
Preface
This book is intended to supplement Ken Rosen’s Discrete Mathematics and Its Applications,
Eighth Edition, published by McGraw-Hill. It was developed with Maple 2018, created by Waterloo

Maple Inc. This is intended to be a guide as you explore concepts in discrete mathematics and to

provide you with tools you can use to investigate further on your own. This text can significantly

enhance a traditional course in discrete mathematics in several ways. First, it makes a plethora of

examples readily available that you can interact with easily. Second, it makes the notion of algo-

rithm, which is central in discrete mathematics, concrete by giving you the opportunity to actually

implement algorithms rather than only analyze them in the abstract. Finally, and most significantly,

it provides you greater freedom to make conjectures and experiment without getting bogged down

in repetitive calculation.

The focus of this manual is on Maple code and does not attempt to explain discrete mathematics.

It is expected that you are taking, or have taken, a course in discrete mathematics. Ideally, you have

access to Ken Rosen’s Discrete Mathematics and Its Applications. It is not assumed that you have

any prior experience with Maple. The introductory chapter that follows this preface is designed to

introduce you to Maple. Likewise, it is not assumed that you have any experience with computer

programming languages. Part of the Introduction is devoted to the basic concepts and techniques of

computer programming. Subsequent chapters gradually introduce increasingly sophisticated pro-

gramming ideas. While this is not a textbook on computer programming, you will likely find your-

self fairly comfortable with the basics of programming by the end.

With the exception of the Introduction, the structure of this book follows that of Discrete Mathe-
matics and Its Applications. For each section of each chapter in that text, this manual contains a

corresponding section describing Maple commands and providing Maple procedures that are used

to explore the mathematics topics in that section. Each chapter also contains solutions to some

of the Computer Projects and Computations and Explorations exercises found at the end of the

chapter of Discrete Mathematics and Its Applications. You will also find a number of exercises

at the conclusion of each chapter designed to suggest additional questions that you can explore

using Maple.

This manual strikes a balance between describing existing Maple commands and creating new

procedures that extend Maple’s capabilities for exploring discrete mathematics. For example,

Maple does not currently include the capability of calculating with pseudographs. Therefore,

in Chapter 10, in addition to describing Maple’s capabilities for modeling graphs, we also write

procedures relating to pseudographs. Some readers may not be interested in the detailed descrip-

tions of how new procedures and programs like these are created. However, even if you are not

interested in the programming aspect, the procedures we create are still available to you to explore

those topics.

Much has happened since the first edition of this text was written. Rosen’s text has undergone five

revisions and there have been 18 major releases of Maple (it was at Release 4 when the first edition

was published). As a result, this manual has undergone extensive revision, and has also been sub-

stantially expanded and reorganized. At the same time, this manual retains the spirit and goals of

the original Exploring Discrete Mathematics with Maple. We therefore reproduce the preface of the

original book below.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Changes in the New Edition
The previous version of this manual was written for the seventh edition of Ken Rosen’s Discrete
Mathematics and Its Applications and was developed with Maple Release 15. The current ver-

sion includes significant revisions and updates to reflect the revisions in the eighth edition of the

textbook and the improvements in the 2018 version of Maple. Some of the most notable revisions

include:

• Exposition and programming examples have been improved, with a focus on simplifying and

clarifying both to help you more easily understand connections to the mathematics content.

Moreover, the Explore function is illustrated at multiple places in the text to illustrate how Maple

can be used to easily create interactive elements for exploring concepts and making conjectures.

• Additional examples have been added to reflect new content in the eighth edition of Discrete
Mathematics and Its Applications, including solving the n-Queens problem via satisfiability,

implementing the naive string matching algorithm, and illustrating homomorphic encryption.

• Maple commands that have been improved or added to the system since the last version of the

manual have been incorporated. In some cases, the improvements to the built-in functions have

made it no longer necessary to develop functions within this manual to fill gaps in Maple’s capa-

bilities. For example, Maple’s built-in function for finding graph isomorphisms can now handle

directed graphs, making the procedure provided in the previous version of this manual unneces-

sary and making room for procedures for visualizing the isomorphisms instead. Several “from

scratch” procedures duplicating built-in capabilities remain when doing so illustrates important

mathematics content or programming techniques.

• Data structures introduced since the last version of the manual, including the DataFrame object

and MultiSet structure, are discussed in relation to appropriate content. In particular, the built-in

function for producing truth tables produces a DataFrame by default, and the MultiSet structure

can be used to represent both multi- and fuzzy-sets. Generally speaking, however, preference is

given to more fundamental data structures more universally present across computer algebra sys-

tem and programming languages.

• Deprecated commands and packages have been replaced by their newer equivalents; most notably

the numtheory package has been replaced by NumberTheory.

Acknowledgments
I am deeply grateful to Ken Rosen for having trusted me with this work and for his wisdom and

guidance. I am indebted to the authors of the original Exploring Discrete Mathematics with Maple
for providing an excellent foundation on which to build.

I also wish to thank Nora Devlin, the Product Developer at McGraw-Hill Higher Education for Dis-
crete Mathematics and Its Applications, eighth edition, for her patience and confidence.

Thanks also to those who have provided feedback on the previous version.

I am grateful to Martin Erickson for his mentorship. To Daniel Baack, Jason Beckfield, Elizabeth

Davis-Berg, Julie Minbiole, Christopher Shaw, Michael Welsh, and Heather Minges Wols for

their constant support and encouragement. Finally, I am always grateful to my parents for all they

have done.

Daniel R. Jordan

djordan@colum.edu

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Preface to the First Edition
This book is a supplement to Ken Rosen’s text Discrete Mathematics and Its Applications, Third
Edition, published by McGraw-Hill. It is unique as an ancillary to a discrete mathematics text in that

its entire focus is on the computational aspects of the subject. This focus has allowed us to cover

extensively and comprehensively how computations in the different areas of discrete mathematics

can be performed, as well as how results of these computations can be used in explorations. This

book provides a new perspective and a set of tools for exploring concepts in discrete mathematics,

complementing the traditional aspects of an introductory course. We hope the users of this book

will enjoy working with it as much as the authors have enjoyed putting this book together.

This book was written by a team of people, including Stan Devitt, one of the principle authors of the

Maple system and Eithne Murray who has developed code for certain Maple packages. Two other

authors, Troy Vasiga and James McCarron, have mastered discrete mathematics and Maple through

their studies at the University of Waterloo, a key center of discrete mathematics research and the

birthplace of Waterloo Maple Inc.

To effectively use this book, a student should be taking, or have taken, a course in discrete math-

ematics. For maximum effectiveness, the text used should be Ken Rosen’s Discrete Mathematics
and Its Applications, although this volume will be useful even if this is not the case. We assume

that the student has access to Maple, Release 3 or later. We have included material based on Maple

shareware and on Release 4 with explicit indication of where this is done. (Where to obtain Maple

shareware is described in the Introduction.) We do not assume that the student has previously used

Maple. In fact, working through the book can teach students Maple while they are learning discrete

mathematics. Of course, the level of sophistication of students with respect to programming will

determine their ability to write their own Maple routines. We make peripheral use of calculus in

this book. Although all places where calculus is used can be omitted, students who have studied

calculus will find this material of interest.

This volume contains a great deal of Maple code, much based on existing Maple functions. But

substantial extensions to Maple can be found throughout the book; new Maple routines have been

added in key places, extending the capabilities of what is currently part of Maple. An excellent

example is new Maple code for displaying trees, providing functionality not currently part of the

network package of Maple. All the Maple code in this book is available over the Internet; see the

Introduction for details.

This volume contains an Introduction and 10 chapters. The Introduction describes the philos-

ophy and contents of the chapters and provides an introduction to the use of Maple, both for

computation and for programming. This chapter is especially important to students who have

not used Maple before. (More material on programming with Maple is found throughout the

text, especially in Chapters 1 and 2.) Chapters 1 to 10 correspond to the respective chapters of

Discrete Mathematics and Its Applications. Each chapter contains a discussion of how to use

Maple to carry out computation on the subject of that chapter. Each chapter also contains a dis-

cussion of the Computations and Explorations found at the end of the corresponding chapter of

Discrete Mathematics and Its Applications, along with a set of exercises and projects designed for

further work.

Users of this book are encouraged to provide feedback, either via the postal service or the Internet.

We expect that students and faculty members using this book will develop material that they want

to share with others. Consult the Introduction for details about how to download Maple software

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

associated with this book and for information about how to upload your own Maple code and

worksheets.

Acknowledgments
Thanks go to the staff of the College Division of McGraw-Hill for providing us with the flexibility

and support to put together something new and innovative. In particular, thanks go to Jack Shira,

Senior Sponsoring Editor, and Maggie Rogers, Senior Associate Editor, for their strong interest,

enthusiasm, and frequent inquiries into the status of this volume, and to Denise Schanck, Publisher,

for her overall support. Thanks also goes to the production department of McGraw-Hill for their

able work.

We would also like to express thanks to the staff of Waterloo Maple Inc. for their support of this

project. In particular, we would like to thank Benton Leong and Ha Quang Le for their suggestions.

Furthermore, we offer our appreciation to Charlie Colbourn of the University of Waterloo for

helping bring this working team together as well as for his contributions as one of the authors of

Maple’s networks package which is heavily used in parts of this book.

As always, one of the authors, Ken Rosen, would like to thank his management at AT&T Bell Lab-

oratories, including Steve Nurenberg, Ashok Kuthyar, Hrair Aldermishian, and Jim Day, for pro-

viding the environment and the resources that have made this book possible. Another author, Troy

Vasiga, would like to thank his wife for her encouragement and support during the preparation of

this book.

Introduction
Modern mathematical computation software, such as Maple, allow us to carry out complicated

computations quickly and easily. As a supplement to traditional exercises solved by hand, having

computational tools available while learning discrete mathematics provides a new dimension to

the learning experience. Specifically, Maple supports an enquiry and experimental approach to

learning. This book is designed to connect the traditional approach to learning discrete mathematics

with this experimental approach.

Using computational software, students can experiment directly with many objects that are impor-

tant in discrete mathematics. These include sets, large integers, combinatorial objects, graphs, and

trees. Furthermore, by using interactive computational software to do this, students can explore

these examples more thoroughly, fostering a deeper understanding of concepts, applications, and

problem-solving techniques.

This supplement has two main goals. The first is to help students learn how to carry out computa-

tions in discrete mathematics using Maple. The second is to be a guide and a model as students dis-

cover mathematics with the use of computational tools.

This book is intended for use by any student of discrete mathematics. No previous familiarity with

Maple is required. Likewise, we do not assume any previous experience with computer program-

ming. The fundamentals of Maple and the basic concepts of computer programming will be thor-

oughly explained as they are needed.

Structure of This Manual
This supplement begins with a brief introduction to Maple, its capabilities, and its use. The material

in this introductory chapter explains the philosophy behind working with Maple, how to use Maple

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

to carry out computations, and its basic structure. This introduction continues by explaining the

basic concepts and syntax for programming with Maple. This will provide those who are new to

Maple and programming languages the background they will need in the rest of the book.

Following the introduction, the main body of this book contains 13 chapters. Each chapter paral-

lels a chapter of Discrete Mathematics and Its Applications, Eighth Edition, by Kenneth H. Rosen

(henceforth referred to as the text or the textbook). Each chapter includes comprehensive coverage

explaining how Maple can be used to explore the topics of the corresponding chapter of the text.

This includes a discussion of relevant Maple commands, many new procedures written expressly for

this book, and examples illustrating how to use Maple to explore topics in the text.

Additionally, we discuss selected Computer Projects and Computations and Explorations from the

corresponding chapter of the text. We provide guidance, partial solutions, or complete solutions to

these exercises. A similar philosophy governs the inclusion of these solutions as does the inclusion

of answers to selected exercises in the back of most mathematics textbooks. You should attempt the

problem on your own first. The solutions in this manual are intended to be referred to: after you have

succeeded in solving a problem to see a (potentially) different approach, when you have stopped

making progress on your own and need a slight boost to continue, or when you are trying to solve a

similar problem.

Finally, each chapter concludes with a set of additional questions for you to explore. Some of these

are straightforward computational exercises, while others are more accurately described as projects

requiring substantial additional work, including programming.

The chapters of this manual are available in two formats: as a PDF document and as a Maple

Worksheet. The PDF format contains all of the text and Maple commands and other information

that you need. The Maple Worksheet version of the chapter includes additional features, specifically

active Maple code and links to Maple help pages. It is recommended that you primarily work with

the Maple Worksheet version of this manual, and use the PDF version for when you do not have

access to Maple.

When you first open the Maple Worksheet version of a chapter, a dialog box should pop up telling

you that the worksheet contains content that will automatically execute (see image below). It asks

whether you want to proceed. We recommend that you choose yes.

This way, the vital commands within the chapter, those that define variables and procedures, are

executed for you right when you open the document. If you do not allow the automatic execution

to happen, you may run into errors if you try to execute commands that require other statements

to have been executed first. Of course, some groups of commands must be executed in order to

produce the correct output, so if you encounter errors, you may need to backtrack and execute

commands in order.

The main benefit of the Maple Worksheet version of this book is that it is interactive. That is, you

can execute the Maple commands demonstrated in the chapter. Even better, you can modify the

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

example commands so that you can experiment right within the body of the chapter. Additionally,

you have immediate access to Maple’s help system. Within the text of this manual, Maple com-

mands appear in red and are underlined indicating that clicking on them will open the corresponding

Maple help page.

This book has been designed to help students achieve the main goals of a course in discrete math-

ematics. These goals, as described in the preface of the textbook, are the mastery of mathematical

thinking, combinatorial analysis, discrete structures, algorithmic thinking, and applications and

modeling. This supplement demonstrates how to use the interactive computational environment of

Maple to enhance and accelerate the achievement of these goals.

Interactive Maple
Exploring discrete mathematics with Maple is like exploring a mathematical topic with an expert

assistant at your side. As you investigate a topic, you should always be asking questions. In many

cases, the answer to your question can be found by experimenting. Maple, your highly trained math-

ematical assistant, can often carry out these directed experiments quickly and accurately, often with

only a few simple instructions.

By hand, the magnitude and quantity of work required to investigate even one reasonable test case

may be prohibitive. By delegating the details to Maple, your efforts can be much more focused on

choosing the right mathematical questions and on interpreting results. Moreover, with a system such

as Maple, the types of objects you are investigating, and tools for manipulating them, already exist

as part of the basic infrastructure provided by the system. This includes sets, lists, variables, polyno-

mials, graphs, arbitrarily large integers, rational numbers, and most important, support for exact and

fast computations.

The use of Maple is merely a means to the end of achieving the goals of a course in discrete math-

ematics. As with any tool, to use it effectively you must have some basic understanding of the tool

and its capabilities. In this section, we introduce Maple by working through a sample interactive

session.

Starting Maple
A new Maple session begins when you start the Maple software. When you start Maple, you gener-

ally will see the Maple startup worksheet, which will look something like the window shown below.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

The main portion of the startup worksheet displays icons referring to various topics. The left side of

the window consists of four useful icons. The lower two are links to a worksheet that itself links to a

variety of resources that can help you get started using Maple and a link to the Maple help system.

The top two icons on the left-hand side of the window are the new document options. Selecting one

of those icons will create either a new Document or Worksheet. The difference between these is dis-

cussed below. To open an existing file, perhaps a file that you created or one of the chapters of this

manual, you can select Open from the File menu or click on the open icon, which is typically the

second icon in the toolbar along the top of the Maple window. A standard file selection dialog will

open that allows you to select the file you want.

Documents versus Worksheets
This Introduction and, in fact, all the chapters of this manual were created in Document mode. In

Document mode, you interact with Maple in similar ways to how you edit a document in a word pro-

cessing program. You can type text, change the font, insert images, and complete other typical word

processing tasks. However, you also have a powerful mathematical engine at your fingertips.

A file in Worksheet mode is more focused on executing Maple commands. When you start a Maple

file in Worksheet mode, you immediately see a command prompt. The goal of this manual is to

help you explore and learn discrete mathematics, so the execution of Maple commands is the focus.

For this reason, it is likely to be more natural to interact with Maple in Worksheet mode. From the

start-up worksheet, you can click on “New Worksheet” or select “Worksheet Mode” from the New
submenu of the main File menu. Note that Document mode is the default, so if you click on the new

document icon (the first icon in the toolbar at the top of the Maple window), you will be presented

with a blank file in Document mode.

However, the difference between Worksheet mode and Document mode is mostly a matter of focus

and style. Text blocks can be added in Worksheet mode and command prompts can be added in

Document mode. In the toolbar at the top of the Maple window you should see icons like the ones

shown below.

These icons should be about a third of the way along the toolbar, which begins with icons for a new

file, open, save, and print. If you do not see them, click on the View menu and make sure that a

checkmark appears next to Toolbar. When you are working in Maple, whether in a Worksheet or

a Document, clicking on the capital T icon (or selecting Text from the Insert menu) will insert a

text block immediately after your cursor. Clicking on the icon that looks like a greater than symbol

followed by an underline (or selecting one of the Execution Group options in the Insert menu) will

create a command prompt.

The first of the four icons displayed above inserts a Code Edit Region, which is useful when you are

writing procedures, as opposed to executing an individual command. In a Code Edit Region, Maple

will highlight syntax errors and warn you about other possible issues with your code as you type.

In addition, a fixed-width font is used which makes careful checking of syntax easier. The proce-

dures in this manual are entered in Code Edit Regions. The final icon is for entering a new Docu-

ment Block. These, like the Document mode, are used for mixing text with results of computations

to produce the kinds of polished documents and final reports you might see in a business context.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Maple Notation Versus 2-D Math Mode
Along the left side of the main window you may see palettes. If they are not already visible, they can

be controlled by the Expand Dock or Collapse Dock options in the Palettes submenu of the View
menu. Shown below is the Expression palette.

Palettes can be used to insert mathematical formulae and symbols within text blocks. They can also

be used to make expressions in 2-D math mode. By default, for both Documents and Worksheets,

math is input and output in 2-D math notation. The 2-D notation allows you to use, for example, the

integral symbol as part of an expression that you have Maple evaluate. With 2-D notation, you can

also access context menus by right-clicking on an expression to instruct Maple to perform certain

operations on the expression.

These are nice features, but it is not required to use them. Everything you can do in Maple can be

accomplished with plain keyboard input, and all of the commands demonstrated in this manual are

presented in the form obtained by simple typing. Indeed, that is how all the commands were entered

during the creation of the manual. There are several reasons we chose to use this approach for com-

mand entry, but the primary reason is that it is much easier to explain what to do when you just need

to type what you see.

However, when working in 2-D input mode, Maple will automatically so some formatting as you

type. You will most often notice this when typing exponents (obtained by a caret, or Shift+6) and

arrows (obtained from a hyphen followed by a greater-than). For example, consider the input below.

> 𝑓 ∶= x → x3 + 4 ⋅ x − 7

𝑓 ∶= x → x3 + 4 x − 7 (0.1)

Contrast that with the following in 1-D input mode.

> f := x -> xˆ3 + 4*x - 7;

𝑓 ∶= x → x3 + 4 x − 7 (0.2)

Do not worry about what these commands do right now. The point is that their output is exactly the

same. And, in fact, they are entered in nearly the same way. The only significant differences are the

semicolon and the fact that when entering the command in 2-D mode, you need to press the right

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

arrow key after entering the 3 to exit the exponent. We also added spaces to make the 1-D input a bit

more readable, but they are unnecessary.

In this manual, input is almost always given in 2-D mode, but entered entirely from the keyboard.

On those few occasions where Maple’s automatic transformation of 2-D input obscures how to enter

the command, it is provided in 1-D mode. That said, you can have Maple translate from 2-D mode

to 1-D mode for you. Right-click on a 2-D input and in the pop-up menu, select the 2-D Math menu,

then the Convert To submenu and then choose 1-D Math Input. If you do that to the 2-D command

above, you will get a bit more than you bargained for, as the conversion will also reveals what the

arrow is a shorthand for.

In traditional Maple notation, complete commands end in semicolons (;) or colons (:). In 2-D input

mode, these are not usually required, unless you are entering a sequence of commands in the same

input. More will be said about the use of semicolons and colons below, but know that including a

semicolon at the end of a command will not produce an error so you can safely include one if you

are unsure.

Executing Commands
To execute a command, make sure that the cursor is somewhere on the line containing the command

and press the Enter or Return key to execute the command and display the result. It is time to execute

your first Maple command. Let us start simple and add two plus three. To do this, make sure your

cursor is on a command line and type 2+3 and then press Enter or Return.

> 2 + 3

5 (0.3)

Here are a few more commands. Try entering them on your computer.

> add
(
i2, i = 1 ..10

)
385 (0.4)

> int
(
(x − 1)3 , x

)
(x − 1)4

4
(0.5)

> expand (%)
1

4
x4 − x3 + 3

2
x2 − x + 1

4
(0.6)

The percent symbol (%) is used to refer to the result of the most recently executed statement. The

percent does not always refer to the value immediately above it, as commands can be executed out

of order.

In addition, the line numbers that automatically appear next to the results can be used in commands

to refer to specific results. To use a result, it is not enough to type (0.5) in a statement. Instead,

you must select Label... from the Insert menu and enter the number of the label in the dialog

box that opens. You can also use the shortcut Control+L (or Command+L on a Mac) to open the

dialog. If equation numbers are not appearing when you execute commands, you should turn them

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

on. In the Tools menu, select Options (or Preferences from the Maple menu on a Mac). On the

Display tab, make sure that the Show Equation Labels box is checked.

Try entering the following command.

> subs (x = 3, (0.5))
4 (0.7)

A First Encounter with Maple
As already indicated, working with Maple is like working with an expert mathematical assistant.

This requires a subtle change in the way you think about a problem. When working on an exercise

by hand, your attention is focused on the details and quite often you can lose sight of the “big pic-

ture.” Maple takes care of the details for you and frees you to focus on deciding what needs to be

done next. This is not to say that the details are not important nor does it imply that you should forgo

learning how to solve the problems by hand.

Much of discrete mathematics is about understanding the relationships between objects or sets of

objects and using mathematical models to capture some property of these objects. Understanding

these relationships often requires that you view either the objects or the associated mathematical

model in different ways.

Maple allows you to manipulate the mathematical models almost casually. For example, the polyno-

mial (x + (x + z) y)3 can be entered into Maple as:

> (x + (x + z) ⋅ y)3

(x + (x + z) y)3 (0.8)

The result of executing this statement is displayed immediately. In this case, Maple simply echoes

the polynomial as no special computations were requested.

The power of having a computational tool like Maple is that a wide range of standard operations

become immediately available. For example, you can expand, differentiate, and integrate just by

telling Maple to do so. Suppose you decided that it would be useful to see the full expansion of the

polynomial above. All you need to do is issue the appropriate command to Maple. In this case, the

command you would want is the expand command, which tells Maple to expand the polynomial.

> expand (%)
x3y3 + 3 x2y3z + 3 xy3z2 + y3z3 + 3 x3y2 + 6 x2y2z + 3 xy2z2 +

3 x3y + 3 x2yz + x3 (0.9)

(Recall that Maple uses the percent sign (%) to refer to the output from the previous command.)

Perhaps you decide it would be useful to look at this as a polynomial in the variable x, with the vari-

ables y and z placed in the coefficients of x. Then, you would use the collect command.

> collect (%, x)(
y3 + 3 y2 + 3 y + 1

)
x3 +

(
3 y3z + 6 y2z + 3 yz

)
x2 +(

3 y3z2 + 3 y2z2
)

x + y3z3 (0.10)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=expand
https://www.maplesoft.com/support/help/Maple/view.aspx?path=collect

To return to a factored form, simply ask Maple to factor the previous result.

> factor (%)
(yx + yz + x)3 (0.11)

We used several commands without explanation in the above. Rest assured that in the body of this

manual we will always provide detailed explanations of the usage and syntax of new commands

when we first encounter them. The purpose of the last several paragraphs was not to introduce the

commands, but to illustrate how easy it is to quickly move between different representations of the

same object. Having these kinds of routine tasks performed quickly and accurately means that you

are freer to experiment and explore.

A second very important benefit is that the particular computations that you choose to have Maple

execute are performed accurately. Thus, the results you get from your experiments are much more

likely to be feedback on the model you had chosen rather than nonsense arising from arithmetic

errors.

Finally, the sheer computational power of Maple allows you to run much more extensive exper-

iments and many more of them. This can be important when trying to establish or identify a

relationship between a mathematical model and a collection of discrete objects.

It is worth making some comments about terminology and syntax. First, in this manual, we will use

the term command to refer to expand, collect, factor, and the like. Maple’s help documents refer to

them as commands or functions, but we will avoid the use of function because of its mathematical

meaning. Maple commands will appear in the red Maple notation font and will be underlined indi-

cating that it links to the Maple help documents. On the other hand, programs that we write will be

referred to as procedures.

Second, when you use a command on one or more objects, the objects are referred to as arguments.

To execute a command, you type its name followed by a pair of parentheses. Inside the parentheses

you list the arguments, separated by commas.

> max (9, 2, 12, 14, 7, 11)
14 (0.12)

Even commands that do not need any arguments require the parentheses. For example, the time
command returns the total amount of computer time that the current Maple session has used.

> time ()
3.894 (0.13)

The Basics
This section and the next are devoted to introducing you to the most essential Maple commands

and concepts that will be used throughout this manual. Some of this material will be repeated,

often in more depth, in the first few chapters when the topics arise naturally in conjunction with

the content of the textbook. This section is focused on basic commands and the next focuses on

programming.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=factor
https://www.maplesoft.com/support/help/Maple/view.aspx?path=expand
https://www.maplesoft.com/support/help/Maple/view.aspx?path=collect
https://www.maplesoft.com/support/help/Maple/view.aspx?path=factor
https://www.maplesoft.com/support/help/Maple/view.aspx?path=time

Help
The most important command is the help command. Maple includes extensive documentation on all

of its commands, including examples of the how the command is used. There are two primary ways

to access Maple’s help documents. First, you can select Maple Help from the Help menu or click on

the circled question mark in the toolbar. The Maple Help window will open and from there you can

browse the table of contents or search for the topic or command you are interested in.

The more typical way to access Maple’s help pages is by entering a question mark (?) on a command

line. For example, if you need to know the command for computing the square root of a number, you

could enter the following.

> ?square root

The Help window will open to the help page for the sqrt command, which computes the principle

square root of a number or an algebraic expression. Note that you do not need to know the name of

the command you are looking for help on. Following the ? with “square root” finds the sqrt com-

mand. You should try to make your query as simple as possible, though. Often, taking a guess at

the name of the command works well. Remember that when commands are discussed in this man-

ual, they appear in red and underlined. These are links to the Maple help documents and clicking on

them will open the relevant help page.

Each help page on a Maple command provides several examples of how to use that command. Open

the sqrt help page now and take a look. If you wish, you can open help pages as interactive work-

sheets. To do this, from the help system’s View menu, select Open Page as Worksheet, or click on

the next-to-last icon on the help system toolbar.

Arithmetic
Maple uses the typical notation for arithmetic. For addition and subtraction, Maples uses + and -
just as you would expect. The - symbol is used for negation as well. Multiplication and division are

performed with * and / , and ˆ is used for exponentiation. Note that in 2-D input mode, typing the

caret or slash will move the cursor to an exponent or denominator position and you will need to use

the right-arrow key to input the next part of the expression.

Maple obeys the usual order of precedence for arithmetic operators, and parentheses serve as

grouping symbols. However, brackets, braces, and angle brackets all have different meanings in

Maple and cannot be used as grouping symbols in arithmetic expressions. Therefore, to compute

the expression

7 + 2 ⋅
[

5 −
(

2

3
𝜋

)2
]

,

you would enter the following, using Pi for 𝜋 and parentheses in place of the brackets.

> 7 + 2 ⋅
(

5 −
(

2

3
Pi
)2
)

17 − 8𝜋2

9
(0.14)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=help
https://www.maplesoft.com/support/help/Maple/view.aspx?path=sqrt
https://www.maplesoft.com/support/help/Maple/view.aspx?path=help
https://www.maplesoft.com/support/help/Maple/view.aspx?path=sqrt
https://www.maplesoft.com/support/help/Maple/view.aspx?path=sqrt
https://www.maplesoft.com/support/help/Maple/view.aspx?path=arithop
https://www.maplesoft.com/support/help/Maple/view.aspx?path=arithop
https://www.maplesoft.com/support/help/Maple/view.aspx?path=arithop
https://www.maplesoft.com/support/help/Maple/view.aspx?path=arithop
https://www.maplesoft.com/support/help/Maple/view.aspx?path=arithop
https://www.maplesoft.com/support/help/Maple/view.aspx?path=arithop
https://www.maplesoft.com/support/help/Maple/view.aspx?path=initialconstants

In 1-D mode, this looks like:

> 7+2*(5-(2/3*Pi)ˆ2);

17 − 8𝜋2

9
(0.15)

Notice that Maple automatically simplifies the expression, but as an exact value in terms of 𝜋. If you

prefer a decimal approximation, you can use the evalf command (for evaluate floating-point). This

command takes one argument, an expression, and evaluates it with floating-point arithmetic.

> evalf (%)
8.227018307 (0.16)

By default, evalf computes with 10 significant figures. If you prefer more or fewer significant digits,

you can specify the number of digits to use as shown below.

> evalf [3] ((0.14))
8.23 (0.17)

> evalf [15] ((0.14))
8.22701831014281 (0.18)

Recall that the % symbol is used to refer to the previous computation and references to specific

output lines can be inserted by clicking on the Label item in the Insert menu or with the shortcut

Ctrl+L (Command+L on a Mac).

Maple considers integers, fractions, and floating-point numbers to be different and it works with

them differently. In expression (0.14), we used only integers and the constant Pi. If we had used a

floating-point number, Maple would have computed with floating-point arithmetic.

>
2

3
+ 3.1

2
2.216666667 (0.19)

The presence of 3.1 caused Maple to evaluate the entire expression with floating-point arithmetic.

You can use this fact to cause Maple to evaluate with floating-point arithmetic even when only inte-

gers are involved. Mathematically, there is no difference between 3 and 3.0. Maple treats them dif-

ferently, however.

>
3

5
3

5
(0.20)

>
3.0

5
0.6000000000 (0.21)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=evalf
https://www.maplesoft.com/support/help/Maple/view.aspx?path=evalf
https://www.maplesoft.com/support/help/Maple/view.aspx?path=%
https://www.maplesoft.com/support/help/Maple/view.aspx?path=initialconstants

In fact, the trailing 0 is not required.

>
3.

5
0.6000000000 (0.22)

This discussion illustrates the concept of a type. A computer can be much more efficient if it knows

what kinds of things it will be working with. If the computer knows that one object is going to be a

floating-point number while another is going to be a string, it will allocate memory differently for

the two objects, for instance.

Types also allows programs such as Maple and programming languages to make use of opera-

tor overloading. This means that the symbol + means one thing when applied to two integers,

something else when applied to floating-point numbers, and something completely different when

applied to matrices. The concept of type is what makes it possible for Maple to figure out which

version of + is called for at the time. Maple recognizes over 200 different predefined types and users

are free to create more. We will see much more of types as we go forward.

Names, Assignment, and Equality
In mathematics, we talk about variables as symbols that stand in for something else. In Maple, this

role is filled by names. The simplest definition of a name in Maple is that a name must begin with a

letter and may be followed by letters, digits, or the underscore character. The following are all valid

Maple names: evalf, name, x, a15, B_5x_.

Names can be used as a variable in an algebraic expression as in the following.

> 3 x2 + 5 x − 7

3 x2 + 5 x − 7 (0.23)

Names can also be used to store particular values using the assignment operator. The assignment

operator consists of a colon followed by an equals sign (:=). To assign a value to a name, you begin

with the name, followed by the assignment operator and then the expression that you want stored in

the name. For example, to assign the value 12 to the name twelve, you type the statement below.

> twelve ∶= 12

twelve ∶= 12 (0.24)

When a value or other object has been assigned to a name, then any time that name appears in a

statement, it is “resolved” to the expression stored in it.

> twelve + 5 x
12 + 5 x (0.25)

When Maple encounters an assignment statement, it first evaluates the right-hand side of the state-

ment and then makes the assignment. You can use this fact to modify values as follows.

> twelve ∶= 2 ⋅ twelve + 1

twelve ∶= 25 (0.26)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=assignment

In the statement above, the right-hand side is evaluated first, meaning that the twelve on the right is

resolved to its “old” value of 12. Maple then computes 2 ⋅ 12 + 1 = 25 and assigns the value 25 to

the name twelve, overwriting the value stored earlier.

In Maple parlance, twelve is referred to an assigned name, as opposed to an unassigned name. An

assigned name, that is a name that has been assigned a value, can be used as an unassigned name by

enclosing it in right single quotes. For example,

> 2 ⋅ ′twelve′ + 5 x
2 twelve + 5 x (0.27)

Right single quotes are used by Maple to delay evaluation of whatever expression they enclose. One

important use of this is to unassign a name, as shown below.

> twelve ∶= ′twelve′
twelve ∶= twelve (0.28)

After this statement, twelve is no longer assigned a value.

> twelve
twelve (0.29)

It is important to note that Maple distinguishes between the right and left single quote.

Practically any expression can be assigned to a name, not just numbers. For example, we can assign

the algebraic expression 2 y + 5 x to the name f.

> 𝑓 ∶= 2 y + 5 x
𝑓 ∶= 2 y + 5 x (0.30)

Now, every time f appears in a statement, it is resolved to this expression.

> sqrt(𝑓)√
2 y + 5 x (0.31)

Even an equation can be assigned to a name.

> eqn ∶= F = 9

5
C + 32

eqn ∶= F = 9 C
5
+ 32 (0.32)

Observe in the last example the different uses of the assignment operator and the equals sign.

Some programming languages use the equals sign for assignment, but Maple reserves the equals

sign for mathematical equality. The previous statement assigns the name eqn to the mathematical

equation F = 9

5
C + 32. Since Maple understands this to be an equation, we can, for instance, solve

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

it. Given an equation and a name appearing in the equation, the solve command solves the equation

for the given name. Therefore, we can solve for C as follows.

> solve (eqn,C)

−160

9
+ 5 F

9
(0.33)

When you execute the statement above, Maple first resolves eqn to the equation F = 9

5
C + 32. It

also attempts to resolve C, but C is an unassigned name. (If C were not unassigned, an error would

result.) Once the arguments have been evaluated, Maple applies the solve command to them.

Basic Types
We mentioned above that Maple recognizes many different types of objects. In this subsection, we

will discuss some of the most fundamental types. We will not go into all the details of what it means

to be a type in Maple. Our goal in this section is to introduce you to the kinds of objects you will be

using and the use of the type command.

We have already seen numeric types, such as integers, fractions, and floating-point numbers. Maple

has a host of names for numeric types, such as integer, fraction, float, posint, realcons, and

imaginary, to name a few.

You can test whether a Maple expression is of a specific type by using the type command. This com-

mand requires two arguments. The first is the expression you want to test and the second is the type.

For example, to see whether or not 2 is a positive integer, a fraction, and a float, you enter the follow-

ing statements.

> type (2, posint)
true (0.34)

> type (2, fraction)
false (0.35)

> type (2, float)
false (0.36)

In addition to numeric types, Maple has a string type for strings of characters. You form a string by

enclosing any sequence of characters within a pair of double quotes. For example, Einstein wrote:

> quotation ∶= “Pure mathematics is, in its way, the poetry of logical ideas.”

quotation ∶= “Pure mathematics is, in its way, the poetry of logical ideas.” (0.37)

Strings may be combined with the concatenation operator, ||, or with the command cat, as demon-

strated below.

> cat (quotation, “ - Einstein”)
“Pure mathematics is, in its way, the poetry of logical ideas. - Einstein” (0.38)

> “abc” || “def”

“abcdef” (0.39)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=solve
https://www.maplesoft.com/support/help/Maple/view.aspx?path=solve
https://www.maplesoft.com/support/help/Maple/view.aspx?path=type
https://www.maplesoft.com/support/help/Maple/view.aspx?path=type,integer
https://www.maplesoft.com/support/help/Maple/view.aspx?path=type,fraction
https://www.maplesoft.com/support/help/Maple/view.aspx?path=type,float
https://www.maplesoft.com/support/help/Maple/view.aspx?path=type,posnegint
https://www.maplesoft.com/support/help/Maple/view.aspx?path=realcons
https://www.maplesoft.com/support/help/Maple/view.aspx?path=imaginary
https://www.maplesoft.com/support/help/Maple/view.aspx?path=type
https://www.maplesoft.com/support/help/Maple/view.aspx?path=type,string
https://www.maplesoft.com/support/help/Maple/view.aspx?path=cat

You can ask Maple what the type of an object is with the whattype command. Since many objects

satisfy the definitions of multiple types, this command returns the object’s basic type.

> whattype (2)
integer (0.40)

We will see why types are important in the next section when we discuss basic programming

concepts.

Expression Sequences
An expression sequence, or simply sequence, is the fundamental Maple data structure. An expres-

sion sequence is formed using commas to separate expressions. For example, the following assigns

the expression sequence 7, 8, 9, 10, 11 to the name S.

> S ∶= 7, 8, 9, 10, 11

S ∶= 7, 8, 9, 10, 11 (0.41)

To lengthen a sequence, you use a comma.

> S ∶= S, 12

S ∶= 7, 8, 9, 10, 11, 12 (0.42)

Selection
The selection operation is used to access members of a sequence and subsequences. The first ele-

ment of the sequence can be obtained by typing the name assigned to the sequence followed by a

pair of brackets enclosing the number 1.

> S[1]
7 (0.43)

You would use 2 to obtain the second element, 3 for the third, and so on.

> S[2]
8 (0.44)

> S[3]
9 (0.45)

You may also use negative integers to count from the right. Therefore, −1 refers to the last element

of the sequence, −2 to the next to last, and so on.

> S[−1]
12 (0.46)

> S[−2]
11 (0.47)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=whattype

Any expression can be placed inside the brackets, provided it evaluates to an integer that is not 0 and

does not exceed the bounds of the sequence (for example, 7 or higher and −7 or lower, in this case).

> S[2 ⋅ 3 − 22]
8 (0.48)

Ranges
A range is a Maple type consisting of two expressions connected by two periods. A common use of

a range is in conjunction with the selection operation to extract a subsequence from a sequence. For

example, to extract the subsequence consisting of the third through the fifth elements of S, you use

the range 3..5 within the brackets.

> S[3 ..5]
9, 10, 11 (0.49)

> S[−5 .. − 3]
8, 9, 10 (0.50)

Note that the left side of the range must be less than or equal to the right side. However, either or

both sides may be omitted. If both are omitted, it is interpreted as the entire sequence.

> S[..]
7, 8, 9, 10, 11, 12 (0.51)

If only one side is given, it is interpreted either as the sequence from the given location onwards,

> S[3 ..]
9, 10, 11, 12 (0.52)

or as the sequence up to the given location.

> S[..5]
7, 8, 9, 10, 11 (0.53)

The seq Command and Final Comments about Sequences
The seq command is often used to create sequences using a formula. Here we only discuss the most

typical way to use seq . The command will be discussed more thoroughly in Section 2.4 of this

manual.

You should first choose a name, which is referred to as the index variable. The letter i is a typical

choice. In the simplest form, seq requires two arguments. The first argument is any expression, typ-

ically one that involves the index variable in its computation. The second argument is an equation

with the index variable on the left-hand side and a range on the right-hand side, for example, i=3..7.

The result of executing the seq command is the sequence obtained by evaluating the first argument

at each value of the index variable determined by the range in the second argument. For example, we

can obtain the squares of the integers between 5 and 11 as follows.

> seq
(
i2, i = 5 ..11

)
25, 36, 49, 64, 81, 100, 121 (0.54)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=range
https://www.maplesoft.com/support/help/Maple/view.aspx?path=seq
https://www.maplesoft.com/support/help/Maple/view.aspx?path=seq
https://www.maplesoft.com/support/help/Maple/view.aspx?path=seq
https://www.maplesoft.com/support/help/Maple/view.aspx?path=seq

Expression sequences are an important Maple data structure and form the basis for several types

including lists and sets, to be discussed below. However, you should be aware that sequences gener-

ally cannot be given as the argument to a command or procedure. To understand why, suppose that

ACommand were a command that accepted only one argument. If you try to execute this command

with a sequence, such as S, as the argument, Maple first resolves the expression sequence.

> ACommand (S)
ACommand (7, 8, 9, 10, 11, 12) (0.55)

It looks to Maple like you were passing six arguments to ACommand instead of one. That would

generate an error if ACommand were actually a command. In order to pass a collection of values to

a procedure or command, they must be enclosed in a list or a set.

Finally, the empty expression sequence is referred to as NULL. A command that results in NULL
displays no output.

> NULL

Lists
In Maple, a list is an ordered sequence of expressions. The name of the type in Maple is list. You

create a list by enclosing an expression sequence, that is, values separated by commas, in brackets.

> L ∶= [6, 7, 8, 9, 10, 11]
L ∶= [6, 7, 8, 9, 10, 11] (0.56)

Note that the seq command can be used to create a list by enclosing it in brackets. Maple computes

the sequence and then forms the list based on that sequence.

> L2 ∶= [seq (4 i + 3, i = 1 ..10)]
L2 ∶= [7, 11, 15, 19, 23, 27, 31, 35, 39, 43] (0.57)

At first glance, it may appear that the only difference between a list and the expression sequence that

defines it is the brackets. Conceptually, the actual difference is that a list can be thought of as a sin-

gle object. Therefore, unlike a sequence, a list can be passed as an argument to a procedure or com-

mand.

Selection
Selection works essentially the same with lists as with sequences. To access a single element of

the list, you follow the name of the list with a pair of brackets containing the integer indicating the

position of the element. Remember that the first element is 1 and that negative numbers count from

the end.

> L2[3]
15 (0.58)

> L2[−2]
39 (0.59)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=type,list
https://www.maplesoft.com/support/help/Maple/view.aspx?path=seq

As with sequences, you can select a range as well. The difference is that when used with a list, the

result will be a list.

> L2[3 .. − 2]
[15, 19, 23, 27, 31, 35, 39] (0.60)

The op Command
It is sometimes necessary to extract the underlying sequence from a list. This can be done with the

op (short for operands) command. The most basic form of the op command takes one argument,

which can be any expression. For lists, this will return the sequence of elements in the list.

> op (L2)
7, 11, 15, 19, 23, 27, 31, 35, 39, 43 (0.61)

The op command can also accept either an integer or a range as its first argument with the list as the

second. In this case, it behaves similar to selection, except op returns a sequence while selection

returns a list.

> op (5,L2)
23 (0.62)

> op (..5,L2)
7, 11, 15, 19, 23 (0.63)

With objects other than lists, op has a slightly different behavior. For example, for polynomials, op
will extract the terms.

> op
(
3 x2 − 5 x + 7

)
3 x2, −5 x, 7 (0.64)

We will discuss other uses of op in later chapters as they are needed.

Related to op is the nops (number of operands) command. For lists, nops returns the number of ele-

ments in the list.

> nops (L)
6 (0.65)

> nops (L2)
10 (0.66)

We saw that extending a sequence is just a matter of using a comma to continue the sequence.

Adding elements to a list is a bit more complicated. Suppose you want to add 47 to the end of L2.

To do this, you use op to extract the sequence of elements from L2. Then, add 47 to the sequence

with a comma. Turn the extended sequence back into a list by surrounding it with brackets. Finally,

reassign the result to the name L2.

> L2 ∶= [op (L2) , 47]
L2 ∶= [7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47] (0.67)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=op
https://www.maplesoft.com/support/help/Maple/view.aspx?path=op
https://www.maplesoft.com/support/help/Maple/view.aspx?path=op
https://www.maplesoft.com/support/help/Maple/view.aspx?path=op
https://www.maplesoft.com/support/help/Maple/view.aspx?path=op
https://www.maplesoft.com/support/help/Maple/view.aspx?path=op
https://www.maplesoft.com/support/help/Maple/view.aspx?path=op
https://www.maplesoft.com/support/help/Maple/view.aspx?path=op
https://www.maplesoft.com/support/help/Maple/view.aspx?path=op
https://www.maplesoft.com/support/help/Maple/view.aspx?path=op
https://www.maplesoft.com/support/help/Maple/view.aspx?path=op

Adding to the beginning of the list is done in essentially the same way.

> L2 ∶= [3, op (L2)]
L2 ∶= [3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47] (0.68)

If you want to insert an element in the middle of a list, say after the 5th member of L2, you would

use op with ranges in order to separate the front and back ends of the existing list as follows.

> L2 ∶= [op (..5,L2) , 21, op (6 ..,L2)]
L2 ∶= [3, 7, 11, 15, 19, 21, 23, 27, 31, 35, 39, 43, 47] (0.69)

The map Command
We discuss one last command related to lists: the map command. This command requires two argu-

ments. The first argument is the name of a command or procedure. The second argument is a list.

(Technically, the second argument can be any expression, but we will typically use map with a list

as the second argument.) The result is the list obtained by applying the command to each element of

the list. For example, the statement below produces the list of square roots of the given list.

> map (sqrt, [3, 6, 9])

[
√

3,
√

6, 3] (0.70)

Note that when map is applied to a name that has been assigned to a list, the named list is not

modified.

> map (sqrt,L)

[
√

6,
√

7, 2
√

2, 3,
√

10,
√

11] (0.71)

> L
[6, 7, 8, 9, 10, 11] (0.72)

If you want the original list to be updated, you should reassign it.

> L ∶= map (sqrt,L)

L ∶= [
√

6,
√

7, 2
√

2, 3,
√

10,
√

11] (0.73)

> L
[
√

6,
√

7, 2
√

2, 3,
√

10,
√

11] (0.74)

Note that it is typical for Maple commands to not modify their arguments.

For commands that require more than one argument, map can accept optional arguments following

the list that are then passed to the command. There are also variants such as map2 and zip. The use

of additional arguments and these other commands will be discussed as they are needed.

Sets
In mathematics, a set is a collection of objects that is unordered and without repetition. Maple’s set
type models the mathematical notion. To form a set, you enclose a sequence in braces.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=op
https://www.maplesoft.com/support/help/Maple/view.aspx?path=map
https://www.maplesoft.com/support/help/Maple/view.aspx?path=map
https://www.maplesoft.com/support/help/Maple/view.aspx?path=map
https://www.maplesoft.com/support/help/Maple/view.aspx?path=map
https://www.maplesoft.com/support/help/Maple/view.aspx?path=map
https://www.maplesoft.com/support/help/Maple/view.aspx?path=zip
https://www.maplesoft.com/support/help/Maple/view.aspx?path=type,set

> {1, 2, 3}
{1, 2, 3} (0.75)

> S ∶=
{

seq
(
i2, i = 1 ..10

)}
S ∶= {1, 4, 9, 16, 25, 36, 49, 64, 81, 100} (0.76)

Note that repeated elements in a set are automatically removed by Maple.

> {1, 2, 3, 2, 1}
{1, 2, 3} (0.77)

This is a useful feature that we will make use of quite often to avoid redundancy.

The op command works on sets in the same way as lists to return the sequence that underlies the set,

and the nops command applied to a set returns the number of elements.

> op (S)
1, 4, 9, 16, 25, 36, 49, 64, 81, 100 (0.78)

> nops (S)
10 (0.79)

Note that, while sets are technically unordered, Maple actually imposes an order on them. This is

done to improve efficiency. Rest assured that the implementation of sets and the commands related

to them is done in such a way as to ensure that they behave as mathematical sets should. However,

selection works with sets in the same way as lists, as does the op command with an integer or range

as the first argument.

> S[3 ..7]
{9, 16, 25, 36, 49} (0.80)

> op (7, S)
49 (0.81)

Sets will be explored in more detail in Chapter 2.

Printing
There are three main ways to have Maple display the result of a computation. First, of course, is to

execute a command that displays a result.

> 2 + 3

5 (0.82)

On the other hand, sometimes you may wish for a result to not be displayed. In this case, you end the

statement with a colon instead of a semicolon.

> 2 + 3∶

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=op
https://www.maplesoft.com/support/help/Maple/view.aspx?path=op
https://www.maplesoft.com/support/help/Maple/view.aspx?path=op

The second way to get Maple to display information is the print command. This is often used within

a procedure to display the results of intermediate calculations before the final result is computed and

displayed. The print command accepts as its input a sequence of expressions and displays them on

a line. For example,

> print(L)

[
√

6,
√

7, 2
√

2, 3,
√

10,
√

11] (0.83)

> print(S,L2)
{1, 4, 9, 16, 25, 36, 49, 64, 81, 100} , [3, 7, 11, 15, 19, 21, 23, 27, 31, 35, 39, 43, 47] (0.84)

The third way to have Maple display output is printf. (There are three related commands that work

in similar ways with slightly different purposes, but we will only discuss printf.)

The purpose of printf is to print expressions using a particular format (hence the f) that you specify.

The first argument to the command is a string that details the format in which the information is to

be displayed. The remaining arguments are the information to be displayed. Here is an example of

using printf to display a number and its square with each number displayed with room for at least

5 digits.

> printf
(
“The square of %5a is %5a.\n”, 7, 72

)
The square of 7 is 49.

The % symbol is used to indicate the beginning of the formatting specification %5a. The 5, which

is optional, specifies that the width of that field is to be at least 5 characters. This is a useful option

for displaying a table or otherwise ensuring that displayed values are aligned. Finally, the a, for

anything, tells Maple to display the corresponding object in whatever format it normally would.

Other letters can be used that are specific to different types of objects to display, such as integers

and strings. The \n at the end of the formatting string indicates that a new line should be inserted

at that point. Following the formatting string, are the two values 7 and 7ˆ2. Notice that the first

value is put in place of the first formatting specification (the first %5a) and the second goes in place

of the second.

The printf command is very flexible with a great many options. The interested reader should refer

to the Maple help page for further information. In this manual, we will use printf rarely and we will

not discuss it further here.

Programming Preliminaries
This section is intended for those readers who have little or no previous exposure to programming.

We will endeavor to provide you with enough information to get you started so that you can work

productively with Maple. For further information, you are encouraged to consult the Maple manu-

als, which will provide you with further examples of the use of Maple’s programming facilities.

All programming languages provide a few basic means for the construction of algorithms. On the

most basic level, a computer program is a sequence of instructions that the computer executes one

after the other. Programs become more sophisticated when you start changing the flow of execution.

Maple provides the same sort of mechanisms for flow control as is found in traditional programming

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=print
https://www.maplesoft.com/support/help/Maple/view.aspx?path=print
https://www.maplesoft.com/support/help/Maple/view.aspx?path=printf
https://www.maplesoft.com/support/help/Maple/view.aspx?path=printf
https://www.maplesoft.com/support/help/Maple/view.aspx?path=printf
https://www.maplesoft.com/support/help/Maple/view.aspx?path=printf
https://www.maplesoft.com/support/help/Maple/view.aspx?path=printf
https://www.maplesoft.com/support/help/Maple/view.aspx?path=printf

languages such as C. While the syntax varies from one computer language to the next, there are two

primary kinds of control structures used: branching and iteration.

Branching
We will first discuss the concept of branching and its implementation in Maple. Branching is a

mechanism that allows you to choose between statements based on conditions that can only be

determined during a program’s execution. This is also called a selection or conditional statement.

if-then
As an example, suppose that you want to display a message based on whether a particular value is

positive. First, we assign a value to the name z.

> z ∶= 5

z ∶= 5 (0.85)

The following code will display the message “That’s positive” if the value stored in z is greater

than zero.

> if z > 0 then
print(“That’s positive”)

end if
“That’s positive” (0.86)

Note that, in order to begin a new line within a single command prompt, you press Shift+Enter or

Shift+Return. The line breaks and extra spaces are not required, in fact Maple ignores them, but

they often make programs easier to read and understand.

Typically, the condition in an if statement depends on a value input to a program or some intermedi-

ary calculation or a value that changes during the execution of a procedure. In these examples, think

about the name z as storing some value that varies based on some other computations. For instance,

z could be the value of some function at a particular point. Then, the value of z would depend on

which point was chosen.

Let us dissect the code above. The if statement begins with the keyword if. This is immediately fol-

lowed by a conditional expression, that is, an expression that Maple can evaluate to true or false.

Conditional expressions may include expressions that include relational operators (<, <=, =, >,

>=, <>), logical operators (and, or, not), or procedures and commands that return logical values

(true, false, or FAIL). We will see many examples of conditional expressions in Chapter 1. Note

that the nonstrict inequalities and not-equals are automatically transformed to the symbols ≤ ,≥ ,

and ≠ in 2-D input mode.

Following the conditional expression, you must include the keyword then. Following the then key-

word is a statement sequence, one or more statements that are to be executed in the event that the

conditional expression is true. In our example above, the then keyword was followed by the state-

ment sequence consisting of a single statement, the print command.

Finally, the phrase end if is used to indicate the end of the conditional statement.

When you execute the statement above, Maple evaluates the conditional expression z > 0. Since

this is a true statement (because z happened to be 5), Maple executes the print command in the

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=if
https://www.maplesoft.com/support/help/Maple/view.aspx?path=print
https://www.maplesoft.com/support/help/Maple/view.aspx?path=print

statement sequence following the then keyword. If the conditional expression had been found to be

false, then Maple would not execute the print command.

Below is another example, in which the conditional statement is false.

> if z ≥ 10 then
print(“That has at least two digits”)

end if

Notice that in this case, nothing is displayed. Once Maple determines that the condition is false, it

skips past the statement sequence following the then keyword.

else
Often, you will want to take one action if a condition is true and a different action if a condition is

false. The else keyword allows you to extend a conditional statement to contain a second statement

sequence to be executed if the condition is false.

> if z < 0 then
print(“It’s negative”)

else
print(“It’s not negative”)

end if
“It’s not negative” (0.87)

The then keyword separates the conditional expression from the statement sequence that is executed

when the condition is true. The else keyword indicates the beginning of the statement sequence that

is to be executed when the condition is not true.

In the example, Maple first tests to see if z < 0. Since this is false, Maple skips to the else clause and

executes the second print command.

elif
You can also extend the if statement to a multiway branching structure for when there are more than

two options. To do this, you use the elif keyword to introduce additional conditions that may be true

when the initial if condition fails.

> if z ≥ 10 then
print(“That has at least two digits”)

elif z > 0 then
print(“It’s positive”)

elif z ≥ 0 then
print(“It’s zero”)

else
print(“It’s negative”)

end if
“It’s positive” (0.88)

The statement above works as follows. First, Maple checks the condition z >= 10. If this were

true, it would execute the first print statement. However, since it is false, Maple moves on to the

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=print
https://www.maplesoft.com/support/help/Maple/view.aspx?path=print
https://www.maplesoft.com/support/help/Maple/view.aspx?path=print

first elif condition, z >0. This condition is true, so Maple executes the print(“It’s positive.”)
command.

Look at the next condition: z >= 0. This condition is also true, but Maple does not execute the

corresponding print command. In an if-elif-else structure, once the first conditional expression is

found to be true, the statement sequence following that condition is executed and any conditions

that follow the first are skipped. Likewise, the else statement sequence is only executed in case all

the conditional expressions were false. In other words, only one of the statement sequences is ever

executed.

That is why we can say that the number is 0 if the test z >= 0 is true. This condition is only checked

if all the previous conditions failed. Thus, if the z >= 0 test is evaluated true, we know that z > 0
was false, and hence z is 0.

Iteration
The previous subsection showed how to use branching in Maple to execute different blocks of code

depending on whether or not a specified condition was met. In this subsection, we look at ways to

repeat a block of code. Iteration is the mechanism for doing a given task repeatedly and is typically

accomplished by a loop structure.

for Loops
The most common type of iteration is the for loop. The most basic kind of for loop executes a state-

ment for each integer in a particular range. The example below computes the squares of the integers

from 3 to 5.

> for i from 3 to 5 do
i2

end do
9

16

25 (0.89)

The statement begins with the for keyword, indicating the type of loop. After the for keyword is a

variable name, called the loop variable. The letter i is a typical choice. Then, the from keyword is

followed by the initial value of the loop variable. The to keyword is followed by the maximum value

for the loop. After that, the do keyword precedes the body of the loop, which is terminated by the

end do phrase.

The statement(s) in between do and end do form the body of the loop. That is, those are the

statements that are executed repeatedly. When Maple executes this loop, here is what happens.

First, Maple assigns the starting value, specified by the from clause, to the loop variable i. Then,

the statement sequence is executed and the loop variable is squared. Once the statement sequence

is completed, Maple increments the loop variable by 1 and checks to see whether its new value

exceeds the value specified by the to clause. If not, the statement sequence is executed again with

the new value of the loop variable before incrementing it again. Once the loop variable exceeds the

maximum value, the loop terminates.

In other words, i is assigned to 3, and 3ˆ2 is computed. Then i is incremented to 4 and 4ˆ2 is com-

puted. Then i is incremented to 5 and 5ˆ2 is computed. Then i is incremented to 6, which exceeds the

maximum so the loop ends.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=print
https://www.maplesoft.com/support/help/Maple/view.aspx?path=do

There is actually an extra step that we did not mention. Immediately after assigning the starting

value to the loop variable, the loop variable is tested against the maximum value. This means that it

is possible to create loops that never execute their statement sequence.

> for i from 7 to 2 do
print(“Execute”)

end do

Maple also includes the option for a by clause if you would like to increment the loop variable by a

value other than 1.

> for i from 3 by 2 to 11 do
i2

end do
9

25

49

81

121 (0.90)

In this example, the by 2 clause indicates that the loop variable is incremented by 2. The value 2 is

referred to as the step.

The by clause also provides a way to loop from high to low by using a negative step.

> for i from 10 by − 1 to 5 do
i2

end do
100

81

64

49

36

25 (0.91)

Any of the clauses shown above can be omitted, under certain circumstances. If the from clause is

omitted, Maple will assume the starting value is 1. If the to clause is omitted, the loop will execute

forever, unless interrupted by another command. (You should take great care to avoid so-called infi-

nite loops unless it is what you intend, and even then, save your work before executing the loop!) If

the loop variable is not actually needed as part of the statement sequence, then the for clause can be

omitted. For example, the following prints “Hello world” three times.

> to 3 do
print(“Hello world”)

end do
“Hello world”

“Hello world”

“Hello world” (0.92)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

while Loops
Somewhat more general than a for loop is the while loop, which is another method for itera-

tion available in Maple. In a while loop, execution continues as long as a conditional statement

remains true.

> i ∶= 2∶
while i < 107 do

print(i);
i ∶= i2 + 2

end do∶
2

6

38

1446

2 090 918 (0.93)

Note that loops, like other statements, can be ended with a colon. For loops, this suppresses the auto-

matic printing of all the statements in the loop. Then, you can use the print command to print only

the information that you want displayed.

Look at the previous example carefully. First, we assigned the value 2 to the name i. This initial-

ization step is done automatically for us in a for loop but was made explicit in this while loop. The

while keyword indicates that the loop is a while loop and is immediately followed by the conditional

statement that controls the loop. This can be any condition you want. The condition is followed by

the do keyword. Between the do keyword and the end do phrase is the statement sequence. The

statement sequence is executed repeatedly until the condition is false.

In our example, there are two statements in the statement sequence. First, the current value of i is

printed. Then, the value of i is changed to the result of squaring it and adding 2. This continues as

long as the value of i is less than 107. Note that the first semicolon is required in order to separate the

two statements in the statement sequence.

It is very important in a while loop to be sure that the body of the loop will eventually have the effect

of making the controlling condition false. Think about what would happen if the second command

in the body of the previous loop had been i := i - 2. In that case, i would have started out equal to 2.

Then, it would become 0, then −2, then −4, then −6, etc, and it would never exceed 107, so it would

never cease.

Mixing for and while
The for loops and while loops we have demonstrated in this section are the most common kinds of

loops. However, Maple has a feature that allows you to combine the for and while loop semantics

into a single loop construction. Here is an example of how this is done.

> for i from 3 to 44 while i2 < 50 do
i, i2

end do
3, 9

4, 16

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=do
https://www.maplesoft.com/support/help/Maple/view.aspx?path=print

5, 25

6, 36

7, 49 (0.94)

In fact, in Maple, there is only one kind of loop, and the for clause and while clause are considered

optional statements that control the looping behavior in specific ways.

Looping Over a List or Set
There is one additional clause that can appear in a loop, the in clause. Given a list or a set, the

in clause allows you to define a loop that executes once for each element of the list or set. In the

example below, the loop squares each element of the list.

> for i in [2, 5, 6, 11, 8] do
printf(“The square of %2a is %3a.\n”, i, i2)

end do
The square of 2 is 4.
The square of 5 is 25.
The square of 6 is 36.
The square of 11 is 121.
The square of 8 is 64.

The for clause indicates that the name of the loop variable is i. The in clause specifies that the loop

variable should be assigned to each element of the given list in turn. The while clause can also

appear in conjunction with the in clause. However, none of from, by, or to can appear when in
is used.

Premature Loop Exit
Sometimes it is necessary to terminate a loop prematurely. This may be in order to prevent an error

or because the logic of a particular problem dictates that it must. In these cases, the break keyword

is used to transfer control out of a loop. Consider the example below. Note that even and odd are

considered types in Maple and so can be used as the second argument to the type command. (The

reader is encouraged to research the Collatz conjecture, which forms the basis of this example.)

> n ∶= 27∶
count ∶= 0∶
while n ≠ 1 do

if type(n, odd) then
n ∶= 3 n + 1

else
n ∶= n

2
end if;
count ∶= count + 1;
if count > 50 then

break
end if

end do∶
count

51 (0.95)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=break
https://www.maplesoft.com/support/help/Maple/view.aspx?path=type

In the above, the break statement is executed if the number of iterations of the loop exceeds a speci-

fied threshold. This example is meant to illustrate how you can use break to place limits on the num-

ber of iterations in a while loop.

Related to break is the next command. Instead of terminating a loop entirely, the next command

causes the rest of the statements in the body of the loop to be skipped, but the loop continues. In a

for loop, this means that it moves on to the next value of the loop variable. The example below com-

putes the value of the rational expression
x2 + 3

x − 1
for the integers between−3 and 3. A next statement

is used to avoid a division by zero error.

> for x from − 3 to 3 do
if x = 1 then

next
end if;
x, x2 + 3

x − 1
end do
−3, −3

−2, −7∕3

−1, −2

0, −3

2, 7

3, 6 (0.96)

Procedures
A Maple procedure is very much like a function in mathematics. It is an object that is capable of

receiving data as input and producing output.

A Maple procedure is created using the proc keyword. Ordinarily, procedures are assigned to a

name. Consider the simple example below. Observe that we have entered the procedure in a Code

Edit Region. You can add a Code Edit Region to your worksheet by selecting Code Edit Region
from the Insert menu or by clicking on the icon shown below in the toolbar.

The Code Edit Regions in this manual are all set to autoexecute, so if you allow Maple to execute the

autoexecutable code when you open the file, those procedures will all be prepared for you to exper-

iment with. To manually execute code in a Code Edit Region, you can right-click on it and use the

pop-up menu item Execute Code, or you can click anywhere in the region and type either Control+E

or Control+= in Windows or Unix, or type Command+E or Command+= on a Mac.

1 MySum := proc(a,b)
2 a + b;
3 end proc;

MySum ∶= proc(a, b) a + b end proc

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=break
https://www.maplesoft.com/support/help/Maple/view.aspx?path=break
https://www.maplesoft.com/support/help/Maple/view.aspx?path=break
https://www.maplesoft.com/support/help/Maple/view.aspx?path=next
https://www.maplesoft.com/support/help/Maple/view.aspx?path=next
https://www.maplesoft.com/support/help/Maple/view.aspx?path=next
https://www.maplesoft.com/support/help/Maple/view.aspx?path=proc

This creates a procedure and assigns it to the name MySum. Note that assignment of procedures

to names via the := assignment operator is identical to assignment of any other Maple object. Also

note that the output of this assignment is merely a repetition of the procedure definition. In the

future, we will terminate procedure definitions with a colon rather than a semicolon as it is not

necessary to see the procedure definition repeated.

Following the assignment operator, the procedure definition begins with the keyword proc. Imme-

diately following the proc keyword is a matched pair of parentheses enclosing a sequence of names.

These names are called the parameters to the procedure. When the procedure is called, for instance

as below,

> MySum (2, 3)
5 (0.97)

the arguments 2 and 3 are assigned to the parameters a and b. Parameters are names used in the def-

inition of the procedure to hold the place of input values, while arguments are the particular input

values used in a particular execution of a procedure. (Note that this distinction is sometimes blurred

and some programming languages use different terminology.) It is possible to define a procedure

that requires no parameters, but even in this case the parentheses are required both in the procedure

definition and when executing the procedure.

Following the parameter declaration is the statement sequence. This is the body of the procedure,

consisting of all the commands that the procedure needs to perform to compute its output value. In

this example only one command is used, the two parameters are added. Note that the output of a pro-

cedure is the result of the last statement that is executed. In the example above, 5 is output by the

procedure because the final (and only) statement is the sum of a and b.

Declaring Parameter Types
Within the parameter declaration, it is common, and very useful, to declare the types of the parame-

ters. Consider the following procedure.

1 newMySum := proc(a::integer,b::integer)
2 a + b;
3 end proc:

In this newMySum procedure, the double colons followed by the Maple type name integer tells

Maple that we expect the parameters a and b to be integers. If we try to execute this procedure with

noninteger arguments, Maple will prevent the statement sequence from being executed and will

report an error.

> newMySum (3, 2.5)

Error, invalid input: newMySum expects its 2nd argument, b, to be of type integer, but received 2.5

Declaring the types of parameters is good programming practice and very useful, and we will often

include parameter types in the procedures we create in this manual.

Return Statements and Global and Local Variables
Consider the procedure below.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=type,integer

1 Alg1 := proc(a::numeric)
2 global w;
3 local x;
4 if a < 1 then
5 x := 1;
6 else
7 x := 2;
8 end if;
9 w := x + 10;

10 return w;
11 end proc:

This procedure introduces a few more concepts. The first line assigns the procedure to the name

Alg1 and specifies that it takes one numeric argument (numeric is a broadly defined type for

integers, rational numbers, and floating-point values).

Note the use of the return command in the final line of the procedure body. We have mentioned that

the output of a procedure is, by default, the final computed value. The keyword return can be used,

as it is here, to make explicit what is being output. It can also be used to cause a procedure to stop

execution and immediately output a particular result. In this manual, we will usually use return
statements, even when they are not required, so that it is clear what the output of a procedure is.

The second and third lines in Alg1 use the global and local keywords followed by variable names.

In any procedure, all of the names used in the procedure fall into one of three kinds: parameters,

global variables, and local variables.

A variable is called local when it is only used within the procedure. Local variables exist only within

the procedure and have no meaning outside of it.

To see what this means, we will assign the value 4 to the name x.

> x ∶= 4

x ∶= 4 (0.98)

If we apply the Alg1 procedure to a value smaller than 1, within the body of the procedure, x will be

assigned the value 1.

> Alg1 (0.5)
11 (0.99)

However, if we check the value of x,

> x
4 (0.100)

it has remained 4. This is because the x inside the procedure is declared local. You can think about

the local x in the procedure as different than and isolated from the x that stores 4.

Global variables are the opposite. A variable is global when it is accessible and has the same value

both inside and outside the procedure. In our example, the name w is declared global. If you look at

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=type,numeric
https://www.maplesoft.com/support/help/Maple/view.aspx?path=type,numeric
https://www.maplesoft.com/support/help/Maple/view.aspx?path=return
https://www.maplesoft.com/support/help/Maple/view.aspx?path=return
https://www.maplesoft.com/support/help/Maple/view.aspx?path=return

its value before and after the execution of the procedure, you will see that, unlike x, the value of w is

changed.

> w ∶= 76

w ∶= 76 (0.101)

> Alg1 (3)
12 (0.102)

> w
12 (0.103)

Use of global variables in procedures is generally discouraged in most programming languages.

There are a variety of reasons to avoid global variables, not least of which is that they can cause

unpredictable results, especially in larger projects. In this manual, we will have cause to use global

variables on occasion, but generally we will declare variables to be local.

Parameters to a Maple procedure are considered local automatically, in the sense that previous val-

ues of those names are not affected by the execution of the procedure. In fact, parameters are subject

to the additional restriction that they cannot normally be modified during execution. In particular,

they cannot be assigned to. For example, the procedure below causes an error to be generated when

we execute it. It also illustrates how you declare more than one variable.

1 Alg2 := proc(a::numeric)
2 local x, y;
3 if a > 0 then
4 x := sqrt(a);
5 y := a^2;
6 else
7 x := sqrt(-a);
8 y := -a^2;
9 end if;

10 a := x + y;
11 return (a);
12 end proc:

> Alg2 (5)

Error, (in Alg2) illegal use of a formal parameter

The “illegal use” described in the error message is the assignment a := x + y;.

A Final Example
We give one final example of a procedure.

1 Alg3 := proc(a::numeric)
2 # This procedure does nothing

3 if a > 0 then
4 return NULL;
5 else

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

6 return FAIL;
7 end if;
8 a := sqrt(a);
9 end proc:

First, note the line that begins with a pound symbol (also called hash or sharp or number symbol).

This is Maple’s syntax for commenting code. Anything following a # in a line is ignored by Maple.

You can use comments to provide explanation, within your procedure’s code, of what it does and

how it works. Commenting can also be useful in debugging procedures because it allows you to

temporarily deactivate lines of code without deleting them. In this manual, explanation of code will

generally be given within the exposition rather than as comments within the code itself.

Second, this example has two return statements. In the case that the argument is positive, the

procedure returns the value NULL. Recall from earlier that NULL is Maple’s name for the empty

sequence. Returning NULL is how you can cause a Maple procedure to have no output.

> Alg3 (5)

The other return statement returns the value FAIL. It is typical to have a procedure return FAIL to

indicate that the procedure is unable to compute the desired output.

> Alg3 (−2)
FAIL (0.104)

Finally, notice that the two return statements block the final statement, a := sqrt(a), from ever

being encountered. Despite the statement being illegal (it assigns to a parameter), errors were not

generated because the illegal assignment is never reached.

Functional Operators
We conclude this section with a brief discussion of functional operators. In Maple, a functional

operator is a particular kind of procedure. Functional operators are often used to model simple

mathematical functions.

The following defines a functional operator that models the function

𝑓 (x, y) = 2 x2 + 5 y2 + 3 xy.

> 𝑓 ∶= (x, y)→ 2 x2 + 3 x y + 5 y2

𝑓 ∶= (x, y) → 2 x2 + 3 y x + 5 y2 (0.105)

Let us look at the example above piece by piece. First is the name f followed by the assignment oper-

ator indicating that we are assigning the functional operator to the name f. Following the assign-

ment operator is the list of parameters enclosed in parentheses. In the example above, there are two

parameters, x and y. (If a functional operator only requires one parameter, then the parentheses are

optional.) After the parameter list is the “arrow,” typed as a hyphen followed by a greater than sign.

The definition concludes with the expression, which may use other Maple commands, that defines

the operator.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=return
https://www.maplesoft.com/support/help/Maple/view.aspx?path=return
https://www.maplesoft.com/support/help/Maple/view.aspx?path=return

Applying a functional operator is the same as applying a procedure. To calculate 𝑓 (2,−3) , you

enter f(2,-3).

> 𝑓 (2,−3)
35 (0.106)

Functional operators are particularly useful in conjunction with other commands that expect Maple

commands or procedures as one of the arguments. For example, with the map command. Recall that

the first argument of the map command must be a procedure. If a list is given as the second argu-

ment, then map returns the list obtained by applying the procedure to each element of the list. The

following demonstrates how to use a functional operator together with map in order to square all of

the elements of a list.

> square ∶= x → x2

square ∶= x → x2 (0.107)
> map (square, [−7,−3,−1, 0, 2, 3, 5])

[49, 9, 1, 0, 4, 9, 25] (0.108)

The functional operator square could also have been created using proc, but for such a simple

procedure, the functional operator definition is easier. Functional operators also allow you to

include the definition of the procedure as the argument. For instance, to cube the elements of a list,

you could do the following.

> map
(
x → x3, [−7,−3,−1, 0, 2, 3, 5]

)
[−343,−27,−1, 0, 8, 27, 125] (0.109)

Functional operators will be discussed in more detail in Chapter 2.

System Architecture and Packages
This section briefly explains the overall structure of the Maple system. It is intended to help you bet-

ter understand how Maple works and why some things work the way that they do.

Maple uses an innovative system architecture to achieve ambitious design goals. The Maple kernel

implements the basic interpreter of the Maple programming language, the interface with the host

computer’s operating system, and certain time-critical services.

However, nearly all of Maple’s mathematical power dwells in the extensive Maple library. Consist-

ing of thousands of lines of code, the Maple library is written in the Maple programming language

itself. The advantages of this design include: portability, extensibility, and openness.

Portability refers to the ability to quickly and easily modify a program to run on a different com-

puter system or a different operating system. With Maple, only the relatively small kernel needs to

be ported between systems while nothing needs to be done to the library.

Extensibility is the ability of users, like yourself, to add capabilities and features to Maple. You

can even redefine existing Maple library routines to extend or modify their behavior. You will see

extensibility throughout this manual as we guide you through the process of writing procedures for

exploring discrete mathematics that Maple does not already include.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=map
https://www.maplesoft.com/support/help/Maple/view.aspx?path=map
https://www.maplesoft.com/support/help/Maple/view.aspx?path=map
https://www.maplesoft.com/support/help/Maple/view.aspx?path=map
https://www.maplesoft.com/support/help/Maple/view.aspx?path=proc

Openness, in Maple, means that you can examine the source code for many of the library functions,

thereby gaining greater understanding of the algorithms used by Maple.

Because of its size, much of the Maple library is organized into packages. A package is a collection

of Maple library routines that offer related functionality. Since these are not normally loaded when

you start Maple, you must request the services localized in each package by telling Maple explicitly

that you want to load them. For this purpose, Maple provides the with command.

For example, the combinat package provides routines related to combinatorics. To use procedures

from the combinat package, you would first load the package by typing

> with (combinat)
[Chi, bell, binomial, cartprod, character, choose, composition, conjpart,

decodepart, encodepart, eulerian1, eulerian2, fibonacci, firstcomb,
firstpart, firstperm, graycode, inttovec, lastcomb, lastpart, lastperm,

multinomial, nextcomb, nextpart, nextperm, numbcomb, numbcomp,
numbpart, numbperm, partition, permute, powerset, prevcomb,
prevpart, prevperm, randcomb, randpart, randperm, rankcomb,
rankperm, setpartition, stirling1, stirling2, subsets, unrankcomb,
unrankperm, vectoint] (0.110)

All the names of the newly loaded library routines are listed. Of course, you can suppress this list by

terminating the statement with a colon.

You can access commands in a package without loading the whole package by using the long form

of the command name. For example, Maple includes a command, Mean, for computing the arith-

metic mean, or average, of a list of numbers. This command is located within the Statistics package.

We can use it as shown below.

> Statistics[Mean] ([1, 2, 3, 4, 5, 6, 7])
4. (0.111)

In the long form, the name of the package is followed by the name of the command in brackets.

Alternately, for most packages used in this manual, you can use the :- operator.

> Statistics:-Mean ([1, 2, 3, 4, 5, 6, 7])
4. (0.112)

In order to use the short form of the command name, that is, just Mean, you would first have to load

the package.

> with(Statistics)∶

> Mean ([5, 7, 12, 21])
11.2500000000000 (0.113)

Within a procedure definition, you have the option of specifying packages that the procedure

requires by means of the uses keyword, as in the example below.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=with
https://www.maplesoft.com/support/help/Maple/view.aspx?path=combinat
https://www.maplesoft.com/support/help/Maple/view.aspx?path=combinat
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Statistics,Mean
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Statistics
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Statistics,Mean

1 Avg3 := proc(a::numeric,b::numeric,c::numeric)
2 local m;
3 uses Statistics;
4 m := Mean([a,b,c]);
5 return m;
6 end proc:

> Avg3 (9, 2, 11)
7.33333333333333 (0.114)

The purpose of the uses statement is to ensure that commands used in the procedure are available.

This way, if you were to try to execute this procedure without first loading the Statistics package via

the with command, Maple would still be able to execute it. In this manual, when writing procedures,

we will either use the long form of the name or include a uses statement in the procedure definition.

Maple Versions
The procedures and examples in this manual were developed and tested with Maple 2018.

On-Line Material
The files for this manual, including both the PDF and Maple Worksheet versions of all chapters,

are available at the website for the eighth edition of Discrete Mathematics and Its Applications by

Kenneth Rosen: www.mhhe.com/rosen. This site includes many other kinds of supplementary

material for students and instructors.

The website includes one file in particular to be aware of: RosenMaplePackages.mla. This file is a

repository for Maple packages that include many of the commands developed in this manual. There

are two ways in which you can make these packages available.

The recommended way is to install RosenMaplePackages.mla in a library directory. First, execute

the following statement (shown here without output)

> libname

The name libname is a system variable that specifies where on your computer Maple looks for

library files, such as those that define packages. When you execute the statement, Maple will display

the current value of the variable, which should be one or more directories on your computer.

Choose one of the directories listed and copy RosenMaplePackages.mla into that directory.

Then, restart the Maple kernel by executing the restart command. Note that the execution group

below has been set to be nonexecutable, so that if you have Maple execute the entire worksheet, it

will not automatically restart the kernel. Either enter it on a new input line in your worksheet, or

make it executable by right clicking to open the pop-up menu and select Executable Math.

> restart

The alternative, in case you are not able to copy files into the Maple directories, is to add a directory

to libname. First, copy RosenMaplePackages.mla into a directory on your computer.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=Statistics
https://www.maplesoft.com/support/help/Maple/view.aspx?path=restart

Suppose that the full path of the directory in which you copied RosenMaplePackages.mla is:

/Users/danieljordan/DiscreteMath/

Then, you would execute the following statement, replacing the directory shown with your

directory.

> libname ∶= libname, “/Users/danieljordan/DiscreteMath/”

As with the restart command, this has been made nonexecutable, since your directory will be

different.

Note that if you must use this method, you will need to repeat it every time you start a new Maple

session. The first approach needs to be done only once, however.

If you are not sure what the correct directory is, you can execute the command below. This will open

a file selection dialog window; if you locate the file RosenMaplePackages.mla on your computer

and click Open, the correct directory will be added to libname. This command has also be set to be

nonexecutable.

> libname ∶= libname, FileTools[ParentDirectory] (
Maplets[Utilities][GetFile] (

′title′ = “Locate RosenMaplePackages.mla”,
′directory′ = currentdir (homedir) , filefilter = “mla”,

filterdescription = “Library Files”))

Once you have completed one of these methods, the following commands should execute without

error.

> with(Chapter0)∶
test()

Each chapter has an associated package, called “Chapter” followed by the number of the chapter.

Each package contains the procedures defined in the respective chapter that may be of use to you

as you explore discrete mathematics. All of these packages are defined in the RosenMaplePack-

ages.mla repository.

Exercises
Exercise 1. Compute 17 ⋅ (12634 − 93).

Exercise 2. Form the list (in the Maple sense) of the first 100 positive numbers that are 3 greater

than a multiple of 7, using the seq command.

Exercise 3. Insert the number 300 between the 42nd and 43rd entries in the list you created in the

previous exercise.

Exercise 4. Use a for loop to print the string “Hello World!” 10 times.

Exercise 5. Use a while loop to print the string “Hello World!” 10 times.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=type,list
https://www.maplesoft.com/support/help/Maple/view.aspx?path=seq

Exercise 6. even is a Maple type and thus can be used with the type command. Loop over the list

you created in Exercise 2, and within the loop, use an if-else statement to print “even” or “odd” for

each element of the list.

Exercise 7. Use map and a functional operator to apply the formula x2 + 3 x − 2 to the list

[−5,−4.5,−4, .., 4, 4.5, 5] .

Exercise 8. Write a procedure (using proc) that has one parameter, a list, and outputs the list in

reverse order. You should use only commands discussed in this Introduction.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=type
https://www.maplesoft.com/support/help/Maple/view.aspx?path=map

