6 Counting

Introduction

This chapter presents a variety of techniques that are available in Mathematica for counting a diverse col-
lection of discrete objects, including combinations and permutations of finite sets. Objects can be counted
using formulae or by using algorithms to list the objects and then directly counting the size of the list.

6.1 The Basics of Counting

In this section, we will see how Mathematica can be used to perform the computations needed to solve
basic counting problems. We will begin by looking at some examples. We will discuss computations
involving large integers. Then, we will see how the principles of counting can be used to count the num-
ber of operations used by a function written in the Wolfram Language. This section concludes by using
Mathematica to solve counting problems by enumerating all the possibilities.

Basic Examples
We begin with two basic examples to demonstrate the use of some Wolfram Language functions.

Counting One-to-One Functions

Recall Example 7 from Section 6.1 of the text, which calculated that the number of one-to-one functions
from a set with m elements to a set with n elements is

nn—-1(n-2)---(n—m+1)

Note that we can rewrite this using product notation as

m—1

Hn—i

i=0

For small values of m, it is easy to enter this product in Mathematica. For instance, the expression below
computes the number of one-to-one functions from a set of 4 elements to a set of 20 elements.

In[1]:= 20*%19*18*17
out[1= 116280
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For larger values of m, it is more convenient to use the Product function. The Product function is used
to multiply a sequence of values. Its syntax is identical to that of Sum. The first argument is an expression
in terms of a variable (e.g., i) that evaluates to the values that are to be multiplied together. The second
argument can take a variety of forms. One usage has the form {i, @, b}, which indicates that the variable
i is to range from a minimum of a to a maximum of b. If the minimum value is to be 1, then a can be
omitted.

For example, we can recompute the number of one-to-one functions from a set of 20 elements to a set of
4 elements as follows.

In[2]:= Product[20-i, {i, 0, 3}]
out[2]= 116280

The second argument indicates that the index variable will be assigned the integers 0, 1, 2, and 3. These
are then substituted into the first argument, 20 — i, producing the values 20, 19, 18, and 17, which are
multiplied together.

We can easily compute the number of one-to-one functions from a set of 12 elements to a set of 300
elements.

In[3]):= Product[300-i, {i,0,11}]
out[3)= 425270752192695317567218560000

Computer Passwords

Example 16 from Section 6.1 describes a computer system in which each user has a password. Passwords
must be between six and eight characters long, each character must be an uppercase letter or digit, and
each password must contain at least one digit.

The solution to the example describes how to calculate this. For each possible password length, 6, 7, or 8,
the number of passwords is

4=  P6=3676-26"6
Out[4]= 1867866560
5= P7=36"7-26"7
out[5]= 70332353920
In[6]:= P8=3678-26"8
out[6]= 2612282842880
Thus, the total number of possible passwords is
n7=  P=P6+P7+P8
out{7= 2684483063360
We can use the Sum function to perform this calculation in one step.
In[8]:= Sum[364i-26%1i, {i, 6,8}]
out[g]= 2684483063360
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This makes it easy to compute the number of valid passwords for larger ranges. For instance, it is common
to require passwords to be between 8 and 64 characters. If we retain the rules that the password must be
uppercase letters or numbers and include at least one number, then the total number of possible passwords
is calculated with the expression below.

In[9]:= Sum[367i-2671i,{i,8,64}]

out[9)= 4126620251202066828551300229999712527129717696057592889450099
703219511292080116014779039630823409920

Working with Large Integers

Mathematica’s computational engine is able to work with arbitrarily large integers, subject only to the
limitations imposed by the computer’s memory and speed.

DNA

In Example 11, the text provides a brief description of DNA and concludes that there are at least 410°
different possible sequences of bases in the DNA for complex organisms.

To compute this value, we just enter the expression and wait for it to complete the computation.
inno}=  DNAsequences=471048

out[10]=
1357 676 306 714 408 210 985 976 494 342 621511 @92 390 094 099 510 086 163 839 212 695 729"
141 091 760 891148 955 293 572 538 052 744 826 297 004 740 481577 241 009 561512 201133 ™.
765
58 009 705 913 813 453 625 377 772 169 404 221 062 381750 849 126 730 846 432 378 801 419"

793 910 906 892 709 552 426 541101 314 285 829 832 336 140 162 991 461 016 516 356 273 787 ™.
109 376

large output show less show more show all set size limit...

Mathematica reports that the result is very large. The output shows the first several digits and the last
several digits, with the number in between indicating the number of digits that were omitted. This does
not imply that Mathematica has not computed the entire value, it only means that displaying the integer
would require excessive space.

Mathematica has computed and stored the exact value and we can use this value in further computations.
For example, we can find the last three digits of the number by computing the result modulo 1000.

In[11]:= Mod [DNAsequences, 1000]
out[11= 376

We can determine the number of digits in the result by applying the IntegerLength function. This
function is slightly more efficient than computing the base 10 logarithm of the integer.

In[12]:= IntegerLength [DNAsequences]
out[12]= 60206000
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Remember that the approximation 419 was a lower bound. In other words, the minimum number of
possible sequences of bases in the DNA of a complex organism has over 60 million digits.

Suppose you wanted to print this number. Using a typical fixed-width 12-point font and 1-inch margins,
you can fit about 64 digits in each line and 45 lines on a page. With these parameters, it would require

mi3l=  N[IntegerLength[DNAsequences]/ (64*45) ]
out[13]= 20904.86111111111

pages to print the entire number.

Symbol Names in Mathematica

Example 15 in Section 6.1 of the textbook calculated that in one version of the programming language
BASIC, there were 957 different names for variables.

The Wolfram Language is extremely flexible with regards to symbol names. For simplicity, we will say
that a symbol consists of a letter possibly followed by additional letters or numbers. Uppercase letters are
considered distinct from lowercase letters. Restricting ourselves to letters on a standard keyboard, there
are 52 uppercase or lowercase letters that can be used as the first character. With the ten digits included,
there are 62 possibilities for each character following the first.

There is no maximum length of symbol names in the Wolfram Language. For this example, however, we
will consider only variable names up to a reasonable length of 15 characters.

How many possible symbols are there? We need to compute the sum le io 52 - 62!, Apply the Sum
function to calculate this value.

In[14]:= Sum[52*624i, {i,0,14}]
Out[14]= 655464010775997815815360444

We see that even limiting ourselves to a maximum of 15 characters, there are over 650 septillion distinct
Wolfram Language symbols. (The number above is slightly inaccurate because it does not exclude the
names of pre-defined functions and other protected symbols that you are not allowed to assign values to.
Of course, the number of those is relatively insignificant.)

Counting Operations in a Function

Next, we consider an example of counting the number of operations performed by a function. Example 9
in Section 6.1 of the textbook demonstrates that the number of times that the innermost statement in a
nested For loop is executed is the product of the number of iterations of each loop.

As an example of this, consider the makePostage function from Section 5.1 of this manual. Recall that

the purpose of this function was to determine the numbers of stamps of two given denominations that are
required to make a given amount of postage. Here is the definition again.

In[15]:= makePostage[stampA Integer, stampB Integer,
postage Integer] :=Module[{a,b},
Catch]|
For[a=0, a<Floor[postage/stampA], a++,
For [b=0,b<Floor|[postage/stampB] ,b++,
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If[stampA*a+stampB*b==postage, Throw[{a,b}]]

1

We will count the number of multiplications and additions that this function requires in the worst case.
The Catch/Throw pair means that once the function has found a way to make the desired amount of
postage, execution is immediately terminated. This means that knowing the number of iterations used for
a particular input value is equivalent to knowing the output of the function. If there was a formula for
that, we would not need the function. By considering the worst-case scenario, we can get an idea of the
complexity of the algorithm without having to execute the function.

The worst-case scenario, that is, the situation that requires the most number of iterations of the loop,
occurs when the desired postage cannot be made. In this case, the outer loop variable will range from 0

t . . t
MJ and the inner loop will range from 0 to lM
stampA stampB

J. Thus, the number of times the if statement
is executed is ( {Ml + 1) < [MJ + 1). Therefore, in the worst case, the makePostage function

stampA ) stampB
requires that number of additions and twice as many multiplications.

Counting by Listing All Possibilities

At the end of Section 6.1, the textbook discusses using tree diagrams to solve counting problems. Tree
diagrams provide a visual way to organize information so you can be sure that you arrive at all possible
results. We will not, in this section, implement trees, as that is the focus of Chapter 11. The goal of a tree
diagram is to list all the possibilities. In this subsection, we will consider two problems that can be solved
by using Mathematica to list all the possibilities.

Subsets

For the first example, we consider the following question: how many subsets of the set of integers 1 through
10 have sums less than 15? (This is similar to Exercise 69 in Section 6.1.)

To solve this problem, we will consider all of the possible subsets and count those that satisfy the condition.

In order to generate all of the possible subsets of {1,2,...,10}, we use the Subsets function, first
introduced in Section 2.1 of this manual.

The Subsets function accepts a list (representing a set) as an argument and produces the list of all
subsets. Here is an example of Subset s applied to the set {1,2}.
In[16]:= Subsets[{1,2}]
outel  {{}, {1}, {2}, {1,2}}

We will use Subsets to solve the problem of counting the number of subsets of {1,2,...,10} whose
sum is less than 15. Instead of displaying all subsets, we will instead test their sum using the Select
function.

Select, when applied to a list and a Boolean-valued function, returns the sublist consisting of all ele-
ments of the original list that cause the function to return True. In our case, the first argument to Select
will be the output from Subsets. The second argument will be the pure function that adds the elements
in the subset and compares the result to the target sum of 15.
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To add the elements of a list, we will App 1y (@@) the addition operator P1us (+) to the set, as illustrated
below.

In[17]:= Apply[Plus, {1,2,3,4}]
out[17]= 10

The Apply function has the effect of replacing the head of the second argument with the first argument.
In the example above, the expression {1, 2,3, 4} has head List. Apply replaces List with Plus,
transforming the expressionintoPlus [1, 2, 3, 4], which is then evaluated and outputs the sum. Apply
can be used any time you need to use the elements of a list as the arguments to a function.

To compare the sum with 15, we just need to add the inequality to the expression.
In[18]:= Apply[Plus, {1,2,3,4}]<15
out[18]= True

To turn this example into a pure function, we replace the specific set witha S1ot (#) and put an ampersand
at the end to indicate its status as a Function (&).

Apply[Plus, #]<15&

With this as the second argument to Select, and an application of Subsets as the first argument, we
obtain the list of all subsets with the specified sum. As an example, we list the subsets of {1,2,3} whose
sum is less than 5.

In[19]:= Select [Subsets[{1,2,3}],Apply[Plus, #]<5&]

outol  {{}, {1}, {2}, {3},{1,2},{1,3}}

The original question was to count the number of subsets of {1,2,3,..., 10} whose sum is at most 15. All
that remains is to apply Length in order to get a count of the number of subsets. We can generalize a bit
and create a function that accepts a set of integers and a target value and counts the number of subsets of
the given set whose elements sum to a value less than the target.

In[20]= subsetSumCount [S: {___Integer}, target Integer]:=
Length[Select [Subsets[S],Apply[Plus, #]<targeté&]]

Applying this function to {1,2,...,10} and 15 will answer the original question.

In[21]:= subsetSumCount [Range[10],15]
out[21]= 99
Bit Strings

For the second example, we consider a problem similar to Example 22. How many bit strings of length
ten do not have three consecutive ones?

We could use an approach similar to the previous example and produce all bit strings of length ten and
then count the bit strings that do not contain three consecutive ones. However, the solution to Example
22 of Section 6.1, and especially Figure 4, suggests a more efficient solution. Instead of creating all the
possible bit strings, we can build them in such a way as to only create those that satisfy the limitation on
the number of consecutive 1s.

To implement this strategy, we use a recursive algorithm. The basis step will be the set consisting of all bit
strings of length 2 (these cannot have three consecutive 1s). In the recursive step, the new version of the
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set will be constructed as follows. For each bit string in the previous set, we will append a 0. In addition,
we will append a 1 to all of the bit strings whose last two bits are not both 1.

For this problem, we will model bit strings as lists of Os and 1s. The algorithm described above will be
implemented as two functions. The first function will be responsible for extending a particular bit string.
That is, given a bit string (a list of Os and 1s), it will return either the two bit strings obtained by appending
a 0 and by appending a 1 or the single bit string formed by appending a 0 if appending a 1 would result in
three consecutive 1s. The second function will apply the first function to build the entire set of admissible
bit strings.

First, we implement the function that extends a single bit string. The parameter to this function will be a
bit string, that is, a list of Os and 1s.

The function consists of an If statement that tests the last two elements of the original bit string to
determine if they are both ones. We accomplish this test by extracting the last two entries with the Part
([[...]11]1)operator. We use the fact that negative integers indicate the position from the end of the list:
L[[-1]1] isthelastelement, L[ [—2] ] is the next to last element, and so on. Weuse Part ([[...]])
with the list consisting of —2 and —1, thatis, L[ [{-2, -1}]1, so that we obtain the sublist of the last
two elements. We can then compare the result against the list {1, 1 }. If those lists are equal, that is, the
last two bits are both 1, then the function only returns the list obtained by adding 0. Otherwise, it will
append both 0 and 1. Note that the result of the function is a list of one or two lists.

Here is the implementation.
In[22]:= addBit[L List]:=Module[({},

If[L[[{-2,-1}]]=={1,1}, {Append[L, 0]},
{Append[L,0],Append[L, 1]}

1

Let us test this function: {1,0, 1, 1} should produce only {1,0, 1, 1,0}, while applying the function to that
result should produce {1,0,1,1,0,0} and {1,0,1,1,0,1}.

In[23]:= addBit[{1,0,1,1}]

Out[23]= {{1,0,1,1,0}}

In[24]:= addBit[{1,0,1,1,0}]

out[24]= {{1,0,1,1,0,0},{1,0,1,1,0,1}}

We are now prepared to write the main function. It will accept as input a positive integer n representing
the length of the bit strings to be output. In case this value is 2, the output is the four bit strings of length
2. For values of n larger than 2, it will recursively call itself on n — 1 and store the result of the recursion
as S. It then initializes a new list T to the empty set. Finally, it loops through the set S, applying addBit
to each member and adding the result to T.

Here is the implementation.
In[25]:= findBitStrings[n Integer] :=Module[{S,s,T={}},
If[n==2,

{{o,0},{0,1},{1,0},{1,1}},
S=findBitStrings[n-1];
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Do[T=Join[T, addBit[s]], {s,S}];
T

]

Applying the function to 10 and using Length on the output will give us the number of bit strings of
length 10 that do not include three successive ones.

In[26]:= Length[findBitStrings[10]]

Oout[26]= 504

6.2 The Pigeonhole Principle

In this section, we will see how Mathematica can be used to help explore two problems related to the
pigeonhole principle: finding consecutive entries in a sequence with a given sum and finding increasing
and decreasing subsequences.

Before considering those two problems, however, recall the Cei11ing function. This function calculates

the ceiling of an expression. For example, the solution to Example 8 in the text indicates that the minimum
25000000 ]

number of area codes needed to assign different phone numbers to 25 million phones is [ 2000000

Mathematica, this is computed by the following expression.
n27;=  Ceiling[25000000/8000000]

Out[27]= 4

Consecutive Entries with a Given Sum

Example 10 in Section 6.2 describes the solution to the following problem. In a month with 30 days, a
baseball team plays at least one game per day but at most 45 games during the month. Then, there must
be a period of consecutive days during which the team plays exactly 14 games.

The problem can be generalized. Given a sequence of d positive integers whose sum is at most S, there
must be a consecutive subsequence with sum 7 for any 7 < S — d. We leave it to the reader to prove this
assertion.

We will write a function that, given a sequence and target sum 7', will find the consecutive terms whose
sum is 7. Our function will be based on the approach described in the solution of Example 10.

First, we will calculate the numbers a,, a,, ..., a,; with each a; equal to the sum of the first i terms in the
sequence. These values will be stored as a list, A. We will calculate these sums using the observation that
each one is equal to the previous sum plus the next entry in the sequence.

Next, for each i, we will calculate a; + T and use the MemberQ and Position functions to check to
see if this value is in A. Both functions requires two arguments: the first is the list to be searched and the
second is the element being sought. MemberQ returns True or False depending on whether the object
is or is not a member of the list. The Pos it ion function returns a list of position specifications. Consider
the example below.

In[28]:: POSition[{"a", "b"’ IIcH , Hd"’ llbll , Ha"’ llall , Hc" } , llaII]

out[28]= {{1},{6},{7}}
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Note that the result is a list of three sublists. Each element of the main list indicates the position at which
an “a” occurs, namely positions 1, 6, and 7. The reason that the location specifications are enclosed in their
own lists is for the case when the desired element is found within sublists of the original list. For example,
in the example below, the character “c” is found both in the third element of the sublist at position 2 as

well as in position 4.
n29)= Position[{"a", {"b","a","c","d"},"d","c","a"}, "c"]
out[29]= {{2,3},1{4}}
Our list A will be flat, that is, with no sublists. We are only interested in finding the first match, since that

will tell us the location of a sublist with the desired sum. To find the position of the first match, we use
the Part ([ [...]]) specification [ [1,1]].

Finally, if a@; + T 1s found in the list a;, a,, ..., a,, say at position j, then we know that i through j are the
positions of the consecutive subsequence with the desired sum. The function will output the starting and
ending positions as well as the subsequence.

Here is the function. Note that the first line uses Table to update the value of a, which serves as the sum
of the list elements, at the same time it populates the list A with those values.

In[30]:= findSubSum[L: {__Integer},T Integer]:=Module[{A,i, j,a=0,p},
A=Table[a=a+L[[i]], {i,Length[L]}];
Catch]|[

For[i=1l, i<Length[L], i++,
If[MemberQ[A,A[[i]]1+T],
j=Position[A, A[[i]]+T][[1,1]1];
Throw[{i,j,L[[i;;31]1}]

]

We apply the function to the following sequence, representing the number of games a baseball team played
on each day of a 30-day month:

2,1,3,1,1,3,1,1,1,1,3,1,3,1,1,1,1,1,1,1,1,1,3,1, 1,3, 1,3, 1, 1

As in Example 10, we find the consecutive days during which the team played 14 games.

In[31]:= findsuvbSum[{2,1,3,1,1,3,1,1,1,1,3,1,3,1,1,
i,1,1,11,1,1,3,1,1,3,1,3,1,1},14]

out[31= {5,13,¢{1,3,1,1,1,1,3,1,3}}

Strictly Increasing Subsequences

Theorem 3 of Section 6.2 asserts that every sequence of n* + 1 distinct real numbers contains a subse-
quence of length n + 1 that is either strictly increasing or strictly decreasing. We will develop a function
that will find a longest strictly increasing subsequence.
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The Patience Algorithm

To find the longest increasing subsequence, we will use a greedy strategy based on ‘“Patience sorting”
(the name refers to the solitaire card game also called Klondike). The idea is as follows. Imagine that the
numbers in the sequence are written on cards. The cards are placed in a “deck” in the order they appear
in the sequence and with the first element of the sequence on top. Now, play a “game” using the deck of
cards based on the following rules.

The cards are “dealt” one at a time onto a series of piles on the table. Initially, there are no piles. The top
card (the first element in the sequence) is the first card dealt and forms the first pile. To play the next card,
check to see if it is less than or greater than the first card. If the second card (the second element of the
sequence) is less than the first, then it is placed on the first pile, on top of the first card. If the second card
is greater than the first, then it starts a new pile to the right of the first.

The “game” continues in this way. At each step, the table has on it a series of piles. To play the next card,
you compare the value on the card to the card on top of the first pile. If the card to be played has a value
smaller than the number showing on the first pile, then the new card is placed on top of the first pile.
Otherwise, you look at the second pile. If the card being played is smaller than the value on the second
pile, it is placed on top of the second pile. Continue in this fashion until either the card has been played
or, if it is larger than the top card on every existing pile, it begins a new pile to the right of all the others.

An illustration is in order. Consider the sequence 12, 18, 7, 11, 16, 3, 20, 17.

Step 1: Play the first entry, 12, as the first pile 12
Step 2: Play the second entry, 18. Since 18 > 12, 18 starts a new pile. 12 |18
Step 3: Play 7. Checking the first pile, note that 7 < 12, so 7 is played on the 7
first pile. 12 18
Step 4: Play 11. Checking the first pile, 11 > 7, so do not play 11 on first pile. 7 11
Checking the second pile, 11 < 18, so play 11 on the second pile. 12 18
Step 5: Play 16. Checking the first pile, 16 > 7 so do not play 16 on the first 7 11
pile. Checking the second pile, 16 > 11, so 16 begins a third pile. 12 18 |16
3
Step 6: Play 3. Checking the first pile, 3 < 7, so 3 is played on the first pile. 7 11
12 18 16
Step 7: Play 20. Checking the first pile, 20 > 3. Checking the second pile, 3 11
20 > 11. Checking the third pile, 20 > 16, so 20 starts a new pile. 12 18 16 B0
Step 8: Play 17. Checking the first pile, 17 > 3. Checking the second, 17 > 11. ; 1 17
Checking the third, 17 > 16, but 17 < 20, so 17 is played on the fourth pile. 12 18 16 20

Once the “game” is complete, the length of the longest strictly increasing subsequence is equal to the
number of piles.

Once all of the cards have been played, we obtain a strictly increasing subsequence by backtracking. The
top card on the final pile is 17, so 17 will be the last entry in the subsequence. When 17 was placed on the
pile, the top card on the pile before it was 16 (step 8), so 16 precedes 17 in the subsequence. When 16 was
placed on the third pile, the top card on the second pile was 11 (step 5), so 11 precedes 16. And when 11
was placed on the second pile, the top card on the first pile was 7, so 7 is first in the subsequence. Thus,
7,11, 16, 17 is a strictly increasing subsequence of maximal length.
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You are encouraged to “play” through this approach a few times with your own sequences to ensure that
you understand the process before continuing on to the implementation of the procedure below. You can
apply the findIncreasing function defined below to make sure that you are arriving at the same
result. Be sure to keep track of what was on top of the previous pile when each number is played, as you
need that information in the backtracking stage.

Implementing the Algorithm

We will now implement the Patience algorithm. The given sequence will be input to the function as a list.
Within the function, we need to track three kinds of information.

First, we need to know which “step” we are in, that is, which card is being played. This will be represented
by the variable to a For loop ranging from 1 to the size of the list.

Second, we need to know what cards are on the piles. Specifically, we need to know the top card of each
pile. This will be represented as a list, piles. When a card is placed on top of an existing pile, we can
replace the current value in that position with the syntax piles [ [i] ]=x. When a new pile is added to
the list, we extend the list via AppendTo.

Third, in order to backtrack and recover the longest increasing sequence, we need to store, for each member
of the sequence, the value that was on the top of the pile to the left of the entry’s pile. For this, we will use
a indexed variable, pointers, whose indices will be the members of the sequence and whose values
will be set to the previous pile’s top card. (We use the name pointers for this variable because of the
similarity to the “linked list” structure used in many programming languages.) For those numbers played
in the first pile, the value in the variable will be set to Nul 1. Note that since pointers will be an indexed
variable, rather than a list, we use a single pair of brackets around its indices, not the double brackets used
with Part ([[...]])and lists.

The algorithm will consist of two stages. The first stage will be the game stage. We begin with a For loop
with loop variable step running from 1 to the length of the input sequence S. Within this main loop, two
tasks are performed.

The first thing that happens within the step loop is determining on which pile to play the current card.
Note that the value of the current card is accessed by S[ [step] ]. To determine the proper location for
the current card, we do the following.

1. Open a Catch block. A variable whichpile is set to the output of this Catch.

2. Use a For loop from 1 to the current number of piles. Within the loop, compare the current card to
the top of each pile. If the current card is smaller than the value in a pile, Throw that pile index,
causing the loop to be short-circuited and assigning that value to whichpile. If the For loop
terminates, Throw Null to indicate that the card cannot be placed on any existing pile.

3. Next, check the value of whichpile. Ifitis Null, that means a pile was not found for the current
card, and thus the piles list must be extended to create a new pile for this card. Otherwise, the
value of whichpile is the appropriate pile and we update the corresponding entry in piles to
indicate that the latest card is placed on top in that position.

The second task within the step loop is to update the pointers variable. This also depends on the
value of whichpile.

m I[f whichpileis 1 orif piles only contains one entry, then the latest card was played on the
first pile and the associated value should be Nul1l.

m If whichpileis Null, then the value associated with the latest card is piles[[-2] ], the top
card on what had been the last pile but is now the next to last pile. (Note that the previous condition,
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that whichpileis 1 or piles has only one entry will ensure that this second condition is only
tested if piles has at least two entries and thus piles [ [-2]] is a valid selection.)

m Otherwise, the valueis piles [ [whichpile-11]].
That concludes the game stage. The second stage is the backtracking stage, which is much simpler. First,
access the top card of the last pile withpiles [ [-1] ], and initialize the maximal increasing list, 1List,
to the list consisting of this value.
Then, extend 1L1 st on the left with the entry in the pointers variable associated to that value. Since
we are building the list from right to left, iList [ [1] ] always contains the most recently added number.
Thus, pointers[iList [[1]]] is the new value, which is added via PrependTo. Since the cards
played in the first pile were associated with Nul1l, we can use a While loop with condition point—
ers[iList[[1]]=!=Null to fill the iList. At the conclusion of the loop, the function returns
iList. Note throughout that whenever making a comparison that may be a comparison between an
integer and the symbol Null, you must use SameQ (===) or UnsameQ (==!), not Equal (==) and
Unequal (=!).
Here, finally, is the function.

In[32]:= findIncreasing[S:{__Integer}]:=
Module|[{piles={},pointers, step,whichpile,p,ilist},

For[step=1, step<Length[S], step++,

whichpile=Catch][

For[p=1,p<Length[piles], p++,
If[S[[step]l]l<piles[[p]], Throw[p]]

1;
Throw[Null]
1;

If[whichpile===Null,
AppendTo[piles, S[[stepll],
piles|[[whichpile]]=S[[step]]

1;

Which[whichpile===1| |Length[piles]==1,
pointers[S[[step]]]=Null,
whichpile===Null, pointers[S[[step]]]l=piles[[-2]],
True,pointers[S[[step]]]=piles[[whichpile-1]]
1
1;

iList={piles|[[-1]1};
While[pointers[iList[[1]]]=!=Null,
PrependTo[ilList,pointers[iList[[1]]1]]
1;
iList
1
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Example 12 from the text involved the sequence 8,11,9, 1,4, 6,12, 10,5, 7.
In[33]= findIncreasing[{8,11,9,1,4,6,12,10,5,7}]
out[33 {1,4,5,7}

This is one of the four sequences given in the text.

Connection to the Pigeonhole Principle

Recall that Theorem 3 asserted that every sequence of n> + 1 distinct real numbers contains a subsequence
of length n + 1 that is either strictly increasing or strictly decreasing. It may appear that the Patience
algorithm has no connection to this theorem or to the pigeonhole principle.

However, the Patience algorithm does in fact suggest a proof of Theorem 3 via the pigeonhole principle,
which is different from the proof given in the main text. When the Patience algorithm is executed on a list
of n? + 1 distinct real numbers, either there are at least n + 1 stacks or there are at most n stacks. If there
are n + 1 stacks, then there is a strictly increasing subsequence of length n + 1.

On the other hand, assume that there are at most n stacks. Consider the n? + 1 values to be the pigeons and
the stacks to be the pigeonholes. When n? + 1 objects are placed in n boxes, by the generalized pigeonhole

n?+1

2
principle, there is a box containing at least [T] = [" !

- + ;] =n+ [ﬂ = n + 1 objects. Hence, some
stack has n + 1 values. However, the rules of the game ensure that each stack is a strictly decreasing
subsequence, since one value is placed on top of another in a stack only when the second value is lesser

than, and appears in the sequence later than the lower value.

In short, either there are n + 1 stacks and hence an increasing sequence of length n + 1 or there is a stack
of size n + 1 and hence a decreasing sequence of length n + 1.

6.3 Permutations and Combinations

The Wolfram Language includes many functions pertaining to counting and generating combinatorial
structures.

Permutations
We have seen in previous chapters the use of the exclamation mark for factorial.

In[34]:= 6!
Oout[34]= 720

The Factorial (!) function can be used instead of the exclamation mark if you prefer. Otherwise, they
are equivalent.

To compute the number of r-permutations of n distinct objects, you can use the formula P(n,r) = (ni—'r)'

given as Corollary 1 in Section 6.3 of the textbook. We can define a function, which we call numPerm,
based on this formula. Recall that the formula requires that 0 < r <n. We will include that as a
Condition (/;) in the definition of the function.

n35l= numPerm[n Integer,r Integer]/;0<r<n:=n!/(n-r)!
The number of 4-permutations of a set with 7 distinct objects, that is, P(7,4), is computed with the fol-

lowing expression.
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In[36]:= numPerm|[7, 4]
Out[36]= 840

Listing Permutations
To obtain a list of all permutations, the Wolfram Language provides the Permutations function.

The first argument is a list containing the objects to be permuted. If this is the only argument given, then
the function returns the list of all permutations of those objects. For example, to list the permutations of
{“a”, “b”, “c”’}, you enter the following.

In[37]:= Permutations[{"a", "b","c"}]
Out[37]= {{alblc}l {a/ Crb}r {b/ a, C}I {b/ Cy a}r {CI a/b}r {Crb/ a}}

If you wish to list the permutations of the integers from 1 to a specified maximum, you can combine
the Permutations function with Range applied to the maximum value. For example, the following
produces all permutations of the first four positive integers.

In[38]:= Permutations[Range[4]]

out[38]= {{1,2,3,4}y,{1,2,4,3},{1,3,2,4},1{1,3,4,2},
{1,4,2,3},{1,4,3,2},1{2,1,3,4},1{2,1,4,3},
{2,3,1,4},{2,3,4,1},1{2,4,1,3},1{2,4,3,1},
{3,1,2,4}y,{3,1,4,2},1{3,2,1,4},1{3,2,4,1},
{3,4,1,2},{3,4,2,1},{4,1,2,3},1{4,1,3,2},
{4,2,1,3},{4,2,3,1},1{4,3,1,2},{4,3,2,1}}

To produce the r-permutations of a list of objects, you only have to provide a second argument to
Permutations. If you give an integer, n, as the second argument, the function will return the list of
all permutations with at most n elements. That is, it produces all of the r-permutations for r < n. For
example, the following produces all permutations of at most two elements of the set of the first five
positive integers.

In[39]:= Permutations|[Range[5], 2]

ouzerr  {{}, {1}, {2}, {3}, {4}, {5},{1,2},{1,3},{1,4},{1,5},
{2,1},{2,3},{2,4},{2,5},{3,1},1{3,2},{3,4},{3,5},
{4,1},{4,2},{4,3},{4,5},{5,1},1{5,2},{5,3},{5,4}}

To obtain only the r-permutations for a specific r, enter the second argument as {r}. For example, to list
all of the 3-permutations of {1,2,3,4,5}, you would enter the following.

In[40]:= Permutations|[Range[5], {3}]

Out[40]= {{1,2,3},1{1,2,4},{1,2,5},1{1,3,2},1{1,3,4},
{1,3,5},1{1,4,2},{1,4,3},1{1,4,5},1{1,5,2},
{1,5,3},1{1,5,4},{2,1,3},1{2,1,4},1{2,1,5},
{2,3,1}y,1{2,3,4},{2,3,5},1{2,4,1},1{2,4,3},
{2,4,5}y,{2,5,1},{2,5,3},1{2,5,4},1{3,1,2},
{3,1,4},1{3,1,5},1{3,2,1},1{3,2,4},1{3,2,5},
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{3,4,1},1{3,4,2},{3,4,5},1{3,5,1},1{3,5,2},
{3,5,4}y,1{4,1,2},{4,1,3},{4,1,5},1{4,2,1},
{4,2,3}y,14,2,5},{4,3,1},1{4,3,2},1{4,3,5},
{4,5,1},1{4,5,2},{4,5,3},1{5,1,2},1{5,1,3},
{5,1,4},1{5,2,1},{5,2,3},1{5,2,4},1{5,3,1},
{5,3,2}y,1{5,3,4},{5,4,1},1{5,4,2},{5,4,3}}

You can also provide a range of values for r by entering the second argument as {min, max}.

Random Permutations

The Wolfram Language also provides a function, RandomSamp1e, that will produce a randomly chosen
permutation.

Once again, the first argument is a list of the objects to be permuted. If no second argument is given,
RandomSample will output a randomly chosen permutation of all of the elements. The following pro-
duces a random permutation of the letters “a” through “e”.

In[41]:= RandomSample[{"a", "b","c","d", "e"}]
out[41]= {b,a,c,d,e}

You can also provide a positive integer as the second argument. In this case, RandomSample will pro-
duce a random permutation of that size. Note that the second argument must be less than the size of the
list. The following outputs a random 3-permutation of the first 10 positive integers.

In[42]:= RandomSample[Range[10], 3]

Out[42]= {4,6,10}

The permutation is selected so that each permutation has the same probability of being chosen.

Combinations
The functions related to combinations are very similar to those for permutations.

To compute the total number of combinations of a set of a specific size, use the formula 2", where # is the
number of objects being selected from. For example, the following shows that there are 32 subsets of a
set of five elements.

In[43]:= 2°5

Oout[43]= 32

To compute the number of r-combinations of a set with n elements, the Wolfram Language provides the
Binomial function. The following computes C(52,5).

In[44]:= Binomial[52, 5]
Out[44]= 2598960
Listing Combinations

The Subsets function is the combination analog of Permutations.
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Given a list as the only argument, Subset s outputs all possible subsets of every size.
n4s}=  Subsets[{"a","b","c","d"}]
Out[45] {{},{a}t, {b}, {c}, {d}, {a,b}, {a,c}, {a,d}, {b,c}, {b,d},
{c,d},{a,b,c},{a,b,d}, {a,c,d}, {b,c,d}, {a,b,c,d}}
To produce the subsets of the set {1,2,...,n}, give the argument as Range [n].
In[46]:= Subsets[Range[3]]
Out[46]- {4y {1y, {2y, {3}, {1,2},{1,3},{2,3},{1,2,3}}
Subset s accepts a second argument with the same syntax as Permutat ions. If an integer is given as

a second argument, the output will be all subsets whose cardinality is at most that integer. For example,
the following finds all of the r-combinations of {a,b,c,d}, for r < 2.

|ﬂ[47]:: Subsets [ { llaH , Hb" , llcll , Hdll } , 2]

oua7= {{},{a}, {b}, {c}, {d}, {a, b}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d}}

If the second argument is provided as a list containing a single integer, then the output will be the subsets
whose cardinality is equal to that integer. For example, you obtain the 3-combinations of {1,2,3,4,5} as
shown below.

In[48]:= Subsets[Range[5], {3}]

Out[48]= {{1/213}1{1/2/4}1 {1/2/5}1{1/3/4}1{11315}1
{1,4,5}y,{2,3,4},{2,3,5},{2,4,5},{3,4,5}}

With a list of two integers as the second argument, you obtain the subsets whose cardinalities are between
the two values. The integers must be given with the smaller value first, or the output will be the empty
list. The following calculates the proper, nonempty subsets of {1,2,3,4,5}.

In[49]:= Subsets[Range[5], {1,4}]

outaor  {{1}, {2}, {3},{4},{5},{1,2},{1,3},{1,4},{1,5},
{2,3}y,1{2,4}y,{2,5},1{3,4},1{3,5},{4,5},1{1,2,3},
{1,2,4},{1,2,5},1{1,3,4},{1,3,5},1{1,4,5},
{2,3,4}y,1{2,3,5},{2,4,5},1{3,4,5},1{1,2,3,4},
{1,2,3,5},{1,2,4,5},{1,3,4,5},{2,3,4,5}}

With a third argument, you can limit the number of results that are included. A positive integer given as
the third argument will cause Subset s to output at most that number of subsets. Note that the second
argument must be present to be able to use this option. If you wish to use the third argument, but provide no
restriction on the size of the subsets considered, you can give A1 1 as the second argument. The following
outputs the first 10 subsets of {1,2,3,4,5}.

In[50]:= Subsets[Range[5],Al11l,10]
Out[50]= {({y, {1y, {2}, {3}, {4}, {5}, {1,2},{(1,3},{1,4},{1,5}}
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You can obtain a single subset by entering {n} as the third argument. This will output the list containing
the nth subset in the canonical order used by Mathematica when listing subsets. You can also give a pair
{n,m} to list the subsets from the nth through the mth.

In[51):= Subsets[Range[5],Al1l, {7}]
Out[51]= {({1,2}}
In[52]:= Subsets[Range[5],All, {3,7}]

ous2)=  {{2}, {3}, {4}, {5}, {1,2}}

Random Combinations

The Wolfram Language does not explicitly provide a function for selecting random combinations. To
randomly select an r-combination for a particular r, one approach is to apply Sort to a random permu-
tation obtained with RandomSample. For example, the following produces a random 3-combination of
{1,2,...,10}.

In[53]:= Sort [RandomSample [Range[10], 3]]
out[53J= {1,5,7}

The application of Sort is not strictly necessary but helps conceptually. The difference between an
r-permutation and an r-combination is that order “matters” for the permutation and does not for the com-
bination. For example, {1,2,3} and {2, 3, 1} are different as permutations but the same as combinations
or sets. By applying Sort, we impose the same order on them, which makes the order they originally had
irrelevant.

A second approach is to randomly select from the output of Subsets. The function RandomChoice,
applied to a list, will return one randomly chosen element of the list. Since Subset s outputs a list of
subsets, it can be used as the argument to RandomChoice. The following demonstrates an alternate
approach to choosing a random 3-combination of {1,2,...,10}. Recall that the second argument of {3}
limits the output to the subsets of size 3.

In[54]:= RandomChoice[Subsets[Range[10], {3}1]]
Out{54]= {3,4,9}

A third approach is to first select a random integer using the RandomInteger function, and then use
that randomly selected integer in the third argument of Subsets. You must give the RandomInteger
function the single argument of the form {1,7n} where n is the number of combinations being selected
from. This causes it to produce a random integer from 1 to that maximum. In the below, we first select
a random integer between 1 and C(10, 3), the number of 3-combinations of {1,2,...,10}. This value is
stored as whichone. Then, we apply Subset s with first argument Range [ 101, which produces the set
{1,2,...,10}; second argument { 3 }, indicating that only 3-combinations are allowed; and third argument
{whichone}, which causes the function to return only the single subset at that position in the list of all
the 3-combinations. Note that since Subset s always outputs a list of sets, the result will be nested.

In[55]:= whichone=RandomInteger[{1l,Binomial[10,3]}];
Subsets[Range[10], {3}, {whichone}]

out[56]= {{4,5,91}}
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The first approach is the most efficient, but can only be applied when selecting a random r-combination
for a specific value of r. If you wish to select a random subset whose cardinality can vary, the first
method will select longer combinations more frequently than short ones. The second approach, using
RandomChoice, is fairly straightforward and can be easily used to select a random combination with-
out the restriction that they all be the same size. This approach can also be useful if you want to randomly
select a combination from a list of combinations that meet some criteria. However, it is inefficient and
restricts the maximum size of the original set. The third option, using RandomInteger, is reasonably
efficient, although it is not quite as fast as the first option. It is also fairly flexible, as you are not restricted
to a single cardinality, provided that you accurately count the number of possible combinations when
applying RandomInteger.

Circular Permutations

The prelude to Exercise 42 of Section 6.3 describes circular permutations. A circular r-permutation of n
people is a seating of r of those n people at a circular table. Moreover, two seatings are considered the
same if one can be obtained from the other by rotation.

The exercises ask you to compute the number of circular 3-permutations of five people and to arrive at a
formula for that number. In this subsection, we will write a function to list all of the circular r-permutations
of n people. Having such a function can help you more easily explore the concept and test your formula.

Rotating a Permutation

The key to listing all circular permutations is to devise a way to test whether two circular permutations
are equal. According to the definition, two circular permutations are considered to be equal if one can be
obtained from the other by a rotation. If we use a list to represent a permutation, a rotation will consist of
moving the first element to the end of the list (or the last to the front).

The Wolfram Language includes the functions RotateLeft and RotateRight that manipulate lists
in exactly this way. RotateLeft moves the first element to the end of the list and RotateRight
moves the last element to the beginning, as illustrated below.

In[57]:= Rotateleft[{1,2,3,4,5}]
Oout[57]= {2,3,4,5,1}

In[58]:= RotateRight[{1,2,3,4,5}]
Out[58]= {5,1,2,3,4}

Both of these functions can also accept an integer as a second optional argument to move more than one
element at a time. For example, the following moves the first two elements of the list to the end.

In[59]:= Rotateleft[{1,2,3,4,5}, 2]
Out[59]= {3,4,5,1,2}

Equality of Circular Permutations

Note that repeatedly rotating a permutation will eventually result in the original. Specifically, for an
r-permutation, after r rotations, the list will return to its original state. This is illustrated below with
an example “seating.”

In[60]:= Rotateleft[{"Abe", "Carol", "Barbara'"}]

Out[60]= {Carol,Barbara, Abe}
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In[61]:= RotatelLeft [%]

Oout[61]= {Barbara, Abe, Carol}
In[62]:= RotateLeft [%]

out[62]= {Abe, Carol,Barbara}

This observation indicates that, given two r-permutations, we can test to see if they are the same by rotating
one of them r — 1 times. The function below returns true if the two input lists represent the same circular
permutation and false otherwise. It first checks equality without performing rotation. Then, using a For
loop, it rotates the second list, checking for equality after each rotation.

In[63]:= CPEqualQ[LlI List,L2 List]:=Modulel{i,Ltest=L2},

If[LI==Ltest,Return[True]];

For[i=1, i<Length[Ltest]-1, i++,
Ltest=RotateLeft [Ltest];
If[LI==Ltest,Return[True]]

1;

Return[False]

]

We can use this function to confirm equality of circular permutations. For example,

In[64]:= CPEqualQ[{"Charles", "Helen", "Dean"},
{"Helen", "Dean", "Charles"}]

Out[64]= True

Listing All Circular Permutations

We are now prepared to write a function that lists all circular permutations. First, we will use
Permutations to generate all r-permutations of n people. We will initialize the list of all distinct
circular permutations to the first element of the list of all permutations. That first permutation is then
removed from the list of all permutations. Recall that De lete applied to a list and an index returns the
list obtained by removing the element at the given location from the list.

Within a Whi 1e loop conditioned on the list of permutations being nonempty, consider the first element
in the list of all permutations. Use CPEqualQ and a loop to see if the first element is identical to any of
the members of the set of circular permutations. If not, add it to the set of circular permutations. In either
case, it is deleted from the list of all permutations. This continues until the list of all permutations has
been emptied.

Here is the implementation. Our function will accept a list of “people” to be seated as the first argument
and r, the number that can be seated at the table, as the second argument.

In[65]:= circularPermutations[S List, r Integer]:=
Module[{allP,allCP, isnew,p},
allP=Permutations|[S, {r}];
allCpP={allP[[1]11};
allP=Delete[allP,1];
While[allP#({},
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isnew=Catch|
Do[If[CPEqualQ[allP[[1]],p], Throw[False]],
{p,allcP}];

Throw|[True]

1;

If[isnew,AppendTo[allCP,allP[[1]1]11];
allP=Delete[allP, 1]

1;

allcCp

1

Note that the 1 snew Boolean is used to track whether or not the current first member of a1 1P is new or
not.

The following computes the possible circular 3-permutations of the set { Abe, Barbara, Carol, Dean, Eve}.

In[66]:= circularPermutations|
{"Abe", "Barbara", "Carol", "Dean", "Eve"}, 3]

Out[66]= { {Abe, Barbara, Carol}, {Abe, Barbara, Dean},
{Abe, Barbara, Eve}, {Abe, Carol, Barbara},
{Abe, Carol, Dean}, {Abe,Carol, Eve}, {Abe, Dean, Barbara},
{Abe, Dean, Carol}, {Abe, Dean, Eve}, {Abe, Eve,Barbara}l,
{Abe, Eve,Carol}, {Abe, Eve, Dean}, {Barbara, Carol, Dean},
{Barbara, Carol, Eve}, {Barbara, Dean, Carol},
{Barbara, Dean, Eve}, {Barbara, Eve, Carol},
{Barbara, Eve,Dean}, {Carol, Dean, Eve}, {Carol,Eve,Dean}}

In[67]:= Length[circularPermutations|
{"Abe", "Barbara", "Carol", "Dean", "Eve"}, 311

out[67]= 20

It is left to the reader to experiment with other starting sets and values of r to determine a formula for
the number of circular r-permutations of n people. Note that the functions in this subsection were written
using a very naive approach. There are simpler and more efficient approaches, but those would give away
the key idea used to create the formula.

6.4 Binomial Coefficients and Identities

In this section, we will use Mathematica to compute binomial coefficients, to generate Pascal’s triangle,
and to verify identities.

The Binomial Theorem

Recall from the previous section that the Wolfram Language function Binomial can be used to com-
pute ("), which is another notation for C(n, k). The Binomial function is in fact more general than the
binomial coefficients described in the textbook, as it will compute coefficients that appear in Newton’s
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generalized binomial theorem. The generalization is beyond the scope of this manual, but be aware that
the function may return values even for inputs that you might expect should cause an error.

Here, we will consider questions such as Examples 2 through 4 from Section 6.4 of the textbook.

First, consider the problem of expanding (x + y)°. In Mathematica, this can be done easily with Expand.
The Expand function requires one argument, an algebraic expression. It returns the result of expanding
the expression, that is, of distributing products over sums.

In[68]:= Expand|[ (x+y) *5]

3 2

out[68]= x°+5 x? y+10 x° y?+10 x? yv>+5 x yi+y°

Now, consider the question of finding the coefficient of x'8y!'? in the expansion of (x + y)*°. The binomial
theorem tells us that this coefficient is (?2) The Binomial function with first argument 30 and second
12 will produce this value.

In[69]:= Binomial[30,12]
out[69]= 86493225
Thus, the expansion of (x + y)*° contains the term 86493225x'8y!2,

Finding the coefficient of x'?y'® in the expansion of (2x — 3y)* requires that we include the coefficients

of x and y in the computation. As explained in the solution to Example 4 of the text, the expansion is

25
@x+ (=35 =Y (2]5 ><2x)25—f(—3yy'

Jj=0

The coefficient of x'?y'3 is found by taking j = 13:

25\ 512, ay13
(13>2 (-3)

In[70]:= Binomial[25,13]*2412* (-3)*13

This is

Out[70]= —-33959763545702400

Pascal’s Triangle

As we have seen, it is very easy to compute binomial coefficients with Mathematica. To compute row n of
Pascal’s triangle, we apply the Binomial function with the second argument ranging from O to n. This
can be done with the Table function. For example, the 25th row of Pascal’s triangle is shown below.

In[71):= Table[Binomial[25,n], {n, 0,25}]

out[71}= {1,25,300,2300,12650,53130,177100,480700,
1081575,2042975,3268760,4457400,5200300,
5200300, 4457400,3268760,2042975,1081575,
480700,177100,53130,12650,2300,300,25,1}
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When calculating a single binomial coefficient or an isolated row, applying the formula may be the most
efficient approach. However, if you wish to build a sizable portion of Pascal’s triangle, making use of
Pascal’s identity (Theorem 2 of Section 6.4) and the symmetry property (Corollary 2 of Section 6.3) can
be more effective.

In this subsection, we will write two functions for computing binomial coefficients. The first will simply

apply the formula k'(:ikf‘. The second will be a recursive function making use of Pascal’s identity and

symmetry. Then, we will compare the performance of the two functions in building Pascal’s triangle.

The first function will be a straightforward application of the formula. We name it binomialF (for
formula).

In[72]:= binomialF[n Integer,k Integer]/;0<k<n:=
n!/(k!'*(n-k)!)

A Recursive Function
The second function will be called binomialR (for recursive). Recall Pascal’s identity:

(n?) ) (kﬁ1>+<2>'

Rewriting this in terms of n and n — 1, we have

(1) =G0+ (5")

Recall also that the binomial coefficients are symmetric, that is,

(£) = (.2)
k) \n-k)
With these facts in mind, our recursive function will work as follows. It will be designed to store values
in an indexed variable with the same name as the function, binomialR. The body of the function will
consist of a Which statement. In case the second argument is 0, the result is 1. That forms the basis case
of the recursion. The second possibility is that 2k > n. In this case, we make use of symmetry and call

binomialR on n and n — k. Finally, if neither of those conditions are met, we apply Pascal’s identity,
making recursive calls to binomialR. Here is the implementation.

n73= binomialR[n Integer, k Integer]/;0<k<n:=Module[{},
Which[k==0,binomialR[n, k]=1,
2*k>n,binomialR[n, k]=binomialR[n, n-k],
True,binomialR[n, k]=binomialR[n-1, k-1]+binomialR[n-1, k]

]

We use our two functions to build Pascal’s triangle using a Table with two loop variables. We use the
Column function with Center as second argument to give the table its usual triangular form.

In[74]:= Column[Table[binomialF[n, k], {n,0,5},{k,0,n}], Center]
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Oout[74]= {1}
{1,1}
{1,2,1}
{1,3,3,1}
{1,4,6,4,1}
{1,5,10,10,5,1}

In[75]:= Column[Table[binomialR[n, k], {n,0,5},{k,0,n}], Center]

Oout[75]= {1}
{1,1}
{1,2,1}
{1,3,3,1}
{1,4,6,4,1}
{1,5,10,10,5,1}

Comparing Performance
Now, we compare the performance of the two functions.
First, we use each of them to compute the first 1000 rows of Pascal’s triangle and compare the time it

takes. We use Clear and redefine binomialR in order to remove any values already stored so that the
comparison is fair.

In[76]:= Timing|[
Table[binomialF[n, k], {n,0,1000}, {k,0,n}];
1

out[76]= {5.982378,Null}

In[77]:= Clear[binomialR];
binomialR[n Integer, k Integer]/; 0<k<n:=Module[{},
Which[k==0,binomialR[n, k]=1,
2*k>n,binomialR[n, k]=binomialR[n, n-k],
True,binomialR[n, k]=binomialR[n-1, k=1]+binomialR[n-1, k]
1
1;
Timing[
Table[binomialR[n, k], {n,0,1000}, {k,0,n}];
1

Oout[79]= {3.091867,Null}

You see that the difference between the two performance of the two functions is substantial.

However, if we compute some isolated values, the situation is reversed. We will generate some random
values of n between 100 and 200 and random values of k between 0 and the corresponding value of n.

The RandomInteger function applied to an integer outputs a random integer between 0 and that value,
and given a pair {a, b}, it returns a randomly selected integer between a and b. With a positive integer as
a second argument, the function will produce that many random integers in the selected range.
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To produce 100 random values of n, we simply call RandomInteger on the range {100,200} and the
number 100 and assign the resulting list of n values to the symbol randomNs.

In[80]:= randomNs=RandomInteger[{100,200},100];

To produce the list of values of k, we use Table. Each value of k will be found by applying
RandomInteger to the value found in randomNs. That way, the values of k will be between 0 and
the corresponding value of 7.

In[81]:= randomKs=Table [RandomInteger[randomNs[[i]]], {i,100}];

We can time the performance of binomialF simply by applying the function to the pairs of values.

In[82]:= Timing|[
Table[binomialF [randomNs[[i]], randomKs[[i]]], {i,100}];
1

out[82]= {0.000755,Null}

To check the performance of the recursive function, we must again Clear and redefine the function,
as it currently stores the entire table up to n = 1000. We also override Mathematica’s recursion limit,
SRecursionLimit, to avoid errors based on the depth of the recursion we are attempting. This was
not necessary when computing the table through row 1000 above, because each row was computed in turn
and thus each individual computation had to look only one row down to find a known value. We set the
recursion limit inside of a Block to localize the override.

In[83]:= Clear[binomialR];
binomialR[n Integer, k Integer]/;0<k<n:=Module[{},
Which[k==0,binomialR[n, k]=1,
2*k>n,binomialR[n, k]=binomialR[n, n—-k],
True,binomialR[n, k]=binomialR[n-1, k-1]+binomialR[n-1, k]
]
1;
Block[{$RecursionLimit=Infinity},
Timing|[
Table[binomialR[randomNs[[i]], randomKs[[i]]], {i,100}];

1
Out[85]= {0.062778,Null}

The reason for the difference in relative performance is that when generating Pascal’s triangle, all of the
values beginning with n = 0, k = 0 needed to be calculated. On the other hand, when calculating isolated
values, the recursive function still had to calculate all of the results for lower values of n and k, which the
nonrecursive function did not need to compute.

Verifying ldentities
Mathematica can help verify identities involving the binomial coefficients. If you enter an expression

using the Binomial function and include symbolic arguments, Mathematica will try to simplify the
expression algebraically. First, we ensure that n and k are unassigned.
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In[86]:= Clear|[n, k]

For example, Mathematica can transform C(n, 3) into an algebraic expression.
In[87]:= Binomial[n, 3]

Oout[87)= % (-2+n) (-1+n) n

More general expressions, however, will be left unsimplified.
In[88]:= Binomial[n, k]
out[88]= Binomial[n, k]
However, we can force Mathematica to unwind this general expression into its formula with the
FunctionExpand function. FunctionExpand is a way to insist that certain complex functions,

such as Binomial, are expanded when doing so might allow further simplification. Observe what
happens:

In[89]:= FunctionExpand[Binomial[n, k]]
Gamma [l+n]
Gamma[l+k] Gamma[l-k+n]

out[89}=

A complete description of the gamma function is beyond the scope of this manual. Suffice it to say that for
positive integers, I'(n) = (n — 1)!. Because we are concerned only with the domain of positive integers,
we can transform the expression above into its more typical form by applying ReplaceAll (/.) and
the rule I'(n)=(n-1)!.

In[90]:= FunctionExpand[Binomial[n,k]]/.Gamma[n_]— (n-1)!
n!
Out[90]=
k! (=k+n)!
Verifying Symmetry

As a first example, we verify the identity C(n, k) = C(n, n — k), the symmetry identity.
Assign names to the left- and right-hand sides of the identity.

In[O1]:= left=Binomial[n, k]
Oout[91]= Binomial[n, k]

In[92]:= right=Binomial [n, n-k]
out[92]= Binomial [n, —k+n]

Note that if you simply try to apply Equal (==), Mathematica will simply echo the expressions, indi-
cating that it is not able to confirm that the expressions are equal or not.

In[93]:= left==right

Out[93]= Binomial[n, k]==Binomial[n, -k+n]
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In addition, SameQ (===) will return Fa 1l se, since the expressions are not identical.
In[94]:= left===right
Out[94]= False

The above examples illustrate that a great deal of care is required when using Mathematica to verify
identities. A negative result from SameQ (===) indicates that the expressions are not identical, while
they still may be algebraically equivalent. Moreover, a failure of Equal (==) may mean that Mathematica
needs more direction about how to proceed.

In particular, Mathematica needs to be told to expand the Binomial function. We saw one way to
this above, using FunctionExpand. FullSimplify is another function that will tell Mathemat-
ica to delve into the definition of a function and attempt to perform algebraic simplification. Applying
FullSimplify tothe Equal (==) test yields the correct result.

In[95]:= FullSimplify[left==right]
Out[95]= True

A Second Identity
Exercise 30 in Section 6.4 asks you to prove the identity:

2()62) -G/ ()
e \k)\k—1 n+1 n
Mathematica will verify (but not prove) this identity for us.

First, we will give the right-hand side of the identity a name.
IN[96]:= right2=Binomial[2n+2,n+1]/2-Binomial[2n, n]
out[96]= —Binomial[2 n,n] +% Binomial[2+2 n, 1+n]
As you may have expected, Mathematica simply echoed the expression
The left-hand side is a summation, so we apply the Sum function.
In[97]:= left2=Sum[Binomial[n, k] *Binomial[n, k-1], {k,1,n}]

4" n (E (-1+2 n))!

V7 (1+n)!

Mathematica automatically simplified the summation and returned a closed formula.

out[97]=

To verify the identity, apply Ful1Simplify to the expression identifying the two sides of the formula.
Note that FullSimplify is required; using Equal (==) alone will not produce a truth value.

In[98]:= FullSimplify[left2==right2]
Out[98]= True
Keep in mind when using Mathematica to check identities that it will only report true when the two sides

of the expression are algebraically equivalent. If it does report true, you can be confident that the identity
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does hold, though a truly convincing proof requires that you explicitly show the algebraic manipulations
or provide a combinatorial argument justifying the equivalence.

If Mathematica reports false or just echoes the expression, however, even after using Ful1Simplify,
you cannot be certain whether the identity is false or if it is true but more manipulation is needed to
recognize it. To use Mathematica to demonstrate that a purported identity is false, you would need to find
a counterexample by computing the values of both expressions and finding inputs that result in different
values. (Refer to Section 1.7 for examples of finding counterexamples.)

6.5 Generalized Permutations and Combinations

In this section, we will introduce a variety of Wolfram Language functions related to permutations and
combinations with repetition allowed and related to distributing objects in boxes where the objects and
the boxes may or may not be distinguishable.

Permutations with Repetition
Recall from Theorem 1 that the number of r-permutations of n objects is n” if repetition is allowed.

For example, the number of strings of length 5 that can be formed from the 26 uppercase letters of the
English alphabet is

In[99]:= 2675
Out[99]= 11881376

As a second example, we compute the number of ways that four elements can be selected in order from a
set with three elements when repetition is allowed.

IN[100]:= 374
Out[100]= 81

Recall from the previous section that the Permutations function accepts a list as its first argument. In
case the list contains repeated elements, those elements are treated as identical, but are allowed to repeat
in the permutations.

For example, consider the expression below.
In[101]:= Permutations[{1l,1,2}]
oupor=  {{1,1,2},{1,2,1},{2,1,1}}

Given a list of n not necessarily distinct objects and no second argument, the Permutations function
produces all of the n-permutations of the n objects. Note that 1 appeared twice in the input and thus appears
twice in the results, while 2 appeared once in the input and so appears once in the output.

With a second argument, you can specify the length of the permutations, as was described in the previous
section.

In[102]:= Permutations[{1l,1, 2}, {2}]
Out[102]= {({1,1},{1,2},{2,1}}
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Since 1 appeared twice in the input list, it was allowed to appear twice in the permutations, but 2 appeared
only one time in the input and thus was not allowed to repeat. This means that if you want to list the ways
that four elements can be selected in order from a set with three elements when repetition is allowed,
you can use the Permutations function, so long as you repeat the elements in the input. In order to
generate all r-permutations of n objects with repetition allowed, you must use as input the list consisting
of the n objects each repeated r times. If an object is repeated fewer than r times in the input list, then that
will limit the number of times it is allowed to repeat in the results.

To form 4-permutations with repetition allowed of {}}ae, } }be, } Jce}, we apply the Permutations
function after using ConstantArray and Join to build its argument.

The ConstantArray function takes two arguments. The first is the object to be repeated and the second
is the number of times the object is to be repeated. The output is the list consisting of that number of copies
of the element. For example, the following creates the list consisting of four copies of the character “a”.

In[103]:= ConstantArray["a", 4]
Out[103]= {a,a,a,a}

The Join function accepts a number of lists and outputs the list obtained by merging them. The following

[P

produces the list of four “a”’s and four “b”’s and four “c”’s.

In[104]:= Join[ConstantArray["a",6 4], ConstantArray["b", 4],
ConstantArray['"c",b 4]]

Out{104]= {a,a,a,a,b,b,b,b,c,c,c,c}

We can make this more compact, especially for large numbers of symbols, by applying Table with a
table variable ranging over the desired elements. Remember that if the second argument to Table is of
the form {variable, list}, then the table variable will be assigned each element of the list in turn. Using
ConstantArray as the first argument to Table, with the table variable as the array element, we can
obtain the list of “constant arrays.”

In[105]:= Table[ConstantArray[i, 4], {i,{"a","b","c"}}]
Out[105}= {{a,a,a,a}, {b,b,b,b},{c,c,c,c}}

Since Join expects several lists as arguments, not a single list of lists, we need to use the Apply (QQ)
operator. Apply (@@) has the effect of taking the elements of a list and giving them as the arguments to
a function.

IN[1061:= Join @@Table[ConstantArray[i, 4], {i,{"a","b","c"}}]
Out[106]= {a,a,a,a,b,b,b,b,c,c,c,c}

This is the list we give to the Permutations function, along with the size specification {4}, to obtain
permutations of length 4.

In[107]:= abcRepeated=Permutations|[
Join @@Table[ConstantArray[i,b 4], {i,{"a","b","c"}}1,
{4}
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out{107}= {{a,a,a,a}, {a,a,a,b},{a,a,a,c},
{a,a,b,a},{a,a,b,b}, {a,a,b,c},
{a,a,c,at,{a,a,c,b}, {a,a,c,c},
{a,b,a,a},{a,b,a,b},{a,b,a,c}, {a,b,b,a},
{a,b,b,b},{a,b,b,c}, {a,b,c,a}, {a,b,c, b},
{a,b,c,c},{a,c,a,at, {a,c,a,b}, {a,c,a,c},
{a,c,b,at,{a,c,b,b},{a,c,b,c}, {a,c,c,a},
{a,c,c,b},{a,c,c,c},{b,a,a,,al}, {b,a,a, b},
{b,a,a,c},{b,a,b,a}, {b,a,b,b}, {b,a,b,c},
{b,a,c,a},{b,a,c,b}, {b,a,c,c}, {b,b,a,a},
{b,b,a,b}, {b,b,a,c}, {b,b,b,a}, {b,b,b,b},
{b,b,b,c}, {b,b,c,a}, {b,b,c,b}, {b,b,c,c},
{b,c,a,a},{b,c,a,b}, {b,c,a,c}, {b,c,b,a},
{b,c,b,b}, {b,c,b,c}, {b,c,c,a}, {b,c,c,b},
{b,c,c,c},{c,a,a,at,{c,a,a,b}, {c,a,,a,c},
{c,a,b,a},{c,a,b,b}, {c,a,b,c}, {c,a,c,a},
{c,a,c,b},{c,a,c,c}, {c,b,a,,a}, {c,b,a,b},
{c,b,a,c},{c,b,b,a}, {c,b,b,b}, {c,b,b,c},
{c,b,c,a},{c,b,c, b}, {c,b,c,c}, {c,c,a,al},
{c,c,a,b},{c,c,a,c},{c,c,b,a}, {c,c,b, b},
{c,c,b,c},{c,c,c,a}, {c,c,c,b}, {c,c,c,c}}

In[108]:= Length[abcRepeated]
Out[108]= 81

Note that the size of the list produced by Permutations agrees with the answer given by the
formula n".

Combinations with Repetition
Combinations with repetition can be handled in much the same way as permutations with repetition are.

Theorem 2 of Section 6.5 asserts that the number of r-combinations of a set of n objects when repetition
of elements is allowed is C(n + r — 1, r). This suggests the following useful function.

In[109]:= CRep[n Integer,r Integer]/;n>0&&r>0:=
Binomial [n+r-1, r]

Thus, we can compute, for example, the number of ways to select five bills from a cash box with seven
types of bills (Example 3) as shown below.

In[110]:= CRep[7,5]
Out[110]= 462

Consider Example 2 from Section 6.5. In this example, we are given a bowl of apples, oranges, and pears
and are to select four pieces of fruit from the bowl provided that it contains at least four pieces of each
kind of fruit. We have two ways to solve this problem with Mathematica.
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First, we can use the CRep function we created.
In[11]:= CRep|[3, 4]

Oout[1M1]= 15

The other approach is to use Subsets to list all the options. We form the argument to Subsets in the
same way as in the last subsection. However, the difference between Subsets and Permutations
is that Subsets treats repeated objects as distinct. This means that combinations will be repeated. For
example, consider the following.

In[N12]:= Subsets[{"a", "b","b"}]

ournzr=  {{}, {a}, {b}, {b}, {a,b}, {a,b}, {b,b}, {a,b,b}}

The subsets {b} and {a, b} appear twice because Mathematica considered the two “b”s in the input to be
different from each other. That is, one {b} in the output is from the first “b” in the input, and the other {5}
is the second “b” in the input. To eliminate these redundancies, we can apply DeleteDuplicates,a
function that removes duplicate elements from a list.

In[13]= DeleteDuplicates[Subsets[{"a","b","b"}]]

ounzi=  {{}, {a}, {b}, {a,b}, {b, b}, {a,b,b}}

To answer the question about the bowl of fruit, we enter the following.

In[114]= DeleteDuplicates|
Subsets|
Join@@Table[ConstantArrayl[i, 4],
{i, {"apple", "pear", "orange"}}],

{4}

]

out[114]= {{apple, apprle, apple, apple},

{apple, apple, apple, pear}, {apple, apple, apple, orange},
{apple, apple, pear,pear}, {apple, apple, pear, orange},

{apple, apple, orange, orange}, {apple, pear, pear, pear},
{apple, pear,pear, orange}, {apple, pear, orange, orange},
{apple, orange, orange, orange}, {pear, pear, pear,pear},
{pear,pear, pear, orange}, {pear, pear, orange, orange},

{pear, orange, orange, orange}, {orange, orange, orange, orange} }

In[15]:= Length[%]

out[115]= 15

Pay careful attention to the difference between Permutations and Subsets. Permutations con-
sidered repeated elements to be identical, while Subset s treats them as distinct.
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Permutations with Indistinguishable Objects

Mathematica handles permutations with indistinguishable objects in the same way as when repetition is
allowed. The Permutations function accepts a list of objects as its first argument. If objects in the list
are repeated, they are treated as indistinguishable and the appropriate permutations are generated.

For example, to solve Example 7, finding the number of different strings that can be made from the letters
of the word SUCCESS, we use the list {"s", "u","c","Cc","E","S","S"} as the argument to
Permutations. Since we are only interested in the number of permutations, we apply Length as
well.

inmel=  Length[Permutations[{"S",6 "U","C","C",6"E","S","S"}1]]

out[116]= 420

Observe that this gives the same result as the formula given in Theorem 3.

The Wolfram Language function makes it easy to go a bit further than Theorem 3, which is restricted
to the situation when you are permuting all n objects. To find the number of r-permutations of n objects
where some objects are indistinguishable, you give {r} as the second argument.

For example, the strings of length 3 that can be made from the letters of the word SUCCESS can be found
as follows.

In[17]):= Permutations [ { ngn , "U", ngw , "C", ngn , "S", ngw } , {3}]

out[117]= {{s,u,C}, {s,v,E}, {S,U,8},{s,C,U},{s,C,C}, {S,C,E},
{s,¢,s},{s,E,0},{S,E,C},{S,E,S},{S,S,U},{S,S,C},
{s,s,E}, {s,s,s},{0,s,C}, {U,s,E}, {U,S,S},{0U,C, S},
{g,c,c},{uv,C,E}, {U,E,S},{U,E,C}, {C,S,U},
{¢,s,Cc},{C,s,E}, {C,S,s},{C,U,S}, {C,U,C},
{c,U,E}, {C,C,S}, {C,C,U}, {C,C,E}, {C,E, S},
{C,E, U}, {C,E,C}, {E,S,U},{E,S,C},{E,S,S},
{g&,U0,s},{E,U,C}, {E,C,S},{E,C,U},{E,C,C}}

Applying Length returns the number of such strings.
In[118]:= Length[%]

out[118]= 43

A related question is the number of strings with three or more letters that can be made from the letters of
the word SUCCESS. To find this, we only have to change the second argument of Permutations to
{3, 7}, indicating that the length of the permutations should be allowed to range from 3 to 7 (the number
of letters in SUCCESS).
inmo}=  Length[Permutations[{"sSs","U","C",6"C",6"E","S","S"},
{3,7}11

out[119]= 1247
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Distinguishable Objects and Distinguishable Boxes

Example 8 asks how many ways there are to distribute hands of five cards to each of four players from a
deck of 52 cards. There are several ways to compute this value in Mathematica.

First, we can use the expression in terms of combinations,
C(52,5)C(47,5)C42,5)C(317,5),
by using Binomial.
In[120]:= Binomial[52,5]*Binomial[47,5]*Binomial[42,5] *Binomial[37, 5]
out[120}= 1478262843475644020034240

Second, we can use the formula from Theorem 4:

52!
5!.5!.50.51.321
2= 521/ (51*51%51%51%321)
out[121]= 1478262843475644020034240

Finally, this same value can be computed using the Mult inomial function. Recall Theorem 4 in the text
asserts that the number of ways to place n distinguishable objects into boxes so that n; objects are placed
in box 1, n, objects are put in box 2, etc., is #'n‘ The Multinomial function takes n,n,,...,n;
as arguments and applies the formula with n éorznpufed as n; +n, + - - - + n;. Therefore, to compute the
answer to Example 8, enter the following.
In[122]:= Multinomial[5,5,5,5, 32]
out[122]= 1478262843475644020034240

Revising the Multinomial Function

It is common in questions about distributing distinguishable objects into distinguishable boxes that you
want to distribute only some of the objects. In Example 8, for instance, not all of the cards are dealt to
players. The Multinomial function requires that you include the remainder of the cards as an argument.
Conceptually, you can think of making one more box to hold the objects that are not placed in any of the
other boxes.

This is such a common occurrence, however, that it seems more natural to forget about this “discard box™
and instead include the total number of objects. We will write a function in the Wolfram Language that
will use the formula from Theorem 4 but will require the total number of objects as the first argument and
calculate the size of the discard box.

We would like our function to, like Mult inomial, accept any number of arguments, rather than requir-
ing the n; to be collected in a list. That is, we would like to be able to compute the answer to Example 8
as follows.

myMultinomial[52,5,5,5, 5]
The first argument will be the total number of objects, and it should be followed by at least one integer

indicating the sizes of the boxes.
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To allow the function to accept arbitrary numbers of arguments, we use the BlankSequence (__)
pattern, entered with two underscores. In the past, we have used this inside braces as a way to specify that
an argument must be a list of a certain kind, as in a: {__Integer}. This will be similar, but without
the braces.

The function definition will begin as shown below.
myMultinomial [n Integer,l Integer]:=
The difficulty arises when working with the sequence of integers matched by L. In particular, L does

not represent a list; rather, it represents a sequence of arguments. Therefore, functions that accept a list
argument, such as Length, will raise an error, as illustrated below.

In[123]:= numberArgs[L__]:=Length[L]
In[124]:= numberArgs|[1, 2, 3, 4]
Length: Length called with 4 arguments; 1 argument is expected.
out[124]= Lengthl[1, 2, 3, 4]
The way to deal with this is to wrap L in braces before applying the function.
In[125]:= numberArgs2[L ] :=Length[{L}]
In[126]:= numberArgs2[1, 2, 3, 4]
out[126]= 4
On the other hand, functions that normally accept arbitrary numbers of arguments and must usually be
used in conjunction with Apply to operate on a list can be given the sequence directly.
In[127]:= sumArgs[L ]:=Plus[L]
In[128]:= sumArgs|[1, 2, 3, 4]
out[128]= 10
Now that we know how to work with the BlankSequence, writing the myMultinomial function
is straightforward. We compute the size of the discard box by subtracting the first argument from the
sum of the rest. The Factorial function automatically threads over lists, so we can apply it to the list

formed from L and the discard box size. We need to use Apply (@@) with Times in order to multiply
the factorials, and then divide n! by that result.

In[129]:= myMultinomial[n Integer,L Integer]:=
Module|[ {discard, denomList, denom},
discard=n-Plus|[L];
denomList=Factorial[{L,discard}];
denom=Times@@denomList;
n!/denom
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In[130]:= myMultinomial[52,5,5,5, 5]
out[130]= 1478262843475644020034240

The reader is encouraged to eliminate the local variables and write a “one line” version of this function.

Indistinguishable Objects and Distinguishable Boxes

The text describes the correspondence between questions about placing indistinguishable objects into
distinguishable boxes and about combination with repetition questions.

Example 9 asks how many ways 10 indistinguishable balls can be placed in 8 bins. We can use the CRep
function written earlier.

In[131]):= CRep[8,10]
out[131= 19448

It may seem that the arguments were reversed. Keep in mind that the connection to combinations with
repetition is that you are selecting 10 bins from the 8 available bins, with repetition allowed.

Compositions and Weak Compositions

We can also use the Wolfram Language Compositions and NumberOfCompositions functions
to answer questions of this kind. A k-composition of a positive integer n is a way of writing n as the
sum of k positive integers where the order of the summands matters. For example, 4 has three distinct
2-compositions: 3+ 1,2+ 2, and 1 + 3.

A weak composition is similar, but the terms in the sum are allowed to be 0. Thus, 4 has five distinct weak
2-compositions: 4 + 0 and 0 + 4 in addition to the three listed before.

Note that the weak r-compositions of n correspond to the r-compositions of n + r. For suppose that
X, +x, +---+x, =nis aweak r-composition. As this is a weak r-composition, each x; is nonnegative.
Therefore,

+D+@+D)+---+ &, +1)=n+r,

and each x; + 1 is positive, and hence this is a composition of n + r. Likewise, any r-composition of n + r
can be transformed into a weak r-composition by subtracting 1 from each term.

Also note that weak r-compositions of n correspond to placing n indistinguishable balls into r distinguish-
able bins. Suppose x; + x, + - - - + x, = n is a weak r-composition of n. This can be identified with placing
x, of the objects into the first bin, x, objects in the second bin, etc.

We now return to Compositions and NumberOfCompositions. These are functions contained in
the Combinatorica package and are not available without loading that package by executing a Needs
statement.

In[132]:= Needs["Combinatorica ‘"]

General: Combinatorica Graph and Permutations functionality has been superseded by preloaded functionality. The package
now being loaded may conflict with this. Please see the Compatibility Guide for details.

You may safely ignore the compatibility warning in this context. Much of the functionality of the Combi-
natorica package has been superseded by new functionality in the main kernel in Mathematica. However,
this does not affect the functions we will be using.
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The Compositions and NumberOfCompositions functions accept the same arguments: the
integers n and r. NumberOfCompositions outputs the number of weak r-compositions of n, while
Compositions returns a list of them.

In[133]= NumberOfCompositions|[4, 2]
out[133]= 5
In[134]= Compositions|[4, 2]
Out[134]= {{0,4},1{1,3},1{2,2},1{3,1},{4,0}}

The number of ways to place n indistinguishable objects in r distinguishable boxes is the same as the
number of weak r-compositions of n. Consequently, we can determine the number of ways 10 balls can
be placed in 8 bins, the same question as before, as follows.

In[135]= NumberOfCompositions[10, 8]
Out[135]= 19448

Distinguishable Objects and Indistinguishable Boxes

As described in the text, the number of ways to place n distinguishable objects in & indistinguishable boxes
is given by the Stirling numbers of the second kind, S(n, k).

The function St ir1ingS2 computes the Stirling number of the second kind. This function requires two
arguments, the number of objects and the number of boxes. For example, the expression below computes
the number of ways to put seven different employees in four different offices when each office must not
be empty.

In[136]:= StirlingS2[7,4]
Out[136]= 350

In order to compute the number of ways to assign the seven employees to the four offices and allow empty
offices, we must add the number of ways to assign all seven employees to one office, to two offices, to
three offices, and to four offices.

In[137]:= Sum[StirlingS2[7,i],{1,1,4}]
out{137]= 715

Generating Assignments of Employees to Offices

The Stir1ingS2 function tells us how many ways there are to place distinguishable objects in indistin-
guishable boxes. In this subsection, we will create a function to list these. However, note that the Combi-
natorica package has a function, similar to the one we will create by hand, called SetPartitions.

To create a function that will list the possible assignments of distinguishable objects to boxes, we rely
on the following observations. First, as indicated in the text, a choice of distinguishable objects to indis-
tinguishable boxes can be modeled as a set of subsets. For instance, {{A, C}, {D}, {B, E}} represents the
assignment of A and C to one box, D to a box of its own, and B and E to another box. The set of subsets
must not contain the empty set and must be such that the union of the subsets be the entire collection of
objects.
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We can produce such assignments recursively. The basis step is that there is only one way to assign n
objects to 1 box and there are no ways to assign n objects to k boxes for k > n (under the requirement that
no box be empty). To assign n objects to k boxes with k < n, proceed as follows.

First, find all assignments of n — 1 objects to k — 1 boxes and update each assignment by placing

object n in a box by itself. In terms of the set representation, given {B,,B,,...,B;_;}, we produce
{Bl’BZ’ ’Bk—l’ {n}}
Second, find all assignments of n — 1 objects to k boxes. For each such assignment {B,, B,, ..., B, }, pro-

duce the following k assignments of n objects to the k boxes:

{ByU{n},B,,....B;},{B,B,u{n},Bs,...,B,},...{B,B,,...,B U {n}}

The assignments of objects to boxes produced by the two methods above produce all assignments. The
following function implements this algorithm.

In[138]:= makeStirling2([n Integer, k Integer]/;n>0&&k>0:=
Module[{A, klboxes, kboxes, B, new, i},
Which[k==1,
A={{Range[n]}},
k>n,
A={},
True,

A={};

klboxes=makeStirling2[n-1, k-1];
Do[new=Union[B, {{n}}]; AppendTo[A, new]
, {B,klboxes}];

kboxes=makeStirling2[n-1, k];
Do[For[i=1l, iLk, i++,
new=ReplacePart [B, i—»Append[B[[i]],n]];
AppendTo [A, new]
1, {B, kboxes}]
1;
A

]

Let us analyze the function. It accepts n and k as parameters and returns the list of all possible assignments
of distinguishable objects to indistinguishable boxes. The symbol A stores the list that will ultimately be
output.

In the case that k = 1, there is only one possible assignment, all objects are assigned to the single box.
This assignment is represented by {{1,2,...,n}}, since an assignment corresponds to a set of subsets.
The function sets the output symbol A to the list consisting of this single assignment when k£ = 1. Recall
the Range function applied to a positive integer produces the list of integers from 1 to that value.
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If k > n, then there are no valid assignments and the function sets the output symbol A to the empty set.

Otherwise, the symbol A is initialized to the empty set. Recall that there are two recursive steps: first,
expanding on the assignments of n — 1 objects to kK — 1 boxes, and second, expanding on the assignments
of n — 1 objects to k boxes.

For the first part, we assign the symbol k1boxes to the set of assignments of n — 1 objects to k — 1
boxes. For each such assignment, that is, each B in k1boxes, we add »n in its own box. For example, for
{{1,3,5},{2},{4,6}}, we would add 7:

{{1,3,5}, {2}, {4.6}} U {{7}} = {{1.3,5}, {2}, {4, 6}, {7} }.

This new assignment is then added to A.

In the second part, we assign kboxes to the set of assignments of n — 1 objects to k boxes. For each such
assignment B, we consider each of the k boxes in turn and add # to that box. For instance, the assignment
{{2,3}, {1}, {5}, {4,6}} would generate the four assignments:

{{2,3,7}, {1}, {5}, {4,6}}
{{2,3}, {17}, {5}, {4,6}}
{{2,3},{1},{5,7}.{4,6}}
{{2,3}, {1}, {5}, {4.6,7}}

To create these four new assignments from the initial assignment B, we use the ReplacePart function.
In its simplest form, as we use it here, ReplacePart takes two arguments. The first argument is an
expression to be manipulated, in this case B, the original list representing an assignment of objects to
boxes. The second argument is a rule of the form index—>replacement. The index is the location within
B that is to be substituted with the replacement expression. In makeStirling2, we use a For loop
variable as the index and the replacement expression is obtained from Append to add the value n to the
box at that index.

Compare the result of our function to the solution of Example 10 in Section 6.5 of the text. We use Co 1 umn
to put each assignment on its own line.

in39l=  makeStirling2([4,3]//Column

Out[139]= {{3}, {4}, {1,2}}
{({2},{4},{1,3}}
{{1},{4},{2,3}}
{({1,4},{2},{3}}
{({1},{2,4},{3}}
{({1},{2},{3,4}}

Except for using the integers 1 through 4 instead of the letters A through D, the output above is the same
as the six ways listed in the text for placing the four employees in three offices.

To produce all 14 ways to assign the four employees to three offices with each office containing any
number of employees, we need to loop over the different values of k. Using Tab1le to vary the number of
offices results in a list, each element of which is a list of results. Using F1at ten with second argument
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1 combines this list of lists into a single list of results. The 1 as the second argument indicates that only
the top level of lists are to be flattened. The result can be displayed with Column.

IN[140]:= Flatten[Table[makeStirling2[4,k], {k,1,3}],1]1//Column

Out{140}= {{1,2,3,4}}
{{4},{1,2,3}}
{{3,4},1{1,2}}
{{3},{1,2,4}}
{{1,3,4},{2}}
{{1,3},{2,4}}
{{1,4},1{2,3}}
{{1},{2,3,4}}
{{3},{4},{1,2}}
({2}, {4}, {1,3}}
{{1},{4},{2,3}}
{{1,4},{2},{3}}
({1}, {2,4},{3}}
{{1},{2},{3,4}}

Indistinguishable Objects and Indistinguishable Boxes

As described in the main text, distributing n indistinguishable objects into k indistinguishable boxes is
identical to forming a partition of » into k positive integers. A partition of n into k positive integers is a
sumn=a,+a,+---+a,witha, >a, >--->a;, >0.

The Wolfram Language functions IntegerPartitions and PartitionsP are used to form and
count partitions of integers. With one argument, a nonnegative integer n, PartitionsP returns the
total number of partitions of n into as many as n boxes. Likewise, IntegerPartitions applied to
one argument returns a list containing lists representing partitions of its argument.

For example, the expressions below compute the number of partitions of 7 and lists all the partitions of 7.

In[141]:= PartitionsP[7]
Oout[141]= 15
In[142]:= IntegerPartitions|[7]

out[142]= {{7y,{6,1},{5,2},{5,1,1},{4,3},{4,2,1},
{4,1,1,1},{3,3,1},1{3,2,2},1{3,2,1,1},
{3,1,1,1,1},4{2,2,2,1},{2,2,1,1,1},
{2,1,1,1,1,1},{1,1,1,1,1,1,1}}

The IntegerPartitions function also accepts a second argument, which specifies the number of
summands allowed to appear in a partition. For example, to answer the question: how many can you
distribute seven indistinguishable balls in up to three identical boxes, we would give 3 as the second
argument to IntegerPartitions.
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In[143]= IntegerPartitions|[7, 3]
Out[143]= {({7y,{6,1},{(5,2},{5,1,1},{4,3},{4,2,1},{(3,3,1},{3,2,2}}

This second argument, which specifies the length of the partitions, can take on many of the usual forms:
n, as we saw, indicates the maximum length; {7} limits the output to those partitions of length exactly n,
and {n, m} produces the partitions from length n to m. In addition, the symbol A11 can be used to list
all of the partitions, just as if no second argument were given.

For example, the following produces the partitions of 7 whose lengths are between 3 and 5.
In[144]= IntegerPartitions[7, {3,5}]

Out[144]= {{5,1,1},1{4,2,1},{4,1,1,1},{3,3,1},1{3,2,2},
{3,2,1,1},1{3,1,1,1,1},{2,2,2,1},1{2,2,1,1,1}}

IntegerPartitions also accepts a third optional argument to control what values may appear in the
partitions. Note that in order to use the this option, the second argument, specifying the length, must be
given. To allow unrestricted lengths, you should give A11 as the second argument. The third argument
has only one form: a list of the allowable values.

For example, to partition 15 using only 2, 3, and 4, you would enter the following.
In[145]:= IntegerPartitions[15,A11, {2,3,4}]

Out[145]= {{414/413}1{414131212}1
{4,3,3,3,2},1{4,3,2,2,2,2},1{3,3,3,3,3},
{3,3,3,2,2,2},{3,2,2,2,2,2,2}}
If you provide a positive integer in the third argument, it is interpreted as requesting the partitions with
that as the maximum allowable value. For example, to answer the question: how many ways are there to

distribute seven indistinguishable balls in up to five identical boxes when each box can hold at most four
objects, you would give 4 as the third argument.

In[146]:= IntegerPartitions|[7,5, 4]
Out[146]= {{4,3},1{4,2,1},4{4,1,1,1},1{3,3,1},1{3,2,2},
{3,2,1,1},{3,1,1,1,1},{2,2,2,1},4{2,2,1,1,1}}
To determine the number, without outputting the list, simply apply Length.
In[147]:= Length[IntegerPartitions|[7,5,4]]
Oout[147]= 9

Note that these optional arguments are not available for PartitionsP.

Equivalence of Maximum Length and Maximum Value
The partitions of n with at most k objects in a box are in one-to-one correspondence with the partitions of
n into at most k boxes. To understand why, consider the partition {3,2,2, 1}.

Think about placing the 8 objects in boxes according to the partition {3,2,2,1}. (The diagram
shown below is a Ferrers diagram. A version of this diagram can be created with the function
FerrersDiagram in the Combinatorica package.)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.


http://reference.wolfram.com/language/ref/All
http://reference.wolfram.com/language/ref/IntegerPartitions
http://reference.wolfram.com/language/ref/All
http://reference.wolfram.com/language/ref/Length
http://reference.wolfram.com/language/ref/PartitionsP
http://reference.wolfram.com/language/ref/FerrersDiagram

302

X
X
X

Instead of thinking about the columns as the boxes, we can instead consider the rows as boxes.

XXXX
XXX
X

Now, the eight objects are contained in three boxes. One box (the top row) has four objects, another (the
middle row) has three objects, and the last box (the bottom row) has one object. In other words, we have
partitioned 8 as {4, 3, 1}. This partition is said to be the transpose of the first. (Note that you can also think
about forming the transpose by reflecting it across its diagonal.)

XX
XX

The Combinatorica function TransposePartition will compute the transpose of a given partition.
In[148]:= TransposePartition[{3,2,2,1}]
Oout[148]= {4,3,1}

We began with a partition whose maximum entry was 3 and found that its transpose was a partition into
3 boxes. It is always the case that the transpose of a partition with maximum 7 is a partition into n boxes.
Moreover, this correspondence is one-to-one. We leave it to the reader to prove these facts.

Generating Partitions

Here, we will describe how to generate partitions and use this description to generalize the Wolfram Lan-
guage function PartitionsP with a second argument limiting the maximum number in the partition.

We will describe how to recursively form the partitions of n objects when each box can hold at most &
objects. The basis cases are: when k = 1, there is only one partition of n, the partition consisting of n 1s;
when n = 0, there is only one partition, the empty partition { }.

To determine the partitions of » when each box can hold at most k objects, withn > Oand k > 1, proceed as
follows. First, determine all partitions of n when each box can hold at most k — 1 objects. These partitions
are also partitions of n satisfying the requirement that each box holds at most k objects.

Second, provided thatn — k > 0, determine all partitions of n — k when each box can hold at most k objects,
and prepend k to each partition. For example, with n = 7 and k = 3, we have n — k = 4 and the partitions
of 4 with each box holding at most 3 are:

In[149]:= IntegerPartitions[4,All,Range[3]]
Out[149]= {{3,1},1{2,2%},{2,1,1},{1,1,1,1}}

By prepending 3 to each of these partitions, we obtain
{3,3,1},{3,2,2},{3,2, 1,1}, {3, 1,1, 1, 1},

which are each partitions of 7 with each box having at most 3 objects.

Combining the partitions of n with each box holding at most kK — 1 objects with the partitions of n formed
by appending k to the partitions of n — k with each box holding at most k objects produces all partitions
of n with each box holding at most k objects. Setting k = n produces all partitions of n.

It is an exercise to implement this algorithm to generate partitions.
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We can use the above to generalize PartitionsP. We will define a function myPartitionsP. This
function will be defined recursively. The basis cases are when k = 1 or n = 0, there is one partition.

I[1501]:= myPartitionsP[_,1]:=1;
myPartitionsP[0,_]:=1

Forn < 0 or k < 1, there are no partitions.
In[152]:= myPartitionsP[n ,k ]1/;n<0]|k<1:=0
Provided that n > 0 and k > 1, the discussion above leads us to the following recursive definition.

In[153]:= myPartitionsP[n Integer, k Integer]/;n>0&&k>1:=
myPartitionsP[n, k—-1] +myPartitionsP [n-k, k]

We see that the value of this function coincides with the number of partitions produced by
IntegerPartitions.

In[154]:= Length[IntegerPartitions[20,5]]
out[154]= 192
In[155]:= myPartitionsP[20, 5]
Out[155]= 192
We can easily extend our function to compute all partitions of an integer n, as follows.
In[156]:= myPartitionsP[n ] :=myPartitionsP[n,6n]
Note that the results agree with the built-in function.
IN[157]:= myPartitionsP[15]
out[157]= 176
In[158]:= PartitionsP[15]

Out[158]= 176

6.6 Generating Permutations and Combinations

In this section, we will implement Algorithm 1 from Section 6.6 of the text for generating the next per-
mutation in lexicographic order. Implementing Algorithms 2 and 3 will be left as exercises for the reader.

interchange

Before implementing Algorithm 1, we will first write a function to interchange two elements in a list. This
will be called by the function for generating permutations.

The interchange function will require three parameters: the list and two integers representing the
indices to be swapped.

The function operates as follows. A copy of the list is made. The element in the list at the first position to
be swapped is assigned to a local variable. Then, the first position is assigned to the value in the second
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position. Finally, the second position is assigned to the value stored in the temporary name and the list is
returned.

Here is the implementation and an example of applying it.

IN[159]:= interchange[L List,i Integer, j Integer]/;
0<ifLength[L] &&0<j<Length[L] :=
Module[ {1=L, temp},
temp=1[[i]];
100411=1[[311;
1[[j]]1=temp;

1
1
IN[160]:= interchange [ { ngn , " , nan , ngn , nan , nEn } , 2 , 5]
Out[160]= {a,e,c,d,b, £}
nextPermutation
The input to the function will be a permutation {a;, a,, ... ,a,} of the set {1,2,...,n}. Algorithm 1 con-

sists of three steps: finding the largest j such that a; < a;,,; finding the smallest a, to the right of a; and
interchanging a; and a;; and putting the elements in positions j + 1 and beyond in increasing order.

The first step comprises the first four lines of the body of Algorithm 1 in the text, ending with the first
comment. The index j is initialized to the next to last index in the permutation. A Whi le loop is used
to conduct the search. The body of the loop decreases the value of j by one, and it is controlled by the
condition g; > a;,;. When the Wh1i 1e loop terminates, it will be the case that a; < a;,, and j is the largest
index for which that is true. Consequently, a;,; > @;1, > -+ - > a,.

The second step is to find the smallest g, to the right of and larger than a; and interchange the two. Since
we are guaranteed that the elements to the right of g; are in increasing order, g, is the smallest element to
the right of a;, a,,_, is the next smallest, and so on. We are again searching from the right. Initialize k to n.
A While loop is used to decrease k by one so long as a; > a;. When the Whi le loop terminates, k will
be such that a; < a,. Note that the loop is guaranteed to stop with k > j since a; < a;;,. Once j has been
identified, we interchange a; and a, using the interchange function.

The third step is to put the elements of the permutation to the right of position j in increasing order. Note
that before the interchange, a;,, through a, were in decreasing order. After the interchange of a; with a,,
the tail end of the permutation remains in decreasing order. This is because a; was smaller than q,, but

a;, was the smallest of the entries bigger than a;. Thus, all of a4, ..., a, are smaller than g;, and all of
iy, ... > ay_y are larger than g, which is larger than a;. Therefore,
Clj+1, ,Clk_l,aj,ak_H, e ay

is in decreasing order.

To put the tail in increasing order, we follow the instructions in the pseudocode in the textbook that follows
the interchange of a; and a,. Variables r and s are initialized to n and j + 1, respectively. Provided that r
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remains larger than s, we interchange a, and a, and then decrease r by 1 and increase s by 1. This has the
effect of swapping a;,, with a,, then a;,, with q,_,, then a;,5 with a,,_,, etc.

Once the tail is in increasing order, the result is the new permutation and it is returned.

We need to add to the function two tests to ensure that the input is valid. First, asa Condition (/;)to
the function definition, we ensure that the input is a permutation of {1,2,...,n}. We do this by sorting

the input, using the Sort function, and comparing it with the result of applying Range to the Length
of the input list. Second, as the first expression in the function, we check to see if the input is the list

{n,n—1,...,2,1}, which is the final permutation in the canonical order. The Rever se function, applied
to a list, simply reverses the order of the list. This is used in conjunction with Range to produce the list
{n,n—1,...,2,1}, whichis compared to the input. If they agree, Ret urn is used to terminate the function

and cause the output to be Nul1.

Here is the implementation.

In[161]:= nextPermutation[A List]/;Sort[A]l==Range[Length[A]]:=
Module[ {a=A, n=Length[A4],1i, j,k, r, s},
If [a==Reverse[Range[n]], Return[Null]];

j=n-1;

While[a[[jl]l>a[[J+1]],
Jj=3-1

1;

k=n;

While[a[[]j]]>al[k]],
k=k-1

1;

a=interchange|a, j, k];

r=n,;

s=j+1;

While[r>s,
a=interchangel[a, r,s];
r=r-1;
s=s+1

1;

a

1

Example 2 of Section 6.6 finds that the permutation after 362541 is 364125. We use that example to
confirm that our function is working.

In[162]:= nextPermutation[{3,6,2,5,4,1}]

out[162]= {3,06,4,1,2,5}
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To generate all permutations of a set {1,2,...,n}, we use a While loop.

I[163]:= aperm=Range[4];
While[aperm=!=Null,
Print [aperm];
aperm=nextPermutation[aperm]

]

{1,2,3,4}
{1,2,4,3}
{1,3,2,4}
{1,3,4,2}
{1,4,2,3}
{1,4,3,2}
{2,1,3,4}
{2,1,4,3}
{2,3,1,4}
{(2,3,4,1}
{2,4,1,3}
{2,4,3,1}
{3,1,2,4}
{3,1,4,2}
{3,2,1,4}
{3,2,4,1}
{3,4,1,2}
{3,4,2,1}
{4,1,2,3}
{4,1,3,2}
{4,2,1,3}
{4,2,3,1}
{4,3,1,2}
{4,3,2,1}
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Finding Permutations of Other Sets

As mentioned in the text, any set with n elements can be put in one-to-one correspondence with
{1,2,...,n}. Consequently, any permutation of a set with n elements can be obtained from a permutation
of {1,2,...,n} and the correspondence.

In Mathematica, applying a permutation, represented as an arrangement of {1,2,...,n}, to a list is par-
ticularly easy. The Part ([ [...]]) operator can be applied to a list of integers and will return the list
ordered by the argument. For example, consider the set {a, b, c} and the permutation {3, 1,2}. To arrange
{a, b, c} by the permutation, you simply apply the Part ([ [...]]) operator to {a,b,c} with argument
{3,1,2}.

In[165]:= {"a","b","c"}[[{3,1,2}]]
Out[165]= {c,a, b}
As another example, consider the set {2, 10, 13, 19} and the permutation {4, 2, 3, 1}. Then, the following
expression applies the permutation to the set.
In[166]:= {2,10,13,19}[[{4,2,3,1}]]
out[166]= {19,10,13, 2}

Note that the braces inside the Part ([ [ ... ] ]) operator are required. Without them, Mathematica will
interpret it as representing nested levels rather than a rearrangement.

A Function to Permute a General List

We can use the nextPermutation function and the above information about the Part ([[...]11])
operator to write a function that outputs all permutations of any list.

The input to the function will be the list to be permuted. The bulk of the function will be contained in a
Reap, with Sow applied to each permutation. Otherwise, the function will mirror the While loop above
that was used to list the permutations of {1,2,3,4}. The main difference is that, rather than just printing

those permutations, they are used as the argument to the Part ([ [ ... ] ]) operator to permute the given
list.
IN[167]:= permutelist[L List]:=Module[{perm},
perm=Range [Length[L]];
Reap|

While[perm=!=Null,
Sow[L[[perm]]];
perm=nextPermutation[perm]

]
102,111
]

Below, we list all the permutations of the set {a, b, c}.
In[168]:= permutelist[{"a", "b","c"}]

Out[168]= {{a,b,c}, {a,c, b}, {b,a,c}, {b,c,a},{c,a,b}, {c,b,a}}
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Solutions to Computer Projects and Computations
and Explorations

Computer Projects 10

Given positive integers n and r, list all the r-combinations, with repetition allowed, of the set
{1,2,3,...,n}.

Solution: In Section 6.5 of this manual, we showed that the Subset s function could be used to generate
combinations with repetition by repeating the elements in the list given as the first argument to Subsets.
To generate the 2-combinations of {1,2,3}, for example, we apply the Subsets function to the list

consisting of {1,2,3}, each repeated twice. Note that the number of repetitions must be the same as r in
order to choose r all of the same object.

In[169]:= DeleteDuplicates|
Subsets[Join@@Table[ConstantArray[i, 2], {i,{1,2,3}}]1,{2}]
1

oupes=  {{1,1},{1,2},{1,3},{2,2},{2,3},{3,3}}

Refer back to Section 6.5, in the subsection titled “Combinations with Repetition” for information about
the use of DeleteDuplicates, Join, Table, and ConstantArray in this application.

We now write a function that accepts n and r as input and produces all r-combinations with repetition
allowed.

In[170]:= subsetsRepetition[n Integer, r Integer]/;n>0&&r>0:=
Module[{L, i},
L=Range[n];
DeleteDuplicates|
Subsets[Join@@Table[ConstantArray[i, r], {i,L}], {r}]

1
1
We can obtain all of the 3-combinations of {1,2,3,4,5} by
In[171):= subsetsRepetition[5, 3]
out[171= {{1,1,1%},{1,1,2},{1,1,3},1{1,1,4},{1,1,5},

{1,2,2}y,1{1,2,3},{1,2,4},1{1,2,5},1{1,3,3},
{1,3,4},{1,3,5},{1,4,4},1{1,4,5},{1,5,5},
{2,2,2}y,1{2,2,3},1{2,2,4},1{2,2,5},1{2,3,3},
{2,3,4}y,1{2,3,5},1{2,4,4},1{2,4,5},1{2,5,5},
{3,3,3y,1{3,3,4},{3,3,5},{3,4,4},1{3,4,5},
{3,5,5},1{4,4,4},{4,4,5},{4,5,5},{5,5,51}}

Computations and Explorations 1

Find the number of possible outcomes in a two-team playoff when the winner is the first team to win 5
out of 9, 6 out of 11, 7 out of 13, and 8 out of 15.
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Solution: We will designate the two teams as 1 and 2 and model a playoff as a list of 1s and 2s. For
example, {1,2,2,1,1,1,2,1} is a playoff in which team 1 wins the first game, team 2 wins games 2 and
3, team 1 wins games 4, 5, and 6, team 2 wins game 7, and them team 1 wins game 8. If the winner is the
first team to win 5 out of 9 games, then team 1 has won the tournament after 8 games.

We will write a function to produce all of the possible outcomes in a playoff where the winner is the first
team to win n out of 2n — 1 games.

First, we will create a small function that will determine, given a list of the outcomes of individual games
and the number of games needed to win, whether a team has won the playoff or not. The function will
return true if one of the teams has won or false if neither team has reached the threshold for winning.

The function counts the 1s and 2s in the list. If either number is equal to n, it returns true. We will use
the Wolfram Language Count function to determine the number of 1s and 2s in the list. Count requires
two arguments, an expression and a pattern. It returns the number of times the pattern appears in the
expression. In this case, the expression will be the list representing the playoff and the pattern will be
alternately 1 and 2.

In[172]:= playoffWonQ[L List,n Integer]:=
Count[L,1l]==n| |Count[L,2]==n

For instance, in our example {1,2,2,1,1, 1,2, 1}, the function recognizes that the playoff has been won.
In[173]:= playoffWonQ[{1,2,2,1,1,1,2,1},5]
Out[173= True

We will construct the possible outcomes as follows. Begin with a list out comes and a list S. Initialize
outcomes to the empty list and S to the list {{1}, {2}}.

Consider the first element of S, say p. Remove p from the list. Then, construct the two lists formed by
adding 1 and 2, respectively, to p. For each of these, use playof fiWon to determine whether or not they
are outcomes. If so, they are added to the out comes list, and if not, they are added to the end of S. When
S is empty, then out comes consists of all possible outcomes of the playoff.

Here is the function.

In[174]:= allPlayoffs[n Integer]:=
Module|[ {outcomes={},S={{1}, {2}},p,pPl,pP2},
While[S#({},
p=S[[1]];
S=Delete[S,1];
pl=Append[p,1];
p2=Append[p, 2];
If[playoffWonQ[pl,n],AppendTo[outcomes, pl],
AppendTo([S,plll];
If[playoffWonQ[p2,n],AppendTo[outcomes, p2],
AppendTo[S,p2]1];
1;

outcomes
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We now apply this function to playoffs that are best 3 out of 5.
In[175]:= best3of5=allPlayoffs[3]

Out[175]= {({1,1,1}y,4{2,2,2},{(1,1,2,1},{1,2,1,1},
{1,2,2,2}y,{2,1,1,1},4{2,1,2,2},{2,2,1,2},
{1,1,2,2,1%,14{1,1,2,2,2},1{1,2,1,2,1},
{1,2,1,2,2%,4{1,2,2,1,1},1{1,2,2,1,2},
{2,1,1,2,1},4{2,1,1,2,2},4{2,1,2,1,1},
{2,1,2,1,2},{2,2,1,1,1},{2,2,1,1,2}}

In[176]:= Length[best30£f5]

Oout[176]= 20

The reader is left to apply the function to the cases called for in the problem and to conjecture a general
formula.

Computations and Explorations 3

Verify that C(2n, n) is divisible by the square of a prime, when n # 1, 2, or 4, for as many positive integers
n as you can. [That C(2n, n) is divisible by the square of a prime with n # 1, 2, or 4 was proved in 1996 by
Andrew Granville and Olivier Ramaré, setting a conjecture made in 1980 by Paul Erd6s and Ron Graham. ]

Solution: We will first consider one example to see exactly what we need to do. Then, we will write a
general function. Consider n = 3, the smallest n for which the theorem is true.

First, compute C(2n, n) for n = 3.
In[177]:= c3=Binomiall[6, 3]
Oout[177]= 20
To determine whether or not C(2n, n) is divisible by the square of a prime, we could look at its prime

factorization. If any of the exponents in the prime factorization are 2 or greater, then we know the number
is divisible by the square of the corresponding prime.

We can use the function FactorInteger (first discussed in Section 4.3 of this manual). The
FactorInteger function requires one argument, an integer. Its output is a list of the form
{{pi,ei} . {pr.er}s....{Pm-€n}}, Where p,p,,...,p,, are the primes in the prime factorization and the
e, e, ...,e, are the corresponding exponents.

Apply FactorInteger to C(6,3).
In[178]:= FactorInteger|[c3]
Out[178]= {{2,2},{5,1}}

The result tells us that C(6,3) = 2% - 5.

We are interested in the exponents of the primes. To extract the second element of each pair, we can apply
the Part ([ [...]]) operator with the part specification A11, 2.
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In[179]:= FactorInteger[c3][[All, 2]]
Out[179]= {2,1}

Given the list of exponents, determining whether or not C(6, 3) is divisible by the square of a prime just
amounts to checking whether the list contains a value greater than 1.

As is so often the case, the Wolfram Language provides a shortcut. The function SquareFree, applied
to an integer, outputs True if the integer is not divisible by the square of a number and it returns False
if the integer is divisible by a square.

For the example C(6,3), SquareFree will output False since 20 is divisible by 22.
In[180]:= SquareFreeQ[c3]
Out[180]= False

Note that SquareFreeQ returns False when the assertion is verified and True when the assertion
fails, such as for n = 4.

In[181]:= SquareFreeQ[Binomial[8,4]]
Out[181= True

The problem was to verify the conjecture “for as many positive integers n as you can.” We will use the
TimeConstrained function to run the test for a specified amount of time. The second argument of
TimeConstrained is an amount of time, in seconds, that bounds the time that Mathematica will spend
executing the first argument. For the first argument, we will use an infinite loop that will display values
of n for which the statement is found to be false. TimeConstrained takes an optional third argument
that is evaluated if the allotted time expires. We will use this argument to display the maximum value of
n for which the statement was checked. Note that this maximum » must be one less than the index used in
the loop.

In[182]:= TimeConstrained]|
n=1;
While[True,
If[SquareFreeQ[Binomial[2*n,n]],

Print ["Found counterexample: ",nl];
n++
1,
1,
Print ["Checked through n=",6n-1]

1

Found counterexample: 1
Found counterexample: 2
Found counterexample: 4

Checked through n=11026
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Exercises

1.

10.

11.

Build a recursive version of subsetSumCount, using the ideas of findBitStrings. Your
function should determine all subsets of a given set whose sum is less than a target value. Rather
than considering all sets, it should build potential sets recursively using the fact that once a set
has sum larger than the target no larger set of positive integers can have smaller sum. Compare
the performance of your procedure with subset SumCount.

Create a function f indDecreasing by modifying findIncreasing in order to determine
a strictly decreasing subsequence of maximal length.

. Modify the Patience algorithm to find all of the strictly increasing subsequences of maximal

length.

Use Mathematica to find an example demonstrating that n positive integers not exceeding 2n
are not sufficient to guarantee that one integer divides one of the others (see Example 11 of
Section 6.2).

The functions for comparing and generating circular permutations, CPEqual1Q and
circularPermutations, are inefficient. Using the idea that explains the formula for the
number of circular r-permutations of n people, write more efficient functions.

Use Mathematica to determine how many different strings can be made from the word
“PAPARAZZI” when all the letters are used, when any number of letters are used, when all the
letters are used and the string begins and ends with the letter “Z”, and when all the letters are
used and the three “A”s are consecutive.

Suppose that a certain Department of Mathematics and Statistics has m mathematics faculty and s
statistics faculty. Write a function in the Wolfram Language to find all committees with 2k
members in which mathematicians and statisticians are represented equally.

Use Mathematica to verify the identity

(7))

for positive integers n and k with k < n.

Use Mathematica to verify Pascal’s identity:

(=50 6)

for all positive integers n and k with k < n.

Use Mathematica to generate many rows of Pascal’s triangle. See if you can formulate any
conjectures involving identities satisfied by the binomial coefficients. Use Mathematica to help
you verify that your conjecture is true by using the techniques at the end of Section 6.4 of this
manual.

Write a function that mixes the techniques used in binomialF and binomialR to generate
the rows of Pascal’s triangle from row a to row b for b > a > 0.
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12.

13.

14.

15.

16.

17.
18.
19.

20.
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Use Mathematica to count and list all solutions to the equation
X1 +x2 +X3 +.X'4 =25

where x,, x,, x3, andx, are nonnegative integers. In addition, count and list all solutions such that
X > l,x2 > 2,X3 > 3, andX4 Z 4.

Generate a large triangle of Stirling numbers of the second kind and look for patterns that suggest
identities among the Stirling numbers. Also see if you can make any conjectures about the
relationship between Stirling numbers and the binomial coefficients.

Implement the algorithm described in the “Generating partitions” subsection of Section 6.5 of
this manual.

Write a function that generates all possible schedules for airplane pilots who must fly d days in a
month with m days with the restriction that they cannot work on consecutive days (see Exercise
22 in Section 6.5).

Write a function in the Wolfram Language that takes as input three positive integers n, k, and i,
and returns the ith multinomial, in lexicographic order, of the polynomial (x; + x, + - - - + x;) .
Write its inverse; that is, given a multinomial, the inverse should return its index (position) in the
sorted polynomial.

Implement Algorithm 2 of Section 6.6 for generating the next largest bit string.
Implement Algorithm 3 of Section 6.6 for generating the next r-combination.

Write a function in the Wolfram Language to compute the Cantor expansion of an integer. (See
the prelude to Exercise 14 of Section 6.6 of the text.)

Implement the algorithm for generating the set of all permutations of the first n integers using the
bijection from the collection of all permutations of the set {1,2,...,n} to the set {1,2,...,n!}
described prior to Exercise 14 of Section 6.6 of the textbook.
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