

> springcolors[3]
( RGB : YellowGreen ) (10.87)

Previously, we saw how to change the color of vertices with attributes in order to explain

more of the inner workings of graphs in Maple. Here, we will use the higher-level command
HighlightVertex, which can be directly applied to these high-level color objects and can be used
successively to assign different colors to different vertices.

We reproduce the graphs in Figure 12 of Section 10.3 of the textbook to illustrate how to draw the
graphs with an isomorphism indicated by color-coding the vertices.

> figurel2G = Graph({{1,2},{1,4},{2,3}.,{2,6},{3,4},{4,5},{5.6}},
vertexpositions = ([0, 2], [3,2],[3,0],[0,0], [1, 1],[2, 11])
figurel2G := Graph 27: an undirected unweighted graph with 6 vertices and 7 edge(s)
(10.88)

> DrawGraph ( figurel2G)

@ &

@& &

> figurel2H := Graph({{1,2},{1,5},{2,3},{3,4},{3,6},{4,5},{5,6}},
vertexpositions = [[0, 2], [1, 1.3],[3, 2], [3, 0], [0, 0], [2, 1]])

figurel2H := Graph 28: an undirected unweighted graph with 6 vertices and 7 edge(s)
(10.89)

> DrawGraph (figurel2H)
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Applying IsIsomorphic confirms that the graphs are isomorphic and records the isomorphism in
the name figurel2iso.

> Islsomorphic ( figurel2G, figurel2H, ' figurel2iso’)
true (10.90)

> figurel2iso
[1=42=33=64=5,5=1,6=2] (10.91)

We can use the jop command to extract the information from this list of equations. Recall that, when
applied to a list, set, or other structure, op produces the sequence of elements of the structure. Butjop
can also accept an integer as its first argument, in which case it will return the element of the second
argument in that position.

> op (3, figurel2iso)
3=06 (10.92)

Note that this is similar to the usual selection operation.

> figurel2iso[3]
3=6 (10.93)

Note that applying op|to the equation yields the two vertex names in sequence.

> op(3=06)
3,6 (10.94)

While we cannot directly apply the selection operation to the equation, we could use op)to transform

the equation into the sequence of its left- and right-hand sides and then apply selection. Using an
integer as the first argument to jop does this in one step.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.


https://www.maplesoft.com/support/help/Maple/view.aspx?path=GraphTheory,IsIsomorphic
https://www.maplesoft.com/support/help/Maple/view.aspx?path=op
https://www.maplesoft.com/support/help/Maple/view.aspx?path=op
https://www.maplesoft.com/support/help/Maple/view.aspx?path=op
https://www.maplesoft.com/support/help/Maple/view.aspx?path=op
https://www.maplesoft.com/support/help/Maple/view.aspx?path=op
https://www.maplesoft.com/support/help/Maple/view.aspx?path=op

> op(2,3=06)
6 (10.95)

With a list as the first argument to jop, we can access the right-hand side of the 3rd equation in one
command.

> op ([3, 2], figurel2iso)
6 (10.96)

This is how we will assign colors to the vertices to illustrate the isomorphism. For each position in
the list representing the isomorphism, we will assign the color in the corresponding position in the
palette to the vertices on either side of the equation in their respective graph. For example, color 3
will be assigned to vertex 3 in the first graph and vertex 6 in the second. We execute the for loop
below and then display the graphs. Note that DrawGraph/can be applied to a list or set of graphs to
display the graphs in a matrix.

> for i from 1 to nops( figurel2iso) do
HighlightVertex( figurel2G, op([i, 1], figurel2iso), springcolors|i]);
HighlightVertex(figurel2H, op([i, 2], figurel2iso), springcolors[i));
end do :

> DrawGraph ([figurel2G, figurel2H])

10.4 Connectivity

Maple provides a number of commands related to connectivity of graphs.

Connectedness in Undirected Graphs

The first such command that we consider is the IsConnected command. This command takes one
argument, the name of the graph, and returns true or false. As an example, consider the complete
bipartite graph K, ; and its complement.

> DrawGraph (CompleteGraph (2,3) , style = circle)
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A

> IsConnected (CompleteGraph (2, 3))
true (10.97)

> DrawGraph (GraphComplement (CompleteGraph (2, 3)) , style = circle)

k
> IsConnected (GraphComplement (CompleteGraph (2, 3)))
false (10.98)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.



Connectivity and Vertices

In addition to testing whether a graph is connected or not, Maple also has commands for determin-
ing which vertices are cut vertices (which Maple refers to as articulation points) and for calculating
both the vertex and edge connectivity.

First, let us recreate two of the examples from Figure 4 in Section 10.4, namely G, and G;.

> Figure4G] : — Graph ({ {‘Ga’7’ ‘6b79} , {6‘b’7’ “C”} , {6‘b’7’ 66d’7} , {“C”’ “d’?} ,
{‘GC”, ‘4657} , {4‘6’9’ G‘f”} , {‘Ge”, ‘6g9’} , {‘66’7’ Eéh”} , {66f’” G‘g”} , {GGg”’ G‘h”} })
Figure4Gl .= Graph 29: an undirected unweighted graph with 8 vertices and 10 edge(s)
(10.99)

> SetVertexPositions (Figure4Gl,[[0, 1],[0,0],[1,0],[1,11,[2,0],[2, 1],
[3,11,[3,01])

> DrawGraph (Figure4Gl)

NG (&)

> Figure4G3 : — Graph ({ {Gﬂa”’ GLb”} , {$‘a7’, €‘g7’} , {€‘b”’ “C”} , {‘6b7’, €‘g7’} ,
{“C”, ‘Gd”} , {“C”, ‘6F’} , {6‘d”, 6669’} , {‘Ge”, ‘GF’} , {G‘f"” 6‘g9’} })
Figure4G3 := Graph 30: an undirected unweighted graph with 7 vertices and 9 edge(s)
(10.100)
> SetVertexPositions (Figure4G3,[[0,0],[1, 1], 2, 11,3, 1], [3,0],[2,0], [1,0]])
> DrawGraph (Figure4G3)

b (c) d

a (9 () e

To find the cut vertices (or articulation points), we use the command ArticulationPoints. This com-
mand takes only one argument, the name of a graph, and returns a list of vertices that are articulation
points, that is, vertices which, if removed, would disconnect the graph.

> ArticulationPoints (Figure4G1)
[“b”, “C”, “e”] (10.101)
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> ArticulationPoints (Figure4G3)
[] (10.102)

These results indicate that G, has three cut vertices while G; has none.

In other words, G5 is nonseparable. Recall that a nonseparable graph will have vertex connectivity
k (G) > 2 and is thus referred to as 2-connected or biconnected, provided it has at least 3 vertices.
The Maple command IsBiconnected also indicates that Figure4G3 is nonseparable.

> IsBiconnected (Figure4G3)
true (10.103)

Finally, the VertexConnectivity command computes k (G), the minimum number of vertices that
must be deleted in order to disconnect a graph. The only argument is the name of the graph.

> VertexConnectivity (Figure4G1l)

1 (10.104)
> VertexConnectivity (Figure4G3)
2 (10.105)
Finding a Vertex Cut

We conclude our discussion of vertex connectivity by developing a procedure for determining
which sets of vertices in a graph G form a vertex cut of size k (G). That is, we want to find a minimal
set of vertices which separate the graph. Maple tells us how many vertices are in such a set, but does
not have a command for finding them.

First, we create a command that will test whether or not a given set of vertices is or is not a vertex
cut. We do this by simply removing the vertices from the graph with the DeleteVertex command
and then testing the resulting graph for connectedness with IsConnected.

| IsVertexCut :=proc(G: :Graph, V: :list)
2 local H, iscut;

3 uses GraphTheory;

4 H := DeleteVertex (G, V) ;

s iscut :=not IsConnected (H) ;

6 return iscut;

end proc:

-

We see that, in Gs, {c, f} separates the graph, while {a, d} does not.

> IsVertexCut (Figure4G3,[“c”, “f’])
true (10.100)

> IsVertexCut (Figure4G3, [“a”, “d”])
false (10.107)

We now write the procedure to find all minimal vertex cuts. We will do this by brute force. First, the
Vertices command produces the list of vertices in the graph. Then, the choose command from the
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combinat package takes the list of vertices and the value of x (G) and produces a list of all sublists
of vertices of that size. Finally, we check each of those sublists with IsVertexCut to see which are

vertex cuts.

| FindVertexCuts :=proc(G: :Graph)

2 local k, subLists, testVerts, result;

3 uses GraphTheory;

s k = VertexConnectivity (G);

s subLists :=combinat [choose] (Vertices (G),k);
6 result = [];

7 for testVertsinsubLists do

8 if IsVertexCut (G, testVerts) then

9 result = [op(result), testVerts];
10 end if,’

i end do;

12 return result;

| end proc:

We apply this to G; to find the possible minimum vertex cuts and then we redraw the graph with one
of the choices highlighted.

> Figure4G3VCs .= FindVertexCuts (Figure4G3)
Figl/[}"e4G3VCS : —_ [[“b”, “f”], [“b”’ “g’7]’ [“C”’ “e”]’ [6409’, “f’?],
[“C”’ G‘g”]’ [66d7” G‘F’]] (10.108)
> HighlightVertex (Figure4G3, Figure4G3VCs[1], “LightCoral”)

> DrawGraph (Figure4G3)

a (9 @&

Connectivity and Edges

Maple offers similar functionality for edges. Unlike for vertices, however, Maple does not include a
command like ArticulationPoints that will list all of a graph’s bridges (recall that a bridge or a cut
edge is an edge whose removal will disconnect the graph). Maple does, however, have a command

to test whether an particular edge is a bridge.

The IsCutSet command takes two arguments. The first is the name of the graph. The second argu-
ment can be a single edge, in which case the function determines whether that edge is a bridge or
not. Alternately, the second argument may be a set of edges, in which case the function determines
whether or not that set is an edge cut. For example, we see that edge {c, e} in G, is a bridge.
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> IsCutSet (Figure4Gl, {*“c”,“e”’})
true (10.109)

We can also see that the pair of edges {b,c} and { f, g} form an edge cut of G.

> IsCutSet (Figure4G3, {{*b”,“c”}, {“f”,“g”}})
true (10.110)

We now use this to create a command analogous to ArticulationPoints. This procedure works by
checking each edge to see if it is a bridge. We accomplish this with the select command, which,
when applied to a Boolean-valued function in one argument and a list, returns the list of those
elements for which the function returns true. The second argument can also be a set, in which case a
set is the result, or any other expression.

1| Bridges :=proc(G: :Graph)

2 uses GraphTheory;
3 select (e —> IsCutSet (G, e),Edges (G))
« end proc:

We can use this to see that G, has two bridges and that G5 has none.

> Bridges (Figure4G1l)
{{G4a77’ Géb”} , {‘40’7’ ‘Ge”} } (100111)

> Bridges (Figure4G3)
%) (10.112)

Finally, Maple will compute A (G), the edge connectivity of the graph, with the command
EdgeConnectivity. Just like VertexConnectivity, the only argument that is accepted is the name of
the graph, and the command returns the minimum number of edges that must be deleted in order to
disconnect the graph.

We have already seen that G, has bridges, and thus has edge connectivity 1.

> EdgeConnectivity (Figure4G1l)
1 (10.113)

On the other hand, the Bridges command verified that G5 does not have bridges, but it does have an
edge cut of size 2.

> EdgeConnectivity (Figure4G3)
2 (10.114)

Connectedness in Directed Graphs

When used with a directed graph, IsConnected returns true if the underlying undirected graph
is connected. That is, for directed graphs, IsConnected determines whether or not the graph is
weakly connected. To check if a directed graph is strongly connected, Maple has the command
IsStronglyConnected.
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We consider a pair of examples.

> strongEx .= Digraph(Trail(1,2,3,4,1),[1,5],[3,5],[5,2],[5,4]) :
> SetVertexPositions (strongEx, [[0, 1],[1, 1],[1, 0], [0, 0], [0.5,0.5]])

> DrawGraph (strongEx)

> &

@& &
> IsConnected (strongEx)
true (10.115)

> IsStronglyConnected (strongEx)
true (10.116)

Applying IsConnected and IsStronglyConnected indicates that this graph is strongly connected.

> IsConnected (strongEx)
true (10.117)

> IsStronglyConnected (strongEx)
true (10.118)

The second example we create will be seen to be weakly, but not strongly, connected.

> weakEx .= Digraph (Trail (4,2,1,3,4,5),Trail (6,8,9,7,6,5))
weakEx = Graph 31: a directed unweighted graph with 9 vertices and 10 arc(s) (10.119)
> SetVertexPositions (weakEx, [[0, 1],[1,1],[0,0],[1,0],[2,0],[3,0], [4,0],
[3,11,[4, 11D
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> DrawGraph (weakEXx)

(B
3 (& )

> IsConnected (weakEx)
true (10.120)

> IsStronglyConnected (weakEXx)
false (10.121)

Maple also has commands to extract the connected components of a graph that is not con-
nected. The Connected Components command takes a graph as input and returns a list of
lists of vertices. For directed graphs, Connected Components is used to determine the weakly
connected components of the graph. The strongly connected components are obtained with
StronglyConnected Components.

> ConnectedComponents (GraphComplement (CompleteGraph (2, 3)))
[[1,2],[3,4,5]] (10.122)

The above indicates that the complement of K, 5 has two connected components. The first compo-
nent consists of the subgraph comprised of vertices 1 and 2, and the second connected component
consists of the other three vertices.

Coloring the Components

Now, we present a procedure that will color code the strongly connected components in a directed
graph. We will again select the colors using the Spring palette. Note that this palette has 16 colors,
so we will design the procedure to recycle colors after using all that are available in the palette.

> numcolors (springcolors)

16 (10.123)
1| HighlightSCC :=proc(G: :Graph)
2 local colorList, components, ¢, 1, H;
3 uses GraphTheory, ColorTools;
" colorList :=GetPalette ("spring") ;
s components = StronglyConnectedComponents (G) ;
6 Cc = 0,'
7 for i from 1 to nops (components) do
8 c=c+1;
9 if ¢ > numcolors(colorList) then
10 C = 1,'
i end if ;
1 if nops (components[i]) =1 then
3 HighlightVertex (G, components[i],colorList[c]);
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14 else

5 H := InducedSubgraph (G, components[i]);

6 HighlightSubgraph (G, H,colorList|[c],colorList[c]);
1 end if ;

8 end do;

19 DrawGraph (G) ;

»| end proc:

> HighlightSCC (weakEx)

@ @

® @ 5

Counting Paths Between Vertices

The last topic that we will consider in this section is determining the number of paths between two
vertices of a given length. As described in the textbook, if A is the adjacency matrix for a graph
(which may be undirected or directed and may include loops and multiple edges), then the (i, j)
entry of the matrix A" is the number of paths of length r from vertex i to vertex j.

As an example, consider the strongEx graph from above. We can obtain its adjacency matrix by

applying the AdjacencyMatrix command to the name of the graph.

> Amatrix = AdjacencyMatrix (strongEx)

(01001 ]
00100
00011 (10.124)
10000
01010

Next, compute some powers of the adjacency matrix.

> Amatrix®, Amatrix’, Amatrix*

(o1110][1o0111][12022]
0o0o011| 1101011101
1101011101 f,lo2122 (10.125)
ot1oo01|fo111o0|l]|10111
10100 |ot1ot12f|12120
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> Amatrix’ , Amatrix(’, Amatrix’

(23221 [23334][36375]
02122122231 (33234
22231|,[33234]|,|37365 (10.126)
1202223221 (23334
21212 (14144 45452

We see that there are 4 paths of length 6 from vertex 3 to vertex 5, since the (3, 5) entry in the 6th
power of the adjacency matrix is 4. We also see that there are cycles of length 3 for every vertex and
there are no cycles of length less than 3. Finally, we know that the shortest path from vertex 2 to ver-
tex 1 is of length 3, since the (2, 1) entry is O for the first and second powers of the matrix.

10.5 Euler and Hamilton Paths

In this section, we will show how to use Maple to solve two problems that seem closely related, but
which are quite different in computational complexity. The two problems that will be analyzed are
the problem of finding a simple circuit that contains every edge exactly once (an Euler circuit) and
the problem of finding a simple circuit that contains every vertex exactly once (a Hamilton circuit).
(Note that the textbook uses the term circuit while Maple uses the word cycle in its help pages.
These two terms are synonymous.)

Euler Circuits in Simple Graphs

Maple comes equipped with a command to determine if a given simple graph has an Euler circuit or
not. This command, IsEulerian, takes one or two arguments. The required argument is the graph.
The second argument is an optional name in which Maple will store the Eulerian circuit it finds.
As an example, we have Maple find an Euler circuit on K.

> IsEulerian (CompleteGraph (5), 'K5EulerCircuit’)
true (10.127)

> K5EulerCircuit
Trail (1,2,3,1,4,2,5,3,4,5,1) (10.128)

Now, we will have Maple help us visualize this path by creating an animation that succes-
sively highlights the edges in the path. To do this we will use the animate command. The
animate command takes at least three arguments. The first is a Maple procedure that gener-
ates a plot. Typically, one uses one of the built-in commands, such as plot or plot3d as the
first argument. In this case, however, we will create our own procedure, plotPath, for the
first argument. We will return to plotPath in a moment. The second argument to the animate
command is a list containing the arguments to the command given in the first argument.
The third argument will be a parameter with a range specification of the form t=a..b which
specifies the parameter used in the construction of the individual plots that make up the ani-
mation and their bounds. We will also be using two options. The paraminfo=false option
turns off the display of the value of the parameter, while frames=50 tells Maple to create 50
frames instead of the default 25, which in this case has the effect of slowing down the ani-
mation. (Note: There is no way to change the frame rate of the animation with the command
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line, but you can increase and decrease the frames per second (FPS) in the context menu of an
animation. You can also step through the animation one frame at a time to better see the progress
of the path.)

We now return to the plotPath procedure, which will be the first argument to the animate com-
mand. The plotPath procedure will take as arguments a graph, a list of vertices representing a
path, and a number representing the progress along the path (e.g., 1 indicates one edge traversed,
2 indicates two edges traversed, etc.).

It first makes a copy of the graph so that the modifications to the edge colors do not affect the origi-
nal graph. The procedure uses the local variable N to ensure that it does not exceed the length of the
list given in the second parameter and to ensure that the value representing the progress along the
path is an integer. Assuming the requested path length is not 0, then the procedure takes a slice out
of the list of vertices to represent a path of that length and highlights that “trail.” In the case that the
third argument is 0, it skips the highlighting steps and just draws the graph.

| plotPath :=proc(G: :Graph, P: :list, n)
2 local Gcopy, path, N;

3 uses GraphTheory;

4 Gcopy :=CopyGraph (G) ;

s if n > nops(P) —1then

6 N :=nops (P) - 1;

7 else

8 N := floor (n);

9 end if ;

10 if N <> 0 then

11 path :=P[1(N+1)],’

12 HighlightTrail (Gcopy, path);
13 end if,‘

14 DrawGraph (Gcopy) ;

is| end proc:

Now, we use the plotPath procedure as the basis for the following animatePath procedure. This
procedure will take as input a graph and a path and create the animation using the animate com-
mand.

| animatePath :=proc(G: :Graph, P: :list)

2 local t;

3 plots[animate] (plotPath, [G,P,t], t=0..(nops(P)-1),
paraminfo=false, frames=50) ;

. end proc:

To use this procedure, we just need to turn the “trail” that IsEulerian found above into a list of
vertices.

> K5CircuitList := [op (K5EulerCircuit)]
K5CircuitList .= [1,2,3,1,4,2,5,3,4,5,1] (10.129)

> animatePath (CompleteGraph (5) , K5CircuitList)
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You can see the Euler circuit traced out by clicking on the image of the graph and then clicking on
the play button at the top of the window.

Euler Circuits in Multigraphs

As usual, Maple’s built-in function only applies to simple graphs, that is, graphs with no loops or
multiple edges. We will examine the problem of finding Euler circuits in multigraphs. We know,
from Theorem 1 in Section 10.5, that a connected multigraph with at least two vertices has an Euler
circuit if and only if the degree of every vertex is even. It is easy to see that Theorem 1 extends to
pseudographs as well. Using this fact, we can write a simple procedure for determining whether or
not a pseudograph has an Euler circuit.

i| IsPseudoEulerian :=proc(G: :Graph)

2 local v;

3 uses GraphTheory;

4 if IsDirected (G) then

s return FAIL;

6 end if ;

7 if (not IsConnected(G)) or (nops (Vertices (G)) <2) then
8 return false;

o end if ;

10 for vin Vertices (G) do

I if type (PseudoDegree (G, v), odd) then
12 return false;

13 end if,’

1 end do;

5 return true;

6| end proc:
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We can use this procedure to solve the Bridges of Konigsberg problem. First, we create a represen-
tation of the town and its bridges as a graph (this replicates Figure 2 in Section 10.5). Then we apply
the test.

> Konl‘gsberg := Graph({[{GGA”"‘B”}’2]’ [{66A”’“C7’}’2]’{‘6A?”6‘D?’}’
{‘6B77’ ‘4D”} , {‘4C”’ “D”} })
Konigsberg = Graph 32: an undirected weighted graph with 4 vertices and 5 edge(s)

(10.130)
> SetVertexPositions (Konigsberg, [[0, 1], [0, 0], [0, 2], [1, 1]])
> DrawPseudograph (Konigsberg)
> IsPseudoEulerian (Konigsberg)
false (10.131)

Now that we have a test that tells us if a circuit exists, we will implement Algorithm 1 in Section
10.5 in order to find an Euler circuit, if it exists. The following procedure will find an Euler circuit
in a multigraph. It could also be applied to a pseudograph without generating an error, but it will not
include loops in the circuit.

| FindMultiEuler :=proc(G: :Graph)

2 local H, circuit, subC, i, v, insertPoint, e, w, buildingSub,
oldC;

3 uses GraphTheory;

" if not IsPseudoEulerian (G) then

s return false;

6 end if ;

7 H = CopyGraph (G) ;

8 circuit :==1[];

9 while Edges (H) <> {} do

10 # find a starting point
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if circuit =[] then
subC := [Vertices (H) [1]17;
else
for i from 1 to nops (circuit) do
if Neighbors (H,circuit[i]) <> [] then
subC := [circuit[i]];
insertPoint :=1i;
break ;
end if ;
end do;
end if ;
# build a subcircuit
buildingSub :=true;
while buildingSub do

v i=subC[-1];
w := Neighbors (H,v) [1];
e = {v,w};

if IsWeighted (H) then
if GetEdgeWeight (H,e) > 1 then
SetEdgeWeight (H, e, GetEdgeWeight (H,e)-1);
else
DeleteEdge (H, e) ;
end if ;
else
DeleteEdge (H, e) ;
end if ;
subC := [op (subC) ,w];
if w=subC[1] then
buildingSub = false;
end if ;
end do;
# splice the subcircuit into the main circuit
if circuit = [] then
circuit :=subC;
else
0ldC :=circuit;
circuit :=1[7;
if insertPoint >=2then
circuit :=0ldC[l..(insertPoint-1)7];
end if ;
circuit = [op(circuit),op(subC)];
if insertPoint <nops (0ldC) then
circuit:= [op(circuit), op(0ldC[ (insertPoint+1)..-171)7];
end if ;
end if ;
end do;
return circuit;
end proc:
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The program begins with a use of IsPseudoEulerian in order to avoid searching for a circuit

that cannot exist. It then assigns to the variable H a copy of the graph. It is this copy that is used
throughout the rest of the procedure, rather than the graph G that was passed to the algorithm. The
benefit of using a copy is that the procedure will be able to manipulate it as the algorithm proceeds,
for example, by deleting edges of H once they are included in the circuit so that those edges are not
reused.

Recall the description of Algorithm 1 in Section 10.5. There are two key ideas at the heart of this
algorithm. The first is that, for a graph whose vertices all have even degree, if you pick any vertex to
start at and follow edges at random but without repetition, you will definitely return to the original
vertex and create a circuit. The second key idea is that (for a connected graph), if your circuit does
not include all of the edges of the graph, then some vertex used in the existing circuit can be made
the starting point for a new subcircuit. This subcircuit can then be spliced into the main circuit. This
will eventually use all the edges and the result will be a Euler circuit.

The variable circuit will hold the main circuit that, at the end of the procedure, is output to the user.
The circuit will be stored as a list of the vertices through which the circuit passes and is initialized to
the empty list. The main while loop consists of three parts: (1) determining the starting point for the
subcircuit (named subC); (2) building the subcircuit; and (3) splicing the subcircuit into the main
circuit.

The first step, finding the starting point for the subcircuit, depends on the state of the main circuit.
If circuit is the empty list (i.e., it is the first pass through the main loop), then the starting point is
the first vertex in the graph. If the main circuit is not empty, then the else clause looks at the vertices
in the main circuit to find one that has neighbors (since edges are deleted from H as they are added
to the circuit, only vertices that are an endpoint of an unused edge have neighbors). The first vertex
that has a neighbor is used as the starting point for the subcircuit. The insertPoint variable is used to
keep track of the index, relative to circuit, of the starting vertex for the subcircuit. This is used when
the subcircuit is spliced into the main circuit.

The second step is to build subC. The buildingSub variable is used to control the while loop. It is
initialized to true and is set to false once subC has returned to its starting vertex and is thus a circuit.
The variable v is set to the last vertex currently included as part of the subcircuit and w represents
a neighbor of v. The variable e = {v,w} is therefore an edge in the graph that has not already been
traversed by the circuit. The nested if statements that follow the assignment of e effect the removal
of the edge e from the graph H. In the case that H is weighted (i.e., is a multigraph), the weight is
either decreased by 1 to represent the removal of one of several edges between the vertices or is
deleted if there is only one such edge. In the unweighted case, the edge is always deleted from the
graph. After the edge has been deleted, the vertex w is added to the subcircuit, representing the
inclusion of the edge. Finally, the newest vertex is compared with the starting vertex to determine if
the circuit has been closed. If the new vertex closes the circuit, then the buildingSub variable is set
to false, which causes the while loop to terminate. Otherwise, the while loop continues building the
subcircuit.

The third step, once the subcircuit has been built, is to splice it into the main circuit. In the first pass
through the main loop, the main circuit is empty and so subC is just copied into circuit. In subse-
quent passes of the main loop, the variable oldC is used to store the “old” circuit. Recall that insert-
Point stores the index of the starting vertex for subC. The goal is to put the subcircuit in that loca-
tion. The new, more complete, circuit is built in three pieces. First, the part of the old circuit that
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occurs before the insertion point (assuming the insertion point is not the initial vertex of the main
circuit). Next, the subcircuit. Finally, the part of the old circuit that comes after the insertion point
(assuming the insertion point is not the final vertex).

The main while loop continues until all the edges of the graph have been included in the cir-
cuit, making circuit an Euler circuit for the graph. As an example, consider Exercise 5 in
Section 10.5.

> Ex5 :: Graph({[{éﬂa”,éﬂe9’},3]’ [{6‘09’,“d”},2],{‘6a’9’ ‘6b”},{‘6b”, “C”}’
{GGb”’ ‘Cd?’} , {Léb?” ‘Ce”} , {“C”’ “e’9} , {C‘d”’ 4‘6”} })
Ex5 := Graph 33: an undirected weighted graph with 5 vertices and 8 edge(s) (10.132)
> SetVertexPositions (Ex5,([0,2],[1,2],[2,0.5],[1,1],[0, 1]])

> DrawPseudograph (Ex5)

> Ex5Path := FindMultiEuler (Ex5)
Ex5Path : — [“a’7’ “657’ “C”’ 46d’7’ ‘6697’ 46a”’ 4‘b’7’ “C,,’ 4‘d’7’ ‘6b’7’ ‘6697’ 46a”] (10.133)

Note that the edge between a and e is traversed three times: as the first edge in the circuit, shortly
before the middle of the circuit, and again as the last edge in the circuit. This is consistent with there
being three edges between a and e.

The following procedures can be used to create animations to visualize the circuit in an multigraph,
as animatePath did above for simple graphs. HighlightMultiTrail replaces HighlightTrail and
serves to transition multi-edges from blue to red in steps. Note the use of edge attributes to track the
number of times a multi-edge has been traversed.

| HighlightMultiTrail :=proc(G: :Graph, T)

2 local H, i, e, x, redshade;
3 uses GraphTheory;
4 if not IsWeighted (G) then
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5 H := MakeWeighted (G) ;

6 else
7 H = CopyGraph (G) ;
8 end if ;
5 for e in Edges (H) do
10 SetEdgeAttribute (H, e, "traversed"=0) ;
i end do;
2 for i from2 to nops (T) do
13 e = {T[l—l],T[l]},’
14 X = GetEdgeAttribute (H, e, "traversed") +1;
5 SetEdgeAttribute (H, e, "traversed"=x) ;
16 end do;
" for e in Edges (G) do
18 redshade :=
GetEdgeAttribute (H, e, "traversed") /GetEdgeWeight (H, e) ;
19 HighlightEdges (G, {e}, COLOR (RGB, redshade, 0, 1-redshade) ) ;
0 end do;
21 return G;
»| end proc:

| PlotMultiPath :=proc(G: :Graph, P::list, n)
2 local Gcopy, path, N;

3 uses GraphTheory;

4 Gcopy :=CopyGraph (G) ;

s if n> nops(P) - 1then

6 N :=nops (P) - 1;

7 else
8 N := floor (n);
9 end if ;

10 if N <> 0 then

11 path :=P[1(N+1)],’

1 else

13 path =1[1;

14 end if,’

s HighlightMultiTrail (Gcopy, path);
16 DrawGraph (Gcopy) ;

»| end proc:

| AnimateMultiPath :=proc(G: :Graph, P: :list)
2 local t;
plots[animate] (PlotMultiPath, [G,P,t], t=0..(nops(P)-1),
paraminfo=false, frames=50) ;
end proc:

w

=~

> AnimateMultiPath (Ex5, Ex5Path)
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Hamilton Circuits

Turning our attention to Hamilton circuits, Maple provides the command IsHamiltonian for
determining whether or not the graph contains a Hamilton circuit. This command, like IsEulerian,
accepts one required and one optional argument. The required argument, of course, is a graph. If a
variable name is provided as the second argument, then Maple will store the Hamilton circuit in the
variable, which you can then use as the second argument to HighlightTrail.

> HCGraph := SpecialGraphs|HypercubeGraph] (3)
HCGraph := Graph 34: an undirected unweighted graph with 8 vertices and 12 edge(s)
(10.134)

> IsHamiltonian (HCGraph, 'HCpath')
true (10.135)
> HighlightTrail (HCGraph, HCpath)

> DrawGraph (HCGraph)

010 011
oo Q11
100) (101

000 001
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> IsHamiltonian (CompleteGraph (3, 2))
false (10.136)

Note that a pseudograph is Hamiltonian if and only if its underlying simple graph is Hamiltonian, so
there is no need for us to extend the IsHamiltonian command to pseudographs.

10.6 Shortest-Path Problems

Among the most common problems in graph theory are the “shortest path problems.” Generally, in
shortest path problems, we wish to determine a path between two vertices of a weighted graph that
is minimal in terms of the total weight of the edges in the path.

In the previous sections of this chapter, we used edge weights as a way to get around Maple’s
limitation of being able to represent simple graphs only. In this section, we will use weighted graphs
in the way they are actually intended—to represent some sort of cost associated with traversing

the edge. Note that pseudographs are rarely, if ever, of use in shortest path problems. There is

no reason to consider multiple edges between two vertices since the edge of lowest weight is
always preferred. Moreover, traversing a loop at a vertex would only increase the cost with no
benefit.

First, we reproduce Exercise 2 in Section 10.6 of the textbook to use as an example. Recall that
when defining an undirected and weighted graph, we use the format [{a,b},w] to indicate that the
graph has an edge between a and b with weight w.

> Ex2 := Graph({[{“a",“b"} .21, [{“a”, “c”} ,3], [(*b7, “d") ,5],
L0077 2L LIPS L[ 2)
[("e”, 2"} 41))

Ex2 := Graph 35: an undirected weighted graph with 6 vertices and 8 edge(s) (10.137)
> SetVertexPositions (Ex2,[[0,0.5],[1,1],[1,0],[2,1],[2,0],[3,0.5]])

> DrawGraph (Ex2)

Now, we will make use of Maple’s implementation of Dijkstra’s algorithm to compute the shortest
path between a and z. To do this, we simply call the DijkstrasAlgorithm command with three argu-
ments: the graph and the names of the starting and ending vertices.

> Ex2shortest .= DijkstrasAlgorithm (Ex2,“a”,“z”)
Exshortest = [, "b", %", *d”,*7"], 7] (10.138)
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The output informs us that the shortest path is a, b, e, d, z and that the length of this path is 7. We
can display the shortest path by passing the list of vertices to the HighlightTrail command.

> HighlightTrail (Ex2, Ex2shortest[1])

> DrawGraph (Ex2)

There is an alternate form of DijkstrasAlgorithm for producing the shortest path from an initial
vertex to several different vertices at once.

> DijkstrasAlgorithm (Ex2,“a”, [“d”, “e”, “z”])

[[[“a” “b” 13 ” “d”] 5] [[“ tX) “b” 13 ”]’ ]’
[[‘6 ’7, “b”, (3 ’9, “d’?, (3 ’9]’7]] (10.139)

And for producing the shortest paths from the starting vertex to all other vertices.

> DijkstrasAlgorithm (Ex2,“a”)

[[[“ 7’] O] [[“a7’ 64b7’] 2] [[“ 99 ¢ 7’] 3] [[64a7’ ‘éb” (13 ’7 ‘éd”] 5]
[[64a7” 64b7” 6667’]’4]’ [[64 7’, “b?” (13 7’, “d?” (13 7’]’7]] (10.140)

To determine the shortest path from every vertex to every other vertex, we use the
AllPairsDistance command. This is an implementation of the Floyd—Warshall algorithm

(also known as simply Floyd’s algorithm), which is described in Algorithm 2 in the Exercises of
Section 10.6.

> AllPairsDistance (Ex2)

[023547]
205325
350658
536012
425103

| 758230 |

(10.141)

Note that the command returned a matrix. The (7, j) entry in this matrix is the shortest distance from
vertex i to vertex j.

Finally, Maple provides a TravelingSalesman command for solving the traveling salesperson
problem on a given graph. Given a graph, the procedure returns two objects: a number representing
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the minimum possible length of a Hamilton circuit and the list of vertices representing the minimal
circuit.

> TravelingSalesman (Ex2)

21’ [66a9” 4‘b’7’ 46d’7’ “Z’,’ 466”’ “C”’ G‘a”] (10.142)

10.7 Planar Graphs

This section explains how Maple can be used to explore the question of whether a graph is pla-
nar. We begin with a brief description of Maple’s built-in functions. We then discuss how to use
Maple to manipulate graphs in order to produce homeomorphic graphs and to apply Kuratowski’s
Theorem.

Maple includes the command IsPlanar, which returns true if and only if the given graph is a planar
graph. For example, we can check that the graph Kj , is planar, but that Kj 5 is not.

> IsPlanar (CompleteGraph (3,2))
true (10.143)

> IsPlanar (CompleteGraph (3, 3))
false (10.144)

In addition, as mentioned above, for those graphs that are planar, the DrawGraph command
includes the option to draw them as such, using the planar style.

> DrawGraph (CompleteGraph (3, 2) , style = planar)

For graphs that are not planar, the planar style will cause an error to be raised.

Elementary Subdivisions, Smoothing, and Homeomorphic Graphs

Recall that an elementary subdivision refers to the process of modifying a graph by removing an
edge {u, v} and replacing it with a vertex w and new edges {u, w} and {v, w}. Effectively, this splits
the original edge into two by inserting a vertex in the middle of it. Maple includes a command,
Subdivide, for achieving this effect. If we apply this command to a graph and one of its edges, it
returns a new graph obtained by performing an elementary subdivision on the given edge.

> SubdivideEx := CycleGraph (5)
SubdivideEx = Graph 36: an undirected unweighted graph with 5 vertices and 5 edge(s)
(10.145)
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> DrawGraph (SubdivideEx)

> SubdivideEx2 .= Subdivide (SubdivideEx, {1,2})

SubdivideEx2 .= Graph 37: an undirected unweighted graph with 6 vertices and 6 edge(s)
(10.146)

> DrawGraph (Subdivide Ex2)

The inverse operation of elementary subdivision is referred to as smoothing. To be precise, let v be
a vertex of degree 2 with neighbors u and w and such that # and w are not adjacent. We smooth the
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vertex v by deleting v and the edges incident to it and adding the edge {u, w}. Below we have cre-

ated a procedure to implement smoothing. (Note that Maple’s Contract command is more general
than smoothing. The benefits of creating the Smooth procedure are that it is explicitly the inverse

of elementary subdivision and that it is more natural, in this context, to think about smoothing the
vertex rather than contracting one of the incident edges.)

i| Smooth :=proc(G: :Graph, v)

2 local e, H;

3 e = {op(Neighbors (G,v)) };
4 if (Degree(G,v) <>2) or (einEdges (G)) then
5 return FAIL;

6 else

7 H := DeleteVertex (G, v) ;
8 AddEdge (H, e) ;

9 end if ;

10 return H;

n| end proc:

> SubdivideEx3 .= Smooth (SubdivideEx2, 6)

SubdivideEx3 := Graph 38: an undirected unweighted graph with 5 vertices and 5 edge(s)
(10.147)

> DrawGraph (Subdivide Ex3)

The textbook defines graphs to be homeomorphic if they can be obtained from the same graph
from a sequence of elementary subdivisions. It is clear that if G, G,, G3, ..., G, 1s a sequence
of graphs, each of which can be obtained from the previous by an elementary subdivision, then
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G,, ..., G;3, G,, G, is a sequence of graphs, each of which can be obtained from the previous by a
smoothing. Therefore, we can say that two graphs are homeomorphic if one can be transformed into
the other by a sequence of elementary subdivisions and smoothings.

Applying Kuratowski’s Theorem

Recall that Kuratowski’s theorem asserts that a graph is nonplanar if and only if it contains a sub-
graph homeomorphic to either K ;5 or K. Using the commands above and those for creating sub-
graphs, we can use Maple to manipulate a graph and confirm that it is nonplanar using Kuratowski’s
theorem. We will illustrate this with the Petersen graph.

> petersen .= SpecialGraphs|PetersenGraph] ()

petersen .= Graph 39: an undirected unweighted graph with 10 vertices and 15 edge(s)
(10.148)

> DrawGraph (petersen)

First, we form the subgraph of the Petersen graph obtained by removing vertex 2 and the three edges
incident to it.

> petersenl = DeleteVertex (petersen,?2)

petersenl .= Graph 40: an undirected unweighted graph with 9 vertices and 12 edge(s)
(10.149)

> DrawGraph (petersenl)
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Now, we notice that there are three vertices that are smoothable: 1, 3, and 9. That is to say, those
three vertices have degree 2 and their neighbors are not adjacent.

> petersen2 .= Smooth(petersenl, 1) :
> petersen3 .= Smooth(petersen2,3):
> petersend .= Smooth(petersen3,9) :
> DrawGraph (petersen4)
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We now observe that this graph has 6 vertices, each of which has degree 3, just like K 5. Thus, there
is a definite possibility that this graph is K; ;. We check that it is bipartite and then have Maple draw
it in that style.

> IsBipartite (petersen4)
true (10.150)

> DrawGraph (petersen, style = bipartite)

It is clear from inspection that this is K; ; and so we have demonstrated that the Petersen graph has a
subgraph that is homeomorphic to Kj; 5 and hence is nonplanar.

10.8 Graph Coloring

In this section, we consider the problem of how to properly color a graph; that is, how to assign to
each vertex of a graph a color such that no vertex has the same color as any of its neighbors.

It is worth noting that, in terms of computational complexity, Hamilton circuits and graph coloring
are equivalently difficult problems.

Maple’s Command

Maple provides a ChromaticNumber command that uses a sophisticated backtracking technique
for computing the chromatic number of a graph.

Given a graph, the ChromaticNumber command will report the minimal number of colors needed
to color that graph.
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> CNExample .= SpecialGraphs|WheelGraph] (5)

CNExample := Graph 41: an undirected unweighted graph with 6 vertices and 10 edge(s)
(10.151)

> ChromaticNumber (CNExample)
4 (10.152)

If you provide a variable name as a second argument to the command, Maple will store a list of lists
of vertices. These lists indicate which vertices should be assigned the same color.

> ChromaticNumber (CNExample, ' CNClasses')
4 (10.153)

> CNClasses
[[0],[2,4],[3,5], [1]] (10.154)

This output indicates that vertex O should be given one color, vertices 1 and 3 should be assigned a
second color, vertices 2 and 4 a third color, and vertex 5 should be painted with the final color.

We can write a short procedure to display the graph with the vertices appropriately colored.
Our procedure will call the HighlightVertex command with a list of vertices and a single color.
This form of the command causes all of the vertices in the list to be shaded with the specified

color.

1| CNColor =proc(G: :Graph, colors)

2 local 1, Vclasses;

3 uses GraphTheory;

4 ChromaticNumber (G,Vclasses) ;

s if numelems (Vclasses) > numelems (colors) then

6 error "You must provide at least one color for each vertex class.";
7 end if ;

5 for i from 1 to numelems (Vclasses) do

9 HighlightVertex (G,Vclasses|[i],colors[i]);

10 end do;

1 DrawGraph (G) ;

»| end proc:

This procedure requires two arguments: the graph and a list or other structure that contains colors
that can be used with HighlightVertex and in conjunction with the selection operator.

> CNColor (CNExample, ColorTools|GetPalette] (“spring”))
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A Greedy Coloring Algorithm

In this section, we will create a procedure based on the algorithm described in the preface to
Exercise 29 in Section 10.8 of the text. It can be shown that this algorithm will color a graph using
at most one more color than the maximal degree of the graph. It is considered a “greedy” algorithm
because it makes optimal choices at each step but never reconsiders its choices. That is to say, it
does the best it can at every step but never backtracks to make improvements. Greedy algorithms
often lead to good, but nonoptimal, solutions.

The algorithm proceeds as follows. First, the vertices are sorted in order of descending degree. The
first color is assigned to the first vertex in the list. In addition, assign color 1 to the first vertex in the
list not adjacent to vertex 1, to the next vertex not adjacent to those already colored, etc. Then, move
on to the second color. The first uncolored vertex in the list is assigned color 2, as are vertices further
down the list not adjacent to ones previously assigned the second color. This continues until all of
the vertices have been given a color.

Our first step in implementing this algorithm will be to sort the list of vertices in decreasing order
of degree. For this, we will make use of Maple’s very flexible sort command. With no additional
instructions, Maple will sort a list of numbers in increasing numerical order and a list of strings in
lexicographical order. Moreover, the sort command accepts an optional argument that allows us to
specify the way in which the list is sorted. Specifically, sort takes as an argument a procedure that is
Boolean-valued on two arguments and returns true if the first argument precedes the second.

For our graph coloring procedure, this is further complicated by the fact that the procedure that
we pass to the lsort command must depend on the graph. We will create a functional operator that
returns a boolean-valued procedure associated to the given graph.
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i| MakeSorter =G ->proc (v, w)

2 uses GraphTheory;

3 evalb (Degree (G,Vv) >Degree (G, w) ) ;
« end proc:

Applying MakeSorter to a graph returns a procedure that can be used as the optional argument to
sort.

We now implement the greedy coloring algorithm.

i| GColor :=proc(G: :Graph, colors)

2 local Sorter, V, currentColor, excludeSet, 1i;

3 Sorter :=MakeSorter (G) ;

4 V = sort (Vertices (G), Sorter) ;

s for currentColor from 1 to numelems (colors) do

6 HighlightVertex (G,V[1],colors[currentColor]);

7 excludeSet := {op (Neighbors (G,V[1])) };

8 V := subsop (1=NULL, V) ;

9 i:=1;

10 while i <= nops (V) do

I if not (V[i] inexcludeSet) then

12 HighlightVertex (G,V[i],colors|[currentColor]);

13 excludeSet :=excludeSet union {op (Neighbors (G,VI[i])) };
14 V = subsop (i=NULL, V) ;
s else

16 i:=1+ 1,’

17 end if;

18 end do;

19 if v =[] then

0 break ;

21 end if,’

2 end do;

» if Vv <> [] then

u error " Insufficiently many colors";
2 else

2% DrawGraph (G) ;

27 end if,‘

»| end proc:

Note that the set V, which is initialized to the list of vertices, sorted in decreasing order of degree,
is used to track which vertices still need to be assigned a color. When a vertex has been assigned a
color, it is deleted from the list V using subsop(i=NULL,V). The subsop/command is used to sub-
stitute a value in a list at a specified index. In this case, we are substituting the value NULL in the
list at index i, which has the effect of removing it from the list.

The excludeSet variable is used to store all vertices which cannot be assigned the current color.
Each time a vertex is assigned a color, all of its neighbors are added to the excludeSet. As the
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procedure looks down the list of vertices that still need to have a color assigned, it checks to see if
they are in this set.

The index i, which controls the while loop, is incremented in the else clause of the if statement that
tests to see if a vertex can be assigned the color. If the vertex at index i is assigned the color, then it
is removed from the list V, and thus the index i refers to a different vertex (the vertex previously in
position i+1).

As an example, we solve Exercise 29 in Section 10.8.

> Exercise29 = Graph({{“a”,“b”},{“a”,“d”}, {*a”,“e”}, {“a”,“h”},
(D7, 07}, (D7, €7} (D7, ), (67, e {0, L (e, h),
{"d7, g7}, {7, g7}, {Ten, h, {en 1, {1 )L {7 T
{0717 {77
Exercise29 := Graph 42: an undirected unweighted graph with 10 vertices and 18 edge(s)
(10.155)

> SetVertexPositions (Exercise29,

[10,2],11,2],2,2], [0, 11, 1, 11, [2, 11, [0, 0], [1, 01, [2, 01, [3, O11)

> GColor (Exercise29, ColorTools|GetPalette] (“spring”))

(b))

Solutions to Computer Projects and Computations and Explorations
Computations and Explorations 1

Display all simple graphs with four vertices.

Solution: To solve this problem, we will generate all possible edge sets and then construct the
graphs based on these edge sets. The possible edge sets are all of the subsets of the set of all possible
edges, which we obtain from the complete graph on the vertices. We will generalize the question
and have our procedure create all the simple graphs on n vertices.

AllGraphs :=proc(n: : posint)
local A, V, E, powerE, i, G;

2
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3 uses GraphTheory;

4 A = {};

5 V = [seq(i,i=l..n)];

6 E = Edges (CompleteGraph(n));
7 powerE :=combinat [powerset] (E) ;
8 for i from 1 to nops (powerE) do

0 G[i] :=Graph(V,powerE[i]);
10 A :=Aunion {G[1i]};

i end do;

12 return A;

1| end proc:

Recall that the complete graph on n vertices has C (1, 2) edges, so there are 2™ graphs on n
vertices. Thus, on 4 vertices, there are 64 graphs. For n = 3, there are only 8 graphs, which is more
manageable.

> AllGraphs3 := AllGraphs(3) :

> DrawGraph (AllGraphs3, width = 4)

(e=>] [«->] >
>
) )
>
/\ T N
[«&>)

Computations and Explorations 2

Display a full set of nonisomorphic simple graphs with six vertices.

Solution: The solution to this exercise is very similar to the previous question. The only difference
is that, each time a graph is generated, we compare it to the graphs that have already been included
using IsIsomorphic.

| NonIsoGraphs :=proc(n: :posint)

2 local , vV, E, powerE, i, G, j, notisomorphic;
3 uses GraphTheory;

4 A= {};

s V := [seq(i,i=l..n)];

6 E := Edges (CompleteGraph(n));

7 powerE :=combinat [powerset] (E) ;
s for i from1 to nops (powerE) do

0 G[i] :=Graph(V,powerE[i]);

10 notisomorphic :=true;

n for j from1 to nops (2) do
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1 if IsIsomorphic(A[j],G[i]) then
13 notisomorphic :=false;
4 break ;

is end if ;

6 end do;

” if notisomorphic then

8 A :=Aunion {G[1]};

19 end if,’

0 end do;

21 return A;

»| end proc:

Note that we have employed a rather brute-force approach by comparing each new graph to each
of the previously identified graphs. More efficiency could be obtained by keeping track of a graph
invariant and only fully checking pairs of graphs which agree on the invariant. The IsIsomorphic
command already performs some invariant checking, including the number of edges and degree
sequence, but for larger values of n, time spent computing an invariant in order to decrease the
number of times IsIsomorphic|is called can be beneficial.

We apply this to five vertices, since six takes a bit more time to compute.
> Nonlso5 := NonlsoGraphs(5) :

> nops (Nonlso))
34 (10.156)

We see that there are 34 nonisomorphic simple graphs on 5 vertices. Here are the first eight.

> DrawGraph ([seq (Nonlso5[i],i = 1..8)], width = 4)

AN R = EEZaN) B

TN K| T B YT

Computations and Explorations 9

Generate at random simple graphs with 10 vertices. Stop when you have constructed one
with an Euler circuit. Display an Euler circuit in this graph.

Solution: To generate the random graphs, we will use the RandomGraph command in the
RandomGraphs subpackage. By passing this command a number of vertices and a probability
between 0 and 1, it produces a graph with the given number of vertices and with each possible edge
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present with the given probability. To display a random graph on 10 vertices with each edge as
likely to appear as not, we use the following command.

> DrawGraph (RandomGraphs|RandomGraph] (10, 0.5))

Recall the description of the IsEulerian command. When this command is given two arguments,
specifically, a graph and an optional variable name, if there is an Euler circuit, then the command
returns true and stores the circuit in the variable.

To satisfy the requirements of this problem, we use RandomGraph to generate a random graph G.

Then, we test it for an Euler circuit using IsEulerian. As long as the randomly generated graph does
not have an Euler circuit, we continue generating new random graphs. We display the path using the
animatePath procedure we created in Section 10.5.

i| GenEuler :=proc (n: :posint)

2 local G, trail;

3 uses GraphTheory, RandomGraphs;
4 G := RandomGraph (n,.5) ;

s while not IsEulerian (G, ’trail’) do

6 G := RandomGraph (n,.5) ;

7 end do;

8 animatePath (G, [op(trail)]);
o| end proc:

> GenEuler (10)
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Computations and Explorations 13

Estimate the probability that a randomly generated simple graph with n vertices is
connected for each possible integer n not exceeding ten by generating a set of random
simple graphs and determining whether each is connected.

Solution: To solve this problem we create a procedure that generates a number of random graphs of
the specified size and counts the number that are connected. We use the RandomGraph command
to create the random graphs and the IsConnected command to test them for connectivity.

| ConnectedProbability :=proc(verts: :posint, total: : posint)
2 local G, count;
3 uses GraphTheory, RandomGraphs;

s count :=0;
s from 1 to total do
6 G := RandomGraph (verts,.5);

7 if IsConnected (G) then
8 count :=count + 1;

o end if ;

10 end do;

I return count/total;
»| end proc:

> [seq (ConnectedProbability (i, 100) ,i = 1..10)]
[1 1 11 13 7 21 24 19 97 49] (10.157)

72725725710725725720° 1007 50
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Exercises

Exercise 1. Write a Maple procedure to find a/l maximal matchings for a bipartite graph.

Exercise 2. Write Maple procedures for calculating the adjacency and incidence matrices for a
pseudograph.

Exercise 3. Write a Maple procedure for creating a pseudograph from an incidence matrix.

Exercise 4. Write a Maple procedure to automate the creation of vertex-colored graphs to illustrate
graph isomorphisms, as was done with the graphs from Example 11 at the end of Section 10.3 of
this manual.

Exercise 5. Write a Maple procedure to find all of the minimal edge cuts of a given graph.

Exercise 6. Write a Maple procedure to determine whether a mixed graph (with directed edges,
multiple edges, and loops) has an Euler circuit and, if so, to find such a circuit.

Exercise 7. Use Maple to construct all regular graphs of degree n, given a positive integer n.
(Regular is defined in the Exercises for Section 10.2.)

Exercise 8. For vertices # and v in a simple, undirected, and connected graph G, the local vertex
connectivity k (u, v) is defined to be the minimum number of vertices that must be removed so that
there is no path between vertex u and vertex v. Write a Maple procedure that calculates the local
vertex connectivity of a graph and a pair of its vertices.

Exercise 9. For vertices u and v in a simple, undirected and connected graph G, the local edge con-
nectivity 4 (u, v) is defined to be the minimum number of edges that must be removed so that there is
no path between vertex u and vertex v. Write a Maple procedure that calculates the local edge con-
nectivity of a graph and a pair of its vertices.

Exercise 10. Write a Maple procedure that computes the thickness of a nonplanar simple graph (see
the Exercises in Section 10.7 for a definition of thickness).

Exercise 11. Write a Maple procedure for finding an orientation of a simple graph. (An orientation
of a graph is defined in the Supplementary Exercises of Chapter 10.)

Exercise 12. Write a Maple procedure for finding the bandwidth of a simple graph. (The bandwidth
of a graph is defined in the Supplementary Exercises of Chapter 10.)

Exercise 13. Write a Maple procedure for finding the radius and diameter of a simple graph.
(The radius and diameter of a graph are defined in the Supplementary Exercises of Chapter 10.)

Exercise 14. Use Maple to find the minimum number of queens controlling an n X n chessboard for
as many values of n as you can. Make use of the concept of a dominating set, described in the Sup-
plementary Exercises of Chapter 10.

Exercise 15. Write a Maple procedure for finding all self-complementary graphs on n vertices.
(A self-complementary graph is a graph which is isomorphic to its own complement.) Use your
procedure to display the self-complementary graphs for as large a n as possible.
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Exercise 16. Write a Maple procedure that finds a total coloring for a graph. A total coloring of a
graph is an assignment of a color to each vertex and each edge such that: (a) no pair of adjacent ver-
tices have the same color; (b) no two edges with a common endpoint have the same color; and (c) no
edge has the same color as either of its endpoints.

Exercise 17. A sequence of positive integers is called graphic if there is a simple graph that has this

sequence as its degree sequence. In this context, the degree sequence of a graph is the nondecreasing
sequence made up of the degrees of the vertices of the graph. Develop a Maple procedure for deter-

mining whether a sequence of positive integers is graphic and, if it is, to construct a graph with this

degree sequence.
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