
3 Algorithms

Introduction
In this chapter, we supplement the discussion of algorithms presented in the text with their implementa-

tion in the Wolfram Language. In Section 3.1, we discuss the process of turning step-by-step instructions

describing a procedure and pseudocode for a procedure into code in the Wolfram Language. In Section 3.2,

we make use of Mathematica’s graphing capabilities to better understand the big-O notation. And in

Section 3.3, we explore average-case complexity of algorithms by considering the performance of a func-

tion on input.

In this chapter, please keep in mind the difference between an algorithm and its implementation (referred

to as a function or procedure in the Wolfram Language). An algorithm refers to an approach to solving

a particular problem, while a function is the implementation of the algorithm in the Wolfram Language.

In this manual, we will also distinguish between complexity and performance. Complexity is a measure

of an algorithm and is generally measured by counting basic operations (e.g., comparisons or arithmetic

operations), while performance takes into account additional factors related to the specifics of an imple-

mentation and can be measured by recording the time it takes for the function to complete. Some of the

factors affecting performance may include: choice of data structures and how the system implements those

structures, the kinds of loops employed and how those are implemented by the computer language, and

various improvements to efficiency handled by the system (for example, many computer languages, when

evaluating a Boolean expression such as p ∧ q, will not bother checking q if p is found to be false thereby

decreasing the number of operations that need to be performed).

3.1 Algorithms
It is impossible to overemphasize the importance and utility of writing either pseudocode or step-by-step

instructions for an algorithm before you write the actual code for the function. Doing so helps you organize

your ideas about how to solve the problem without the rigid constraints of the particular programming

language. The textbook serves as an excellent model for you as you learn how to turn mathematical con-

cepts and solutions to problems into algorithms. Those algorithms can then be turned into functions in

any programming language you choose. This manual will help you turn your pseudocode or step-by-step

instructions for algorithms into functions in Mathematica, or the Wolfram Language generally.

Section 3.1 of the textbook describes several algorithms, with an emphasis on how you can describe these

algorithms using both English descriptions and pseudocode. Here, we will see how to implement several

of these algorithms in the Wolfram Language. In this chapter, it will be especially important for you to

have the text alongside you, as we will not reproduce the descriptions of the algorithms from the text.
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Finding the Maximum
The first algorithm we will implement is the algorithm for finding the maximum in an unsorted sequence.

This is described in Section 3.1 as step-by-step instructions in the solution to Example 1 and as pseudocode

in Algorithm 1. We will build the function according to the step-by-step instructions. In order to make the

connection between the instructions and the code as clear as possible, we will begin with a function with

no statements and successively revise it to show the addition of each step. Be warned that the incomplete

versions of the function may produce errors, if you attempt to execute them.

We begin with the basic elements of the function definition. Specifically, we include the name of the

function, a pattern to impose the type of the argument, and, since we will have local variables, the Module
function and its basic structural elements.

findMax[L:{__Integer}]:=Module[{},

]

Note that the pattern specifying the type of the argument indicates that the function will accept a list

(indicated by the braces) consisting of a sequence (indicated by the BlankSequence (__)) of one or

more integers. The L: means that the argument will be referred to as L.

Step 1 in the step-by-step instructions is to “set the temporary maximum equal to the first integer” in the

list. We declare a local variable to store the temporary maximum and add a statement in the body of the

function to assign the first integer in the list to this value.

findMax[L:{__Integer}]:=Module[{tempMax},
tempMax=L[[1]];

]

Step 2, according to Example 1 of the text, is to compare the next integer to the temporary maximum and

update the temporary maximum if necessary. This requires an If statement to make the comparison.

findMax[L:{__Integer}]:=Module[{tempMax},
tempMax=L[[1]];
If[tempMax<L[[2]],tempMax=L[[2]]]

]

(We are intentionally following the step-by-step instructions to the letter, so in step 2, “the next integer”

is L[[2]].)

Step 3 tells us to repeat step 2 for all of the integers in the list, so we need to revise our code. The fact that

we are supposed to repeat step 2 means that we need a loop. Since this loop is supposed to consider all

the elements of the list beyond the first, we use a For loop over the indices of the list starting at 2. We

put the code we wrote for step 2 inside this loop, since that is the instruction being repeated, and replace

the specific index “2” with the loop variable. Finally, the loop variable needs to be added to the list of

Module variables.

findMax[L:{__Integer}]:=Module[{tempMax,i},
tempMax=L[[1]];
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For[i=2,i≤≤≤Length[L],i++,
If[tempMax<L[[i]],tempMax=L[[i]]]

];
]

Finally, step 4 tells us that once the loop is completed, the value of the temporary maximum is the maxi-

mum. We end the function with the variable name so that the value of the variable is the value produced

by the function.

In[1]:= findMax[L:{__Integer}]:=Module[{tempMax,i},
tempMax=L[[1]];
For[i=2,i≤≤≤Length[L],i++,
If[tempMax<L[[i]],tempMax=L[[i]]]

];
tempMax

]

In[2]:= findMax[{3,18,-5,72,6,0}]

Out[2]= 72

Admittedly, this example may seem a bit too simple to warrant such an elaborate process. However, it illus-

trates an essential point: a well-written set of step-by-step instructions describing a procedure can be easily

turned into working and correct code. Moreover, for nontrivial algorithms, the two-step process of writ-

ing instructions for the function and then implementing the function based on those instructions typically

results in the production of a correct implementation more quickly than attempting the implementation

without writing instructions.

Take a moment to compare the function above with the pseudocode given in Algorithm 1 in the textbook.

You will notice that, in this example, they are extremely similar. This is one of the benefits of pseudocode

in comparison to step-by-step instructions. However, step-by-step instructions are often easier to write as a

first step toward a working function. Step-by-step instructions are also typically easier to understand, espe-

cially for novice programmers, as they can more easily accommodate explanation and other information

that is out of place in pseudocode.

Binary Search
The second example will be the binary search algorithm, presented as Algorithm 3 in Section 3.1. The

previous example showed how you can use step-by-step instructions to build up the function. When you

start from pseudocode, writing the final implementation involves translating statements in the pseudocode

into statements allowed in the programming language and filling in missing details.

As before, we will go through several iterations as we translate the pseudocode in the text to actual code in

the Wolfram Language. Initially, we need to: make sure that the input is specified in a way appropriate for

the Wolfram Language; declare the local variables that are indicated in the pseudocode; and make basic

syntax adjustments, specifically the While loops, If statements, and mathematical expressions such as

⌊(i + j)∕2⌋ must be translated into their Wolfram Language counterparts. It is important to note that the

colon–equal syntax used for assignment in the textbook’s pseudocode is to distinguish assignment from

testing equality. In the Wolfram Language, a single equals represents assignment and double equals is

used for testing equality.
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In[3]:= binarySearch1[x_Integer,A:{__Integer}]:=
Module[{i,j,m,location},

i=1;
j=n;
While[i<j,

m=Floor[(i+j)/2];
If[x>A[[m]],

i=m+1,
j=m

]
];
If[x==A[[i]],

location=i,
location=0

];
location

]

It is too much to expect this first version to properly execute.

In[4]:= binarySearch1[19,{1,2,3,5,6,7,8,10,12,13,15,16,18,19,20,22}]

Out[4]= 0

The problem is a simple one to correct. The pseudocode implicitly used n as the last index of the sequence

of integers, so we need to make that assignment explicit in our code.

In[5]:= binarySearch1[x_Integer,A:{__Integer}]:=
Module[{n,i,j,m,location},

n=Length[A];
i=1;
j=n;
While[i<j,

m=Floor[(i+j)/2];
If[x>A[[m]],

i=m+1,
j=m

]
];
If[x==A[[i]],

location=i,
location=0

];
location

]
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Now we try running it again.

In[6]:= binarySearch1[19,{1,2,3,5,6,7,8,10,12,13,15,16,18,19,20,22}]

Out[6]= 14

One last adjustment needs to be made. The pseudocode makes clear that the sequence of values input to

the algorithm is expected to be in increasing order. The version of the function thus far does not prevent

us from attempting to evaluate it on invalid input.

In[7]:= binarySearch1[3,{1,2,4,3,5,6}]

Out[7]= 0

To test that the input is in increasing order, we take advantage of the fact that Less, the implementation

of the less than relation, can be applied to a sequence of values and returns true only when each element

of the sequence is less than the next. This is illustrated below.

In[8]:= Less[1,2,3,4,5,6]

Out[8]= True

In[9]:= Less[1,2,4,3,5,6]

Out[9]= False

Note that applying Less to undefined symbols displays with the infix notation.

In[10]:= Less[a,b,c]

Out[10]= a<b<c

Less applies to a sequence, not a list, so to test whether the A in our function is in increasing order,

we will Apply (@@) Less to A. Recall that a Condition (/;) is used in conjunction with a function

definition to ensure that the function is not evaluated unless the test is passed. Here, then, is the complete

function definition.

In[11]:= binarySearch[x_Integer,A:{__Integer}]/;Less@@A:=
Module[{n,i,j,m,location},

n=Length[A];
i=1;
j=n;
While[i<j,

m=Floor[(i+j)/2];
If[x>A[[m]],

i=m+1,
j=m

]
];
If[x==A[[i]],

location=i,
location=0

];
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location
]

In[12]:= binarySearch[19,{1,2,3,5,6,7,8,10,12,13,15,16,18,19,20,22}]

Out[12]= 14

In[13]:= binarySearch[3,{1,2,4,3,5,6}]

Out[13]= binarySearch[3,{1,2,4,3,5,6}]

Observe that the only commands that we added to the pseudocode given in the book were the declaration

of local variables and the assignment of n. We also added additional line breaks to be consistent with the

style of code used in this manual. Otherwise, the Wolfram Language code and pseudocode match very

closely. It is, of course, not always quite this straightforward, but well-written pseudocode should contain

all the essential elements. Like with proofs, as you become more familiar with pseudocode you will find

yourself more comfortable with leaving some details out.

Bubble Sort
We will next implement bubble sort, presented in the text as Algorithm 4 of Section 3.1.

For our first attempt at implementing Algorithm 4, we need to: specify the input, declare the local variables

(which can, in part, be gleaned from the pseudocode), and correct the syntax for the For loops and If
statements.

bubbleSort[A_List]:=Module[{i,j},
For[i=1,i≤≤≤n-1,i++,
For[j=1,j≤≤≤n-i,j++,

If[A[[j]]>A[[j+1]],
(*then interchange A[[j]] and A[[j+1]]*)

]
]

]
]

The implementation above gets us close to a correct implementation of the bubble sort algorithm, but

there are some problems. The simplest to fix is that n is not defined. You can correct this by declaring n
as a local variable and setting it equal to the number of elements of A.

bubbleSort[A_List]:=Module[{i,j,n=Length[A]},
For[i=1,i≤≤≤n-1,i++,
For[j=1,j≤≤≤n-i,j++,

If[A[[j]]>A[[j+1]],
(*then interchange A[[j]] and A[[j+1]]*)

]
]

]
]
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The next problem is the instruction in the pseudocode to interchange aj with aj+1. The Wolfram Language

contains no interchange function. We either have to make an interchange function that can be used within

thebubbleSort function or flesh out the code to interchange the two list elements withinbubbleSort
itself. We take the first approach here so as to preserve as close a connection as possible between our

implementation and the pseudocode.

Before creating an interchange function, however, there is another issue to take into consideration.

Namely, in the Wolfram Language, arguments to a function cannot generally be modified. Instead, we

need to copy the parameter to a local variable, both in bubbleSort and in the interchange function

we are about to write.

Our interchange function will take two arguments: the list of numbers and the index of the smaller

of the two positions to be swapped. It will proceed as follows:

1. Set a temporary variable equal to the first value to be swapped.

2. Set the value of the first position equal to the second value.

3. Set the value of the second position equal to the value stored in the temporary variable.

In[14]:= interchange[L_List,i_]:=Module[{M=L,temp},
temp=M[[i]];
M[[i]]=M[[i+1]];
M[[i+1]]=temp;
M

]

We update our implementation of bubble sort by: copying the list to a local name and replacing all the

occurrences of the argument with the local variable; applying the interchange function; and ending

with the local copy of the list, so that it is the output of the function.

In[15]:= bubbleSort[A_List]:=Module[{i,j,n=Length[A],B=A},
For[i=1,i≤≤≤n-1,i++,
For[j=1,j≤≤≤n-i,j++,

If[B[[j]]>B[[j+1]],
B=interchange[B,j]
]

]
];
B

]

In[16]:= bubbleSort[{3,18,-5,72,6,0}]

Out[16]= {-5,0,3,6,18,72}

3.2 The Growth of Functions
In this section, we use Mathematica to computationally explore the growth of functions. In particular, we

will graph functions in order to visually convince ourselves that the big-O relationship is satisfied. We will

also see how to use graphs to determine possible witnesses for the constants C and k in the definition of
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big-O notation. Since, as the textbook mentions, f (x) is O(g(x)) if and only if g(x) is Ω(f (x)), the techniques

we explore in this section apply also to big-Omega and big-Theta notation.

We begin by considering the function f (x) = 5x3 + 4x2 + 3x + 9. Theorem 1 from Section 3.2 tells us that

this is O
(
x3
)
, but we will use this function as an example of how you can use Mathematica to find values

for C and k such that |f (x)| ≤ C|g(x)| for all x ≥ k.

The Plot Function
First, we will look at options to the Plot function that will be useful in this context. Start by giving names

to the formulas.

In[17]:= f1=5*x^3+4*x^2+3*x+9

Out[17]= 9+3 x+4 x2+5 x3

In[18]:= g1=x^3

Out[18]= x3

Graphing f (x) can be as simple as calling Plot with the formula as the first argument and a specification

of the domain as the second. The domain specification is given as a list consisting of the name of the

independent variable used in the formula, the minimum value, and the maximum value.

For example, to display the graph of f (x) with x ranging from 0 to 10, enter the following.

In[19]:= Plot[f1,{x,0,10}]

Out[19]=

2 4 6 8 10

1000

2000

3000

4000

5000

Note that Mathematica automatically selects the vertical range of the graph. You can control this with

the PlotRange option. The first two common values for PlotRange are Automatic and All. The

Automatic value has the same effect as omitting the option. The difference between Automatic and

All is that, in certain circumstances, Mathematica may choose to omit parts of the function being graphed

when using the Automatic plot range. The All value forces Mathematica to display the entire function.

This is illustrated below, where we have graphed x10 with both options.

In[20]:= {Plot[x^10,{x,0,5},PlotRange→→→Automatic],
Plot[x^10,{x,0,5},PlotRange→→→All]}
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Out[20]=

{ {

1 2 3 4 5

500 000
1.0 ×10 6
1.5 ×10 6
2.0×10 6
2.5×10 6
3.0×10 6
3.5×10 6

,

1 2 3 4 5

2×10 6

4×10 6

6×10 6

8×10 6

1 ×10 7

Another common use of PlotRange is to explicitly specify the maximum and minimum y values. If you

provide a single positive number as the value for PlotRange, Mathematica will display the graph with

that value as the maximum for the vertical axis and its negative as the minimum. The following graphs

f (x) with x from 0 to 10 and the vertical axis ranging from −5000 to 5000.

In[21]:= Plot[f1,{x,0,10},PlotRange→→→5000]

Out[21]=

2 4 6 8 10

−4000

−2000

2000

4000

If you wish to specify different values for the maximum and minimum for the vertical axis, you can do so

with a list consisting of the two values. The following shows f (x) on the domain [0, 10] with the vertical

axis ranging from −1000 to 5000.

In[22]:= Plot[f1,{x,0,10},PlotRange→→→{-1000,5000}]

Out[22]=

2 4 6 8 10

−1000

1000

2000

3000

4000

5000

Finally, you can use PlotRange to specify the displayed range in both directions using the syntax

{{xmin,xmax},{ymin,ymax}}. Note that specifying the range for the horizontal axis in this way is quite

different from setting the domain of the function, which is done with the second argument to Plot. We

illustrate the difference with the following example.
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In[23]:= Plot[f1,{x,3,7},PlotRange→→→{{0,10},{0,5000}}]

Out[23]=

0 2 4 6 8 10
0

1000

2000

3000

4000

5000

You can see above that the PlotRange option is specifying the extent of the graph. On the other hand,

the second argument, {x,3,7}, is a restriction of the domain of the function.

To plot multiple functions in the same graph, use the Plot function with a list of functions as the first

argument.

In[24]:= Plot[{f1,g1},{x,0,5}]

Out[24]=

1 2 3 4 5

200

400

600

Note that Mathematica automatically selects colors for the two functions. You can manually select the

colors (or other visual effects) with the PlotStyle option. If you use the PlotStyle option with

a list of named colors, then the first color will be assigned to the first function, the second color to the

second function, and so on. You can choose from common choices such as Red, Green, Blue, Black,

White, Gray, Cyan, Magenta, Yellow, Brown, Orange, Pink, and Purple. You can get more

information about colors from the Colors guide.
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In[25]:= Plot[{f1,g1},{x,0,5},PlotStyle→→→{Orange,Purple}]

Out[25]=

1 2 3 4 5

200

400

600

When displaying graphs of multiple functions, it can often be useful to include a legend with the graph

indicating which function is which. You can use the PlotLegends option to do this.

PlotLegends is an option to Plot (and other plotting functions such as ListPlot). We will describe

three of the possible values.

The simplest way to create a legend is by setting the PlotLegends option to Automatic. This will

create a legend that identifies the colors used in the plot with the index of the function.

In[26]:= Plot[{f1,g1},{x,0,5},PlotLegends→→→Automatic]

Out[26]=

1 2 3 4 5

200

400

600

1

2

Setting the PlotLegends option to “Expressions” is much more descriptive, showing the expression

that is being graphed.
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In[27]:= Plot[{f1,g1},{x,0,5},PlotLegends→→→"Expressions"]

Out[27]=

1 2 3 4 5

200

400

600

f1

g1

Finally, you can specify your own labels by assigning the option to a list containing expressions that

identify the functions.

In[28]:= Plot[{f1,g1},{x,0,5},PlotLegends→→→{"f","g"}]

Out[28]=

1 2 3 4 5

200

400

600

f

g

There are other possible values for the PlotLegends option to influence the placement of the legend.

It also has more general functions, particularly LineLegend, that gives you the ability to completely

customize the content and format of the legend.

Finding Values for C and k
Now, we can start exploring different values of C for which the equation f (x) ≤ C ⋅ g(x) is satisfied. To do

this, we just have to multiply g1 by different values. We will choose several values until we see a clear

crossing.
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In[29]:= Plot[{f1,2*g1},{x,0,5},PlotLegends→→→{"f(x)","2g(x)"}]

Out[29]=

1 2 3 4 5

200

400

600

f(x)

2g(x)

In[30]:= Plot[{f1,4*g1},{x,0,5},PlotLegends→→→{"f(x)","4g(x)"}]

Out[30]=

1 2 3 4 5

200

400

600

f(x)

4g(x)

In[31]:= Plot[{f1,6*g1},{x,0,5},PlotLegends→→→{"f(x)","6g(x)"}]

Out[31]=

1 2 3 4 5

200

400

600

f(x)

6g(x)
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In[32]:= Plot[{f1,7*g1},{x,0,5},PlotLegends→→→{"f(x)","7g(x)"}]

Out[32]=

1 2 3 4 5

200

400

600

800

f(x)

7g(x)

By expanding the range of x values, we can obtain a graph that provides fairly convincing evidence that

C = 7 and k = 3 witness for the assertion that f (x) is O
(
x3
)
.

In[33]:= Plot[{f1,7*g1},{x,0,20},PlotLegends→→→{"f(x)","7g(x)"}]

Out[33]=

5 10 15 20

10 000

20 000

30 000

40 000

50 000

f(x)

7g(x)

It is important to note that the graph above is not proof that 5x3 + 4x2 + 3x + 9 is O
(
x3
)
. A formal proof

must follow the model provided by the examples in the text.

A Second Example
As a second example, consider f (x) = 3x5 + x3 ln

(
x2 + 2x + 1

)
. We claim that this is O (xn) for some value

of n. We want to first determine the smallest value of n and then find witnesses for C and k. We assign a

name for the formula for f (x). Note that the Wolfram Language function Logwith one argument computes

the natural (base e) logarithm of the argument.

In[34]:= f2=3*x^5+x^3*Log[x^2+2*x+1]

Out[34]= 3 x5+x3 Log[1+2 x+x2]

We could proceed as in the previous example and display a selection of graphs comparing f2 and xˆn
for different exponents in order to find a likely choice of n and then explore the coefficients. However,
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the Wolfram Language’s Manipulate function allows for a more interactive approach. The syntax for a

Manipulate is very similar to that of Table. The first argument is an expression involving one or more

variables that will be altered by sliders or other controls. The first argument should produce the output

you want to explore. In this case, the first argument will be the Plot function.

Following the first argument, we specify the variables that are to be manipulated. In this example, we

need to modify the exponent n and the coefficient c. For the exponent, the variable n should be allowed

to range from 1 to some arbitrary maximum, say 20. Additionally, the exponent should be an integer, so

we specify a step of 1. Thus the range specification for the exponent will be {n,1,20,1}. Note that,

in contrast with Table which has a default step of 1, if a Manipulate is not provided a specific step

value, it defaults to a continuous range of values. For the coefficient c, we will allow it to range from 1 to

30 continuously, making its specification {c,1,30}.

In[35]:= Manipulate[Plot[{f2,c*x^n},{x,0,5},
PlotRange→→→{0,10000},PlotLegends→→→{"f(x)","Cxn"}],
{n,1,20,1},{c,1,30}]

Out[35]=

n

0 1 2 3 4 5

2000

4000

6000

8000

10 000

f(ff x)

Cxn

Note that the PlotRange option is useful here. Without it, Mathematica would continually resize the

graph depending on the choices for the variables.

When you first execute the Manipulate, you will see only the graph of f (x) since 1 ⋅ x1 is too small and

lies along the x axis. To inspect the values of n and C, you can click on the small plus symbols on the right

of the sliders.

As you use Manipulate to explore this problem, keep in mind that you are searching for the smallest n
for which f (x) is O (xn). Therefore, once you find an n and C that work, decrease n and make sure that no

smaller C will do. You may need to expand the domain to be sure.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

http://reference.wolfram.com/language/ref/Manipulate
http://reference.wolfram.com/language/ref/Manipulate
http://reference.wolfram.com/language/ref/Table
http://reference.wolfram.com/language/ref/Plot
http://reference.wolfram.com/language/ref/Table
http://reference.wolfram.com/language/ref/Manipulate
http://reference.wolfram.com/language/ref/PlotRange
http://reference.wolfram.com/language/ref/Manipulate
http://reference.wolfram.com/language/ref/Manipulate


172

3.3 Complexity of Algorithms
Section 3.3 of the textbook emphasizes worst-case complexity of algorithms and shows you how the

worst-case complexity can be deductively determined. The textbook also mentions average-case complex-

ity and shows how to compute the average-case complexity of the linear search algorithm (Example 4).

Average-case complexity is typically difficult to analyze deductively, but is important. From a practical

standpoint, average-case complexity can help differentiate algorithms whose worst-case complexities are

of the same order. Moreover, algorithms that have very poor worst-case complexity may have reasonable

average-case complexity, provided that the “bad” inputs that produce the worst case are rare.

Although average-case complexity is difficult to analyze, average-case performance can be computed

fairly directly. Recall from the introduction to this chapter that we distinguish complexity of an algorithm

from performance of a function. In this section we will see how Mathematica can be used to analyze

average-case performance of functions experimentally. We will use the bubbleSort function developed

in Section 3.1 of this manual as an example. Our goal will be to produce a graph displaying the empirically

determined average-case time performance of the procedure.

It is essential to note that performance depends on many factors besides the algorithm, including the pro-

gramming language used. In particular, different languages are designed with different purposes, leading

to different efficiencies. This means, for example, that in comparing two algorithms, it is possible that one

will outperform the other when implemented in one language and the reverse could be true if they are

implemented in a different language.

We begin by explaining the standard approach to timing Wolfram Language functions. The Timing
function takes one argument. It evaluates the expression (e.g., a function applied to input) and returns a

2-element list consisting of the time (in seconds) used and the result of the evaluation.

Here is an example of the use of the Timing function.

In[36]:= Timing[findMax[Range[10000]]]

Out[36]= {0.0177,10000}

Note that, in this example, the reported time includes the time taken by the Range function to produce

the list of integers from 1 to 10000. On the other hand, the Timing function does not include any time

used in generating or formatting output. This is negligible in this example, but for functions with lengthy

or complex output, it is reassuring that this time is not being included.

Average Input
By average-case performance, we mean the average performance of a function on random input selected

from all possible inputs of the given size. The particulars of how the random input is selected is a necessary

component in the analysis. It is natural to assume that each possible input will appear with the same

likelihood as every other, but it is important to recognize that this may not always be the case. It may be

that, in the circumstances under which the algorithm is intended to be used, some inputs may appear with

relatively higher or lower frequency.

For bubbleSort, we have no particular application in mind and so will assume that all inputs are equally

likely. In order to generate a random input, we will use the RandomSample function applied to the list

produced by Range. The RandomSample function applied to a list produces a rearrangement of that

list. The following produces a list of the first five positive integers in random order.
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In[37]:= RandomSample[Range[5]]

Out[37]= {5,4,3,1,2}

We can apply the bubbleSort algorithm directly to the result and time how long it takes to execute.

Note that we obtain the time, without the output from bubbleSort, by accessing the first element of

the list output by Timing.

In[38]:= Timing[bubbleSort[RandomSample[Range[20]]]][[1]]

Out[38]= 0.001272

Since we are after average-case performance, we will want to execute bubbleSort on many, say 100,

different random inputs and average the time taken by each execution. To collect the 100 times, we can

use a Do loop to repeatedly execute the function. We use Sow and Reap to build the list of times, with

Sow applied to the result of Timing and Reap surrounding the loop. Recall that the first entry in the list

output by Reap is the output of its argument. Since the argument to Reap is Do, which has no output,

the first element of the output will be Null. The second element of the output from Reap is the list of

lists sown by Sow. Thus, we will be able to access the list of times as the [[2,1]] element of the output

from Reap.

In[39]:= timesExampleReap =Reap[
Do[

Sow[
Timing[bubbleSort[RandomSample[Range[20]]]][[1]]

],
{100}]

]

Out[39]= {Null,{{0.002001,0.001612,0.00139,0.001046,0.001549,
0.001555,0.001242,0.001389,0.001412,0.001364,0.001119,
0.0015,0.00132,0.001277,0.001113,0.001379,0.001573,
0.001296,0.001454,0.001317,0.00087,0.001294,0.0013,
0.001277,0.001216,0.001358,0.00157,0.001313,0.001689,
0.001626,0.001365,0.001032,0.00142,0.001313,0.001543,
0.001331,0.001515,0.00112,0.00129,0.001234,0.001256,
0.001284,0.001512,0.001244,0.001205,0.00118,0.00097,
0.001128,0.001043,0.001022,0.001178,0.001257,0.00091,
0.001147,0.001324,0.001165,0.001008,0.001257,0.001129,
0.000871,0.001028,0.000999,0.000842,0.001103,0.001115,
0.001105,0.001049,0.001199,0.001018,0.001092,0.001124,
0.001231,0.000948,0.001087,0.000953,0.001041,0.001331,
0.000931,0.001291,0.001046,0.001316,0.000925,0.00115,
0.001199,0.001153,0.001109,0.001046,0.001156,0.001185,
0.000988,0.000896,0.00112,0.001093,0.001201,0.001099,
0.00117,0.000818,0.001174,0.000916,0.001092}}}
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In[40]:= timesExample=timesExampleReap[[2,1]]

Out[40]= {0.002001,0.001612,0.00139,0.001046,0.001549,0.001555,
0.001242,0.001389,0.001412,0.001364,0.001119,0.0015,
0.00132,0.001277,0.001113,0.001379,0.001573,0.001296,
0.001454,0.001317,0.00087,0.001294,0.0013,0.001277,
0.001216,0.001358,0.00157,0.001313,0.001689,0.001626,
0.001365,0.001032,0.00142,0.001313,0.001543,0.001331,
0.001515,0.00112,0.00129,0.001234,0.001256,0.001284,
0.001512,0.001244,0.001205,0.00118,0.00097,0.001128,
0.001043,0.001022,0.001178,0.001257,0.00091,0.001147,
0.001324,0.001165,0.001008,0.001257,0.001129,0.000871,
0.001028,0.000999,0.000842,0.001103,0.001115,0.001105,
0.001049,0.001199,0.001018,0.001092,0.001124,0.001231,
0.000948,0.001087,0.000953,0.001041,0.001331,0.000931,
0.001291,0.001046,0.001316,0.000925,0.00115,0.001199,
0.001153,0.001109,0.001046,0.001156,0.001185,0.000988,
0.000896,0.00112,0.001093,0.001201,0.001099,0.00117,
0.000818,0.001174,0.000916,0.001092}

(Depending on the speed of your computer, you may need to increase the size of the input list.)

To average the times, we apply the Mean function to the list of values.

In[41]:= Mean[timesExample]

Out[41]= 0.00121013

Graphing the Empirically Calculated Average-case Complexity
To graph the average time data, we use the ListPlot function, first discussed in Section 2.3 of this

manual. ListPlot takes as its argument a list of lists where the sublists are x–y pairs.

In[42]:= ListPlot[{{1,1},{2,4},{3,3},{4,1},{5,2}}]
Out[42]=

1 2 3 4 5

1

2

3

4

We will now write a function that produces the list of data required by ListPlot. This function will

compute the average, over a number of trials, of the time taken to execute bubbleSort on randomly

generated lists of various sizes.
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In[43]:= getBubbleTimes[trials_Integer,min_Integer,max_Integer,
step_Integer]/;trials>0&&min>0&&max>min&&
step>0:=Module[{s,avgTimeData={},times,input},

For[s=min,s≤≤≤max,s=s+step,
times=Reap[

Do[
input=RandomSample[Range[s]];
Sow[Timing[bubbleSort[input]][[1]]],
trials]

][[2,1]];
AppendTo[avgTimeData,{s,Mean[times]}]

];
avgTimeData

]

Most of the function is enclosed in the For loop with variable s, representing the size of the input that

will be passed to bubbleSort. Within the For loop are two statements: the first is an assignment to the

symbol times, the right hand side of which spans 6 lines of code, and the second appends the average of

the data stored in times to the symbol avgTimeData. The right hand side of the times assignment

is where most of the work is done. A Reap encloses this section of code, and times is assigned to the

[[2,1]] entry of the output of the Reap, which effectively assigns times to the sown values. Within

the Reap is a Do loop, the second argument of which, the number trials, indicates that the body of

the Do loop will be executed a number of times dictated by the argument to the function. There is no need

for a loop variable. Within the Do loop, the symbol input is assigned to the result of RandomSample
applied to the list of positive integers determined by the input size s. Then, bubbleSort is applied to

this input within Timing and Sow is applied to the time. Note that, unlike our example above, we moved

the application of RandomSample and Range outside of the Timing function, so that the time taken

to generate the random input is not being included.

Now, we execute the function and use the result to create a graph.

In[44]:= bubbleTimes=getBubbleTimes[100,10,50,10]

Out[44]= {{10,0.00032918},{20,0.00118897},{30,0.00256497},
{40,0.0046141},{50,0.00725462}}

In[45]:= ListPlot[bubbleTimes]
Out[45]=

20 30 40 50

0.001

0.002

0.003

0.004

0.005

0.006

0.007
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From the shape of the graph, it appears that the average-case performance ofbubbleSort is polynomial.

This suggests that the complexity of the algorithm is also polynomial. Of course, a proof of that fact would

require an analysis of the kind given in Example 4 of Section 3.3.

The reader can experiment with the function in order to produce finer detail (by decreasing the step) and

to obtain data for larger input lists (by increasing the maximum list size).

We conclude with a caveat. The empirical testing we have done in this section is an example of a way

to get an idea of the average-case performance of a procedure. It can be used to compare two or more

algorithms with each other and can indicate major differences in worst-case and average-case complex-

ity (for instance, in an algorithm with exponential worst-case complexity and polynomial average-case

complexity). Beyond generalities, the implementation of the algorithm, the computer running it, the com-

puter language it is written in, and a host of other factors can play a sufficiently significant role that this

approach is generally not helpful for making finer distinctions (between quadratic and cubic complexity,

for example).

The reader should refer to the solution of Computer Project 10 below for a method of analyzing average

case complexity that modifies the function in order to count the number of operations used with the input

values.

Solutions to Computer Projects and Computations and
Explorations

Computer Project 7
Given two strings of characters use the naive string matching algorithm to determine whether the shorter

string occurs in the longer string.

We begin, as usual, by following the pseudocode presented in the text main text as Algorithm 6. As before,

we will need to adjust basic syntax for the loops and other elements. However, the pseudocode indicates

that the input should include two sequences of characters. That makes for a clunky user experience. We

would much rather be able to enter

stringMatch[7,3,"eceyeye","eye"]

rather than

stringMatch[7,3,"e","c","e","y","e","y","e","e","y","e"]

We will implement the more user-friendly version and apply the built-in function Characters in order

to transform a string into a list of individual characters, as illustrated below.

In[46]:= Characters["eceyeye"]

Out[46]= {e,c,e,y,e,y,e}

Here is our first attempt.

In[47]:= stringMatch[n_Integer,m_Integer,t_String,p_String]/;
n>0&&m>0&&m≤≤≤n:=Module[{T,P,s,j},

T=Characters[t];
P=Characters[p];
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For[s=0,s≤≤≤n-m,s++,
j=1;
While[j≤≤≤m&&T[[s+j]]==P[[j]],j=j+1];
If[j>m,Print[s," is a valid shift"]]

]
]

Note that when Print is applied to multiple arguments, it prints them one after the other in the same line.

That is needed here in order for the value of s to be displayed together with the rest of the text message.

Having written the function, we test it.

In[48]:= stringMatch[7,3,"eceyeye","eye"]

2 is a valid shift

4 is a valid shift

It is often a good idea, having written a working procedure, to reflect on it and think about whether it

could be made simpler. In this case, you might start wondering why the lengths of the text and pattern are

included as arguments to the function. Remember that the syntax for executing this function suggested by

the pseudocode is

stringMatch[7,3,"e","c","e","y","e","y","e","e","y","e"]

With the text and pattern given as individual characters, the lengths are necessary in order to determine

where the text stops and the pattern begins. In our implementation, the text and pattern are separate argu-

ments, so the lengths can be computed by the function rather than entered by the user. Our final version

of the naive string matcher is below.

In[49]:= stringMatch[t_String,p_String]:=Module[{T,n,P,m,s,j},
T=Characters[t];n=Length[T];
P=Characters[p];m=Length[P];
For[s=0,s≤≤≤n-m,s++,

j=1;
While[j≤≤≤m&&T[[s+j]]==P[[j]],j=j+1];
If[j>m,Print[s," is a valid shift"]]

]
]

In[50]:= stringMatch["eceyeye","eye"]

2 is a valid shift

4 is a valid shift

The Wolfram Language, of course, includes extensive support for string manipulation, including a function

that performs the same function as our naive string matcher called StringPosition.

In[51]:= StringPosition["eceyeye","eye"]

Out[51]= {{3,5},{5,7}}
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The difference in output is that the built-in function, rather than indicating valid shifts, returns the starting

and ending positions of where the pattern occurs in the text.

Computer Project 10

Given an ordered list of n integers and an integer x in the list, find the number of
comparisons used to determine the position of x in the list using a linear search and using a
binary search.

Solution: There is no loss of generality to assume that the list of n integers is the list of integers from

1 to n.

For the linear search algorithm provided as Algorithm 2 in Section 3.1 of the text, each step in the search

requires 2 comparisons, one tests whether the end of the list has been reached and one tests whether the

current element is the element being searched for. These are both contained in the Boolean expression

that controls the While loop. A final comparison is used after the While loop is completed to determine

whether the element was found or not. In the list of n integers 1 through n, the integer x is therefore found

after 2x + 1 comparisons.

To determine the number of comparisons needed to find x via the binary search algorithm, we modify the

procedure we wrote in Section 3.1 of this manual to count comparisons. For reference, here is the original

binarySearch function.

binarySearch[x_Integer,A:{__Integer}]/;Less@@A:=
Module[{n,i,j,m,location},

n=Length[A];
i=1;
j=n;
While[i<j,

m=Floor[(i+j)/2];
If[x>A[[m]],

i=m+1,
j=m

]
];
If[x==A[[i]],
location=i,
location=0

];
location

]

We modify this function to count comparisons. Each time through the While loop accounts for two

comparisons, the i < j comparison that controls the loop and the x > A[m] comparison in theIf statement.

Therefore, we add a line of code to increment the comparison count by 2 at the start of the While loop.

In addition, we need to add one to the comparison count after the end of the loop to account for the

comparison that terminates the loop. One final comparison is done, in the final If statement, to determine

if the search has succeeded or not.
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By incrementing the count after the final If statement, the increment will be the final expression and

consequently is what will be shown as the result of the function. Here is the modified function.

In[52]:= binarySearchC[x_Integer,A:{__Integer}]/;Less@@A:=
Module[{n,i,j,m,location,count=0},

n=Length[A];
i=1;
j=n;
While[i<j,

count=count+2;
m=Floor[(i+j)/2];
If[x>A[[m]],

i=m+1,
j=m

]
];
count=count+1;
If[x==A[[i]],

location=i,
location=0

];
count=count+1

]

For example, to find 15 in the list from 1 to 20, it takes

In[53]:= binarySearchC[15,Range[20]]

Out[53]= 10

comparisons.

We can use the information above to compare the average number of comparisons required for a list of n
elements. We need to determine the number of comparisons needed to find each value from 1 to n in the

list from 1 to n and average these numbers of comparisons. For the linear search, we know that it takes

2x + 1 comparisons, so the average can be found from

n∑
x=1

2x + 1

n

We use Mathematica’s symbolic summation capabilities, specifically the Sum function (discussed in

Section 2.4 of this manual).

In[54]:= Sum[2*x+1,{x,1,n}]/n

Out[54]=
2 n+n2

n
In[55]:= Simplify[%]

Out[55]= 2+n
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(The Simplify function forces Mathematica to simplify expressions.)

For the binary search function, we can find the average by applying our function above to each integer

in turn and taking the average. The following function will produce the average number of comparisons

required for a given value of n.

In[56]:= binaryAvg[n_Integer]:=Module[{data={},inputList,x},
inputList=Range[n];
data=Reap[

Do[Sow[binarySearchC[x,inputList]],
{x,1,n}

]
][[2,1]];

Mean[data]//N
]

The function N is used to obtain a numeric (floating point) value of an exact expression. Without it,

Mathematica would return a fraction as the result of this function, but we generally expect means to be

reported as floating point numbers.

For example, in the list from 1 to 20, it requires an average of 20 + 2 = 22 comparisons using the linear

search and an average of 10.8 comparisons using the binary search.

In[57]:= binaryAvg[20]

Out[57]= 10.8

Next, we will graph the average number of comparisons as n ranges from 1 to 100.

For the linear search algorithm, we will graph the function n + 2 usingPlot. In Section 2.5 of this manual,

we demonstrated how to overlay two graphs using the Show function. We will use the same approach here.

Keep in mind when doing this that since the two graphs are created separately, the functions will have the

same color if you do not specify the color manually using the PlotStyle option.

In[58]:= linearSearchGraph=Plot[n+2,{n,1,100},PlotStyle→→→Red]

Out[58]=
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For the binary search algorithm, we must first create the necessary data before we can graph it with the

ListPlot function. Recall from Section 3.2 of this manual that ListPlot accepts a list of the x–y
pairs given as sublists. The x values will be the values of n.

In[59]:= binarySearchdata=Table[{n,binaryAvg[n]},{n,1,100}];

In[60]:= binarySearchGraph=ListPlot[binarySearchdata,PlotStyle→→→Blue]

Out[60]=
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We overlay the two graphs using Show.

In[61]:= Show[linearSearchGraph,binarySearchGraph]

Out[61]=
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Below we display the same graph using Legended and LineLegend to illustrate some of the additional

legending options.

In[62]:= Legended[Show[linearSearchGraph,binarySearchGraph],
LineLegend[{Red,Blue},{"linear","binary"},

LegendFunction→→→Framed]]
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Out[62]=

20 40 60 80 100
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Computations and Explorations 1

We know that nb is O (dn) when b and d are positive numbers with d ≥ 2. Give values of the
constants C and k such that nb ≤ C ⋅ dn whenever n > k for each of these sets of values:
b = 10, d = 2; b = 20, d = 3; b = 1000, d = 7.

Solution: For b = 10 and d = 2, we need to compare the function f (n) = n10 to g(n) = 2n. Following the

approach we took in Section 3.2, we will use Manipulate to graph the functions while dynamically

changing the value of C. Note that the values of C that will suffice with k < 20 are extremely large. When

exploring other values of b and d, you may have to modify the maximum values for C. It is also possible

to find smaller values of C by increasing the horizontal extent of the graph.

In[63]:= Manipulate[Plot[{n^10,c*2^n},{n,0,20},
PlotLegends→→→{"n10","C 2n"}], {c,0,10^8}]

Out[63]=

5 10 15 20

5.0×1010

1.0 ×1011

1.5 ×1011

2.0×1011

2.5×1011

3.0×1011

n10

C 2n
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Exercises
1. Write step-by-step instructions, then pseudocode, and then implement an algorithm in the

Wolfram Language to determine the k largest integers in a list of integers.

2. Implement the linear search presented as Algorithm 2 in Section 3.1 of the text.

3. Implement the insertion sort presented as Algorithm 5 in Section 3.1 of the text.

4. Implement the cashier’s algorithm presented as Algorithm 7 in Section 3.1 of the text.

5. Implement the algorithm for scheduling talks presented as Algorithm 8 in Section 3.1 of the text.

6. Implement the brute-force algorithm for finding the closest pair of points as presented in
Algorithm 3 in Section 3.3 of the text.

7. Modify the bubbleSort function so that it terminates when no more interchanges are
necessary. (See Exercise 39 from Section 3.1.)

8. Implement the selection sort algorithm in the Wolfram Language. (Refer to the preamble to
Exercise 43 in Section 3.1 for information on selection sort.)

9. Implement the binary insertion sort in the Wolfram Language. (Refer to the preamble to
Exercise 49 in Section 3.1 for information on the binary insertion sort.)

10. Implement the deferred acceptance algorithm in the Wolfram Language. (Refer to the preamble
to Exercise 65 in Section 3.1 for information on the deferred acceptance algorithm.)

11. Implement the Boyer–Moore majority vote algorithm in the Wolfram Language. (Refer tot he
preamble to Exercise 68 in Section 3.1 for information on the majority vote algorithm.)

12. Following the solution to Computations and Explorations 1, use Mathematica to determine
values for C and k that witness for the fact that f (x) is O(g(x)) for each of the pairs of functions
given below.

a. f (x) = 7 ⋅ ln
(
3x2 − 2x + 5

)
; g(x) = x

b. f (x) = x4

x2−4x−4
; g(x) = x2

c. f (x) = ⌊x⌋ ⋅ ⌈x⌉; g(x) = x2

d. f (x) = n ⋅ ln(n); g(x) = ln(n!)
13. Using the approach described in Section 3.3 of this manual, compare the average-case

performance of the bubbleSort function presented in Section 3.1 to the Wolfram Language’s
Sort function.

14. Using the solution to Computer Project 10 as a model, compare the average-case complexity (as
measured by number of comparisons) of the bubbleSort function with the modified procedure
that you implemented as Exercise 7.

15. Using the solution to Computer Project 10 as a model, compare the average-case complexity (as
measured by number of comparisons) of the bubbleSort function with the other sort
procedures you wrote (e.g., insertion sort, selection sort, or binary selection sort).
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16. Implement the two algorithms suggested by Exercise 31 of Section 3.1 for determining whether
two strings are anagrams. Then, using the approach described in Section 3.3 of this manual,
compare the average-case performance of the two algorithms. Compare the results of your
performance analysis with the big-O estimates you found in Exercise 38 of Section 3.3.

17. Implement the two algorithms suggested by Exercise 32 of Section 3.1 for finding the closest of n
real numbers. Then, using the approach described in Section 3.3 of this manual, compare the
average-case performance of the two algorithms. Compare the results of your performance
analysis with the big-O estimates you found in Exercise 39 of Section 3.3.
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