
13 Modeling Computation

Introduction
In this chapter, we will use Maple to create implementations of theoretical models of computation.
We will see how to generate elements of a language from a type 2 phrase-structure grammar and
how to implement finite-state machines with and without output. We will also examine Maple’s sup-
port for regular expressions, and we will implement Turing machines.

13.1 Languages and Grammars
In this section, we write a procedure to generate elements of a language from a type 2 phrase-
structure grammar. Recall that a type 2 grammar has productions only of the form w1 → w2 with w1

a single nonterminal symbol.

Our strategy for generating the language will be as follows. We initialize a set L to the empty set. In
this set, we will store all words, that is, strings consisting only of terminal symbols. A list A is ini-
tialized to the set consisting of the starting symbol.

We process an element of A by removing it from the list and applying all possible productions to it.
The results of the productions are either placed in L if they consist solely of terminal symbols, or
placed at the end of A to be processed further.

In order to prevent the time taken from becoming excessive, we will stop processing elements of
A either if A becomes empty of if a set number of words have been produced. This limit will be an
argument to our procedure.

Representation
We first need to determine how we will model the elements of the grammar in Maple.

We insist that terminal symbols be represented as characters (strings), so that the words produced
can be presented as strings. Nonterminal symbols can also be represented as strings, but, for conve-
nience, we will use unassigned Maple names instead.

Strings containing nonterminal symbols will be represented as lists, but words will be presented
as strings. Note that the cat (concatenation) command accepts any number of strings and con-
catenates them. Given a list consisting entirely of strings, we apply op followed by cat to obtain a
single string.

> cat (op ([“a”, “b”, “c”, “d”]))
“abcd” (13.1)

Productions will be stored in a table. The indices of the table will be the nonterminal symbols
(recall that we are considering only type 2 grammars). The entry associated to a nonterminal
symbol will be the set of all products derivable from that symbol.

In Example 12, S → AB is the only derivation from the starting symbol, so {[A,B]}will be the entry
associated to S in the table. On the other hand, B → Ba, B → Cb, and B → b are all productions
from B. Thus, {[b], [B, a], [C, b]} would be the entry associated to B.
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Here is the production table for Example 12. We begin by ensuring the names used as the nontermi-
nal symbols do not store values.

> unassign(′S′, ′A′, ′B′, ′C′)∶

> Ex12productions ∶= table( )∶

> Ex12productions[S] ∶= {[A,B]}∶

> Ex12productions[A] ∶= {[C, “a”]}∶

> Ex12productions[B] ∶= {[“b”], [B, “a”], [C, “b”]}∶

> Ex12productions[C] ∶= {[“b”], [“c”, “b”]}∶

> eval (Ex12productions)
table ([A = {[C, “a”]} ,C = {[“b”], [“c”, “b”]} , S = {[A,B]} ,

B = {[“b”], [B, “a”], [C, “b”]}]) (13.2)

Our procedure will require the following arguments: the set V defining the vocabulary, the set T of
terminal symbols, the starting symbol S, the table of productions P, and the limit on the number of
words to generate, wordlimit. Note that, with the exception of the limit on the number of words, this
is the same information that makes up a grammar. If you wish, you could apply the timelimit func-
tion to limit the run of the procedure by time rather than number of words, but the procedure will
run so quickly that imposing a limit on the number of words generated also controls the length of
the output.

Implementation
The procedure begins by calculating N, the nonterminal symbols. Then, L is initialized to the empty
set and A is initialized to the list [S]. Recall that these will store the words that have been produced
and the list of strings with nonterminal symbols that still require processing. We also initialize
count to 0. This will count the number of words that have been produced, which is more efficient
that repeatedly calculating the size of L.

After the initializations are complete, we begin a while loop controlled by the conditions that count
does not exceed the limit on the number of words and that A is nonempty. Within the while loop, we
set curString (the “current string”) equal to the first member of A and remove it from A.

We need to find all the strings that are directly derivable from curString. We do this as follows.
First, initialize a list D (for derivations) to the empty list. We will store all the strings derived from
curString in this list and then later determine which should be added to L and which to A.

Remember that curString is represented as a list. Loop over the entries of curString. For each ele-
ment, check to see if it is a member of N, the nonterminal symbols. If not, we move on to the next
element. If the symbol is nonterminal, then look the symbol up in the production table P. For each
associated production, we perform a substitution.

An example may be helpful to explain this step. Suppose we are processing the string [c, b, a,B, a]
as part of the grammar given in Example 12.
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> curString ∶= [“c”, “b”, “a”,B, “a”]
curString ∶= [“c”, “b”, “a”,B, “a”] (13.3)

After determining that the first three entries are terminal, we look at curString[4] and see that it is
nonterminal. We obtain the derivations associated with it from the table.

> Ex12productions[curString[4]]
{[“b”], [B, “a”], [C, “b”]} (13.4)

For each of these derivations, we will substitute the derivation into curString in place of the fourth
position. We use subsop to perform the substitution within a loop over the elements of the set
obtained from the derivations table.

> for s in Ex12productions[curString[4]] do
subsop(4 = op(s), curString)

end do
[“c”, “b”, “a”, “b”, “a”]
[“c”, “b”, “a”,B, “a”, “a”]
[“c”, “b”, “a”,C, “b”, “a”] (13.5)

Once curString has been completely processed, we turn to deciding whether each element we
placed in D is a word or not. The most straightforward way to approach this is to consider whether
or not the set of elements in the string is a subset of the terminal symbols.

> {op ([“c”, “b”, “a”, “b”, “a”])} subset {“a”, “b”, “c”}
true (13.6)

> {op ([“c”, “b”, “a”,B, “a”, “a”])} subset {“a”, “b”, “c”}
false (13.7)

Those that are words are concatenated into strings and added to L (and count is updated). Those that
are not words are added to A.

Here is the procedure.

1 FormWords := proc(V,T,S,P,wordlimit)
2 local N, L, A, count, curString, D, i, s, d;
3 N := V minus T;
4 L := {};
5 A := [[S]];
6 count := 0;
7 while count <= wordlimit and A <> [] do
8 curString := A[1];
9 A := A[2..-1];

10 D := [];
11 for i from 1 to nops(curString) do
12 if curString[i] in N then
13 for s in P[curString[i]] do
14 D := [op(D),subsop(i=op(s),curString)];
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15 end do;
16 end if;
17 end do;
18 for d in D do
19 if {op(d)} subset T then
20 L := L union {cat(op(d))};
21 count := count + 1;
22 else
23 A := [op(A),d];
24 end if;
25 end do;
26 end do;
27 return L;
28 end proc:

We use our procedure on the grammar defined by Example 12, up to 20 words.

> FormWords ({“a”, “b”, “c”,A,B,C, S} , {“a”, “b”, “c”} ,
S,Ex12productions, 20)
{“bab”, “baba”, “babb”, “bacbb”, “cbab”, “cbaba”,

“cbabb”, “cbacbb”} (13.8)

Note that the procedure did not return a set of size 20. This is because count is incremented every
time a word is derived, not every time a new word is derived. Since there is more than one way to
derive the same word, we obtain fewer than 20 words.

13.2 Finite-State Machines with Output
Example 4 from Section 13.2 describes a finite-state machine with five states and with input and
output alphabets both equal to {0, 1}. Example 6 describes how to implement addition of integers
using their binary expressions with a finite-state machine with output. Here, we will use Maple to
model those two finite-state machines.

A First Example
Recall from Definition 1 in Section 13.2 that a finite-state machine consists of six objects: a set S of
states, an input alphabet I, an output alphabet O, a transition function 𝑓 , an output function g, and an
initial state s0.

We will write a procedure that, given data defining a finite-state machine and an input string, will
return the associated output string. Specifically, we will give as an argument to the procedure a list
of members of the input alphabet, and the procedure will return a list of members of the output
alphabet such that the Ith element in the output list is the output associated with the Ith member of
the input list.

Representation
As is typical, we must first describe how we will represent the necessary objects in Maple.
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The states will be represented by nonnegative integers. For example, in Example 4, the states will be
{0, 1, 2, 3, 4}. We will assume, for the sake of simplicity, that the initial state will always be state 0.
Neither S nor s0 are required as arguments to the procedure.

The input and output alphabets, I and O, can be represented by sets of Maple objects but will not be
required arguments to the procedure. In Example 4, these are both equal to the set {0, 1}.

The transition function and output function will be represented by a single table. This will have the
benefit of making the definition of the functions less cumbersome. The indices to the table will be
pairs [state, input] where state is a nonnegative integer and input will be a member of I. The entries
of the table will be pairs [newState, output], where newState is the state transitioned to and output is
the output corresponding to the original state and the input.

Here is the definition of the transition-output table for Example 4. (Refer to Table 3 of Section 13.2
as the source of the values in the table.)

> Ex4Table ∶= table( )∶

> Ex4Table[0, 0] ∶= [1, 1]∶

> Ex4Table[0, 1] ∶= [3, 0]∶

> Ex4Table[1, 0] ∶= [1, 1]∶

> Ex4Table[1, 1] ∶= [2, 1]∶

> Ex4Table[2, 0] ∶= [3, 0]∶

> Ex4Table[2, 1] ∶= [4, 0]∶

> Ex4Table[3, 0] ∶= [1, 0]∶

> Ex4Table[3, 1] ∶= [0, 0]∶

> Ex4Table[4, 0] ∶= [3, 0]∶

> Ex4Table[4, 1] ∶= [4, 0]∶

Observe that the indices for the transition-output table consist of every possible state-input pair.

The Machine Modeling Procedure
The procedure we create is to accept as arguments the transition-output table and the input string.
It will produce the output string.

The procedure is fairly straightforward. Initialize the current state of the machine, stored in
curState, to 0, since we are insisting that 0 represent the starting state. Also initialize the output
string, outString, to the list of all 0s of the same length as the input list. (It is more efficient, when
the length of a list is known in advance, to initialize it to the correct length than it is to build it one
element at a time.)
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Begin a for loop from 1 to the length of the input string. For each index, look up the pair consisting
of curState and the element in the input string in the transition-output table. The second element in
the result is placed in the output string at the correct position, and the first element is used to update
curState. Once the loop is complete, the output list is returned.

Here is the procedure.

1 MachineWithOutput := proc(transTable::table,inString::list)
2 local curState, outString, i;
3 curState := 0;
4 outString := [0 $ nops(inString)];
5 for i from 1 to nops(inString) do
6 outString[i] := transTable[curState,inString[i]][2];
7 curState := transTable[curState,inString[i]][1];
8 end do;
9 return outString;

10 end proc:

Example 4 asks to find the output string when the input is 101011.

> MachineWithOutput (Ex4Table, [1, 0, 1, 0, 1, 1])
[0, 0, 1, 0, 0, 0] (13.9)

A Finite-State Machine for Addition
Example 6 in Section 13.2 describes how a finite-state machine with output that adds two integers
using their binary expansions can be designed. Figure 5 in the text gives a diagram illustrating the
machine.

The input alphabet for this machine are the four bit pairs: 00, 01, 10, and 11. We will represent the
pairs as strings. As described by the text, we assume that the initial bits xn and yn are both 0.

As an example, consider adding 7 = 01112 and 6 = 01102. We input these two numbers as pairs and
in reverse order. Thus the input string will be [10, 11, 11, 0].

The transition-output table is obtained from the diagram shown in Figure 5.

> addTable ∶= table( )∶

> addTable[0, “00”] ∶= [0, 0]∶

> addTable[0, “01”] ∶= [0, 1]∶

> addTable[0, “10”] ∶= [0, 1]∶

> addTable[0, “11”] ∶= [1, 0]∶

> addTable[1, “00”] ∶= [0, 1]∶

> addTable[1, “01”] ∶= [1, 0]∶

> addTable[1, “10”] ∶= [1, 0]∶

> addTable[1, “11”] ∶= [1, 1]∶
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Applying the MachineWithOutput procedure to this table and the input produces the sum of the
integers.

> MachineWithOutput (addTable, [“10”, “11”, “11”, “00”])
[1, 0, 1, 1] (13.10)

This corresponds to 11012 = 13.

13.3 Finite-State Machines with No Output
In this section, we will see how to use Maple to represent finite-state automata and to perform lan-
guage recognition.

Kleene Closure
We begin this section by writing procedures to compute the concatenation of two sets of strings and
the partial Kleene closure of a set of strings. As in previous sections, we will model a string as a list.

Given two lists listA and listB, we can concatenate them as follows: [op(listA),op(listB)]. For
example,

> listA ∶= [1, 2, 3]
listA ∶= [1, 2, 3] (13.11)

> listB ∶= [“a”, “b”, “c”]
listB ∶= [“a”, “b”, “c”] (13.12)

> [op (listA) , op (listB)]
[1, 2, 3, “a”, “b”, “c”] (13.13)

Note that op applied to a number or a string has no effect.

> op (5)
5 (13.14)

> op (“abc”)
“abc” (13.15)

Given two sets of strings, we can form all possible concatenations by using two for loops to concate-
nate each pair.

1 SetCat := proc(A::set,B::set)
2 local C, x, y;
3 C := {};
4 for x in A do
5 for y in B do
6 C := C union {[op(x),op(y)]};
7 end do;
8 end do;
9 return C;

10 end proc:
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Applying this function to the sets from Example 1 produces the same output as in the solution to that
example.

> listA ∶= {0, [1, 1]}
listA ∶= {0, [1, 1]} (13.16)

> listB ∶= {1, [1, 0], [1, 1, 0]}
listB ∶= {1, [1, 0], [1, 1, 0]} (13.17)

> SetCat (listA, listB)
{[0, 1], [0, 1, 0], [1, 1, 1], [0, 1, 1, 0], [1, 1, 1, 0], [1, 1, 1, 1, 0]} (13.18)

Given a set A, recall that A0 is defined to be the set of the empty string, and that for n > 0,

An+1 = AnA. Also recall that the Kleene closure of A is A∗ =
∞⋃

k=0

Ak. We define the partial Kleene

closure to level n by A[n] =
n⋃

k=0

Ak.

We write the following procedure to produce the powers of A. The procedure is modeled on the
recursive definition given in the text.

1 SetPow := proc(A::set,k::nonnegint)
2 if k=0 then
3 return {[]};
4 else
5 return SetCat(SetPow(A,k-1),A);
6 end if;
7 end proc:

For example, with B = {1, 10, 110}, we can compute B3 as follows.

> SetPow (listB, 3)
{[1, 1, 1], [1, 0, 1, 1], [1, 1, 0, 1], [1, 1, 1, 0], [1, 0, 1, 0, 1], [1, 0, 1, 1, 0],
[1, 1, 0, 1, 0], [1, 1, 0, 1, 1], [1, 1, 1, 0, 1], [1, 1, 1, 1, 0], [1, 0, 1, 0, 1, 0],
[1, 0, 1, 1, 0, 1], [1, 0, 1, 1, 1, 0], [1, 1, 0, 1, 0, 1], [1, 1, 0, 1, 1, 0],
[1, 1, 1, 0, 1, 0], [1, 0, 1, 0, 1, 1, 0], [1, 0, 1, 1, 0, 1, 0], [1, 1, 0, 1, 0, 1, 0],
[1, 1, 0, 1, 1, 0, 1], [1, 1, 0, 1, 1, 1, 0], [1, 1, 1, 0, 1, 1, 0], [1, 0, 1, 1, 0, 1, 1, 0],
[1, 1, 0, 1, 0, 1, 1, 0], [1, 1, 0, 1, 1, 0, 1, 0], [1, 1, 0, 1, 1, 0, 1, 1, 0]} (13.19)

To form the partial Kleene closure A[n], we must find the union of 1, A, A2, .., An. Building the Ak

iteratively is more efficient than using SetPow.

1 Kleene := proc(A::set,n::posint)
2 local K, x, Ak;
3 K := {[]};
4 for x in A do
5 K := K union {[op(x)]};
6 end do;
7 Ak := K;
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8 from 2 to n do
9 Ak := SetCat(Ak,A);

10 K := K union Ak;
11 end do;
12 return K;
13 end proc:

We compute the Kleene closure up to level 3 of {0, 1}.

> Kleene ({0, 1} , 3)
{[ ], [0], [1], [0, 0], [0, 1], [1, 0], [1, 1], [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1],
[1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1]} (13.20)

Extended Transition Function for a Finite-State Automaton
We now create a procedure that serves as the extension of the transition function of a finite-state
automaton, as described following Example 4 in Section 13.3 of the text.

As in Section 13.2 of this manual, we model the transition function as a table. The indices to
the table will be the pairs consisting of the current state of the automaton and the input. The
corresponding entries will be the next state of the automaton.

For example, the transition function of the finite-state automaton M1 in Example 5 is as follows.

> Ex51Table ∶= table([(0, 0) = 1, (0, 1) = 0, (1, 0) = 1, (1, 1) = 1])∶

To model the extended function that takes a pair consisting of a state and a member of the Kleene
closure of the alphabet and returns the final state, we write a procedure, ExtendedTransition. The
arguments of this procedure will be a state number, a list representing the input string, and the tran-
sition function.

We will not use the recursive definition provided in the text, but will instead use an iterative
approach to designing the procedure. Begin by initializing the current state to the input state. Then,
loop through the list representing the input string and apply the transition function to update the
current state. Once the loop is concluded, return the state.

1 ExtendedTransition := proc(state,input,transFunc::table)
2 local curState, i;
3 curState := state;
4 for i from 1 to nops(input) do
5 curState := transFunc[curState,input[i]];
6 end do;
7 return curState;
8 end proc:

We can use this procedure to see that applying the automaton M1 from Example 5 to [1, 0, 1, 1, 0]
from initial state 0 ends in state 1.

> ExtendedTransition (0, [1, 0, 1, 1, 0],Ex51Table)
1 (13.21)
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Language Recognition with Finite-State Automata
Recall that a string x is recognized by a finite-state automaton if the extended transition function
applied to the initial state and the string x results in a final state.

We write a procedure that, given the transition table for a finite-state automaton with initial state
init, the set of final states, and the string x, will return true or false indicating whether or not the
string is recognized by the machine.

The procedure only needs to apply ExtendedTransition to the state 0, the transition table, and
string, and then check to see whether or not the result is in the set of final states.

1 IsRecognized := proc(x,transFunc::table,init,final::set)
2 local endState;
3 endState := ExtendedTransition(init,x,transFunc);
4 return evalb(endState in final);
5 end proc:

The solution to Example 5 indicated that the only strings accepted by M1 are those consisting of
consecutive 1s.

> IsRecognized ([1, 1, 1, 1, 1],Ex51Table, 0, {0})
true (13.22)

> IsRecognized ([1, 1, 0, 1],Ex51Table, 0, {0})
false (13.23)

Using the Kleene procedure from the beginning of this section, we can partially determine the lan-
guage recognized by a machine.

Given the transition table, the initial state, the set of final states, a set A, and a positive integer n,
the following procedure will calculate the subset of A[n] recognized by the finite-state automaton
defined by the transition table and set of final states.

This procedure operates by applying Kleene and then using IsRecognized to check each element
of A[n]. Note that we extract those members of A[n] that are recognized by applying the select com-
mand. This command requires its first argument be a procedure that returns true or false and the sec-
ond argument a set, list, or other expression. The result is the operands in the expression given as the
second argument, in this case, the members of the set, for which the procedure returns true. When
the procedure given as the first argument requires more than one argument, additional arguments to
the procedure can be given as the third and subsequent arguments of select. For example, below we
use select to obtain the members of the list that are less than the number 5.

> select ((a, b)→ evalb(a < b), [3, 9, 5, 2, 1, 5, 6, 0, 3, 8], 5)
[3, 2, 1, 0, 3] (13.24)

The members of the list are substituted in for a, while 5 is used for b.

Here is the procedure.
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1 FindLanguage :=
proc(transFunc::table,init,final::set,A::set,n::posint)

2 local An;
3 An := Kleene(A,n);
4 return select(IsRecognized,An,transFunc,init,final);
5 end proc:

Applying this procedure to our M1 machine and {0, 1}[10], we see that the only strings in that set rec-
ognized by the finite-state automaton are those consisting only of 1s.

> FindLanguage (Ex51Table, 0, {0} , {0, 1} , 10)
{[ ], [1], [1, 1], [1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]} (13.25)

Nondeterministic Finite-State Automata
We conclude this section with an implementation of the constructive proof of Theorem 1 of
Section 13.3. Given a nondeterministic finite-state automaton, our procedure will produce a
deterministic finite-state automaton.

In particular, given the transition table for a nondeterministic automaton, its input alphabet, its start-
ing state, and its set of final states, the procedure will produce the transition table for a deterministic
automaton, its starting state, and its set of final states.

For a nondeterministic automaton, we will represent the transition function in the same way as for
the deterministic automaton earlier, except the entries in the table will be sets of states, rather than
individual states.

For example, here is the transition table for the nondeterministic automaton described in
Example 10.

> Ex10Table ∶= table( )∶

> Ex10Table[0, 0] ∶= {0, 2}∶

> Ex10Table[0, 1] ∶= {1}∶

> Ex10Table[1, 0] ∶= {3}∶

> Ex10Table[1, 1] ∶= {4}∶

> Ex10Table[2, 0] ∶= {}∶

> Ex10Table[2, 1] ∶= {4}∶

> Ex10Table[3, 0] ∶= {3}∶

> Ex10Table[3, 1] ∶= {}∶
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> Ex10Table[4, 0] ∶= {3}∶

> Ex10Table[4, 1] ∶= {3}∶

The final states are 0 and 4.

To determine the deterministic automaton’s transition table, its starting state, and final states, we
follow the proof of Theorem 1. The deterministic automaton’s states are sets of states of the nonde-
terministic automaton.

We begin with the set consisting of the nondeterministic automaton’s starting state. This is the start-
ing state for the deterministic automaton. Given any state of the deterministic automaton, and any
input, the deterministic transition is the union over all members of the state of the results of applying
the nondeterministic automaton’s transition with that input value.

In our procedure, we will create a table initialized to the empty table. We will also create two sets
S and T . The set S will be initialized to the empty set and, at the conclusion of the procedure will
be the set of all states of the deterministic automaton. The set T will be initialized to {{s0}}, the set
containing the initial state of the deterministic automaton.

As long as T is nonempty, we will move one of its members from T to S and apply the nondetermin-
istic automaton’s transition function with all possible input values. The results are the entries in the
deterministic transition table and those that are not already members of S are added to T for further
processing.

The final states of the deterministic automaton are those states which contain a final state of the
nondeterministic automaton. That is, the final states are those whose intersection with the set of the
original final states is nonempty. Before exiting, the procedure calculates the set of final states for
the deterministic automaton.

Here is the procedure. Note that the procedure returns the sequence of the new transition table, the
starting state, and the set of final states.

1 MakeDeterministic :=
proc(transFunc::table,Iset::set,init,final::set)

2 local newTable, S, T, state, i, s, x, newfinal;
3 newTable := table();
4 S := {};
5 T := {{init}};
6 while T <> {} do
7 state := T[1];
8 T := T minus {state};
9 S := S union {state};

10 for i in Iset do
11 x := {};
12 for s in state do
13 x := x union transFunc[s,i];
14 end do;
15 newTable[state,i] := x;
16 if not(x in S) then
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17 T := T union {x};
18 end if;
19 end do;
20 end do;
21 newfinal := {};
22 for state in S do
23 if state intersect final <> {} then
24 newfinal := newfinal union {state};
25 end if;
26 end do;
27 return newTable,{init},newfinal;
28 end proc:

Applying this procedure to the Example 10 information produces the following.

> Ex10DTable, Ex10Dinit, Ex10Dfinal ∶=
MakeDeterministic (Ex10Table, {0, 1} , 0, {0, 4})
Ex10DTable, Ex10Dinit, Ex10Dfinal ∶= newTable, {0} ,
{{0} , {4} , {0, 2} , {1, 4} , {3, 4}} (13.26)

We can inspect the transition table by applying eval to Ex10DTable.

> eval (Ex10DTable)
table ([({0, 2} , 0) = {0, 2} , ({1, 4} , 1) = {3, 4} , ({3} , 0) = {3} ,
({0, 2} , 1) = {1, 4} , ({3} , 1) = ∅, (∅, 0) = ∅, ({4} , 1) = {3} ,
({3, 4} , 1) = {3} , ({0} , 1) = {1} , ({4} , 0) = {3} , ({0} , 0) = {0, 2} ,
({3, 4} , 0) = {3} , ({1} , 1) = {4} , ({1} , 0) = {3} , ({1, 4} , 0) = {3} ,
(∅, 1) = ∅]) (13.27)

You can confirm that this agrees with Figure 8 from Section 13.3.

We use the output as the arguments to FindLanguage.

> FindLanguage (Ex10DTable,Ex10Dinit,Ex10Dfinal, {0, 1} , 10)
{[ ], [0], [0, 0], [0, 1], [1, 1], [0, 0, 0], [0, 0, 1], [0, 1, 1], [0, 0, 0, 0], [0, 0, 0, 1],
[0, 0, 1, 1], [0, 0, 0, 0, 0], [0, 0, 0, 0, 1], [0, 0, 0, 1, 1], [0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 1]} (13.28)

This list of strings suggests that the language recognized by this automaton are those strings consist-
ing of a positive number of 0s followed by no more than two 1s, together with the empty string and
the string 11.

13.4 Language Recognition
In this section, we will introduce Maple’s support for regular expressions for working with strings.
We will also develop a procedure for calculating the concatenation of two nondeterministic
automata.
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Regular Expressions
Maple’s commands related to regular expressions lie in the StringTools package, which we
load now.

> with(StringTools)∶

The command RegMatch is used to determine whether or not a given string can be matched to a
given pattern. When using RegMatch, the first argument is a string describing the regular expres-
sion or pattern, and the second argument is the string you are attempting to match against.

Perhaps the most basic form of a regular expression is the concatenation of elements of the set. For
example, “01” is a regular expression. This expression matches itself, of course.

> RegMatch (“01”, “01”)
true (13.29)

The output indicates that yes, the string “01” matches the regular expression “01”.

Anchors
The next example illustrates a significant difference between regular expressions as described in the
text and regular expressions in Maple.

> RegMatch (“01”, “so42301kkj91”)
true (13.30)

It is clear that the string “so42301kkj91” is not a member of the regular set specified by the regular
expression “01”, since the only member of that regular set is the string “01”. Maple returned true
because the pattern “01” matched a substring of the second argument.

Maple, and most programming languages, use regular expressions primarily to search for pat-
terns within strings and they interpret regular expressions as loosely as possible to make them
flexible. To use regular expressions in Maple in the more formal sense described in the text, we
will need to specify that the pattern we give as the first argument is to match the entire string, not
part of it.

To do this, we use two special characters, ˆ and $. These are referred to as anchors and they match
the beginning and end of a string, respectively. Including them in the regular expression will ensure
that we match only those strings completely described by the regular expression and that we do not
match substrings.

> RegMatch (“^01$”, “01”)
true (13.31)

> RegMatch (“^01$”, “so42301kkj91”)
false (13.32)

Kleene Closure
The asterisk is a symbol used in a regular expression to represent the Kleene closure.
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For example, the regular expression 10* will match a 1 followed by any number of 0s.

> RegMatch (“^10*$”, “10000000”)
true (13.33)

> RegMatch (“^10*$”, “1”)
true (13.34)

> RegMatch (“^10*$”, “0111000”)
false (13.35)

Note that without the ˆ and $, the final example would have also returned true.

As in the text, parentheses can be used to group symbols. For example (10)* matches any number of
copies of 10.

> RegMatch (“^(10)*$”, “10101010101010”)
true (13.36)

> RegMatch (“^(10)*$”, “1010101”)
false (13.37)

Maple, and most languages that support regular expressions, also recognizes + and ?. These are
used like * but with different meaning. The expression A+ is used to match one or more copies
of A. Essentially, it is the Kleene closure minus the empty string. For example, 1*0+ matches any
number of 1s followed by at least one 0.

> RegMatch (“^1*0+$”, “1111000”)
true (13.38)

> RegMatch (“^1*0+$”, “00”)
true (13.39)

> RegMatch (“^1*0+”, “111”)
false (13.40)

The A? expression is used to match 0 or 1 copies of A. For example, 1*0? matches any number of 1s
which may be followed by at most one 0.

> RegMatch (“^1*0?$”, “111111”)
true (13.41)

> RegMatch (“^1*0?$”, “1111110”)
true (13.42)

> RegMatch (“^1*0?$”, “11111100”)
false (13.43)
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Union
To represent union, the vertical line is used. A | placed between two expressions will match either of
them. The | can take the place of the ∪ symbol in an expression such as 0 (0 ∪ 1) ∗.

> RegMatch (“^0(0|1)*$”, “011010”)
true (13.44)

> RegMatch (“^0(0|1)*$”, “1011010”)
false (13.45)

This can also be done in more complicated expressions. For example, 2 ((10) ∗ ∪ (01) ∗) 2 describes
the set of strings beginning and ending with 2s with an alternating sequence of 0s and 1s in between.

> RegMatch (“^2((10)*|(01)*)2$”, “21010102”)
true (13.46)

> RegMatch (“^2((10)*|(01)*)2$”, “201012”)
true (13.47)

> RegMatch (“^2((10)*|(01)*)2$”, “210012”)
false (13.48)

In some circumstances, union can be replaced by “character classes.” By placing characters within a
set of brackets, you indicate that any of the characters inside the brackets are allowed. For example,
0 (0 ∪ 1) ∗ can be expressed as follows.

> RegMatch (“^0[01]*$”, “011010”)
true (13.49)

Note that this cannot be used in more complicated expressions such as (13.46) and (13.48). It is only
available when the options are single characters.

Ranges can also be used within a character class by separating the beginning and end of a range of
characters with a hyphen. For example, the following matches strings beginning at least one lower-
case letter and ending with a digit between 6 and 9.

> RegMatch (“^[a-z]+[6-9]$”, “test9”)
true (13.50)

> RegMatch (“^[a-z]+[6-9]$”, “Test9”)
false (13.51)

Observe that character classes are case sensitive, but multiple ranges can be used within a class.

> RegMatch (“^[a-zA-Z]+[6-9]$”, “Test9”)
true (13.52)

Character classes have a negated option. By beginning a character class with a caret, you indi-
cate that any character other than those specified are allowed. For example, in the following, the
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regular expression matches all strings beginning with 1, ending with 0, and which include no other
1s nor 0s.

> RegMatch (“^1[^01]*0$”, “169jwq0”)
true (13.53)

The special character dot ( . ) is used to match any character. For example, 1...0 will match any string
beginning with a 1, followed by any three characters and ending with a 0.

> RegMatch (“^1...0$”, “12340”)
true (13.54)

> RegMatch (“^1...0$”, “1230”)
false (13.55)

> RegMatch (“^1...0$”, “1234567890”)
false (13.56)

Regular expressions in Maple are extremely flexible. The interested reader is referred to the help
page on regular expressions for more information.

Concatenation of Automata
We will write a procedure that concatenates two nondeterministic finite-state automata, as described
in the proof of Theorem 1 of the text.

Two Automata
We begin by defining two automata that our procedure will concatenate.

The first automata is the result of Example 3, for recognizing 1 ∗ ∪01. Our implementation is based
on the simple form shown in Figure 3b.

Note that the diagram in the text omits the results of transitioning from certain states via certain
input values. For example, it does not show the result of the transition from state s1 with input 0.
This makes for a simpler and cleaner diagram, but the transition table will need to include this
information. It will be assumed that all such omissions correspond to a transition to the state {}.

Here is the transition table corresponding to the automaton shown in Figure 3b.

> Atable ∶= table( )∶

> Atable[0, 0] ∶= {2}∶

> Atable[0, 1] ∶= {1}∶

> Atable[1, 0] ∶= {}∶

> Atable[1, 1] ∶= {1}∶

> Atable[2, 0] ∶= {}∶
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> Atable[2, 1] ∶= {3}∶

> Atable[3, 0] ∶= {}∶

> Atable[3, 1] ∶= {}∶

The final states for this automaton are {0, 1, 3}. We can confirm that it recognizes 1 ∗ ∪01 by apply-
ing MakeDeterministic and FindLanguage.

> FindLanguage (MakeDeterministic (Atable, {0, 1} , 0, {0, 1, 3}) , {0, 1} , 10)
{[ ], [1], [0, 1], [1, 1], [1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]} (13.57)

As you can see, the language recognized by this machine includes the string 01 as well as 1 ∗.

The second automaton we create will recognize the language 101.

> Btable ∶= table( )∶

> Btable[0, 0] ∶= {}∶

> Btable[0, 1] ∶= {1}∶

> Btable[1, 0] ∶= {2}∶

> Btable[1, 1] ∶= {}∶

> Btable[2, 0] ∶= {}∶

> Btable[2, 1] ∶= {3}∶

> Btable[3, 0] ∶= {}∶

> Btable[3, 1] ∶= {}∶

The only final state is state 3.

Applying FindLanguage, we confirm that this models that machine that recognizes 101.

> FindLanguage (MakeDeterministic (Btable, {0, 1} , 0, {3}) , {0, 1} , 10)
{[1, 0, 1]} (13.58)

Concatenating the Machines
Our concatenation procedure will require the following arguments, for both machines: the transition
table, the starting state, and the final states. It will also require that the two machines have a common
input alphabet but that alphabet does not need to be an argument.

Recall the following elements of the construction of the concatenation as described in the proof of
Theorem 1 of Section 13.4.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.



1. The states of the concatenation is the union of the states of the original machines, which are
assumed to be disjoint.

2. The starting state of the concatenation is the starting state of the first of the two machines.
3. The final states of the concatenation include the set of final states of the second machine.
4. The final states of the concatenation also include the starting state if the empty string is a member

of both languages.
5. All transitions of the original machines are transitions of the new machine.
6. Additionally, for every transition in the first machine leading to a final state, we add a transition

in the concatenation to the starting state of the second machine.
7. Finally, if the starting state of the first machine is final, then for every transition from the starting

state of the second machine, we add a transition from the starting state of the new machine.
The assumption that the states of the original two machines are disjoint means that we will need to
make them so. There are a variety of ways in which we could do this. Since we assume that states
are designated by nonnegative integers, we can make the states distinct by multiplying each state by
10 and adding 1 if it is in the first machine and 2 if it is in the second machine.

Therefore, the starting state of the concatenation is found by 10 · · ·A + 1 where sA is the starting state
of the first machine. In our case, this will be equal to 10 ⋅ 0 + 1 = 1.

Next, we find the final states of the concatenation. Let Afinal and Bfinal be the sets of final states for
the original two machines. According to point 3 above, the final states of the concatenated machine
include the final states of the second machine. We only need to update the names.

The final states of the machines we defined above are as follows.

> Afinal ∶= {0, 1, 3}
Afinal ∶= {0, 1, 3} (13.59)

> Bfinal ∶= {3}
Bfinal ∶= {3} (13.60)

We can obtain the final states of the concatenation by applying the function 𝑓 → 10𝑓 + 2 to the set
of final states of the second machine.

> map ( 𝑓 → 10𝑓 + 2,Bfinal)
{32} (13.61)

Item 4 asserts that the starting state of the concatenated machine is a final state if and only if the
empty string is a member of both languages. Another way to put this is that the starting state of the
concatenated machine is a final state when both of the original machines have their own starting
states as final states. This is not the case in our example. We will include this possibility in our
general procedure by checking to see if the starting states are members of the sets of final states.

To form the transitions of the new machine, we begin with an empty table.

> ABtable ∶= table( )∶

Item 5 tells us that all of the original transitions are transitions in the new machine. Thus, for both
of the original tables, we need to add corresponding entries to this table. Keep in mind that the state
names are updated by multiplying by 10 and adding 1 or 2.
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We proceed as follows. For Atable, use indices to obtain the list of all indices in the table. For each
index i, the index in ABtable will be [10*i[1]+1,i[2]]. This computes the appropriate state name in
the concatenated machine and keeps the same input value. The associated entry will be obtained by
using map and the functional operator f->10*f+1 applied to the previous entry. Note that op must
be applied to i before it can be used as an index to Atable, since the indices command wraps indices
in lists.

> for i in indices(Atable) do
ABtable[10 ∗ i[1] + 1, i[2]] ∶= map(𝑓 → 10 ∗ 𝑓 + 1,Atable[op(i)])

end do
ABtable11,1 ∶= {11}
ABtable21,1 ∶= {31}
ABtable1,1 ∶= {11}
ABtable11,0 ∶= ∅
ABtable31,1 ∶= ∅
ABtable31,0 ∶= ∅
ABtable1,0 ∶= {21}
ABtable21,0 ∶= ∅ (13.62)

For the second machine, we do the same thing except adding 2 instead of 1.

> for i in indices(Btable) do
ABtable[10 ∗ i[1] + 2, i[2]] ∶= map(𝑓 → 10 ∗ 𝑓 + 2,Btable[op(i)])

end do
ABtable12,1 ∶= ∅
ABtable22,1 ∶= {32}
ABtable2,1 ∶= {12}
ABtable12,0 ∶= {22}
ABtable32,1 ∶= ∅
ABtable32,0 ∶= ∅
ABtable2,0 ∶= ∅
ABtable22,0 ∶= ∅ (13.63)

Next, we must add transitions between the two components. As item 6 instructs, for each transition
in the first of the two machines that leads to a final state, we must add a transition in the concatenated
machine to the starting state of the second machine.

We will again loop through the indices of Atable, this time checking whether the image contains
any states that are final for machine A. If so, we will add the transition to state 2 (the name of the
starting state in the second machine in the concatenation). (Note that we must update the entry in the
ABtable rather than replace it.)

> for i in indices(Atable) do
if Atable[op(i)] intersect finalA ≠ { } then

ABtable[10 ∗ i[1] + 1, i[2]] ∶= ABtable[10 ∗ i[1] + 1, i[2]] union {2}
end if

end do
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We can see the current transition table by applying eval.

> eval (ABtable)
table ([(32, 1) = ∅, (1, 1) = {2, 11} , (11, 0) = ∅, (2, 1) = {12} ,
(22, 1) = {32} , (1, 0) = {21} , (21, 0) = ∅, (2, 0) = ∅, (31, 0) = ∅,
(21, 1) = {2, 31} , (31, 1) = ∅, (32, 0) = ∅, (22, 0) = ∅, (12, 1) = ∅,
(11, 1) = {2, 11} , (12, 0) = {22}]) (13.64)

Finally, since the starting state of the first machine is final, we must add transitions from the start-
ing state of the concatenated machine for each of the transitions from the starting state of the second
machine. The starting state of the second machine in this example is 0, and the starting state of the
concatenation is 1.

> for i in indices(Btable) do
if i[1] = 0 then

ABtable[1, i[2]] ∶= ABtable[1, i[2]] union map(𝑓 → 10 ∗ 𝑓 + 2,Btable[op(i)])
end if

end do

Apply eval again.

> eval (ABtable)
table ([(32, 1) = ∅, (1, 1) = {2, 11, 12} , (11, 0) = ∅, (2, 1) = {12} ,
(22, 1) = {32} , (1, 0) = {21} , (21, 0) = ∅, (2, 0) = ∅, (31, 0) = ∅,
(21, 1) = {2, 31} , (31, 1) = ∅, (32, 0) = ∅, (22, 0) = ∅, (12, 1) = ∅,
(11, 1) = {2, 11} , (12, 0) = {22}]) (13.65)

Note that this modified the entry for (1, 1). (Recall that state 1 is the starting state for the combined
machine.) Before, (1, 1) was associated with {2, 11}, the starting state of the second machine and
state 1 of the first machine. Now, the entry for (1, 1) also includes 12, state 1 of the second machine.

That (1, 1) is associated with {2, 11, 12} means that from the starting state of the concatenation
and input 1, there are three options. Going to state 2, the starting state of the second machine,
corresponds to recognizing the string 1 followed by a string recognized by the second machine.
Going to state 11, state 1 of the first machine, corresponds to building a string of all 1s, which is
recognized by the first machine. And going to state 12, state 1 of the second machine, corresponds
to the first machine contributing the empty string followed by 1 as the first character of a string
recognized by the second machine.

Implementation as a Procedure
Here is the complete procedure.

1 CatAutomata :=
proc(Atable,Astart,Afinal,Btable,Bstart,Bfinal,Iset)

2 local ABtable, ABstart, ABfinal, i;
3 ABstart := 10*Astart + 1;
4 ABfinal := map(f->10*f+2,Bfinal);
5 if (Astart in Afinal) and (Bstart in Bfinal) then
6 ABfinal := ABfinal union {ABstart};
7 end if;
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8 ABtable := table();
9 for i in indices(Atable) do

10 ABtable[10*i[1]+1,i[2]] := map(f->10*f+1,Atable[op(i)]);
11 end do;
12 for i in indices(Btable) do
13 ABtable[10*i[1]+2,i[2]] := map(f->10*f+2,Btable[op(i)]);
14 end do;
15 for i in indices(Atable) do
16 if Atable[op(i)] intersect Afinal <> {} then
17 ABtable[10*i[1]+1,i[2]] := ABtable[10*i[1]+1,i[2]] union

{Bstart*10+2};
18 end if;
19 end do;
20 if (Astart in Afinal) then
21 for i in indices(Btable) do
22 if i[1] = 0 then
23 ABtable[1,i[2]] := ABtable[1,i[2]] union

map(f->10*f+2,Btable[op(i)]);
24 end if;
25 end do;
26 end if;
27 return ABtable,Iset,ABstart,ABfinal;
28 end proc:

Applying this to our examples and passing the results on to MakeDeterministic and FindLan-
guage shows us that the result does indeed recognize (1 ∗ ∪01) 101.

> Ctable, CI, Cstart, Cfinal ∶=
CatAutomata (Atable, 0, {0, 1, 3} ,Btable, 0, {3} , {0, 1})
Ctable, CI, Cstart, Cfinal ∶= ABtable, {0, 1} , 1, {32} (13.66)

> FindLanguage (MakeDeterministic (Ctable,CI,Cstart,Cfinal) , {0, 1} , 10)
{[1, 0, 1], [1, 1, 0, 1], [0, 1, 1, 0, 1], [1, 1, 1, 0, 1],
[1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 1, 0, 1],
[1, 1, 1, 1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 1, 1, 1, 0, 1]} (13.67)

13.5 Turing Machines
In this section, we will create a model of a Turing machine. In our model, the tape will be repre-
sented by a list, with the assumption that all elements to the left and right of the bounds of the list
are blanks. The blank symbol will be represented by the symbol B.

The Partial Function
The text uses the convention that the partial function that controls the operation of the Turing
machine is defined by a set of five-tuples. It will be more convenient for our procedures to represent
the function as a table from pairs (s, x) to triples (s′, x′, d).

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.



We create a procedure that will transform the set of five-tuples representation into the table
representation.

1 TuplesToTable := proc(S::set)
2 local T, x;
3 T := table();
4 for x in S do
5 T[x[1],x[2]] := x[3..5];
6 end do;
7 return T;
8 end proc:

Applying this procedure to the set of tuples given in Example 1 provides us with an example of a
partial function to work with.

> unassign (′B′, ′R′, ′L′)

> Ex1 ∶= TuplesToTable ({[0, 0, 0, 0,R], [0, 1, 1, 1,R], [0,B, 3,B,R],
[1, 0, 0, 0,R], [1, 1, 2, 0,L], [1,B, 3,B,R], [2, 1, 3, 0,R]})

Ex1 ∶= T (13.68)

> eval (Ex1)
table ([(0,B) = [3,B,R], (1, 1) = [2, 0,L], (2, 1) = [3, 0,R],
(0, 1) = [1, 1,R], (1, 0) = [0, 0,R], (1,B) = [3,B,R],
(0, 0) = [0, 0,R]]) (13.69)

Note that the symbols B, L, and R must all be unassigned names, otherwise they will be evaluated
within the set of five-tuples and will produce unexpected results.

The Turing Machine Procedure
Our Turing machine procedure will accept as input a table representing the partial function, a list
representing the status of the tape before running the machine, and the initial state. It will return the
final tape and the state of the machine upon exit.

When the procedure begins, we initialize the name pos to 1, indicating that the control head is posi-
tioned at the leftmost element in the tape. We set the state of the machine to the initial state and copy
the tape from the argument as well. We also compute the domain of the partial function by applying
indices to the table. This will make it easier to check whether we have reached a halt.

The main work of the procedure will take place within a while loop controlled by the condition that
the domain of the function includes the pair consisting of the current state and the entry on the tape
at the current position.

Within the loop, we first obtain the values of the new state, new tape entry, and direction from the
partial function. We then set the state to the new state, change the entry on the tape, and update the
position pos. Note that when changing the position of the control head, we must take care not to
exceed the bounds of the list representing the tape. If the previous position was location 1 in the list
and the direction is left, then instead of changing the position, we extend the list by adding a blank
on the left with the syntax [B,op(tape)]. On the other hand, if the previous position was the right
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end of the tape and the direction is right, then we increase the position and extend the tape to the
right via [op(tape),B].

Here is the procedure.

1 Turing := proc(f::table,T::list,init)
2 local pos, state, tape, domain, Y;
3 pos := 1;
4 state := init;
5 tape := T;
6 domain := {indices(f)};
7 while [state,tape[pos]] in domain do
8 Y:= f[state,tape[pos]];
9 state := Y[1];

10 tape[pos] := Y[2];
11 if pos=1 and Y[3]=’L’ then
12 tape := [’B’,op(tape)];
13 elif pos=nops(tape) and Y[3]=’R’ then
14 tape := [op(tape),’B’];
15 pos := pos + 1;
16 elif Y[3]=’L’ then
17 pos := pos - 1;
18 else
19 pos := pos + 1;
20 end if;
21 end do;
22 return tape,state;
23 end proc:

We use the procedure to run the Turing machine from Example 1 on the tape shown in Figure 2a.

> Turing (Ex1, [0, 1, 0, 1, 1, 0], 0)
[0, 1, 0, 0, 0, 0], 3 (13.70)

Observe that this agrees with Figure 2 from Section 13.5 in the text.

We will create a verbose version of this procedure as well. The operation of the verbose version is
identical to Turing, but it displays the status of the machine at every step.

1 VerboseTuring := proc(f::table,T::list,init)
2 local pos, state, tape, domain, Y, displayTape;
3 pos := 1;
4 state := init;
5 tape := T;
6 domain := {indices(f)};
7 displayTape := tape;
8 displayTape[pos] := cat(‘*‘,tape[pos]);
9 print(displayTape,state);

10 while [state,tape[pos]] in domain do
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11 Y:= f[state,tape[pos]];
12 state := Y[1];
13 tape[pos] := Y[2];
14 if pos=1 and Y[3]=’L’ then
15 tape := [’B’,op(tape)];
16 elif pos=nops(tape) and Y[3]=’R’ then
17 tape := [op(tape),’B’];
18 pos := pos + 1;
19 elif Y[3]=’L’ then
20 pos := pos - 1;
21 else
22 pos := pos + 1;
23 end if;
24 displayTape := tape;
25 displayTape[pos] := cat(‘*‘,tape[pos]);
26 print(displayTape,state);
27 end do;
28 return tape, state;
29 end proc:

> VerboseTuring (Ex1, [0, 1, 0, 1, 1, 0], 0)
[*0, 1, 0, 1, 1, 0], 0

[0,*1, 0, 1, 1, 0], 0

[0, 1,*0, 1, 1, 0], 1

[0, 1, 0,*1, 1, 0], 0

[0, 1, 0, 1,*1, 0], 1

[0, 1, 0,*1, 0, 0], 2

[0, 1, 0, 0,*0, 0], 3

[0, 1, 0, 0, 0, 0], 3 (13.71)

Applications of Turing Machines
We now apply our Turing machine procedure to two applications: recognizing strings in a language
and computing functions.

Recognizing Sets
We will implement the Turing machine for recognizing {0n1n ∣ n ≥ 1}.

The partial function was given in the solution to Example 3.

> Ex3 ∶= TuplesToTable ({[0, 0, 1,M,R], [1, 0, 1, 0,R], [1, 1, 1, 1,R],
[1,B, 2,B,L], [1,M, 2,M,L], [2, 1, 3,M,L], [3, 0, 4, 0,L], [3, 1, 3, 1,L],
[3,M, 5,M,R], [4, 0, 4, 0,L], [4,M, 0,M,R], [5,M, 6,M,R]})

Ex3 ∶= T (13.72)

To determine whether or not a string is in the language, we only have to apply the Turing machine to
the string and check the exit state.
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> Turing (Ex3, [0, 0, 0, 0, 1, 1, 1, 1], 0)
[M,M,M,M,M,M,M,M,B], 6 (13.73)

The fact that the machine halted in state 6, the final state, indicates that it recognizes the string. On
the other hand,

> Turing (Ex3, [0, 0, 0, 1, 1], 0)
[M,M,M,M,M,B], 2 (13.74)

halted in state 2, indicating that the string is not in the language.

Adding Nonnegative Integers
Example 4 describes how to use Turing machines to perform addition.

The machine is described by the following tuples.

> adder ∶= TuplesToTable ({[0, 1, 1,B,R], [1, 1, 2,B,R], [1, “*”, 3,B,R],
[2, 1, 2, 1,R], [2, “*”, 3, 1,R]})

adder ∶= T (13.75)

We add two numbers a and b by using the unary representation tape consisting of a + 1 1s followed
by an asterisk and then b + 1 1s. We create a small procedure to create the tape given a and b.

1 UnaryTape := proc(a::nonnegint,b::nonnegint)
2 return [1$(a+1),"*",1$(b+1)];
3 end proc:

The tape used to add 3 and 4 is shown below.

> UnaryTape (3, 4)
[1, 1, 1, 1, “*”, 1, 1, 1, 1, 1] (13.76)

Performing addition is accomplished by applying Turing to the transition function and the tape.

> Turing (adder,UnaryTape (3, 4) , 0)
[B,B, 1, 1, 1, 1, 1, 1, 1, 1], 3 (13.77)

You can see that this contains a string of eight 1s, indicating a result of 7.

Using the verbose form of Turing, you can see how the Turing adder operates.

> VerboseTuring (adder,UnaryTape (3, 4) , 0)
[*1, 1, 1, 1, “*”, 1, 1, 1, 1, 1], 0

[B,*1, 1, 1, “*”, 1, 1, 1, 1, 1], 1

[B,B,*1, 1, “*”, 1, 1, 1, 1, 1], 2

[B,B, 1,*1, “*”, 1, 1, 1, 1, 1], 2

[B,B, 1, 1,**, 1, 1, 1, 1, 1], 2

[B,B, 1, 1, 1,*1, 1, 1, 1, 1], 3

[B,B, 1, 1, 1, 1, 1, 1, 1, 1], 3 (13.78)
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Solutions to Computer Projects and Computations and Explorations
Computer Projects 8

Given the state table of a nondeterministic finite-state automaton and a string, decide
whether this string is recognized by the automaton.

Solution: One solution to this problem, the solution used earlier in this chapter, is to find the
deterministic automaton that recognizes the same language and use it to decide whether the string is
recognized or not. This is what we have been doing when we apply FindLanguage to the result of
MakeDeterministic.

Here we will take a direct approach. For deterministic machines, we created two procedures:
ExtendedTransition and IsRecognized. The IsRecognized procedure merely called Extend-
edTransition and checked whether the result was a final state or not. The ExtendedTransition
procedure took a state, an input string, and a transition table, and determined the state of the
machine following the processing of the input.

Our approach for nondeterministic machines will be similar. We will create two procedures:
ExtendedTransitionND and IsRecognizedND. The main difference between the deterministic
machines and nondeterministic machines is that with nondeterministic machines, given the initial
state and an input, we do not know the next state. Instead, there is a set of possible states.

ExtendedTransitionND will therefore take a set of possible states, an input, and a transition table
as its arguments. For each member of the input string, it will apply the transition table to each of the
possible states, producing a new set of possible states. It will return the set of possible states after
processing each element in the input string.

1 ExtendedTransitionND := proc(states,input,transFunc)
2 local curStates, i, s, newStates;
3 curStates := states;
4 for i from 1 to nops(input) do
5 newStates := {};
6 for s in curStates do
7 newStates := newStates union transFunc[s,input[i]];
8 end do;
9 curStates := newStates;

10 end do;
11 return curStates;
12 end proc:

A nondeterministic machine recognizes a string if the result of running the machine from the
starting state with the input string results in a set of possible ending states that includes at least one
final state. We write IsRecognizedND to call ExtendedTransitionND and check to see if the result
intersects the set of final states.

1 IsRecognizedND := proc(x,transFunc,init,final)
2 local endStates;
3 endStates := ExtendedTransitionND({init},x,transFunc);
4 return evalb(endStates intersect final <> {});
5 end proc:
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With IsRecognizedND in hand, we can create FindLanguageND. This is effectively identical to
FindLanguage.

1 FindLanguageND := proc(transFunc,init,final,A,n)
2 local An, x, L;
3 An := Kleene(A,n);
4 L := {};
5 for x in An do
6 if IsRecognizedND(x,transFunc,init,final) then
7 L := L union {x};
8 end if;
9 end do;

10 return L;
11 end proc:

Applying this procedure to the machine defined by transition function Ctable, starting state 1, final
state {32}, and alphabet {0,1} that was produced by CatAutomata, we see that the result is the
same as when we applied FindLanguage and MakeDeterministic in (13.67).

> FindLanguageND (Ctable, 1, {32} , {0, 1} , 10)
{[1, 0, 1], [1, 1, 0, 1], [0, 1, 1, 0, 1], [1, 1, 1, 0, 1], [1, 1, 1, 1, 0, 1],
[1, 1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 1, 1, 0, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 0, 1]} (13.79)

> evalb (% = (13.67))
true (13.80)

Computations and Explorations 1
Solve the busy beaver problem for two states by testing all possible Turing machines with
two states and alphabet {1,B}.

Solution: The busy beaver problem, described in the preface to Exercise 31 in Section 13.5, asks:
what is the maximum number of 1s that a Turing machine with n states on the alphabet {1,B}
may print on an initially blank tape? This exercise asks us to solve the busy beaver problem with
a brute force approach for n = 2. (Note: Several of the steps in this solution take a few seconds to
complete; therefore, except for the procedure definitions, none of the input lines in this solution will
autoexecute.)

We will construct all possible Turing machines on two states with the given alphabet. For each pos-
sible Turing machine, we will allow it to run until either it halts, or until it has reached a predefined
limit on the number of steps it is allowed. This later condition is important, since some of the possi-
ble machines will not halt on their own.

Generating all possible Turing machines on {1,B} with two states is equivalent to finding all possi-
ble transition functions. The domain of a transition function is the set S × I = {0, 1} × {1,B}. The
codomain is the set {0, 1, 2} × {1,B} × {L,R}, where we use state 2 as a halting state, that is, a state
which will cause the machine to halt.

We create the domain and codomain using the cartprod command from combinat.
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> dom ∶= [ ]
dom ∶= [ ] (13.81)

> StimesI ∶= combinat[cartprod]([[0, 1], [1,B]])∶

> while not StimesI[finished] do
dom ∶= [op(dom), StimesI[nextvalue]( )]

end do∶

> dom
[[0, 1], [0,B], [1, 1], [1,B]] (13.82)

> codom ∶= [ ]
codom ∶= [ ] (13.83)

> StimesItimesLR ∶= combinat[cartprod]([[0, 1, 2], [1,B], [L,R]])∶

> while not StimesItimesLR[finished] do
codom ∶= [op(codom), StimesItimesLR[nextvalue]( )]

end do∶

> codom
[[0, 1,L], [0, 1,R], [0,B,L], [0,B,R], [1, 1,L], [1, 1,R], [1,B,L],
[1,B,R], [2, 1,L], [2, 1,R], [2,B,L], [2,B,R]] (13.84)

Now, each possible transition function is an assignment of each member of dom to one of the mem-
bers of codom. We can think of this as a member of codom4, the Cartesian product of codom with
itself four times. Each 4-tuple of codom4 corresponds to the function that maps the ith member of
dom to the ith element of the tuple. The procedure below accepts a member of codom4 and produces
the corresponding transition table.

1 MakeTable := proc(t::list)
2 local T, j;
3 T := table();
4 for j from 1 to 4 do
5 T[op(dom[j])] := t[j];
6 end do;
7 return T;
8 end proc:

We now apply this procedure to each member of codom4.

> allTFs ∶= [ ]
allTFs ∶= [ ] (13.85)

> codom4 ∶= combinat[cartprod]([codom $ 4])∶
while not codom4[finished] do

allTFs ∶= [op(allTFs),MakeTable(codom4[nextvalue]( ))]
end do∶
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> nops (allTFs)
20 736 (13.86)

The list allTFs now stores all 20 736 potential transition tables.

Recall, from Chapter 12, that the Occurrences command in ListTools can be used to count the
number of 1s that appear on a tape.

> ListTools[Occurrences] (1, [1,B,B,B, 1, 1, 1, 0, 1])
5 (13.87)

We need to place a limit on the number of steps the Turing machine can take and avoid getting stuck
in an infinite loop because of a machine that does not halt. For this, we create a version of Turing
specifically for this problem. It includes an extra argument for the limit on the number of steps and
incorporates this limit into the while loop. We remove the argument for the initial tape and initial
state, and instead set these to 0 and [B] in the procedure. Rather than returning the tape, this proce-
dure will return the number of 1s appearing on the tape, assuming the machine halted. If it did not
halt, we return −1.

1 BeaverTuring := proc(f::table,maxstep)
2 local pos, state, tape, domain, Y, numsteps;
3 pos := 1;
4 state := 0;
5 tape := [’B’];
6 domain := {indices(f)};
7 numsteps := 0;
8 while [state,tape[pos]] in domain and numsteps < maxstep do
9 Y:= f[state,tape[pos]];

10 state := Y[1];
11 tape[pos] := Y[2];
12 if pos=1 and Y[3]=’L’ then
13 tape := [’B’,op(tape)];
14 elif pos=nops(tape) and Y[3]=’R’ then
15 tape := [op(tape),’B’];
16 pos := pos + 1;
17 elif Y[3]=’L’ then
18 pos := pos - 1;
19 else
20 pos := pos + 1;
21 end if;
22 numsteps := numsteps + 1;
23 end do;
24 if numsteps < maxstep then
25 return ListTools[Occurrences](1,tape);
26 else
27 return -1;
28 end if;
29 end proc:
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Now, we apply BeaverTuring to each of the transition tables in allTFs with a step limit of 100,
keeping track of the number of 1s along the way.

> onesList ∶= [ ]
onesList ∶= [ ] (13.88)

> for i to nops(allTFs) do
onesList ∶= [op(onesList),BeaverTuring(allTFs[i], 100)]

end do∶

> max (onesList)
4 (13.89)

Using the Tally command from the Statistics package, we can see how many of the Turing
machines produced tapes with four 1s.

> Statistics[Tally] (onesList)
[−1 = 10 952, 0 = 4184, 1 = 4876, 2 = 704, 3 = 16, 4 = 4] (13.90)

This shows us that 4184 of the machines halted with no 1s on the tape, 4 machines halted with four
1s, and 10 952 of the machines failed to halt.

We can see the four machines that produced four 1s as follows. The SearchAll command in
ListTools will, given an element and a list, return the sequence of indices in the list that contain the
element.

> ListTools[SearchAll] (4, onesList)
7729, 7741, 9314, 9326 (13.91)

These are the transition functions for the four machines.

> for i in[ListTools[SearchAll](4, onesList)] do
eval(allTFs[i])

end do
table ([0,B = [1, 1,R], 1, 1 = [2, 1,L], 0, 1 = [1, 1,L], 1,B = [0, 1,L]])
table ([0,B = [1, 1,R], 1, 1 = [2, 1,R], 0, 1 = [1, 1,L], 1,B = [0, 1,L]])
table ([0,B = [1, 1,L], 1, 1 = [2, 1,L], 0, 1 = [1, 1,R], 1,B = [0, 1,R]])
table ([0,B = [1, 1,L], 1, 1 = [2, 1,R], 0, 1 = [1, 1,R], 1,B = [0, 1,R]]) (13.92)

The busy beaver problem becomes very time consuming very quickly. Beyond n = 2, it is impera-
tive to use more efficient approaches than was done here.

Exercises
Exercise 1. Construct the unit-delay machine described in Example 5 of Section 13.2.

Exercise 2. Construct a Maple procedure for simulating the action of a Moore machine. (See the
prelude to Exercise 20 in Section 13.2 for the definition of a Moore machine.)
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Exercise 3. Develop Maple procedures for computing the union of two nondeterministic finite-state
automata and for computing the Kleene closure of a nondeterministic finite-state machine, as
described in the proof of Theorem 1 of Section 13.4 of the text.

Exercise 4. Develop Maple procedures for finding all the states of a finite-state machine that are
reachable from a given state and for finding all transient states and sinks of the machine. (See
Supplementary Exercise 16 for definitions.)

Exercise 5. Construct a Maple procedure that computes the star height of a regular expression.
(See Supplementary Exercise 11 for the definition of star height.)

Exercise 6. Construct a Turing machine that computes n1 − n2 for n1 ≥ n2. Test that this Turing
machine produces the desired results for sample input values.

Exercise 7. Construct a Maple procedure that simulates the action of a Turing machine that may
move right, left, or not at all at each step.

Exercise 8. Construct a Maple procedure that simulates the action of a Turing machine that may
have more than one tape.

Exercise 9. Construct a Maple procedure that simulates the action of a Turing machine with a two-
dimensional tape. Represent a machine for multiplying integers and test it with your procedure.
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