12 Boolean Algebra

Introduction

In this chapter, we will use Maple to model Boolean algebra. In the first section, we demonstrate the
basic commands of the Logic package, which will be used extensively in this chapter. In the second
section, we will focus on the disjunctive normal form of a logical expression. We will see how to use
Maple’s command for finding a disjunctive normal form expression for a Boolean function, and we
will develop a procedure for finding such a representation for a function defined by a table of values.
In Section 3, we will see how Maple can be used to model logical circuits, including how to go about
transforming a circuit diagram into a Maple expression. We also provide a procedure that will trans-
form a logical expression into a model of a circuit. In the final section of the chapter, we consider
simplification of logical expressions, and we develop an implementation of the Quine-McCluskey
method.

In this chapter, we will be using the Maple package Logic. This package includes several commands
related to Boolean algebra that will be useful. We load this package now.

> with(Logic) :

12.1 Boolean Functions

In this section, we will introduce Maple’s Logic package, which can be used to explore Boolean
algebra. In particular, we will see how Maple represents Boolean operators, how to work with
Boolean expressions, and how to create Boolean functions. We will also use Maple to verify
identities in Boolean algebra and to compute the dual of an expression.

Preliminaries

In Chapter 1 of this manual, we discussed Maple’s logical expressions. The Boolean values true and
false are represented by the literal constants true and false. To Maple, these are constant values, like
the numbers 2 or Pi.

We also saw in Chapter 1 the logical operators, including and, or, and not. These are similar to
arithmetic operators like + and *. Combining Boolean values with the logical operators causes
Maple to evaluate the resulting expression.

> true or (not( false) and false)
true (12.1)

These “ordinary” operators are a vital part of any programming language, as they are needed for
controlling execution of procedures. Moreover, Maple recognizes a third value, FAIL, which is
useful from the perspective of programming. (The help page for Boolean expressions| provides
tables showing how the operations are defined on true, false, and FAIL.)

The Logic package provides a second set of Boolean operators. The basic operators are &and, &or,
and &not. These are supplemented by &nand, &nor, &xor (exclusive or), &implies (implication),
and &iff (biconditional).
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These operators are different from the ordinary operators in three ways. First, they are inert, as
opposed to active. This means that when you enter an expression in Maple using the Logic package
operators, they are not immediately evaluated. They are, however, displayed in symbol form in the
output.

> (true &or &not( false))&and false
(true Vv (—false)) A false (12.2)

This makes it easier to explore and analyze Boolean expressions symbolically since Maple will not
perform simplification until you explicitly tell it to do so.

The second difference is that the operators in the Logic package do not recognize FAIL as a logical
value.

The third difference is that the Logic operators all have equal precedence, so you should fully paren-
thesize statements.

More on Precedence

Precedence and parentheses require a bit of explanation. Recall that the usual order of operations for
logical operators is not, then and, then or, and finally implication. When you enter an expression
with the Logic operators, this order of precedence is not respected.

For example, if you enter p or g and r, using the Logic operators, Maple will consider the opera-
tions from left to right.

> p &or g &and r
Vg AT (12.3)

Note that in the output for that expression, Maple has put p V g in parentheses. This is consistent
with the fact that the operators have equal precedence, meaning that the &or is applied first. That
is, (p V q) A ris the interpretation of what was input.

Using the inert Logic operators, you must enforce the order of precedence yourself. To input
p V g A rand have Maple interpret it in the correct order, you must use parentheses.

> p &or (¢ &and r)
pV(Q@AT) (12.4)

It is a good idea to always fully parenthesize your input with the Logic package or you may obtain
erroneous results.

The 0-1 Form of Boolean Algebra
We conclude this subsection with a warning.

The textbook uses the objects 0 and 1 with operations +, -, and — instead of true, false, v, A, and =
as we have done. Maple does, in fact, have commands available for using the 0—1 form. The Logic
package contains commands, Import and Export, that can be used to change between expressions
involving the Logic inert operators and either the active Boolean operators or a 0—1 form, called
MOD2.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.


https://www.maplesoft.com/support/help/Maple/view.aspx?path=Logic
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Logic
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Logic
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Logic
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Logic
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Logic
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Logic
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Logic
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Logic,Import
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Logic,Export
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Logic

However, the MOD2 form is in opposition to the conventions used in the textbook. Specifically, in
Maple, + corresponds to &xor, rather than &or.

To avoid the confusion that this difference could create, we will always use the logical form in this
manual. However, some readers may be interested to know that it is possible to create operators to
mirror the kinds of Boolean algebra expressions used in the text. To do so, you can create definitions
for the inert addition, multiplication, and negation operators. Recall that in Chapter 4, we made def-
initions for the inert arithmetic operators in order to emulate modular arithmetic.

For example, to define a Boolean +, we define &+ as follows.

> &+ = (a::{0,1},b :: {0,1}) — ifelse(a=1orb=1,1,0)
&+ = (a::{0,1},b::{0,1}) — ifelse(a=1orb=1,1,0) (12.5)

The type declarations will ensure that only bits are allowed to be addends.
With this definition, we can now compute O + 1.

> 0&+1
1 (12.6)

Once the definitions of &* and a unary &- are in place, we could compute the value of
1-0+ (0+ 1) (Example 1) by entering the following:

> (1 &+ 0) &+ (&—(0 &+ 1))

Definitions of the other operations are left to the interested reader. In this manual, we will not use
this approach, since the logical form of Boolean expressions is more naturally supported by Maple.

Boolean Expressions and Boolean Functions

We saw above how to create Boolean expressions using the inert Logic operators. Now, we will look
at how to evaluate Boolean expressions and how to create Boolean functions.

Evaluating Boolean Expressions
Because the operators in Logic are inert, you must explicitly tell Maple to evaluate expressions
involving them by applying the BooleanSimplify command.

Consider Example 1 from the text, which asks that we compute the value of 1 - 0+ (0 + 1). To
perform this computation in Maple, we must first translate it into a logical statement. We do this by
changing 1 into true, O into false, the multiplication into A, the addition into V, and the bar into —.

This results in the Boolean expression (true A false) vV = (false V true). Note that we added paren-
theses since the Logic arguments have equal precedence.

Using Maple’s active logical operators, as in Chapter 1, we would just enter the statement to
evaluate it.

> (true and false) or not( false or true)
false 12.7)
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Using the inert operators, we apply the BooleanSimplify command. This command accepts only
one argument, the logical expression that it is to simplify. In this example, it will simplify the
expression down to a single truth value.

> BooleanSimplify ((true &and false) &or &not (false &or true))
false (12.8)

As you might guess from the name, BooleanSimplify does more than evaluate an expression
to a truth value. It will also simplify more general expressions involving unassigned names. For
example, consider the Boolean expression (x + y) (x + z). In logical terms, thisis (x V y) A (x V 2).

> BooleanSimplify ((x &or y) &and (x &or 7))
XV A2 (12.9)

Note that Maple has simplified this in accordance with the distributive law.

Representing Boolean Functions
Defining a Boolean function is identical to defining any other function in Maple.

Consider, for example, the Boolean function shown below (written in the O—1 notation).
F(x,y,2) = xy +yz + zx.

This can be modeled in Maple by the procedure Fp (p for procedure).

i| Fp :=proc(x,vy, z)
> return (x &and y) &or (y &and z) &or (z &and x) ;
;| end proc:

It is often more natural, however, to model such functions as functional operators.

> F := (x,y,27) » (x &and y) &or (y &and z) &or (z &and x)
F =y, ((xAYVOIAD)V(EZAX) (12.10)

You can work with F (or Fp) in the usual way. The following applies F to p, q, and r.

> F(p,q,r)
((PAg@V(gAD)V(rAp) (12.11D)

Observe what happens when F is applied to truth values.

> F (true, false, true)
((true A false) v (false A true)) V (true A true) (12.12)

Because the operators &and and &or are inert, Maple does not automatically simplify to a truth
value. We have to explicitly call BooleanSimplify.

> BooleanSimplify (F (true, false, true))
true (12.13)
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It can be easier to embed the call to BooleanSimplify in the function definition itself. We redefine F
to include BooleanSimplify.

> F 1= (x,y,2) >
BooleanSimplify (x &and y) &or (y &and z) &or (z &and x))
F = (x,y,2) — BooleanSimplify ((xAy)V (Y AZ2) V (ZAX)) (12.14)

Now applying F to p, q, and r produces the same result as before, since the expression cannot be
simplified any further.

> F(p,q,7)
@AQV(gAT)V(rAp) (12.15)

But applying F to truth values will return a single truth value.

> F (true, false, true)
true (12.16)

You can also mix truth values and symbols. In this case, the inclusion of BooleanSimplify in the
definition of F causes Maple to simplify the expression as much as possible, given the partial infor-
mation.

> F(true,q,r)
gvr 12.17)

The output indicates that if p is known to be true, then (p A q) V (g A1) V (r A p) 1s equivalent to
qVvr.

Values of Boolean Functions

Examples 4 and 5 of Section 12.1 illustrate how the values of a Boolean function, in the 0—1 for-
mat, can be displayed in a table. In the logical form, this is equivalent to a truth table for the Boolean
function. In Chapter 1 of this manual, we created truth tables by looping through all the possible val-
ues and also mentioned TruthTable.

The TruthTable command requires two arguments. The first argument is a Boolean expression. The
second is a list of the variable names that appear in the expression.

For example, we will display the table of values for the Boolean function F defined above. The first
argument to the TruthTable command will be the Boolean expression obtained by F(p,q,r). The
second argument will be the list [p,q,r].

> Fdataframe := TruthTable (F (p,q,1),[p,q,7])
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p q r value |
1 false false false false
2 false false true false
3 false true false false
4 false true true true (12.18)
5 true false false false
6 true false true true

7 true true false true

8 true true true true

Note that the result of TruthTable is a DataFrame object. If you wish to access individual ele-
ments, you can do so by referring to the row and column labels. For example, the entries in the 4th
row corresponding to g and to the result are:

> Fdataframe[4, 'q']

true (12.19)
> Fdataframe([4, 'value']
true (12.20)

Note that the single quotes are not necessary, unless the name has been assigned to something.

Perhaps surprisingly, if you use the bracket selection operator with a single entry, either by number
or name, it will refer to a column, not a row.

> Fdataframe(4), Fdataframe['value']
1 false 1 false

2 false 2 false

3 false 3 false

4 true 4 true
) (12.21)
5 false 5 false
6 true 6 true
7T true 7T true
_8 true 8 true |

To extract a row, give two dots as the second index in the selection operation, which Maple under-
stands to be the entire range of values. Below, we also put the row number in a list. This can be used
to select multiple rows; here, it has the effect of the output appearing as a row.

> Fdataframe[[4], ..]
r value
P 1 (12.22)

4 false true true true
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The TruthTable command allows you to specify the representation of the truth table with the
output option, if you would prefer a Matrix or table. Tables can be a very useful alternative to
a DataFrame, since the indices in the table will be tuples corresponding to the values of the
independent variables and the corresponding values are the truth values of the expression.

> Ftable := TruthTable (F (p,q,7),[p,q,r], output = table)
Ftable := table ([(true, false, false) = false, ( false, false, true) = false,
(true, false, true) = true, (true, true, false) = true,
(true, true, true) = true, (false, true, true) = true,

(false, true, false) = false, (false, false, false) = false]) (12.23)

We illustrate interacting with the table form by printing one entry at a time. Recall that indices
applied to a table produces a sequence of lists.

> indices ( Ftable)

[true, false, false], [false, false, true), [true, false, truel, [true, true, false],
[true, true, truel, [false, true, truel, [false, true, false],
[false, false, false] (12.24)

In order to use the indices with the selection operation, we must apply op|to remove the added list
structure.

> for iin indices( Ftable do

print(i, Ftable[op(i)])
end do

[true, false, false], false
[false, false, truel, false
[true, false, true], true
[true, true, false], true
[true, true, true], true
[false, true, true), true
[false, true, false], false
[false, false, false], false (12.25)

Operations on Boolean Functions
As with functions on real numbers, Boolean functions can be combined using basic operations. The
complement as well as the sum and product of Boolean functions are defined in the text.

To compute complements, sums, and products of Boolean functions, you must define a new func-
tion in terms of the original. For example, consider the function G (x,y) = x - y. In logical notation,
thisis G (x,y) = x A y.

> G := (x,y) = BooleanSimplify (x &and y)
G = (x,y) — BooleanSimplify (x A y) (12.26)
The complement of G, which we will call notG, is created as follows. The arguments of notG are
the same as G. The formula that defines notG is &not G(x,y). That is, &not is applied to the result

of evaluating G on the arguments. And once again, BooleanSimplify is called.
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> notG .= (x,y) = BooleanSimplify (&not (G (x,y)))
notG .= (x,y) — BooleanSimplify (-G (x,y)) 12.27)

Observe that if we evaluate notG at a pair of variables, the presence of BooleanSimplify ensures
that De Morgan’s law is applied.

> notG (x,y)
() Vv (=) (12.28)

Let us define another function, H (x,y) = x - y.

> H := (x,y) = BooleanSimplify(x &and (&not y))
H := (x,y) = BooleanSimplify (x A (1)) (12.29)

To compute the Boolean sum G + H, we combine the functions with the &or operator. More pre-
cisely, we define a functional operator GpH with the formula G(x,y) &or H(x,y).

> GpH := (x,y) = BooleanSimplify (G (x,y) &or H (x,y))
GpH := (x,y) — BooleanSimplify (G (x,y) V H (x,)) (12.30)

Applying this to a pair of variables, we obtain the following formula for G + H.

> GpH (x,y)
X (12.31)

This result indicates that x - y + x - y = x. This can also be verified using the identities in Table 5 of
Section 12.1.

Identities of Boolean Algebra

The Logic package’s Equivalent command makes checking identities and equivalence of Boolean
expressions fairly straightforward. This command can also be used to check equality of Boolean
functions.

Identities and Equivalence of Boolean Expressions
We will use the distributive law x (y + z) = xy + xz as an example. First, we must translate the state-
ment from the 0—1 form into a statement of logic: x A(yVZ) = (x Ay) V (x A 2).

Now, we assign the expressions on either side of the equivalence to names. This is not necessary, but
it will make later statements easier to read.

> distributivelL := x &and (y &or 7)
distributivelL := (x A (Y V 2)) (12.32)

> distributiveR .= (x &and y) &or (x &and z)
distributiveR = (X Ay)V (X A2) (12.33)
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To confirm the equivalence of the two Boolean expressions, we use the Equivalent command. This
command requires two arguments, the two Boolean expressions that are to be tested for equivalence.
The command returns true if the expressions are equivalent and false if not.

> FEquivalent (distributivel, distributiveR)
true (12.34)

This verifies the given distributive law.

The Equivalent command also accepts an optional third argument. In the case that the two expres-
sions are not equivalent, if you provide an unevaluated name (a name in single right quotes), then
that name will be assigned to a set of assignments of truth values to the variables in the expression
that demonstrate that the expressions are not equivalent.

Consider the nonequivalence: x + xy # y. In logical form, this is x V (x A y) # y. Apply the
Equivalent command with third argument "P’.

> Equivalent ((x &or (x &and y)),y, 'P’)
false (12.35)

The name P now stores a set indicating assignments for x and y.

> P
{x = false,y = true} (12.36)

This output means that setting x equal to false and y equal to true provides a demonstration, by
counterexample, that x V (x A y) # y. Indeed, substituting x = false and y = true on the left hand
side produces

false Vv (false A true) = false V false = false.
That is not the same as the right-hand side, y, which is assigned true.

Note that the single right quotes around the name in the third argument of Equivalent ensure that,
should P have already stored a value, that value would be overwritten. If you omit the single quotes
and P has a value already stored in it, an error will result.

Equality of Boolean Functions
Equality of Boolean functions can also be checked with the Equivalent command. You do this by
applying the command to the two functions evaluated on the same variables.

Consider the following Boolean functions.
106y = ()

Hxy)=x+y.

Define the corresponding functional operators:

> fl := (x,y) = BooleanSimplify (&not (x &and y))
fl := (x,y) — BooleanSimplify (= (x A y)) 12.37)
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> f2 .= (x,y) = BooleanSimplify ((&not x) &or (&not y))
f2 = (x,y) — BooleanSimplify ((=x) V (7y)) (12.38)

We can test the assertion that f; (x,y) = f, (x,y) by applying the Equivalent command with argu-
ments f1(x,y) and f2(x,y).

> Equivalent (fI (x,y),f2(x,y))
e (12.39)

Duality

We conclude this section by introducing the Dual command. This command accepts only one argu-
ment, a Boolean expression, and produces the dual of that expression.

For example, consider the expression x - y +y - 7 + x - z. As a logical expression, this can be written
as (x A y) V (y A 72) V (x A z). We calculate the dual by applying the Dual command.

> Dual ((x &and &not (v)) &or (y &and &not (7)) &or (&not (x) &and 7))
(VEAQV ) A(X) V) (12.40)

Similarly, the dual of Xy + yz 4+ xz can be computed by

> Dual ((&not (x) &and y) &or (&not(y) &and 7) &or (x &and &not (z)))
() V) A((Y) V) AKXV (72)) (12.41)

Note that Exercise 13 of Section 12.1 asks you to prove that the expressionsx -y +y-z+x - zand
X-y+Yy-z+x-zareequivalent. The duality principle implies that the duals calculated above are
also equivalent. This can be verified by the Equivalent command.

> Equivalent ((12.40), (12.41))
true (12.42)

12.2 Representing Boolean Functions

In this section, we will see how to use Maple to express Boolean functions in the disjunctive normal
form (also called sum-of-products expansion). We will first look at the Maple command for turning
an expression in Boolean algebra into the disjunctive normal form. Then, we will see how to write a
procedure for finding an expression based on a table of values.

Disjunctive Normal Form from an Expression

Given an expression written in terms of the Logic operators, the Canonicalize command can be
used to transform the expression into disjunctive normal form.

As an example, consider Example 3 of Section 12.2: (x + y) z. In logical form, this is (x V y) A z.
We assign this logical expression to a name.

> Example3 .= (x &ory) &and &not (7)
Example3 = (xVy)A(77) (12.43)
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The Canonicalize command has several forms. To transform an expression into disjunctive normal
form, two arguments are required. The first argument is the expression to be transformed. Second,
you must provide a set or list containing the variables appearing in the expression.

> Canonicalize (Example3, {x,y,z})
((CDAXAY V(D AXA () V((72) Ay A (X)) (12.44)

Note that this agrees with the solution to Example 3.

The Canonicalize command also accepts a third argument used to specify the type of canon-
ical form desired. The default behavior is to produce disjunctive normal form, but this can be
emphasized by including the option form=DNF.

> Canonicalize (Example3, {x,y,z} ,form = DNF)
(CDAXAY) V(D AXA () V((F2) Ay A (7)) (12.45)

To produce conjunctive normal form instead, you use the form=CNF option.

> Canonicalize (Example3, {x,y,z} ,form = CNF)

AVYVYAEVYVEDAXY )V EDDAGY (X)) V(72)
A (=) V (7) V (72) (12.46)

There is a third option, form=MOD2, which results in the 0—1 canonical form. However, as we
mentioned earlier, Maple interprets + as the exclusive or, and thus the result of this option will be
different from what is described in the textbook.

The Normalize command can also be used to produce a disjunctive normal form expression. Note
that an argument specifying the variables is not used by Normalize. Like Canonicalize, the default
is disjunctive normal form, but form=DNF and form=CNF are both accepted by Normalize.

Here is the result of Normalize applied to Example 3.

> Normalize (Example3)
(2) AX)V((m2) AY) (12.47)

Note that the result is not the same as before. In fact, if you compare this result to the solution of
Example 3, you will see that this expression is equivalent to the second line in the step-by-step
expansion in the solution. In particular, it is the result of applying the distributive law to the original
expression.

Normalize produces an expression in disjunctive normal form. That is, the result is a disjunction of
terms with each term consisting of a conjunction of variables and their negations. It does not, how-
ever, produce canonical disjunctive normal form, like Canonicalize does.

The benefit of Normalize is that, as you can see, it is typically simpler than canonical disjunctive
normal form. The benefit of Canonicalize is that the canonical disjunctive normal form is unique.
That is, two equivalent expressions necessarily have the same canonical disjunctive normal form,
while Normalize may express them differently. While the textbook does not emphasize this, the
examples and techniques it describes are for producing the canonical sum-of-products expansion.
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Disjunctive Normal Form from a Table

Example 1 of Section 12.2 describes how to find an expression for a Boolean function represented
by a table of values. Here, we will show how to write a procedure to accomplish this task.

First, we must decide how we will represent the table of values in Maple. Rather than creating a
Maple table object, we will represent the table as the set of those assignments of truth values to
variables for which the function returns true.

For example, consider the function defined by the following table.

x y z | Fxy,2)
true | true | true false
true | true | false true
true | false | true false
true | false | false true

false | true | true false
false | true | false true
false | false | true true
false | false | false | false

There are four rows in the table for which the function returns true. We represent this table by form-
ing the set consisting of the four lists of values for x, y, and z corresponding to those rows.

> exampleTable := {[false,false,truel, false, true, false],
[true, false, false], [true, true, false] }
exampleTable := {[false,false, truel, [false, true, false],
[true, false, false], [true, true, false] } (12.48)

This will be the first argument to the procedure we create. The procedure will also need names for
the variables; therefore, we also require a list of names. This will be the second argument to the
procedure.

> exampleVariables = [x,y,z]
exampleVariables = |[x,y,Zz] (12.49)

To form the Boolean expression that represents this function, we follow Example 1. For each row in
the table for which the function returns true, that is, for each element in exampleTable, we produce
the corresponding minterm.

To create a minterm associated with an element of exampleTable, we proceed as follows. Initialize
a local variable to NULL. This variable will hold the sequence of variables or their negations. Then,
begin a for loop with loop variable ranging from 1 to the number of variables. Within the loop,

test whether or not the entry in the list of truth values is true or not. If the entry is true, then update
the sequence by adding the name of the corresponding variable. If the entry is false, then update
the sequence by appending the negation of the variable. Finally, apply &and to the sequence of
variables or negations of variables. This approach, rather than applying &and at each step, will
result in minterms without extra parentheses.
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The following procedure accepts a single list of truth values (a single row) and the list of variables,
and produces the minterm.

| FormMinterm:=proc (row: :list (truefalse), vars: :list (symbol) )
2 local mintermSeq, i;

3 uses Logic;

4 if nops (row) <> nops (vars) then

s error " Incorrect number of variables ";

6 end if ;

7 mintermSeq = NULL;

5 for i from 1 to nops (row) do

9 if row[i] then

10 mintermSeq :=mintermSeq, vars[i];

i else

12 mintermSeq :=mintermSeq, &not(vars[i]) ;
13 end if,’

" end do;

5 return sand (mintermSeq) ;

6| end proc:

This procedure, applied to a member of the exampleTable, produces the corresponding minterm.

> FormMinterm ([true, true, false], [x, y, z])
XAYA(T2) (12.50)

To create the Boolean expression for the function, all that remains is to form the disjunction

of the minterms produced by FormMinterm. The procedure below accepts the table repre-
sentation and list of variables as arguments. It first checks to see if it was passed the empty set,
and if so, returns the expression false. Similar to FormMinterm, it initializes a sequence to
NULL. For each element of the table representation, it calls FormMinterm and adds the output
from that procedure to the sequence. At the end, the &or operator is applied to the sequence of
minterms.

| BooleanFromTable :=proc (T: :set (list(truefalse) ), V: :list (symbol) )
2 local mtSeq, row, mt;

3 uses Logic;

4 if T = {} then

s return false;

6 end if ;

7 mtSeq :=NULL;

8 for rowin T do

N mt :=FormMinterm (row,V);
10 mtSeq :=mtSeq, mt;

I end do;

1 return &or (mtSeq) ;

»| end proc:

Note that the structured type set(list(truefalse)) ensures that the first argument is a'set whose mem-
bers are each alist with members of type truefalse (namely true or false).
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Applying the procedure to our example table produces the desired Boolean expression.

> BooleanFromTable (exampleTable, exampleVariables)

(A A V() AYA () V(XA () A (7))
V(XAYA(2) (12.51)

12.3 Logic Gates

In this section, we will use Maple to work with logic gates, particularly circuit diagrams. First, we
will see how to use Maple to translate a circuit diagram into an expression using the Logic opera-
tors. Then, we will do the reverse and see how to transform a logical expression into a circuit dia-
gram (modeled as a tree diagram).

Circuit Diagram to Logical Expression

Consider the circuit diagram shown below.

C—— b

Our goal in this subsection is to use Maple to produce a logical expression for the output of this
diagram.

To do this, we use the fact that the inert forms of the logical operators can be used in functional
form. In particular, &and and &or can be used as functions applied to sequences of expressions,
and &not can be applied to a single argument. For example, the following forms the disjunction of
X, Yy, and z.

> &or(x,y,2)
xXVyVz (12.52)

We give each gate in the diagram a label. The specific names are not important. We chose to label
the gates using the capital letter G with subscripts numbered from the right to the left.

a—\—>
—
:@»

a %G4

b

c—»|Gs
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Interpret the labels as names for both the gates themselves and for their outputs. Note that G is the
name for both the output of the final gate and also names the output of the circuit. First, we remove
any existing assignments with unassign.

> unassign'G1",'G2','G3,'G4, 'G5, 'd’, 'b’, ')

The input of G, is the outputs from gates G, and G;. That is to say, G; = G, OR G5. We can write
that in Maple.

> Gl = &or(G2,G3)
Gl := G2VvG3 (12.53)

For each gate, do the same. Note that the order in which the gates are specified is irrelevant. The out-
put G, isa AND b.

> G2 .= &and(a,b)
G2 :=anb (12.54)

The output of Gj is the conjunction of Gy, b, and Gs.

> G3 = &and (G4, b, G)S)
G3 := G4ADANGS (12.55)

And G, and G5 are the results of inversion on a and ¢, respectively.

> G4 .= &not(a)
G4 = -a (12.56)

> G5 := &not(c)
G5 := ¢ (12.57)

Once all of the gates have been specified, inspect the value for the final gate, G;.

> Gl
(anb)V ((ma) Ab A (—c)) (12.58)

This tells us that the circuit’s result in 0—1 form is ab + abc.

The reason this works is that when we define the output of a gate in terms of unassigned names, such
as G2, Maple accepts the definition. When G2 is later assigned its own value and then the statement
G1 is executed, Maple resolves all assigned names into their definitions so that the expression for
G1 is in terms of unassigned names (a, b, and c¢) only.

Logical Expression to Circuit Diagram

We have just seen how to use Maple to transform a circuit diagram into a logical expression for the
result of the circuit. Now we consider the reverse. Given a logical expression, such as that for G1,
we will use Maple to transform the expression into a circuit diagram.
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We will model a circuit diagram as an ordered rooted tree. While circuit diagrams are not necessar-
ily ordered, making the tree ordered will allow for the possibility of including Boolean functions as
subcircuits.

Vertices in the tree will correspond to gates in the circuit. One of the vertices is distinguished as the
root, which will correspond to the final gate, whose output is the output of the circuit. Each vertex
has a number of children vertices. The edge between a vertex and its child corresponds to the input
to the gate. Each vertex other than the root has a parent, and the edge from the vertex to the parent
corresponds to the output from the gate.

The assumption that a circuit can be modeled as a tree requires that the circuit satisfy the following
properties. First, the circuit has only one output. Second, each gate has only one output. Third, there
are no branches (e.g., an input cannot be used as input to more than one gate). Given that our goal
is to begin with a logical expression and create a corresponding abstract circuit, these restrictions
are of little importance. If we were actually building physical circuits, there would be efficiency
concerns.

Recall that in Chapter 11, we wrote the procedure InfixToTree for converting an algebraic expres-
sion in terms of inert versions of the binary arithmetic operators into a tree representation. We will
make use of the procedures from Chapter 11 here, and have included them in the package for this
chapter as well. Thus, if you apply with to either “Chapter 11" or “Chapter 12,” the needed com-
mands will be included.

Recall that the procedures written in each chapter of this manual are collected in packages. If you
have not moved the library provided with the manual into Maple’s default library directory (you can
obtain the directory by inspecting the value of libname), then you should tell Maple where to look
for the manual’s library by executing a command like one of the two below.

> libname := libname, “/Users/danieljordan/DiscreteMath/”

> libname .= libname, FileTools[ParentDirectory] (
Maplets|Utilities][ GetFile] ('title’ = “Locate RosenMaplePackages.mla”,
'directory’ = currentdir (homedir) , filefilter = “mla”,
filterdescription = “Library Files™))

For the first of the commands above, you would need to replace the given directory path with a
string appropriate to your system and location of the provided .mla file. The second will open a
dialog that you can use to navigate to the directory. Note that these commands have been made
nonexecutable so that they will not create errors or open dialogs if you decide to execute the entire
worksheet. Once Maple is able to find the library file for the manual, the following will load the
needed procedures and type definitions.

> with(Chapterl2, VOrderComp, DrawORTree, NewExpressionTree,
JoinTrees, InfixToTree) :

Please refer to the Introduction or Maple’s documentation if you need more instructions on how to
use the packages on your system.

Observe what happens if we apply the InfixToTree command to the logical expression we obtained
from the circuit diagram above.
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> InfixToTree (G1)
Graph 1: a directed unweighted graph with 10 vertices and 9 arc(s) (12.59)

> DrawORTree (%)

Observe that the original circuit diagram and the tree have the same structure. After reversing the
arrows, rotating by 90°, and exchanging the symbols with the inert commands, the two are identical.

12.4 Minimization of Circuits

In this section, we will discuss the use of the BooleanSimplify command for minimizing circuits.
Then we will create a brute force algorithm for handling don’t care conditions. Finally, we will pro-
vide an implementation of the Quine—McCluskey method.

The BooleanSimplify Command

We described the BooleanSimplify command in the first section of this chapter. The command
accepts only one argument, a Boolean expression.

For example, we apply BooleanSimplify to G1, the expression we obtained for the output of the cir-
cuit diagram at the beginning of Section 12.3.

> BooleanSimplify (G1)
(anb)Vv (b A(—c)) (12.60)

The result indicates that —a can be removed as an input to the second AND gate.

Note that the result of BooleanSimplify is guaranteed to be minimal. That is, it is not possible
to reduce it further. It is not, however, guaranteed that the result is a minimum sum of prime
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implicants. That is, while no simplification of the output from BooleanSimplify is possible, it may
be the case that there is a simpler expression equivalent to the original input.

The reason for this lies in the final step of the Quine—-McCluskey method. Once the essential prime
implicants have been identified, you are left with prime implicants that are not essential and you
must identify the best choice of those prime implicants that will complete the cover. To find the
minimum expression, you use a backtracking approach (a depth-first search). Unfortunately, this
requires exponential time.

The alternative is to use a heuristic approach, choosing the prime implicants that cover the most
minterms. This is considerably more efficient, but does not guarantee that the resulting expression
is the minimum. At the conclusion of this section, we will design an implementation of the Quine—
McCluskey method using such a heuristic approach. Implementing a backtracking approach is left
as an exercise.

Don’t Care Conditions

Informally, a set of don’t care conditions for a Boolean function F is a set of points in the domain of
F whose images do not concern us.

If F is a function on n variables, then its domain is {true, false}". Let A be the subset of {true, false}"
for which the values of F' are specified. If we think of F' as fully defined on this subset A, then we are
interested in the family of all extensions of F to all of {true, false}". In other words, the set of all G
defined on {rrue, false}" that agree with F' on A. The goal is to choose the particular G that is “sim-
plest.” That is, the G that has the smallest sum of products expansion.

We should pause to consider the size of this problem. If there are d don’t care points, then there are
29 possible extensions G. Considering every possible extension can become rather time consuming.

The procedure we write will make use of the BooleanFromTable procedure from Section 12.2.
Recall that the BooleanFromTable procedure accepted a set consisting of those points for which
the function returns true. The points are represented by lists of trues and falses. It also required a
list of the names of the variables. BooleanFromTable returns the conjunctive normal form of the
function that returns true on the specified points and false on all others.

In DontCare, we will loop through every possible extension G of the input function F. Specifically,
the procedure will accept two sets of points. One representing those points for which the function
must return true, and the second set of points representing the don’t care conditions. It is understood
that the function must return false on all points in neither set. DontCare will also accept a list of
variable names.

Each extension G corresponds to a subset of the don’t care conditions. We will use the subsets com-
mand, described in Section 6.1 of this manual. Recall that subsets, when applied to a set, returns a
table with two elements. The finished element is a Boolean value set to true once all of the subsets
of the given set have been listed. The nextvalue entry is a procedure that, when executed, produces
the next subset.

For each subset of the don’t care conditions, DontCare will apply BooleanFromTable to the union
of the subset and the set of points for which F must be true. It will then apply BooleanSimplify to
the result.
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To determine the minimal expression, we compare expressions using the length command, which
returns an integer representing the length of the expression. (This is a crude comparison, but it will
suffice.) We use the standard approach of storing the simplest expression found so far, and replacing
it each time a shorter expression is located. Note that the first set produced by subsets is always the
empty set, so we initialize the temporary minimum to the function in which all don’t care conditions
are taken to be false.

DontCare :=proc (T: :set (list(truefalse)), DC: :set (list (truefalse)),

end proc:

V: :list (symbol) )
local minExpr, minLength, S, s, nextExpr;
uses Logic;
S = combinat [subsets] (DC) ;
s = S[nextvalue] () ;
minExpr :=BooleanSimplify (BooleanFromTable(T,V));
minLength = length (minExpr) ;
while not S[finished] do
s = S[nextvalue] () ;
nextExpr:=BooleanSimplify (BooleanFromTable (Tunions,V)) ;
if length (nextExpr) <minLength then
minExpr :=nextExpr;
minLength :=length (nextExpr) ;
end if ;
end do;
return minExpr;

Consider the Boolean function F defined by the following table of values, in which “d” in the final
column indicates a don’t care condition.

X y z | F(x,y,2)

false | false | false true
false | false | true false
false | true | false d
false | true | true d
true | false | false true

true | false | true false
true | true | false | false
true | true | true true

The points that must evaluate to true are

{[false, false, false), [true, false, false], [true, true, truel },

and the don’t care conditions are

{[false, true, false], [false, true, true]}.
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We apply the procedure DontCare with these two sets as inputs along with the list of variables.

> DontCare ({|false, false, falsel, [true, false, false], [true, true, truel} ,
{[false, true, falsel, [false, true, truel} , ['x', 'y, 'Z'1)

O ADV((Y)A(2) (12.61)

Before leaving don’t care conditions, we should mention that the Quine—McCluskey method, which
is the subject of the next subsection, provides a much more efficient solution than the procedure
DontCare.

To take don’t care conditions into account with the Quine-McCluskey method, you include them
in the list of minterms that are used to generate prime implicants, but you do not include them in
the list of minterms that need to be covered by the prime implicants. In terms of Example 9 of the
text, don’t care conditions appear in the first column of Table 3, but are omitted from the top row of
Table 4.

Quine—-McCluskey Method

We conclude with an implementation of the Quine—McCluskey method. This method is fairly
involved and it will take considerable effort to implement it correctly.

It will be helpful to have an example that we can use to illustrate the method as we build the proce-
dure. The expression we use for the example is

WXYZ + WXYZ + WXYZ + WXYZ + WXYZ + WXYZ + WXYZ + WXYZ + WXYZ + WXyZ.

We assign this to the name F.

> F := (w &and x &and (&not y) &and (&not 7)) &or
(w &and (&not x) &and y &and z) &or
(w &and (&not x) &and y &and (&not 7)) &or
(w &and (&not x) &and (&not y) &and (&not 7)) &or
(&not w &and x &and y &and 7) &or
(&not w &and x &and (&not y) &and z) &or
(&not w &and x &and (&not y) &and (&not 7)) &or
(&not w &and (&not x) &and y &and z) &or
(&not w &and (&not x) &and (&not y) &and z) &or
(&not w &and (&not x) &and (&not y) &and (&not 7)) :

Let us begin by (very) briefly outlining the approach. More details will be given as we proceed.

. Transform the minterms into bit strings.

. Group the bit strings by the number of 1s.

. Combine bit strings that differ in exactly one location.

. Repeat steps 2 and 3 until no additional combinations are possible.

. Identify the prime implicants (those bit strings not involved in a simplification) and form the
coverage table.

. Identify the essential prime implicants and update the table.

. Process the remaining prime implicants using a heuristic approach in order to achieve complete
coverage.

N RN =

~N N
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Implementing this will require several different procedures that will come together to achieve the
goal of minimizing the expression for F.

Modifying Arguments

Before we begin implementing the method, we take a moment to reiterate the use of evaln as
a parameter modifier, which we first described in Section 11.2. This will be used later in the
implementation to avoid the need to copy data structures that must be modified by a procedure.

Modifying a parameter with evaln means that, instead of sending a copy of the object to be worked
on by the procedure, you send the name of the object. This allows the argument to be modified
directly within the procedure. However, every time you want to access the value of the object, rather
than the name, you must apply eval to the parameter.

The procedure below adds 3 to its argument, changing the value stored in the name it is passed.

| add3 :=proc (x::evaln (integer) )
) X =eval (x) +3;
;| end proc:

Applying add3 to a name that stores an integer will now alter the value stored in the name.

> two =2

two =2 (12.62)
> add3 (two)

5 (12.63)
> two

5 (12.64)

Transforming Minterms into Bit Strings

The first task is to process the input. That is, F must be transformed into a list of bit strings. This is
not strictly necessary, but it makes working with the minterms more convenient. We represent bit
strings as lists of Os and 1s.

We begin by creating a procedure to transform a single minterm into a bit string. We assume that
the input to this procedure will be a properly formed minterm, that is, a conjunction of variables and
negations of variables. We require that a list of variables be provided to the procedure, so that the bit
string can be formed in the proper order.

Consider the following minterm, which is the fourth minterm in our example F.

> minterm .= w &and &not (x) &and y &and &not (7)
minterm = (W A (7x)) Ay) A (72) (12.65)

In order to transform this into the bit string [1, 0, 1, 0], we must first determine the variables and
negations of variables that are conjoined. Our first goal, therefore, is to transform the minterm into
the list [w, not x, y, not z].

For this, recall that the op command can be used to extract the operands of an expression. In this
case, op| will return the two operands of the final &and.
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> [op (minterm)]
[(WA (7x)) Ay, 2] (12.66)

In order to obtain a list of the conjoined variables and negations, we will repeatedly apply op.

We begin by initializing a list consisting of minterm as the only object and we set an index variable
equal to 1.

> MTList := [minterm]
MTList = [(WA (—x) Ay) A (2)] (12.67)

i =1 (12.68)

We create a while loop that will continue as long as the index variable is not greater than the length
of MTList. Within the loop, we consider MTList[i]. Comparing op(0,MTList[i]) to the operator
‘&and’ will tell us whether or not the ith member of the list is a conjunction. If so, we apply op

to it, using subsop to replace the i location in the list with op(MTList[i]). On the other hand, if
op(0,MTList[i]) is not ‘&and’, then we increment i.

> while i < nops(MTList) do
if op(0, MTList[i]) = } &and} then
MTList := subsop(i = op(MTList[i]), MTList)
else
i i=i+1
end if
end do

This has transformed MTList into a list of the conjoined variables and negations of variables.

> MTList
[w, x,y, ~Z] (12.69)

To complete the transformation into a bit string, we only need to check, for each variable, whether

the variable or its negation is in the list. Recall that we will insist that the procedure be given the list
of variables as an argument to maintain the proper order of the variables.

We first assign the list of variables to a name.

> variableList := [w,x,y,7]
variableList .= [w,x,y,z] (12.70)

Now create a list, initialized to the proper length, for the bit string.

> Bitstring .= [0$nops (variableList)]
Bitstring := [0,0,0,0] (12.71)
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Finally, we use a for loop to check, for each variable, whether the variable is in MTList. If the vari-
able is a member of MTList, then we change the bit to 1. Otherwise, we assume that the negation is
in the minterm and we leave the value in the bit string as 0.

> for i from 1 to nops(variableList) do
if variableList[i] in MTList then
Bitstring[i] = 1
end if
end do

This has created the bit string associated to minterm.

> Bitstring
[1,0,1,0] 12.72)

We condense this process into a single procedure.

| MTtoBitString :=proc(minterm,variableList: :list (symbol) )
2 local MTList, i, Bitstring;

3 uses Logic;

4 MTList := [minterm];

5 i := 1;

6 while i <=nops (MTList) do

7 if op(0,MTList[1]) = ‘cand’then

s MTList :=subsop(i=op (MTList[i]),MTList);
o else

10 1i:=1+ 1,'

1 end if,’

2 end do;

13 Bitstring := [0 $ nops (variableList)];

1 for i from1 to nops (variableList) do

5 if variablelList[i] InMTList then

6 Bitstring[i] :=1;

7 elif ‘snot’ (variablelList[i]) InMTList then
8 Bitstring[i] :=0;

19 else

2 error "Unrecognized object in MTList.";

21 end if,’

2 end do;

2 return Bitstring;

»| end proc:

> MTtoBitString (minterm, [w, X, y, z])
[1,0,1,0] (12.73)

Transforming the Original Expression into Bit Strings
Now that we have the means for transforming a single minterm into a bit string, we are ready to

transform an expression in disjunctive normal form into a list of bit strings.
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This works in nearly the same way as MTtoBitString did. Given an expression in disjunctive
normal form, we break it into a list, DNFList, but this time, instead of looking for the operator to
be ‘&and’, it must be ‘&or¢. Once the list is formed, we apply M TtoBitString on each element
of the list.

Here is the procedure. Notice that the first while loop is very similar to MTtoBitString, but after the
while loop, we complete the procedure with an application of map. We use variableList as a third
argument to map. When map)is given more than two arguments, subsequent arguments are treated
as additional arguments to the procedure. That is, map(P,L,a) applies the procedure P to (l,a) for
each 1 in the list L. In this case, MTtoBitString requires that the list of variables be passed to it each
time it is called.

| DNFtoBitList :=proc(dnfExpr,variableList: :list (symbol) )
2 local DNFList, i;

3 uses Logic;

4 DNFList := [dnfExpr];

5 i = 1,'

6 while i <=nops (DNFList) do

7 if op(0,DNFList[i]) = ‘¢or’then

8 DNFList :=subsop (i=op (DNFList[i]),DNFList) ;
0 else

10 1:=1+1;

11 end if,‘

2 end do;

13 return map (MTtoBitString,DNFList,variablelList);

| end proc:

Apply this procedure to the example expression.

> Fbits := DNFtoBitList (F,[w,x,y,z])
Fbits :=[[1,1,0,0],[1,0,1,1],[1,0,1,0],[1,0,0,01, [0, 1, 1, 1],
[0, 1,0, 11,10, 1,0,01,10,0, I, 1], [0,0,0, 1], [0, 0, 0, 0]] (12.74)

Transforming Bit Strings into Minterms
At the conclusion of the Quine-McCluskey process, we will want to display the result in disjunctive
normal form. This will require that we turn bit strings back into minterms.

Note that since this procedure will be applied at the end of the process, it may be that some of the
variables have been removed. We will be using the string “-” in a bit string to indicate the elimina-
tion of a variable.

This procedure will require the bit string and a list of variable names as its input. It operates in two
stages. First, it processes the variable list based on the content of the bit string. We make a copy
of the variable list and then modify it by applying &not when the entry in the bit string is 0 and by
replacing the variable with “-”” when that is the entry in the bit string.

> varList 1= [w,x,y,7]

varList .= [w,x,y,z] (12.75)
> bitstr 1= [0,1,“=7",0]

bitstr = [0,1,“=",0] (12.76)
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> for i from 1 to nops(varList) do
if bitstr[i] = 0 then
varList[i] := &not(varList[i])
elif bitstr[i] = “—" then
varList[i] = “=”
end if
end do

> varList

13 2

, 7] 12.77)

[-w, x,

Once this processing has been done, we remove any occurrences of “-” by replacing them with
NULL. The subs command accepts as its arguments a sequence of equations and a final expression.
For example, subs(x=a,expr). The result of this statement is that every occurrence of X in expr is
replaced by a. With the equation “-”’=NULL and the processed variable list as the arguments, subs
will return the list with each ““-”” removed.

> varList .= subs (“=" = NULL, varList)
varList .= [-w,x, Z] (12.78)

To form the conjunction, we simply apply jop to extract the sequence of variables and negations
from the enclosing list and then apply &and.

> &and (op (varList))
(W) AxA(72) (12.79)

We combine these steps into a procedure.

| BitStringtoMT :=proc(bitstring,variableList: :list(symbol) )
2 local varList, i;

3 uses Logic;

4 varList :=variablelist;

s for i from 1 to nops (varList) do

6 if bitstring[i] =0 then

7 varList[i] =&not(varList[i]);
8 elif bitstring[i] ="-"then

5 varList[i] :="-";

10 end if,’

i end do;

" varList :=subs ("-"=NULL, varList) ;

" return &and (op (varList));

| end proc:

Applied to [0, 1,0, 1] and [x, y, z, w], we see that BitStringtoMT reproduces the original minterm.

> BitStringtoMT ([0, 1,0, 1], [w, x, y, z])
(W AXA(CY)AZ (12.80)
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And applied to [0, 1, “—", 1], it removes the y.

> BitStringtoMT ([0, 1,“=", 1], [w, x, y,z])
(W)AXAZ (12.81)

Initializing the Source Table

In order to form the coverage table in the second part of the method, we need to know which of the

original minterms are covered by which of the prime implicants. Refer to Tables 3 and 6 in the text.
Notice that each bit string in those tables is associated with either a single number, in the case of the
original minterms, or lists of numbers, for the derived products.

We will store this information in a table whose indices are the bit strings and whose entries are sets
of integers. Given the Fbits list, we initialize this table with the elements of Fbits as the indices. The
corresponding entries will be the set consisting of the bit string’s position in Fbits.

We will refer to this as the “coverage dictionary,” since it allows us to look up any bit string and
determine all of the original minterms covered by it. The following procedure accepts the Fbits list
as an argument and returns the coverage dictionary.

| initCoverDict :=proc (L: :list)
2 local coverDict, i;

3 coverDict :=table() ;

s for i from1 to nops (L) do

s coverDict [LI[i]] :={1};
6 end do;

7 return coverDict;

s end proc:

Applying this procedure to Fbits produces the initial coverage dictionary. In order to inspect the
entries, we must apply leval to the name of the table.

> coverageDict .= initCoverDict ( Fbits)
coverageDict = coverDict (12.82)

> eval (coverageDict)
table ([[0,1,0,0] = {7},[0,0,1,1] = {8},[0,1,0,1] = {6},
[0,1,1,1] = {5},[1,1,0,0] ={1},[0,0,0,1] = {9},[1,0,1,0] = {3},
[1,0,0,0] = {4},[0,0,0,0] = {10},[1,0,1,1] = {2}]) (12.83)

Grouping by the Number of 1s
Step 2 in our outline is to group the bit strings by the number of 1s.

The reason for this step is to improve the efficiency of finding simplifications to make. Since two bit
strings can be combined only when they are identical except for one location, the only possible com-

binations are when one bit string has » 1s and the other has n — 1.

After step 1 is concluded, we have a list of bit strings. That will be the starting point for the proce-
dure we create for this step. The result of this step will be to turn the list of bit strings into a table
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of sets of bit strings, which we call groups. Associated to index i in groups will be the set of all bit
strings with i 1s.

For each member of Fbits, we need to count the number of 1s. The|Occurrences function from the
ListTools package can do this for us, as illustrated below. We will use ListTools fairly extensively,
so we load it to use the short forms of its commands.

> with(ListTools) :

> Occurrences (1,[1,0,1,1,0,0,1])
4 (12.84)

Observe that the first argument is the object being sought and the second is a list. The result is the
number of occurrences of the first argument in the list. It is tempting to use the add command to add
the bits in the list. We cannot do this, however, because after the first simplification, our bit strings
will contain symbols that are not 1s or Os.

To sort the members of Fbits into groups, based on the number of 1s, we will apply the Classify
command, also in the ListTools package. This command requires as its first argument a function and
a list as its second argument. It returns a table whose indices are the unique results of the function
applied to the elements of the list, and, associated with each of those values is the set of members of
the list which produce that value. For example, the following classifies a set of values based on the
floor function.

> Classify (floor,[3,5,3.8,6.2,6.9,3.02,4.7,5.5, x])
table ([3 = {3,3.02,3.8,7},4 = {4.7},5={5,5.5},6 = {6.2,6.9}]) (12.85)

Here is the result of classifying Fbits.

> groups .= Classify (bitstr — Occurrences (1, bitstr) , Fbits)
groups .= table ([0 = {[0,0,0,0]},1 = {[0,0,0,1],[0,1,0,0],[1,0,0,0]},
2 =1{[0,0,1,1],[0,1,0,1],[1,0,1,0],[1,1,0,01},
3={[0,1,1,1],[1,0, 1, 11}]) (12.86)

In practice, we will want to ensure that every possible index from O to the length of a bit string
appears in the table. One way to do this is by using the tablemerge function applied to the table

in which every possible index is associated with the empty set. When given two tables as the

only arguments, the second table’s entry is used when an index appears in both. For example, the
following would add indices 4 and 5 to the groups table, although nothing is being modified by this
command.

> tablemerge (table ([seq (j = {},] S))), groups)
table ([0 = {[0,0,0, O]},1={[ 0 ,11,10,1,0,0],[1,0,0,0]},
2 =1{[0,0,1,1],[0,1,0,1],[1,0,1,01,[1,1,0,01},
3={[0,1, L1 [L,0,1,11},4 = {},5={}D (12.87)

We encapsulate this in a small procedure.
2
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3 uses ListTools;

4 groupTable :=Classify(bitstr —>Occurrences(l,bitstr),
bitstringlList);

5 max :=nops(bitstringlList[1]);

6 return tablemerge (table ( [seg(j={}, j=0..max) ]), groupTable) ;
end proc:

-

Combining Bit Strings

Step 3 is to combine all of the bit strings that differ in exactly one location. We first write a proce-
dure that takes as input two bit strings and either combines them if,, in fact, they do differ in exactly
one location, or returns false if they do not.

This procedure needs to do two tasks. First, it has to check to see whether or not the two bit strings
differ in more than one location. Second, it needs to combine them if they are allowed to be
combined.

Combining two bit strings is easy, provided we know the one location in which they differ. For
example,

> bitl = [1,“-7,0,1,1]
bitl = [1,“-",0,1,1] (12.88)

> bit2 1= [1,“-",0,0,1]
bit2 :=[1,“-",0,0,1] (12.89)

You can see that these are identical except in position 4.
To merge them, we take either one and replace position 4 with “-”.

> subsop (4 = “=", bitl)
[1,%=",0,%=",1] (12.90)

We determine that they differ only in position 4 as follows. Begin by initializing a name pos, for
position, to 0. This will hold the position at which the difference occurs. Setting it to 0 indicates that
we have not found a difference.

Now use a for loop to compare each pair of entries in bitl and bit2. If we find a difference, check the
value of pos. If pos is 0, then we know that this is the first time a difference was found and we set pos
to the position of the difference. If pos is not 0, however, then we know that this is the second time a
difference was found. In this case, the bit strings cannot be merged and we return false. If the loop
completes without having returned false, then the two bit strings can be merged at position pos.

Here is the procedure.

| MergeBitstrings :=proc(bitl: :list, bit2: :list)
2 local i, pos;

; pos :=0;

" for i from 1 to nops (bitl) do

5 if bitl[i] <>bit2[i] then
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6 if pos =0 then

7 pos =1;

5 else

0 return false;

10 end if ;

1 end if,’

2 end do;

3 return subsop (pos="-",bitl);
| end proc:

We see that it works correctly on our two example bit strings.

> MergeBitstrings (bitl, bit2)
[1 , cc_”’ O, “_”’ 1] (12.91)

Searching for Combinations to Make
The MergeBitstrings procedure will do the work of checking to see if bit strings can be merged and
returning the result if they can. However, we need to give MergeBitstrings the bit strings to test.

Recall that, in our example, we have successfully grouped the minterms by the number of 1s they
contain.

> eval (groups)
table ([0 = {[0,0,0,0]},1 = {[0,0,0,1],[0,1,0,0],[1,0,0,0]},
2 ={[0,0,1,1],[0,1,0,1],[1,0,1,0],[1,1,0,0]},
3={[0,1,1,1],[1,0, 1, 11}]) (12.92)

Here, we will produce a list containing all the bit strings formed by merging two members of
groups. Since there may be multiple ways to obtain the same bit string, we store these as a set. We
initialize to the empty set.

> Fbits] = {}
Fbits] = @ (12.93)

Also recall that it is only possible to merge bit strings when one has n 1s and one has n — 1 1s. This
suggests a for loop with n ranging from 1 to the maximum index in groups. Within the body of the
for loop, we will consider the sets with n — 1 1s and the set with n 1s.

The loop is structured as follows:

> for n to max(indices(groups)) do
A = groups[n];
B := groups[n — 1]
end do :

After A and B have been defined, we need to compare every possible pair. We use two more for
loops, one for each member of A and one for each member of B. Within the inner for loop, we use

MergeBitstrings and store the result. If it is not false, we add it to the new list of bit strings, Fbits1.
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> for n from 1 to max(indices(groups)) do
A = groups[n];
B = groupsin — 1]
for ain A do
for bin B do
m .= MergeBitstrings(a, b);
if m # false then
Fbits] .= Fbits] union {m};
end if
end do
end do
end do :

> Fbits]l = [op (Fbitsl)]
Fbitsl = [[0,0,0,“-"],[0,0,“=",1],[0,1,0,“="], [0, 1, “=", 1],
[0,“=",0,0],]0,*“-",0,1],[0,“=",1,1],[1,0,1,“="],[1,0,“=",0],
[1,“-",0,0],1“-",0,0,0],[“-",0,1,1],[“=",1,0,0]] (12.94)

This is close to the procedure we want, but we need to think ahead a bit. Recall from the descrip-
tion of the Quine—McCluskey process in the text that, in order to proceed with the second half of the
method, we need to know which of the bit strings are prime implicants. That is, which bit strings are
never used in a simplification.

We will track which bit strings are used as follows. Before the first loop, we create a set consisting of
all of the bit strings in groups. We do this using the functional ‘union‘ applied to the entries of the
groups table. Note that use of the nolist option; by default, entries wraps each entry in a list.

> }union} (entries (groups, nolist))
{[O?O’ O’O]’ [0’ O’O? 1]’ [O’O?]" 1]7 [0?]"0’0]’ [O’ ]"O? 1]’ [O’ 1’1’ ]‘]?
[1705 07 0], [170’ 170]7 [17 07 17 1]’ [1’ 170’ 0]} (12"95)

Then, each time MergeBitstrings returns true, we remove the pair of bit strings from this set, using
the minus set operator.

The procedure will return the sequence consisting of the next level of bit strings and the prime
implicants from this stage. Here is our second attempt at the procedure.

1| NextBitListtry2 :=proc(lastgroups)

2 local nextl, primeImps, n, A, B, a, b, m;

3 nextL = {};

4 primeImps := ‘union‘ (entries (lastgroups,nolist)) ;
s for n from 1 to max (indices (lastgroups)) do
6 A = lastgroups|[n];

7 B := lastgroups[n-1];

8 for a in A do

5 for b in B do

10 m = MergeBitstrings(a,b);

I if m <> false then

i nextl :=nextLunion {m};
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13 primeImps :=primeImps minus {a,b};
14 end if;

is end do;

16 end do;

i end do;

18 nextl = [op (nextl) ];

19 return nextlL, primelImps;

»| end proc:

This still is not sufficient, however, because we also need to update the coverage dictionary as
we create new bit strings. Recall that “coverage dictionary” is the name we gave to the table that
records, for each bit string, which of the original minterms are covered by that bit string. The
coverage dictionary was initialized with the bit strings formed from the minterms.

> eval (coverageDict)

table ([[0,1,0,0] = {7},[0 0 1 11 =1{8},[0,1,0,1] = {6},
[0,1,1,1] = {5},[1,1, = {1},[0,0,0,1] = {9},
[1,0,1,0] = {3}, [1,, = {4},[0,0,0,0] = {10},
[1,0,1,1] = {2}]) (12.96)

Within the NextBitList procedure, we need to update the coverage dictionary. We will make the dic-
tionary a parameter. Note that it will not be necessary to return the updated dictionary, nor is it nec-

essary to make a copy of the parameter. This is because, as we mentioned in Section 2.6 of this man-
ual, tables are “reference types,” so unlike most arguments, they are altered by the procedure.

We update the dictionary within the m <> false if statement. When we form a new bit string m, we
obtain the set of minterms it covers by taking the union of the sets of minterms covered by the two
bit strings that were merged. That is,

coverDict[m] := coverDict[a] union coverDict[b];.

Note that bit strings formed beyond the first step are typically generated multiple times. However,
each time they are generated, they always cover the same set of original minterms.

Here is the final version of NextBitList.

1| NextBitList :=proc(lastgroups, coverDict)

2 local nextL, primeImps, n, A, B, a, b, m;

3 nextL = {};

" primeImps := ‘union‘ (entries (lastgroups,nolist));
5 for n from 1 to max (indices (lastgroups)) do

s A := lastgroups[n];

7 B := lastgroups[n-1];

8 for a in A do

5 for b in B do

10 m := MergeBitstrings (a,b);

i if m <> false then

12 nextl :=nextL union {m};

13 primeImps :=primeImps minus {a,b};
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14 coverDict [m] :=coverDict[a] union coverDict [b];
15 end if,

i end do;

i end do;

8 end do;

19 nextl = [op (nextl) ];

20 return nextlL, primeImps;

x| end proc:

We apply it to groups to obtain Fbits1 and primesl.

> Fbitsl, primesl := NextBitList (groups, coverageDict)

Fbitsl, primesl := [[0,0,0,“-"],[0,0,“-",1],[0, 1,0, “="],
[0,1,“->,1],10,*“-",0,01, [0, “=",0, 11, [0, “=", 1, 1], [1,0, 1, “="],
[1,0,“->,0],[1,“-",0,0],[“-",0,0,0],[“-",0, 1, 1],

[“=",1,0,0]], @ (12.97)

We see that there are

> nops (Fbitsl)
13 (12.98)

bit strings in the second level, but no prime implicants coming from the first pass.

> nops (primesl)

0 (12.99)

In addition, almost as a side effect, the procedure has updated coverageDict.

> eval (coverageDict)

table ([[0,1,0,0] = {7},[0,“-",0,1] = {6,9},[0,0,1,1] = {8
[0,1,0,1] = {6},[0,“-",0,0] = {7,10},[1,0,“=",0] = {3,
“-=7.0,0,0] = {4,10},[“-",0,1,1] = {2,8},[0,0,“=", 1]
[0,1,1,1]1={5},[1,1,0,0] = {1},[0,0,0,1] = {9},
[0,0,0,“-"] = {9,10},[0,“-",1,1] = {5,8},[1,“-",0,0] = {1,4},
[1,0,1,0] = {3},[1,0,1,“="] = {2,3},[“-",1,0,0] = {1,7},
[0,1,0,“-"]1={6,7},[1,0,0,0] = {4},[0,0,0,0] = {10},
[0,1,“=", 1] ={5,6},[1,0,1,1] = {2}]) (12.100)

Repeating
Step 4 is to repeat steps 2 and 3.

The Fbits1 list takes the place of Fbits. We apply sortGroups to produce groupsl.

> groupsl := sortGroups ( Fbitsl)
groupsl := table ([0 = {[0,0,0,*“-"],[0,“-",0,0],[“-",0,0,0]},
1 ={[0,0,“-",11,[0, 1,0, “-"], [0, “-",0,1],[1,0,“=",0],
[1,“-",0,0],[*-",1,0,0]},2 = {[O,1,“=", 1], [0, “=", 1, 1],
[1,0,1,“="],[“=",0,1,1]},3 ={},4={})) (12.101)
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Then applying NextBitList to groups1 produces Fbits2 and primes2.

> Fbits2, primes2 .= NextBitList (groupsl, coverageDict)
Fbl‘tsz, prl‘mesz : — [[0’ 6‘_”’ O’ ‘6_’7]’ [O, ‘6_’7, L‘_”, 1]’ [‘6_’7, “_”’ 0, 0]]’
{ [1’ 03 17 “_”], [17 07 “_”7 0]7 [“_”’ 03 17 1] } (12'102)

We see that we have found three prime implicants. The coverage dictionary was further expanded to
include the new bit strings.

> eval (coverageDict)
table ([[0,1,0,0] = {7},[0,“=",0,1] = {6,9},

[“=",“=",0,0] = {1,4,7,10},[0,0,1,1] = {8},[0,1,0,1] = {6},
[0,“-",0,0] ={7,10},[1,0,“=",0] = {3,4},[“-",0,0,0] = {4,10},
[“=",0,1,1]1={2,8},[0,0,“-",1] = {8,9},[0,1,1,1] = {5},
[1,1,0,0] = {1},[0,0,0,1] = {9},[0,0,0,“="] = {9,10},
[0,“=",“=",1]1 = {5,6,8,9},[0,“=",1,1] = {5, 8},
[1,=7,0,0]={1,4},[1,0,1,0] = {3},[1,0,1,“="] = {2,3},

—

[“=",1,0,0] = {1,7},[0,“=",0,“="] = {6,7,9,10},
[0,1,0,“="]={6,7},[1,0,0,0] = {4},[0,0,0,0] = {10},
[0,1,“=",1] ={5,6},[1,0,1,1] = {2}]) (12.103)

Do the same thing again with Fbits2.

> groups2 .= sortGroups ( Fbits2)
groups2 := table ([0 = {[0,“-",0,“="],[“=",“=",0,0]},
1 =A{[0,"-""="11}.2={},3={},4={}D (12.104)

> Fbits3, primes3 .= NextBitList (groups2, coverageDict)
Fbits3, primes3 = [],
{[O, “_”’ O, “_”]’ [O, “_97, “_”’ 1]’ [“_”, “_,7’ O, 0]} (12.105)

This time, Fbits3 was empty, which indicates that no more merging is possible and all prime impli-
cants have been found.

This part of the process concludes by forming the list of all the prime implicants.

> allprimelmps .= [op (primesl union primes2 union primes3)]
allprimelmps : — [[O’ ‘6_’7’ O, “_’7]’ [O, ‘4_’7, “_,7’ 1]’ [1’ O’ 1, 66_57]’
[1? 0’ “_”5 0]? [“_”’ 07 1? 1]7 [“_”? “_”? 07 0]] (12’106)

Forming the Coverage Table
Now that we have identified all of the prime implicants, we will use the coverage dictionary to create
the coverage table.

Take a look at the final state of the coverage dictionary.

> eval (coverageDict)
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table ([[0,1,0,0] = {7},[0,“=",0,1] = {6,9},
[“=",“=",0,0] = {1,4,7,10},[0,0,1,1] = {8} ,[0, 1,0, 1] = {6},
[0,“=",0,0] = {7,10},[1,0,“=",0] = {3,4},[“-",0,0,0] = {4,10},
[“-=",0,1,1] = {2,8},[0,0,“=", 1] = {8,9},[0,1,1,1] = {5},
[1,1,0,0] ={1},[0,0,0,1] = {9},[0,0,0,“="] = {9,10},
[0,“=",“=",1] = {5,6,8,9},[0,“=",1,1] = {5,8},
[1,“=",0,0] ={1,4},[1,0,1,0] = {3},[1,0,1,“="] = {2,3},

[“_”7 170? 0] = {177} s [O? “_”? Oa “_”] = {67 77 97 10} )
[0,1,0,“-"]1={6,7},[1,0,0,0] = {4},[0,0,0,0] = {10},
[Oa 19“_”’ 1] = {596} ’ [1907 17 1] = {2}]) (12'107)

Each bit string, and in particular each prime implicant, is an index in this table. The corresponding
entry is the set of integers which are the indices to the original minterms in Fbits. Thus, to deter-
mine which of the original minterms are covered by each prime implicant, we look it up in the table.

We will model the coverage table as a matrix. Each row corresponds to a prime implicant, so there
will be

> nops (allprimelmps)

6 (12.108)

rows. Each column corresponds to a minterm, so there are

> nops ( Fbits)
10 (12.109)

columns. The entries in the matrix will be Os and 1s with 1 in position (i, j) indicating that the prime
implicant at position i in allprimeImps covers the minterm at position j in Fbits.

Recall that if the Matrix command is given two integers as its only arguments, it will create the
matrix whose size is specified by the integers and has all O entries.

> Matrix(nops(allprimelmps), nops( Fbits))
00000000007
0000000000
0000000000
0000000000
0000000000
(0000000000 |

(12.110)

To enter 1s in the appropriate positions, we loop over the rows, considering each prime implicant in
turn. For each prime implicant, we look up its entry in the coverage dictionary to obtain the set of
minterms it covers. For each of those minterms, we place a 1 in the matrix.

The following procedure initializes the coverage table.
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| initCoverMatrix :=proc(minterms, primeImps, coverDict)
2 local M, i, C, j;

3 M := Matrix (nops (primeImps) , nops (minterms)) ;
4 for i from1 to nops (primeImps) do

s C = coverDict [primeImps[i]];

6 for jin C do

7 M [l, j ] = 1,’

8 end do;

9 end do;

10 return M;

u| end proc:

Applied to our example, this produces the following coverage table.

> coverageTable := initCoverMatrix ( Fbits, allprimelmps, coverageDict)

00000110117
0000110110
0110000000
0011000000
0100000100

(1001001001 |

(12.111)

Manipulating the Matrix

Once the coverage table is set up, we move to steps 6 and 7, determining which prime implicants to
include in the minimal expression. In step 6, we identify the essential prime implicants and in step 7
we identify which of the nonessential prime implicants we will include. We will see how to identify
the prime implicants to use in a moment.

To aid in performing both steps 6 and 7, we will be manipulating the coverage table. Once we have
decided to include a particular prime implicant in the minimal expression, we can take three actions.

First, record the decision by adding the prime implicant to a new list, say minBits, the list of bit
strings to be included in the minimal expression.

Second, delete that prime implicant’s row from the coverage table and delete the columns corre-
sponding to the minterms it covered. We know the prime implicant will be in the expression, and,
thus the minterms it covers are satisfied. Hence, there is no longer any need to keep track of that
information.

Third, delete the prime implicant and the minterms it covers from the lists storing them (Fbits and
allprimeImps). This is to ensure that the indices of Fbits and allprimeImps continue to match the
row and column numbers of the matrix.

We write a procedure that implements these actions. Its input will be the index to the prime
implicant that has been chosen. It will also accept the names of the coverage matrix, the list of
minterms, and the list of prime implicants. All of these will be modified in the procedure (refer to
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Modifying Arguments above). The procedure will return the bit string of the prime implicant that
was chosen.

Our procedure will be called UpdateCT, for “update coverage table.” The minBits list, the list of
chosen prime implicants, will be updated via the return value. This accomplishes the first task for
this procedure.

Second, we must delete the row corresponding to the chosen prime implicant and the columns
corresponding to the minterms covered by that implicant. Suppose, in our example, that we have
decided to include the fourth prime implicant in the final result. This is

> allprimelmps[4]
[17 Os “_”a 0] (12.112)

From coverageTable, we need to remove row 4 (since this corresponds to the prime implicant). We
also need to remove the columns corresponding to the minterms covered by this prime implicant. To
determine which columns are to be removed, we find the locations of the 1s in the row of the matrix.

To determine the locations of the 1s, we loop over the columns checking each position in row 4 to
see if'itis 1 or not. We use the (ColumnDimension command from the LinearAlgebra package to
determine the number of columns.

> with(LinearAlgebra) :

> covered .= {}
covered = @ (12.113)

> for i to ColumnDimension(coverageTable) do
if coverageTable[4,i] = 1 then
covered .= covered union {i}
end if
end do :
covered

{3,4} (12.114)

We now know that we need to remove row 4 and columns 3 and 4. To do this, we use a complicated
selection.

We have seen that ranges can be used to select from lists. The same is true for matrices. For example,
we can obtain the first three rows of this matrix as follows.

> coverageTlable[1..3,1.. — 1]
0000011011

00001101160 (12.115)
0110000000

The first range indicates rows 1 through 3, the second that we want all the columns, from the first to
the last.
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You can also give lists of the rows instead of ranges.

> coverageTable|[1,2,3],[1,2,3,4,5,6,7,8,9, 10]]
0000011011
0000110110 (12.116)
0110000000
In our example, we want all of the rows except for the fourth, which we can obtain from the pair of

ranges 1..3 and 5..6. More generally, if newPl is the index of the new prime implicant to be included
in the minimal expression, we would use 1..(newPI-1) and (newPI+1)..-1.

> rowd =4
rowd =4 (12.117)
> coverageTable[[1 ..(row4 — 1), (row4 + 1).. — 1],[1 .. — 1]]
(000001101 1]
0000110110
0110000000 (12.118)
0100000100
1001001001

For the columns we will take a different approach. Begin with the set of all column indexes.

> colList := {$1..ColumnDimension (coverageTable)}
colList := {1,2,3,4,5,6,7,8,9,10} (12.119)

Now remove from this set the columns that are to be removed by subtracting the covered set.

> colList := colList minus covered
colList := {1,2,5,6,7,8,9,10} (12.120)

Then turn it into a list.

> colList := [op (colList)]
colList := [1,2,5,6,7,8,9,10] (12.121)

Using this to select the columns, we obtain the desired matrix.

> coverageTable|[1 ..(rowd — 1), (row4 + 1) .. — 1], colList]
(0001101 1]
00110110
01000000 (12.122)
01000100
10001001
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The reader is encouraged to compare this to the original matrix. Note that in this example, we have
not actually modified the table.

The last tasks are to remove the selected prime implicant from the list of prime implicants, and
remove the covered minterms from Fbits. We use subsop to remove elements from lists, as usual.
For instance, the following removes the fourth prime implicant.

> subsop (4 = NULL, allprimelmps)

[[o,*-",0,*~"1,10,"=",“=", 1], 1,0, 1,*="], [*=",0, 1, 1],
[cc_”’ “_”’ O, 0]] (12.123)

When removing the minterms, we remove them in the reverse order. For instance, to remove the
minterms in locations 3 and 4, we first remove the minterm in position 4 and then the minterm in
position 3. Otherwise, if we remove the minterm in location 3 first, then all the other minterms shift
location by 1. That is, the minterm previously in location 4 is now in location 3. By removing them
in reverse order, this is not a concern.

Here is the procedure. Remember that since we are using the evaln parameter option in order to
make parameters modifiable, we must use eval when we need the values of those objects.

1| UpdateCT :=proc(newPI, coverTable::evaln, minterms::evaln,
primeImps: :evaln)
2 local newPIbits, numcols, covered, i, colList;
3 newPIbits :=eval (primeImps) [newPI];
4 numcols:= LinearAlgebra[ColumnDimension] (eval (coverTable));
5 covered = {};
6 for i from 1 to numcols do
7 if eval (coverTable) [newPI,i] =1 then
s covered = coveredunion {1i};
9 end if ;
10 end do;
i colList := [op({$l.numcols} minus covered) ] ;
12 coverTable :=
eval (coverTable) [ [1l..(newPI-1), (newPI+1)..-1],collList];
13 primeImps := subsop (newPI=NULL, eval (primeImps) ) ;
14 for i from nops (covered) to1by -1do
s minterms := subsop (covered[i1i]=NULL,eval (minterms) ) ;
6 end do;
17 return newPIbits;
is| end proc:

Finding Essential Prime Implicants

Next we write a procedure to identify the essential prime implicants. Recall that a prime implicant is
essential when it is the only prime implicant to cover some minterm. In terms of the coverage table,
this is equivalent to the existence of a column with only one 1.

We will locate the essential prime implicants as follows. First, we initialize the set of essential prime
implicants to the empty list.
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We proceed in a manner similar to the MergeBitstrings procedure. We use a for loop to step
through the columns of the coverage table. Within this loop, we initialize a name, rowhasl, to 0.

We then enter a second for loop to step through the entries in the columns. When a 1 entry has been
found, we check rowhasl. If that name is 0, then it is assigned to the current row number. If it is not
0, then we have found a second 1 in the column and we assign rowhasl1 to —1 and use break to ter-
minate the inner loop. After the inner loop, we test rowhasl]. If it is positive, then we know that only
one 1 was located in that column, and hence the row the solitary 1 was found in corresponds to an
essential prime implicant. In this case, we add the row number (rowhas1) to essentials.

The following procedure implements this algorithm and returns the list of essential prime
implicants.

| FindEssentials :=proc(coverTable)

2 local essentials, i, j, rowhasl;

3 essentials = {};

s for i from1 to LinearAlgebra[ColumnDimension] (coverTable) do
s rowhasl :=0;

6 for jfrom1 to LinearAlgebra[RowDimension] (coverTable) do
7 if coverTable[j, 1] =1 then

s if rowhasl =0 then

0 rowhasl = j;

10 else

i rowhasl :=-1;

2 break;

13 end if}

14 end if,'

s end do;

6 if rowhas1 > 0then

17 essentials :=essentialsunion {rowhasl};
18 end if,’

19 end do;

2 return essentials;

x| end proc:

We use this to determine the essential prime implicants of our example.

> essentialPls .= FindEssentials (coverageTable)
essentialPls := {2,6} (12.124)

Now that we have the essential prime implicants, we can initialize minBits and apply UpdateCT to
the essential prime implicants. Once again, we loop through the list backwards.

> minBits = []
minBits = [] (12.125)

> for i from nops(essentialPIs)by — 1to 1 do
minBits .= [op(minBits), UpdateCT(essential PIs[i], coverageTable,
Fbits, allprimelmps)]
end do:
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> minBits
[[“_’7’ 66_’7’ O’ O]’ [O’ 6‘_’7’ ‘6_77’ 1]] (12.126)

> coverageTable
00

11

01

10

(12.127)

Completing the Coverage

Provided that the essential prime implicants did not completely cover the original minterms, we
must complete the coverage with nonessential prime implicants. First, we ensure that the coverage
is not complete by checking the column dimension.

> evalb (LinearAlgebra| ColumnDimension]| (coverageTable) > 0)
true (12.128)

As we mentioned earlier, we will use a heuristic approach to find a minimal set of prime implicants
rather than using an exhaustive search to determine the minimum. The heuristic we use will be to
choose the prime implicant with the most extensive coverage of the remaining minterms.

To find such a prime implicant, we will do the following. First, initialize maxCoverage and
bestImp both to 0. Then loop over each row of the (modified) coverage table. For each row, we
will compute the sum of the entries. If this sum is greater than maxCoverage, then set maxCov-
erage to the sum and set bestImp to the row number. Once the loop is complete, bestImp will
be the index to a row with maximum coverage and will be the next prime implicant added to the
minBits list.

Here is the procedure that implements this strategy.

1| £indBestImp :=proc(coverTable)

2 local maxCoverage, bestImp, i, j, sum;

3 maxCoverage :=0;

4 bestImp :=0;

s for i from1 to LinearAlgebra[RowDimension] (coverTable) do
6 sum :=0;

7 for jfrom1 to LinearAlgebra[ColumnDimension] (coverTable) do
8 sum :=sum+ coverTable[i, j];

9 end do;

10 if sum > maxCoverage then

T maxCoverage = sum;

12 bestImp = l,'

13 end lf,’

4 end do;

s return bestImp;

is| end proc:
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As long as the coverage table is not empty, we apply this procedure to it to obtain the next implicant.
We add the implicant to the list minBits representing the minimal expression and update the cover-
age table using updateCT.

> while LinearAlgebra| ColumnDimension](coverageTable) > 0 do
nextPl := findBestImp(coverageTable);
minBits .= [op(minBits), UpdateCT(nextPI, coveragelable, Fbits,

allprimelmps)]
end do
nextPl := 2
minBits = [[“-",“=",0,0],[0,“=",“=",1],[1,0,1,“="]] (12.129)

All that is left is to translate minBits back into a logical expression. This can be done using Bit-
StringtoMT applied to each element of minBits with the map command and then combined into
one expression with &or.

> &or (op (map (BitStringtoMT, minBits, [w, X, y, z])))
(WA V(W) AV (WA () AY) (12.130)

Putting It All Together
Finally, we assemble the pieces into a single procedure, which accepts a logical expression in dis-
junctive normal form and a list of its variables. It returns a minimal equivalent expression.

1| QuineMcCluskey :=proc(F, variables)

2 local Fbits, FbitsL, coverageDict, groups, primes, i,
allprimeImps, j, coverageTable, essentialPIs, minBits,
nextPI;

3 uses Logic;

s Fbits :=DNFtoBitList (F,variables);

s coverageDict :=initCoverDict (Fbits);

6 i = 0;

7 FbitsL[0] :=Fbits;

8 while FbitsL[i] <> [] do

9 i=1+1;

10 groups[i] :=sortGroups (FbitsL[i-1]);

1 FbitsL[i],primes[i] :=

NextBitList (groups[i], coverageDict) ;

2 end do;
13 allprimeImps == {};
14 for j from1 to i do
s allprimeImps :=allprimeImps unionprimes/[j];
6 end do;
17 allprimeImps = [op(allprimeImps)];
18 coverageTable :=
initCoverMatrix (Fbits,allprimeImps, coverageDict) ;
19 essentialPIs :=FindEssentials (coverageTable);
2 minBits :=1[1];
2 for i from nops (essentialPIs) to1lby-1do
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» minBits = [op (minBits), UpdateCT (essentialPIs[i],
coverageTable,Fbits,allprimeImps)];

23 end do;

2 while LinearAlgebra[ColumnDimension] (coverageTable) >0do
25 nextPI :=findBestImp (coverageTable);

2% minBits = [op (minBits),

UpdateCT (nextPI, coverageTable,Fbits,allprimelImps) ];
2 end do;

28 return &or (op (map (BitStringtoMT, minBits, variables)));

»| end proc:

Define Ex10 to be the expression in Example 10 from Section 12.4 of the text.

> EI10 := (w &and x &and y &and &not(z)) &or

(w &and &not(x) &and y &and 7) &or

(w &and &not(x) &and y &and &not(z)) &or

( &not w &and x &and y &and z) &or

( &not w &and x &and &not(y) &and z) &or

( &not w &and &not(x) &and y &and z) &or

( &not w &and &not(x) &and &not(y) &and z)

EIO := WAXAYA(D)VWA(X)AYAZV
WACEX)AYA(D)VEWAXAYAZD YV
(WAXACYAZDV(ETWA(CX)AYAZDV
WACEX)ACEY)AZ) (12.131)

> QuineMcCluskey (E10, [w, x,y,Z])
WAYA D)V (W) A2V (WA (7X) AY) (12.132)

Note that this is the first of the two answers given in the solution to Example 10.

Solutions to Computer Projects and Computations and Explorations
Computer Projects 2

Construct a table listing the set of values of all 256 Boolean functions of degree three.

Solution: The Boolean functions of degree three are in one-to-one correspondence with the subsets
of {true, false}3. This is because each subset S of {true, false}3 can be identified with the unique
Boolean function of degree three which returns true on the members of S and false on all other
inputs.

Thus, we begin by constructing the set {true, false}® and its power set.

To construct {true, false}’, we will use the cartprod command from the combinat package. (Refer
to Section 2.1 of this manual for details.) Like many of the commands for generating combinatorial
objects, cartprod produces a list with indices finished and nextvalue. We use it to form the

set TF3.

> TF3 := {)

TF3 = @ (12.133)
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> TF3iterator := combinat|[cartprod]([[true, false] $ 3]) :

> while not TF3iterator|finished] do
TF3 .= TF3union{TF3iterator[nextvalue]()}
end do :

> TF3
{[false, false, false], [false, false, truel, [false, true, false],
[false, true, truel, [true, false, false], [true, false, true],
[true, true, false), [true, true, true] } (12.134)

To produce the subsets of {true, false }3, we use the subsets command from combinat. This com-
mand also produces a table with indices finished and nextvalue.

> TF3subsets .= combinat[subsets|(TF3)

Now we will create a list of all of the Boolean functions. The subsets that are produced by
TF3subsets are each valid inputs to the BooleanFromTable procedure we wrote in Section 12.2.
We also apply BooleanSimplify, in order to have simpler representations, before adding the
expression to the list.

> allFunctions = [ ]
allFunctions .= [] (12.135)

> while not TF3subsets|finished] do
nextTF3subset .= TF3subsets|nextvalue]();
nextTF3function := BooleanFromTable(nextTF3subset,|x,y,z]);
nextTF3function := BooleanSimplify(nextTF3function);
allFunctions .= [op(allFunctions), nextTF3function];
end do :

The allFunctions list is lengthy, so we display only a few members.

> nops (allFunctions)

256 (12.136)

> allFunctions[1 ..10]
[false, (mx) A () A (72),2 A (7X) A (), y A () A (72), y Az A (),
XAV A, XAZA(Y),XAYA(T2),XAYAZ,
() A ()] (12.137)

To obtain the values of the functions, we will use the TruthTable command. Recall from the first
section that TruthTable requires two arguments, a Boolean expression and a list of variables that
appear in the expression. The result is a DataFrame object. Using the output option, we can spec-
ify the output to be a table with indices lists of truth values and corresponding entries the value of
the expression at the index.

We form the list of the truth tables associated to each function in the allFunctions list with the map
command. Note that we use the third argument [x,y,z] and fourth argument output=table in map
so that this list of variables and the option are passed to TruthTable each time it is applied to an
expression from allFunctions.
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> allTables := map(TruthTable, allFunctions, [x,y, 7], output = table) :
Each entry in allTables is a table storing the truth table.

> allTables[136]

table ([(true, false, false) = false, (false, false, true) = true,
(true, false, true) = true, (true, true, false) = true,
(true, true, true) = false, (false, true, true) = false,

(false, true, false) = true, (false, false, false) = false]) (12.138)
The output below indicates that the value of the 136th function on (true, false, true) is true.

> allTables|136][true, false, true)
true (12.139)

To display the entire truth table, loop through the members of TF3, each of which corresponds to
arow of the truth table. Then, loop through members of allTables and obtain the value of the cor-
responding function. We must apply jop to the member of TF3, since the index to a truth table is a
sequence not a list. For demonstration purposes, we restrict to the functions 100 through 105.

> for i from 1 to nops(TF3) do
row .= TF3[i];
for j from 100 to 105 do
row .= row,allTables|j][op(TF3|i])]
end do;
print(row);
end do :
[false, false, false], true, true, true, true, true, true
[false, false, true], true, true, true, true, true, true
[false, true, false], false, false, false, false, false, false
[false, true, truel, true, true, true, false, false, false
[true, false, false], false, false, false, true, true, true
[true, false, truel, true, false, false, true, false, false
[true, true, false], false, true, false, false, true, false
[true, true, truel, false, false, true, false, false, true (12.140)

The output above indicates that on the input ( false, false, false), all six Boolean functions associ-
ated to the integers 100 through 105 output true.

Computations and Explorations 6

Randomly generate 10 different Boolean expressions in four variables and determine the
average number of steps required to minimize them using the Quine—McCluskey method.

Solution: To solve this problem, we need to find a way to generate random Boolean expressions and,
then, we must find a method of examining the minimization process so that we can count the number
of steps.
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In the Logic package, the command Random produces a random Boolean expression. The only
required argument is a set or list specifying the symbols to be used. For example, to produce a
random Boolean expression on the symbols u, v, w, x, y, and z, you enter the following.

> Random ([u,v,w, x,y,z])
UAVAWAYACEX)ACZ))VUAWAXAYAZA(V)V
WUAWACEV)IACEX)ACY) AV
VAWA(u) A(x)ACY)A(T2) V
WAYACu) A W) A () A(72) V
VA CEu)AEw) A (=x) AEY) A(2) (12.141)

The Random command also accepts a second optional argument: form=CNF, form=DNF, or
form=MOD?2, specifying the form of the expression produced. The default form is disjunctive
normal form.

Having determined how to generate random expressions, we need to find a way to count the number
of steps taken during the minimization process. There are (at least) three approaches we could take
to this part of the problem.

The first is to measure the time taken to execute the procedure. We have done this many times
before.

> OMtime = []:

forito 10 do
randExp := Random([u,v,w,x,y,z]);
st .= time();
QuineMcCluskey(randExp, [u,v,w, x, v, z]);
et .= time() — st,
OMtime .= [op(QMtime), et]

end do :

Statistics[Mean] (OMtime)

0.000800000000000000 (12.142)

The second approach is to modify the procedure to count the number of times certain operations are
called. For example, we may be interested in the number of times that the UpdateCT procedure is
executed. In this case, we can alter UpdateCT to include a global variable that is incremented at the
start of every execution.

1| UpdateCT :=proc(newPI, coverTable::evaln, minterms::evaln,
primeImps: :evaln)

2 local newPIbits, numcols, covered, i, colList;

; global countUpdateCT;

" countUpdateCT :=countUpdateCT + 1;

s newPIbits (=eval (primelImps) [newPI];

6 numcols:= LinearAlgebra[ColumnDimension] (eval (coverTable));
7 covered = {};

5 for i from1 to numcols do

9 if eval (coverTable) [newPI,i] =1 then

10 covered = coveredunion {1i};
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11 end if,’
2 end do;
13 colList := [op ({$]l..numcols} minus covered) ] ;
14 coverTable :=
eval (coverTable) [ [l..(newPI-1), (newPI+1)..-1],collList];
s primeImps = subsop (newPI=NULL, eval (primelImps)) ;
6 for i from nops (covered) to1by-1do
17 minterms := subsop (covered[1i]=NULL,eval (minterms)) ;
8 end do;
19 return newPIbits;
»| end proc:

We must initialize the variable to O.

> countUpdateCT = 0
countUpdateCT := 0 (12.143)

Now execute QuineMcCluskey on 100 random expressions.

> forito 100 do
randExp := Random([u,v,w,x,y,z]);
QuineMcCluskey(randExp, [u, v, w, x,y,z])
end do :

The countUpdateCT variable will now store the number of times UpdateCT was called. Dividing
by 10 gives us the average.

countUpdateCT
>

100.
4.290000000 (12.144)

The third approach is to make use of Maple’s debugging facilities. We used tracelin earlier chapters
to get information about the workings of a procedure. Here, we will use the showstat command.

If you apply showstat to the name of a procedure, it will display the definition of the procedure with
line numbers added on the left hand side. An integer or a range of integers can be given as a second
argument to narrow the display to the desired lines.

> showstat (QuineMcCluskey, 5 ..8)
QuineMcCluskey :=proc(F, variables)

local Fbits, FbitsL, coverageDict, groups, primes, i, allprimeImps,
j, coverageTable, essentialPIs, minBits, nextPI;

5whileFbitsL[i] <> [] do
61:=1+1;

7groups[i] :=sortGroups (FbitsL[i-1]);
8FbitsL[i], primes[i] :=NextBitList (groups[i], coverageDict)
end do;
end proc
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You can get more information by telling Maple to track the procedure. You do this by calling the
debugopts command with argument traceproc= and then the name of the procedure.

> debugopts (traceproc = QuineMcCluskey)

Now we apply QuineMcCluskey to 1000 random expressions. We suppress the output as it is not
needed here.

> for i to 1000 do
randExp := Random([u,v,w,x,y,z]);
QuineMcCluskey(randExp, [u,v,w,x,y, z])
end do :

If we call the showstat command again, the output gives us more information than it did before.
> showstat (QuineMcCluskey)

QuineMcCluskey :=proc(F, variables)

local Fbits, Fbitsl, coverageDict, groups, primes, i, allprimeImps,
j, coverageTable, essentialPIs, minBits, nextPI;

|Calls Seconds Words |

PROC | 10000.77111315189]

1110000.1311769082] Fbits :=DNFtoRitList (F,variables);

2110000.007361562| coverageDict :=initCoverDict (Fbits);

3110000.0010]1:=0;

4110000.002273000] FbitsL[0] :=Fbits;

5110000.01314080| whileFbitsL[i] <> [] do

6118160.0030] 1 :=1i+1;

7118160.2765184118| groups[i] :=sortGroups (FbitsL[i-11);

8118160.075897695| FbitsL[i], primes[i] :=NextBitList (groups[i], cove
do;

91 10000.0000] allprimeImps :={};
101 10000.0020] for jtoido
11118160.01031134] allprimeImps :=allprimeImpsunionprimes|[j]end

do;
121 10000.0014000] allprimeImps := [op(allprimeImps) ];
13110000.036554955]| coverageTable :=initCoverMatrix (Fbits,allprimel
14110000.031330035] essentialPIs :=FindEssentials(coverageTable);

|
|
|
15110000.0030| minBits :=1[];
|
|

16 1 10000.0140]| for i fromnops (essentialPIs) by-1toldo
17141870.096961581| minBits :=[op(minBits), UpdateCT (essentialPIs[i.
do;

18 |1 10000.004 20100] while 0 < LinearAlgebra[LinearAlgebra:-
ColumnDimension] (coverageTable) do
191 50.000430] nextPI :=findBestImp(coverageTable);

201 50.000895| minBits := [op(minBits), UpdateCT (nextPI, coverageTable,
do;

21 110000.066912522| returnLogic:—-“&or’ (op(map (BitStringtoMT, minBit
proc
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In addition to the line numbers, you see three columns labeled Calls, Seconds, and Words. Note that
above line 1 is line PROC. This refers to information for the procedure as a whole.

The Calls column reports the number of times the line was executed. That the Calls column contains
10 in the PROC row indicates that the procedure was called 1000 times. Note that lines 17 and 20
are the lines containing the calls to UpdateCT. The sum of the values in the Count column is the
number of times UpdateCT was called.

The Seconds column reports the amount of CPU time that was spent executing the line.
The Words column indicates the amount of memory that was allocated as a result of the statement.

Together, the three columns give you a considerable amount of information about the computational
complexity, performance, and memory requirements of a procedure. In QuineMcCluskey, we see
that the most time and memory are used in line 7, the call to sortGroups. However, the UpdateCT
procedure was executed more often in line 17.

You can also have Maple store this information in a table for you by calling debugopts with argu-
ment traceproctable= and the name of the procedure.

> traceTable .= debugopts (traceproctable = QuineMcCluskey)

1.22x1.3Array
Data Type: integer,
Storage: rectangular
Order: C_order

traceTable =

(12.145)

The entries in this table correspond to the information displayed. The first row stores information
about the procedure as a whole.

> traceTable|1,1 ..3]
[1000 771 11315189] (12.146)

Information on specific lines is stored in the row one greater than the line number. For instance, the
data related to the calls of UpdateCT, in line 17 and 20, are contained in the table at 18 and 21.

> traceTable[[18,21],1 ..3]

4187 96 961 581

s 0 895 (12.147)

Note that the second column, containing the time measurement, has been multiplied by 1000.

Executing

> debugopts (traceproc = QuineMcCluskey)

a second time clears the information that was stored and toggles the option to have Maple record the
Calls, Seconds, and Words information back off.
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Exercises

Exercise 1. Use Maple to verify De Morgan’s Laws and the commutative and associative laws. (See
Table 5 of Section 12.1.)

Exercise 2. Construct truth tables for each of the following pairs of Boolean expressions and decide
whether they are logically equivalent.

a) a— bandb — a

b) a—>bandb - a

¢c) a+bcand(a+b+d)(a+c+d).

Exercise 3. Write a Maple procedure that translates Boolean expressions or functions written in
terms of 0, 1, and the inert addition, multiplication, and negation operators into expressions in
terms of the logical operators and values. (Hint: the implementation of the InfixToTree procedure in
Chapter 11 of this manual may be helpful.)

Exercise 4. Write a Maple procedure that, given a Boolean function, represents this function using
only the &nand operator.

Exercise 5. Use the procedure in the previous exercise to represent the following Boolean functions
using only the &nand operator.

a) F(x,y,2) =xy+yz

b) G(x,y,2) =x+xy+yz

c) H(x,y,2) = xyz+xyz

Exercise 6. Write a Maple procedure that, given a Boolean function, represents this function using
the &nor operator.

Exercise 7. Use the procedure in the previous exercise to represent the Boolean functions in
Exercise 5 using only the &nor operator.

Exercise 8. Write a Maple procedure for determining the output of a threshold gate, given the values
of n Boolean variables as input, and given the threshold value and a set of weights for the threshold
gate. (See the Supplementary Exercises of Chapter 12 for information on threshold gates.)

Exercise 9. Develop a Maple procedure that, given a Boolean function in four variables, determines
whether it is a threshold function, and if so, finds the appropriate threshold gate representing this
function. (See the Supplementary Exercises of Chapter 12.)

Exercise 10. A Boolean expression e is called self dual if it is logically equivalent to its dual e,
Write a Maple procedure to test whether a given expression is self dual.

Exercise 11. Determine, for each integer n € {1, 2, 3,4, 5, 6}, the total number of Boolean functions
of n variables and the number of those functions that are self dual.

Exercise 12. Write a Maple procedure that, given a positive integer n, constructs a list of all Boolean
functions of degree n. Use your procedure to find all Boolean functions of degree 4.

Exercise 13. Use DontCare to compute a minimal sum of products expansion for the Boolean func-
tions with don’t care conditions specified by the Karnaugh maps shown in Exercises 30 through 32
of Section 12.4.
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Exercise 14. How can you change exactly one character in the definition of the procedure DontCare
so that it returns the last expression of minimum length that it encounters that is equivalent to the
input function? (As written now, it returns the first.)

Exercise 15. Use the procedure you wrote in Exercise 10 to write a Maple procedure to generate
random Boolean expressions in 4 variables and stop when it is has found one that is self dual. Run
the program several times and time it. Find the average time. Repeat for Boolean expressions in

5 and 6 variables. Can you make any conjectures from this information?

Exercise 16. Revise the procedure DontCare to return all minimal expressions that it finds, rather
than just the first.

Exercise 17. Revise the procedure DontCare to use different measures of complexity of Boolean
expressions, such as the number of Boolean operations, etc.

Exercise 18. Modify QuineMcCluskey to allow for don’t care conditions. See the discussion at the
end of the Don’t Care Conditions subsection in Section 12.4 of this manual.

Exercise 19. Modify QuineMcCluskey to use backtracking instead of the heuristic approach
in order to determine the expression with the minimum number of terms. Use a large number of
randomly generated expressions to compare the old procedure with the new and determine how
often the heuristic produces nonoptimal output.
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