
8 Advanced Counting Techniques

Introduction
In this chapter, we will describe how to apply Mathematica to three important topics in counting: recur-
rence relations, generating functions, and inclusion–exclusion. We begin by describing how Mathematica
can be used to solve recurrence relations, including the recurrence relations that describe the complexity
of divide-and-conquer algorithms. After studying recurrence relations, we show how to use Mathemat-
ica to manipulate generating functions and how these capabilities can help solve counting problems.
We conclude the chapter with a discussion of the principle of inclusion–exclusion.

8.1 Recurrence Relations
A recurrence relation describes a relationship between the members of a sequence and their predecessors.
For example, the famous Fibonacci sequence {fn} satisfies the recurrence relation

fn = fn−1 + fn−2

Together with the initial conditions f1 = 1 and f2 = 1, this relation is sufficient to define the entire sequence
{fn}.
To understand how to work with recurrence relations in Mathematica, we have to remember that a
sequence {an} is a function whose domain is a subset of the integers (usually the positive integers or
nonnegative integers, depending on the context) and whose codomain contains the terms of the sequence
(which can be numbers, matrices, circles, functions, etc.). (See the definition of sequence given in
Section 2.4 of the textbook.)

With this point of view, the sequence {an} is a function a and the nth term of the sequence is the value of
the function evaluated at the integer n, that is, an = a(n). This is only a change in notation, but it makes it
easier to see that a recurrence relation can be represented with the Wolfram Language as a function taking
integer arguments.

We can represent the Fibonacci sequence by the indexed variable and function below, which we use to
compute the first 20 terms of the Fibonacci sequence. The initial conditions are given as specific assign-
ments to an indexed variable, and the function that implements the recurrence relation stores computed
values by assigning them to the indexed variable.

In[1]:= fibonacci[1]=1;
fibonacci[2]=1;
fibonacci[n_Integer]:=
fibonacci[n]=fibonacci[n-1]+fibonacci[n-2];
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In[4]:= Table[fibonacci[n],{n,1,20}]

Out[4]= {1,1,2,3,5,8,13,21,34,55,89,144,
233,377,610,987,1597,2584,4181,6765}

Using indexed variables and functions like the one above is the approach we developed in Section 5.3 of
this manual to implement functions with recursive definitions. This is a useful general approach, but the
Wolfram Language has more specific, and more efficient, methods for working with recurrence relations.

The Wolfram Language functionRecurrenceTable is used to generate lists of the values of a sequence
defined by a recurrence relation. RecurrenceTable requires three arguments. The first argument must
be a list of equations specifying the recurrence relation and all initial conditions. Note that these must be
given as equations, using Equal (==). In addition, the equations should be in terms of indexed variables
such as fibonacci[n] or a[k-1], or b[0]. The second argument is the symbol used to name the
sequence in the equations, for example, fibonacci or a. The final argument is a range specification of
the same form as used in a Table. For example, {n,10,20} would be used to generate the list of the
values with n = 10 through n = 20 and {k,10} would generate the values up to k = 10.

To illustrate, the following generates the first 20 terms of the Fibonacci sequence.

In[5]:= RecurrenceTable[{a[n]==a[n-1]+a[n-2],
a[1]==1,a[2]==1},a,{n,20}]

Out[5]= {1,1,2,3,5,8,13,21,34,55,89,144,
233,377,610,987,1597,2584,4181,6765}

For some common sequences like the Fibonacci sequence, the Wolfram Language includes special func-
tions to compute these values. For example, the 15th Fibonacci number can be computed using the
Fibonacci function.

In[6]:= Fibonacci[15]

Out[6]= 610

The RecurrenceTable function is very flexible, able to handle a wide variety of recurrence rela-
tions. For example, consider the recurrence relation defined by an+1 = an

2 − n ⋅ an−1, with initial conditions
a0 = 1 and a1 = 1. The following expression computes a10. Note the use of the Last function to obtain
the last element of the sequence. This is equivalent to, but perhaps more expressive than, the Part spec-
ification [[-1]].

In[7]:= Last[RecurrenceTable[
{a[n+1]==a[n]^2-n*a[n-1],a[0]==1,a[1]==1},
a,{n,10}]]

Out[7]= 83095558751833088261963048239982609365670356

While RecurrenceTable is very general, sometimes a less-flexible function can be useful.
The LinearRecurrence function produces output similar to that of RecurrenceTable but
applies only to linear homogeneous recurrence relations (defined in Section 8.2 of the textbook).
LinearRecurrence applies for recurrence relations of the form

an = c1an−1 + c2an−2 + · · · + ckan−k
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with initial conditions a1, a2,… , ak. LinearRecurrence requires three arguments. The first argument
is the list of coefficients in the recurrence relation, i.e., {c1, c2,… , ck}. The second argument is the list of
initial conditions {a1, a2,… , ak}. Note that the two lists should generally be the same length. The final
argument is either a single integer to indicate the number of terms of the sequence to produce or a pair of
integers representing a range of indices.

By way of comparison, the following two expressions use RecurrenceTable and Linear-
Recurrence to compute the first 20 terms of the sequence defined by the recurrence relation
an = 2an−1 − 3an−2 + an−3, with initial values a1 = 1, a2 = 3, a3 = 5.

In[8]:= RecurrenceTable[{a[n]==2*a[n-1]-3*a[n-2]+a[n-3],
a[1]==1,a[2]==3,a[3]==5},a,{n,20}]

Out[8]= {1,3,5,2,-8,-17,-8,27,61,33,-90,-218,
-133,298,777,527,-979,-2762,-2060,3187}

In[9]:= LinearRecurrence[{2,-3,1},{1,3,5},20]

Out[9]= {1,3,5,2,-8,-17,-8,27,61,33,-90,-218,
-133,298,777,527,-979,-2762,-2060,3187}

Tower of Hanoi Problem
In Example 2 of Section 8.1 of the textbook, the author describes the famous “Tower of Hanoi” puzzle
and derives the recurrence relation

Hn = 2Hn−1 + 1, H1 = 1

where Hn represents the number of moves required to solve the puzzle for n disks. As discussed in the
textbook, this has the solution

Hn = 2n − 1.

Later in this manual, we will see how to use Mathematica to derive this result.

Rather than just computing the values, we can illustrate the solution to the Tower of Hanoi puzzle by writ-
ing functions in the Wolfram Language to compute the moves needed and to describe them. We will write
a small program consisting of three functions: the main program hanoi, a utility function printMove,
and transferDisk, which does most of the work.

The easiest part to write is the function printMove, which merely displays the move to make at a given
step.

In[10]:= printMove[src_String,dest_String]:=
Print["Move disk from peg ",src," to peg ",dest,"."]

The function Print combines all of its arguments and display them on a single line.

Next, we write the recursive function transferDisk, which does most of the work. This function mod-
els the idea of transferring a stack of ndisks disks from the source peg, which is given as the argument
src, to the destination peg, dest, via the intermediate peg, via. As is described in the textbook, in order
to move a stack of n disks, first move the top n − 1 pegs to the intermediate peg (using the destination as
the intermediary), then move the bottom disk to the destination, and then move the smaller stack from the
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intermediate peg to the destination. Unless, of course, there is only one disk, in which you just move that
disk to the destination. This is coded as follows:

In[11]:= transferDisk[src_String,via_String,dest_String,
ndisks_Integer]:=

If[ndisks==1,
printMove[src,dest],
transferDisk[src,dest,via,ndisks-1];
printMove[src,dest];
transferDisk[via,src,dest,ndisks-1]

]

Finally, we package the recursive procedure in a top-level function, hanoi, providing an interface to the
recursive engine.

In[12]:= hanoi[ndisks_Integer]/;ndisks>1:=
transferDisk["A","B","C",ndisks]

Our hanoi program can exhibit a specific solution to the Tower of Hanoi puzzle for any number of disks:

In[13]:= hanoi[2]

Move disk from peg A to peg B.

Move disk from peg A to peg C.

Move disk from peg B to peg C.

In[14]:= hanoi[3]

Move disk from peg A to peg C.

Move disk from peg A to peg B.

Move disk from peg C to peg B.

Move disk from peg A to peg C.

Move disk from peg B to peg A.

Move disk from peg B to peg C.

Move disk from peg A to peg C.

Try experimenting with different values of ndisk to get a feel for how large the problem becomes for
even moderately large numbers of disks.

Dynamic Programming
We conclude this section with an implementation of Algorithm 1 from Section 8.1 of the text. Recall that
the goal of this algorithm is to find the maximum number of attendees that can be achieved by a schedule
of talks.
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We will represent each talk as a list of three elements, with the start time being the first element, the end
time in the second position, and the weight, or attendance, will be last. Time of day will be represented by a
single number with whole part equal to the hour in the 24-hour system and with fractional part equal to the
part of an hour that corresponds to the number of minutes. For instance, 2:30 P.M. would be represented
as 14.5.

As an example, consider the following eight talks.

StartTime EndTime Attendance

9 ∶ 00AM 11 ∶ 00AM 17

9 ∶ 00AM 10 ∶ 30AM 15

10 ∶ 00AM 11 ∶ 30AM 22

10 ∶ 30AM 12 ∶ 00PM 11

11 ∶ 30AM 1 ∶ 30PM 18

12 ∶ 00PM 1 ∶ 00PM 12

1 ∶ 30PM 3 ∶ 00PM 21

2 ∶ 00PM 4 ∶ 00PM 17

We create the following list of lists to represent the talks.

In[15]:= talks={{9,11,17},{9,10.5,15},{10,11.5,22},
{10.5,12,11},{11.5,13.5,18},{12,13,12},
{13.5,15,21},{14,16,17}}

Out[15]= {{9,11,17},{9,10.5,15},{10,11.5,22},{10.5,12,11},
{11.5,13.5,18},{12,13,12},{13.5,15,21},{14,16,17}}

Recall the description of Algorithm 1 from the text. We summarize the general outline of the algorithm
below.

1. Sort the talks in order of increasing end time.

2. For each index j, compute p(j)—the maximum index i such that talk i is compatible with talk j.
3. For each index j, compute T(j), which is computed by the recurrence relation

T(j) = max
(
wj + T(p(j)),T(j − 1)

)
and with initial condition T(0) = 0.

4. The maximum total number of attendees is T(n), where n is the number of talks.

For step 1, we will make use of Sort with a custom ordering function. Sort can accept an optional
argument in the form of a pure function of two arguments. This function should return true if the first
argument precedes the second and false otherwise. Since we must sort the talks in increasing order of end
time (which is stored in position 2 in the lists representing the talks), we will use the following function
as the second argument to Sort. Recall that #1 and #2 indicate the inputs to the function and & is used
to terminate a pure Function.

#1[[2]]<#2[[2]]&

For step 2, we must compute p(j). To do this, we will create a function that accepts the sorted list of talks
and returns an indexed variable that represents the function p. Recall that the value of p(j) is the largest
index among talks compatible with the talk with index j, so we name the function compatible.

After declaring local variables, the function compatible will loop through all the indices, j, from 1 to
the number of talks in the list. We use a local variable, jstart, to store the start time of the current talk
being analyzed. We then consider all the talks earlier in the list beginning with the talk with index j − 1
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and working backwards to talk 1. For each talk, we check to see if it ends before talk j starts. When we
find such a talk, we set its index to the value of p(j) (since we are working backward, the first one found
is the talk with the largest index). If no compatible talk is found, then p(j) is set to 0. Here is the function.

In[16]:= compatible[talkList_]:=Module[{p,j,jstart,i},
For[j=1,j≤≤≤Length[talkList],j++,

jstart=talkList[[j]][[1]];
p[j]=Catch[

For[i=j-1,i≥≥≥1,i--,
If[talkList[[i]][[2]]≤≤≤jstart,

Throw[i]
]

];
Throw[0]

]
];
p

]

For step 3, we must compute T(j). To do this, we create a function that accepts as input the sorted
list of talks and the indexed variable representing the function p. Initialize T by setting its value
at 0 to 0. Then, consider each integer j from 1 to the number of talks and apply the formula:
T(j) = max

(
wj + T(p(j)),T(j − 1)

)
.

In[17]:= totalAttendance[talkList_,p_]:=Module[{j,T},
T[0]=0;
For[j=1,j≤≤≤Length[talkList],j++,

T[j]=Max[talkList[[j]][[3]]+T[p[j]],T[j-1]]
];
T

]

We can now put the pieces together as outlined at the start of this subsection.

In[18]:= maximumAttendance[talkList_List]:=Module[{L,p,T},
L=Sort[talkList,#1[[2]]<#2[[2]]&];
p=compatible[L];
T=totalAttendance[L,p];
T[Length[talkList]]

]

And thus, the maximum attendance for the talks described above is:

In[19]:= maximumAttendance[talks]

Out[19]= 61
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8.2 Solving Linear Recurrence Relations
The Wolfram Language has a very powerful recurrence solver, RSolve. Its use, however, can obscure
some of the important ideas that are involved. Therefore, we will first use some of the Wolfram Language’s
more fundamental facilities to solve certain kinds of recurrence relations one step at a time.

Given a recursively defined sequence {an}, we would like to find a formula, involving only the index n
(and, perhaps, other fixed constants and known functions) that does not depend on knowing the value of
any prior elements of the sequence.

Linear Homogeneous Recurrence Relations with Constant Coefficients
We will begin by considering recurrence relations that are linear, homogeneous, and which have constant
coefficients; that is, they have the form

an = c1an−1 + c2an−2 + · · · + ckan−k

where c1, c2,… , ck are real constants and ck is nonzero. Recall that the integer k is called the degree of
this recurrence relation. To have a unique solution, at least k initial conditions must be specified.

The general method for solving such a recurrence relation involves finding the roots of its characteristic
polynomial

rk − c1rk−1 − c2rk−2 − · · · − ck−1r − ck

When this polynomial has distinct roots, all solutions are linear combinations of the nth powers of these
roots. When there are repeated roots, the situation is a little more complicated, as we will see.

A First Example
Consider the linear homogeneous recurrence relation with constant coefficients of degree two

an = 2an−1 + 3an−2

subject to the initial conditions a1 = 4 and a2 = 2. Its characteristic equation is

r2 − 2r − 3 = 0

To solve the recurrence relation, we find the roots of the equation by applying the Solve function.

In[20]:= Solve[r^2-2r-3==0,r]

Out[20]= {{r→-1},{r→3}}

The Solve function computes the values of the variable r, given as the second argument, that satisfy the
equation in the first argument. Note that the output is a list of lists, within which are rules specifying the
solutions.

Now that Mathematica has determined that the solutions are r = −1 and r = 3, we can write down the
form of the solution to the recurrence as

an = 𝛼 ⋅ (−1)n + 𝛽 ⋅ 3n

where 𝛼 and 𝛽 are constants that we have yet to determine.
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Since the initial conditions are a1 = 4 and a2 = 2, our recurrence relation must satisfy the following pair
of equations. {

−𝛼 + 3𝛽 = 4

𝛼 + 9𝛽 = 2

To find the solution to this system of linear equations, we again use Solve:

In[21]:= Solve[{-alpha+3*beta==4,alpha+9 * beta==2},{alpha,beta}]

Out[21]= {{alpha→-
5
2
,beta→

1
2
}}

That the first argument is a list of equations indicates that they represent a system of equations to be solved
simultaneously. Likewise, the variables to be solved for form a list.

Now that we have the values for 𝛼 and 𝛽, we see that the complete solution to the recurrence relation is

an =
−5

2
(−1)n + 1

2
3n

This formula allows us to write a function for finding the terms of the sequence {an}, which can be more
efficient than a recursive approach.

In[22]:= aFormula[n_Integer]:=(-5/2)*(-1)^n+(1/2)*3^n

In[23]:= Table[aFormula[n],{n,1,10}]

Out[23]= {4,2,16,38,124,362,1096,3278,9844,29522}

A Second Example
We consider another example. We will solve the recurrence relation

an =
−5

3
an−1 +

2

3
an−2

with initial conditions a1 =
1

2
and a2 = 4.

To do this, we have Mathematica solve the characteristic equation of the recurrence relation, and then
solve the system of linear equations obtained from the roots of the characteristic equation and the initial
conditions. Note that this method works because this recurrence relation is linear, homogeneous, and has
constant coefficients.

In[24]:= charEqnRoots=Solve[r^2+(5/3)*r-(2/3)==0,r]

Out[24]= {{r→-2},{r→
1
3
}}

Note that we can transform the output from a list of lists of rules into a simple list of the solutions using
the ReplaceAll (/.) operator as shown below.

In[25]:= charRootsL=r/.charEqnRoots

Out[25]= {-2,
1
3
}
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When ReplaceAll is given a list of lists of rules as its right operand, its output is the list obtained by
applying the rules in each sublist in turn.

This allows us to solve for 𝛼 and 𝛽 by referencing the solutions to the characteristic equation, rather than
typing them.

In[26]:= Solve[
{alpha*charRootsL[[1]]+beta*charRootsL[[2]]==1/2,
alpha*charRootsL[[1]]^2+beta*charRootsL[[2]]^2==4},

{alpha,beta}]

Out[26]= {{alpha→
23
28

,beta→
45
7
}}

Thus, we see that the solution to the recurrence relation is

an =
23

28
(−2)n + 45

7

(
1

3

)n

The Fibonacci Sequence
We can derive an explicit formula for the Fibonacci sequence this way as well. The characteristic polyno-
mial for the Fibonacci sequence is

r2 − r − 1

We find the roots of the characteristic equation.

In[27]:= cEqnRoots=r/.Solve[r^2-r-1==0,r]

Out[27]= {
1
2

(1-
√
5),

1
2

(1+
√
5)}

Therefore, the formula for the nth Fibonacci number is of the form

In[28]:= Fn=alpha*cEqnRoots[[1]]^n+beta*cEqnRoots[[2]]^n

Out[28]= (
1
2

(1-
√
5))

n

alpha+(
1
2

(1+
√
5))

n

beta

We find the coefficients 𝛼 and 𝛽 in the formula by using the initial conditions.

In[29]:= alphas=
Solve[{alpha*cEqnRoots[[1]]+beta*cEqnRoots[[2]]==1,

alpha*cEqnRoots[[1]]^2+beta*cEqnRoots[[2]]^2==1},
{alpha,beta}]

Out[29]= {{alpha→-
1√
5
,beta→-

-5-
√
5

5 (1+
√
5)

}}
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We can use ReplaceAll (/.) to substitute the values for 𝛼 and 𝛽 into the formula Fn. Note that we
access the “first” element of alphas in order to not have a nested list.

In[30]:= Fn/.alphas[[1]]

Out[30]= -
(1

2
(1-

√
5))

n

√
5

-
1
5

2-n (-5-
√
5) (1+

√
5)

-1+n

In[31]:= Simplify[Fn/.alphas[[1]]]

Out[31]= -
2-n (5+

√
5) ((1-

√
5)

n
-(1+

√
5)

n
)

5 (1+
√
5)

If we are to use such a formula to repeatedly compute values, then we should define a function. You can
do this by retyping the formula or copy and paste it into a function definition. Alternatively, you can use
the expression as the function definition as shown below.

In[32]:= fibonacci2[n_]=Fn/.alphas[[1]]

Out[32]= -
(1

2
(1-

√
5))

n

√
5

-
1
5

2-n (-5-
√
5) (1+

√
5)

-1+n

Note that in this situation, it is important to use Set (=), not the usual SetDelayed (:=). This is so
that the right-hand side resolves into the expression before the function is defined.

Observe that Mathematica will not necessarily simplify values automatically.

In[33]:= fibonacci2[1]

Out[33]= -
1-

√
5

2
√
5
+
1
10

(5+
√
5)

However, applying the Simplify function will reduce the expression to the expected value.

In[34]:= fibonacci2[1]//Simplify

Out[34]= 1

A Solver
Now, we generalize what we have been doing and write a function in the Wolfram Language to solve a
degree two linear, homogeneous recurrence relation with constant coefficients, provided that the roots of
the characteristic polynomial are distinct. We will write a function recSol2Distinct that solves the
recurrence

an = c ⋅ an−1 + d ⋅ an−2

subject to the initial conditions a1 = u and a2 = v, and then returns a Function that can be used to
compute terms of the sequence.

For the moment, we assume that the characteristic polynomial r2 − c ⋅ r − d has two distinct roots. Later,
we will modify the function to relax that restriction. With the assumption that the roots of the characteristic
polynomial are distinct, all our function needs to do is to repeat the steps we did manually in the examples
above.
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In[35]:= recSol2Distinct[c_,d_,u_,v_]:=
Module[{CERoots,alphas,alpha,beta,f,r},

(* first solve the characteristic equation *)
CERoots=r/.Solve[r^2-c*r-d==0,r];
(* next solve using the initial conditions *)
alphas=

Solve[{alpha*CERoots[[1]]+beta*CERoots[[2]]==u,
alpha*CERoots[[1]]^2+beta*CERoots[[2]]^2==v},

{alpha,beta}][[1]];
(* finally substitute the results into the general form *)
Function[n,

alpha*CERoots[[1]]^n+beta*CERoots[[2]]^n/.alphas]
]

Observe that the final expression in the body of the Module is an application of Function. This means
that the result in recSol2Distinct will be a pure function. The first argument to Function is the
variable n, which is the variable representing the input to the function as opposed to the symbols used
internally to the Module.

To construct a function for computing the Fibonacci sequence, invoke the new function with c = d = 1
and u = v = 1. We assign the resulting Function to the symbol f and use it to compute the first 10
Fibonacci numbers.

In[36]:= f=recSol2Distinct[1,1,1,1];
Table[Simplify[f[n]],{n,1,10}]

Out[37]= {1,1,2,3,5,8,13,21,34,55}

We can apply f to a variable and simplify to see a closed-form formula for the Fibonacci numbers.

In[38]:= f[n]//Simplify

Out[38]= -
2-n (5+

√
5) ((1-

√
5)

n
-(1+

√
5)

n
)

5 (1+
√
5)

Evaluating the symbol fwithout an argument tells us very little about the recurrence relation, but provides
some information about how Function and Module work.

In[39]:= f

Out[39]= Function[n$,alpha$2158 CERoots$2158[[1]]n$+
beta$2158 CERoots$2158[[2]]n$/.alphas$2158]

The dollar signs indicate that the variables in the expression are localized to the Function and Module.
The numbers after the dollar signs ensure that the symbols being used are unique. If you use the variable
alphas in a different module, or even redefine f, the values will change. But those unique symbols store
the appropriate values, so that when you apply f to a value or variable, the substitution represented by
ReplaceAll (/.) and the computations are performed.
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A Recurrence with Repeated Roots
We will next create a function that can handle the case of repeated roots. First, though, we look at an
example of a recurrence relation whose characteristic polynomial has a double root. The recurrence
relation

an = 4an−1 − 4an−2

has characteristic equation

In[40]:= charEqn=r^2-4*r+4==0

Out[40]= 4-4 r+r2==0

Its roots are:

In[41]:= CERoots=r/.Solve[charEqn,r]

Out[41]= {2,2}

We can clearly see that in this case the root is repeated, but for Mathematica to recognize it, we need to
use the following test.

In[42]:= CERoots[[1]]==CERoots[[2]]

Out[42]= True

If we call the double root (2 in this case) r0, then the recurrence relation has the explicit solution

an = 𝛼 ⋅ rn
0
+ n ⋅ 𝛽 ⋅ rn

0

for all positive integers n, and for some constants 𝛼 and 𝛽. The initial conditions of a1 = 1 and a2 = 4
produce the system of equations {

𝛼 ⋅ 21 + 1 ⋅ 𝛽 ⋅ 21 = 1

𝛼 ⋅ 22 + 2 ⋅ 𝛽 ⋅ 22 = 4

As before, we solve this system for 𝛼 and 𝛽.

In[43]:= alphas2=
Solve[{alpha*CERoots[[1]]+beta*CERoots[[1]]==1,

alpha*CERoots[[1]]^2+2*beta*CERoots[[1]]^2==4},
{alpha,beta}][[1]]

Out[43]= {alpha→0,beta→
1
2
}

And finally, substitute these values into the general form an = 𝛼 ⋅ rn
0
+ n ⋅ 𝛽 ⋅ rn

0
.

In[44]:= alpha*CERoots[[1]]^n+n*beta*CERoots[[1]]^n/.alphas2

Out[44]= 2-1+n n
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A More General Recurrence Solver
The steps carried out above are quite general and we can write a function, recSolver2, which solves
a recurrence relation (degree two, linear, homogeneous, with constant coefficients) regardless of whether
the characteristic polynomial has distinct roots or not. The following function solves the recurrence

an = c ⋅ an−1 + d ⋅ an−2

with initial conditions a1 = u and a2 = v.

In[45]:= recSolver2[c_,d_,u_,v_]:=
Module[{CERoots,alphas,alpha,beta,r},

(* first solve the characteristic equation *)
CERoots=r/.Solve[r^2-c*r-d==0,r];
(* then test if the roots are the same *)
If[CERoots[[1]]==CERoots[[2]],

(* the roots are the same, follow the last example *)
alphas=

Solve[{alpha*CERoots[[1]]+beta*CERoots[[1]]==u,
alpha*CERoots[[1]]^2+2*beta*CERoots[[1]]^2==v},
{alpha,beta}][[1]];

Return[Function[n,
alpha*CERoots[[1]]^n+n*beta*CERoots[[1]]^n/.

alphas]],
(* otherwise, use the recSol2Distinct method *)
alphas=

Solve[{alpha*CERoots[[1]]+beta*CERoots[[2]]==u,
alpha*CERoots[[1]]^2+beta*CERoots[[2]]^2==v},
{alpha,beta}][[1]];

Return[Function[n,
alpha*CERoots[[1]]^n+beta*CERoots[[2]]^n/.

alphas]]
]

]

The recSolver2 function first tests for a repeated root and then does the appropriate computation.
We test this function on the examples we did by hand, such as the Fibonacci sequence:

In[46]:= recSolver2[1,1,1,1][n]

Out[46]= -
(1

2
(1-

√
5))

n

√
5

-
1
5
×2-n (-5-

√
5) (1+

√
5)

-1+n

For the example with a double root:

In[47]:= recSolver2[4,-4,1,4][n]

Out[47]= 2-1+n n
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In both of those examples, the result is consistent with what we had obtained before. We will now use the
solver to find the first 10 terms of the sequence defined by the following recurrence relation and initial
conditions.

an = 4an−1 − 3an−2, a1 = 1, and a2 = 2

We define g to be the solution, but suppress the output with a semicolon, since we know the output of the
assignment will just show the form of the pure function definition in terms of the local variables.

In[48]:= g=recSolver2[4,-3,1,2];

In[49]:= Table[Simplify[g[n]],{n,1,10}]

Out[49]= {1,2,5,14,41,122,365,1094,3281,9842}

As another example, consider the following recurrence relation

an = −an−1 − an−2

with initial conditions a1 = 1 and a2 = 2.

In[50]:= h=recSolver2[-1,-1,1,2];
h[n]

Out[51]=
(-1)1+

2 n
3 (2+(-1)1/3)

1+(-1)1/3
-
(-(-1)1/3)

n
(1+2 (-1)1/3)

1+(-1)1/3

Notice that the solution to this recurrence is very complicated and requires the use of cube roots of −1.
However, if we compute the first 10 terms, we notice a very simple pattern emerges.

In[52]:= Table[Simplify[h[n]],{n,1,10}]

Out[52]= {1,2,-3,1,2,-3,1,2,-3,1}

Mathematica can make this pattern more explicit if we replace the numerical initial conditions with sym-
bolic constants.

In[53]:= k=recSolver2[-1,-1,𝜆𝜆𝜆,𝜇𝜇𝜇];
k[n]

Out[54]=
(-1)1+

2 n
3 ((-1)1/3 𝜆+𝜇)

1+(-1)1/3
-
(-(-1)1/3)

n
(𝜆+(-1)1/3 𝜇)

1+(-1)1/3

In[55]:= Table[Simplify[k[n]],{n,1,10}]

Out[55]= {𝜆,𝜇,-𝜆-𝜇,𝜆,𝜇,-𝜆-𝜇,𝜆,𝜇,-𝜆-𝜇,𝜆}

Note that the Greek letters are entered by pressing ESC , then typing the name of the letter, and pressing

ESC again, for example, ESC lambda ESC produces 𝜆.

Nonhomogeneous Recurrence Relations
So far, we have restricted our attention to homogeneous linear recurrence relations with constant
coefficients. However, the techniques used in solving them may be extended to provide solutions to
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nonhomogeneous linear recurrence relations with constant coefficients. That is, recurrence relations of
the form

an = c1an−1 + c2an−2 + · · · + ckan−k + F(n)

with c1, c2,… , ck real numbers and F(n) a function depending only on n. To solve this more general form
of a recurrence relation, we do two things: (1) find the solutions of the associated homogeneous recurrence
relation (the relation obtained by removing F(n)) and (2) find a particular solution for the nonhomogeneous
equation.

Consider the following example:
an = 6an−1 − 9an−2 + n ⋅ 3n

from Example 12 of Section 8.2 in the text.

The first step is to find the solutions to the associated homogeneous recurrence relation

an = 6an−1 − 9an−2

To do this, we can use our recSolver2. We will use 𝛼 and 𝛽 for the initial conditions so that we get all
the solutions.

In[56]:= hSolution=recSolver2[6,-9,𝛼𝛼𝛼,𝛽𝛽𝛽];
hSolution[n]

Out[57]= 3-2+n (6 𝛼-𝛽)+3-2+n n (-3 𝛼+𝛽)

The second step is to find a particular solution. Theorem 6 in Section 8.2 of the textbook tells us how
to find the form of the particular solution. Note that F(n) = n ⋅ 3n and 3 is a root of the characteristic
polynomial with multiplicity 2 (you can verify this by solving the characteristic equation of the associated
homogeneous relation; it is also made apparent by the form of hSolution). Thus, the theorem tells us
that there is a particular solution of the form

n2(p ⋅ n + q)3n

We will define a function for the form of this particular solution.

In[58]:= pForm[n_]=n^2*(p*n+q)*3^n

Out[58]= 3n n2 (n p+q)

To find a particular solution, we need to find the values of p and q. To find these values, we substitute the
terms of pForm into the recurrence relation. This gives us an equation in terms of p and q (and n).

In[59]:= pEqn=pForm[n]==6*pForm[n-1]-9*pForm[n-2]+n*3^n

Out[59]= 3n n2 (n p+q)==
3n n-3n (-2+n)2 ((-2+n) p+q)+2 3n (-1+n)2 ((-1+n) p+q)

We simplify the equation with Simplify.

In[60]:= pEqn=Simplify[pEqn]

Out[60]= 3n (-6 p+n (-1+6 p)+2 q)==0
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Next, we will have Mathematica solve that equation for p and q. In order to indicate that we want Math-
ematica to find values of p and q that satisfy the equation for all values of n, we will ask Mathematica to
solve

(∀n)3n(−6p + n(−1 + 6p) + 2q) = 0

We encode this using the ForAll expression, with first argument n, indicating that n is the variable being
quantified, and with second argument the equation. This expression will be the first argument to Solve.
The second argument will be {p,q}, indicating that those are the variables we wish to solve for.

In[61]:= pVals=Solve[ForAll[n,pEqn],{p,q}]

Out[61]= {{p→
1
6
,q→

1
2
}}

Thus, the particular solution is:

In[62]:= pForm[n]/.pVals[[1]]

Out[62]= 3n (
1
2
+
n
6
) n2

Putting it all together, we see that all solutions to the recurrence relation an = 6an−1 − 9an−2 + n ⋅ 3n are
of the form:

In[63]:= hSolution[n]+(pForm[n]/.pVals[[1]])

Out[63]= 3n (
1
2
+
n
6
) n2+3-2+n (6 𝛼-𝛽)+3-2+n n (-3 𝛼+𝛽)

where 𝛼 and 𝛽 are the initial conditions.

Mathematica’s Recurrence Solver
Now that we have seen how to use Mathematica to implement an algorithm to solve simple recurrence
relations, it is time to introduce the Wolfram Language built-in function for solving recurrence relations.

We have already seen the Wolfram Language function Solve for working with polynomial equations and
systems of equations. Similarly, there is a function RSolve, which is engineered for dealing with recur-
rence relations. It is a much more sophisticated version of our recSolver2 function and can deal with
recurrence relations of arbitrary degree, repeated roots, and nonlinear recurrence relations. The syntax
of RSolve is very similar to that of RecurrenceTable. The first argument is an equation or list of
equations representing the recurrence relation and any initial conditions in terms of symbols of the form
a[n+1], a[n], a[n-1], etc. The second argument is of one of two forms: a or a[n], where a is the
symbol used in the first argument to name the sequence. The form of the output depends on which of these
is used. The final argument is the symbol used in the first argument to represent the index of the sequence,
for example, n.

For example, to solve the recurrence relation an = an−1 + 2 ⋅ an−2 with initial conditions a1 = a2 = 1, you
can enter the following.

In[64]:= solveOutput=
RSolve[{a[n]==a[n-1]+2*a[n-2],a[1]==a[2]==1},

a[n],n]

Out[64]= {{a[n]→
1
3

((-1)1+n+2n)}}
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Note that the structure of the solution is similar to that given by Solve: a list of lists of rules. If there
were multiple solutions, each solution would appear as a separate sublist.

In the example above, we gave the second argument in the form a[n]. This resulted in a rule for a[n].
The expression on the right side of the rule can be extracted by applying ReplaceAll (/.) to the
expression a[n].

In[65]:= a[n]/.First[solveOutput]

Out[65]=
1
3

((-1)1+n+2n)

Let’s break that down a bit. The First function simply takes the first element of the solveOutput
list, which is the list containing the rule. That is, the above is the same as

a[n]/.{a[n]→1
3
(-(-1n+2n)}

This uses ReplaceAll (/.) on the expression a[n] by applying the rule that substitutes the expression
for the symbol a[n]. In other words, the above evaluates to the expression

1

3
(−(−1)n + 2n).

If we give the second argument in the form a instead of a[n], the output will have the same structure,
a list of lists of rules, but the rules will relate the symbol a to a pure Function (&) rather than an
expression.

In[66]:= solveOutput2=
RSolve[{a[n]==a[n-1]+2*a[n-2],a[1]==a[2]==1},a,n]

Out[66]= {{a→Function[{n},
1
3

((-1)1+n+2n)]}}

This output is more difficult to read, but it makes it easier to transform the output of RSolve into a
function that we can use to compute values. To assign the symbol F to the function that calculates values
of this sequence, we just have to assign F to the pure function, which we can extract just as we did above.

In[67]:= F=a/.First[solveOutput2]

Out[67]= Function[{n},
1
3

((-1)1+n+2n)]

Now, F can be used to compute values.

In[68]:= F[42]

Out[68]= 1466015503701

In[69]:= Table[F[n],{n,1,10}]

Out[69]= {1,1,3,5,11,21,43,85,171,341}

Observe that these agree with the values obtained with RecurrenceTable.

In[70]:= RecurrenceTable[{a[n]==a[n-1]+2*a[n-2],
a[1]==a[2]==1},a,{n,1,10}]

Out[70]= {1,1,3,5,11,21,43,85,171,341}
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The RSolve function will let us solve nonhomogeneous recurrence relations like the Tower of Hanoi
problem very easily. Recall that the Tower of Hanoi problem has the recurrence relation

Hn = 2 ⋅ Hn−1 + 1

with initial condition H1 = 1.

In[71]:= Clear[H];
H=H/.First[RSolve[{H[n]==2*H[n-1]+1,H[1]==1},H,n]]

Out[72]= Function[{n},-1+2n]

Observe that in the above we used H for both the name of the sequence and the symbol representing the
resulting Function. While this is natural, it carries the caveat that it can only be executed once, because
H now has a value and thus cannot be used within RSolve. Hence, it is a good idea to Clear the symbol
before making the assignment.

It is not necessary to specify the initial conditions for a recurrence relation when applying RSolve. If
they are not present, Mathematica will still solve the equation, inserting symbolic constants (e.g., C[1]
and C[2]) in place of numeric values, as the following example illustrates.

In[73]:= Clear[G];
G=G/.First[RSolve[G[n]==2*G[n-1]-6*G[n-2],G,n]]

Out[74]= Function[{n},(1-i
√
5)

n
C[1]+(1+i

√
5)

n
C[2]]

The function G is still able to compute values, but they will be in terms of the constants.

In[75]:= G[5]

Out[75]= (1-i
√
5)

5
C[1]+(1+i

√
5)

5
C[2]

The capabilities of RSolve, like other Wolfram Language functions, are constantly being enhanced and
extended. However, RSolve is not a panacea—you can easily find recurrence relations that it is incapable
of solving. When RSolve is unable to solve a recurrence relation, it simply returns unevaluated, as below.

In[76]:= RSolve[u[n]==u[n-1]^2-Exp[2*e[n-2]],u,n]

Out[76]= RSolve[u[n]==-e2 e[-2+n]+u[-1+n]2,u,n]

Problem Solving with Mathematica and Recurrence Relations
It is often the case that a problem, as presented, gives no clue that a solution may be found using recurrence.
Let us explore how we can use Mathematica to solve a problem that is not explicitly expressed as one
requiring the use of recurrence for its solution.

Here is our problem: into how many regions is the plane divided by 1000 lines, assuming that no two
of the lines are parallel, and no three are coincident? Such a situation may arise in an attempt to model
fissures in the ocean floor.

To start, we might try to discover the answer for smaller numbers of lines. To generalize the problem,
we may ask for the number of regions produced by n lines, where n is some positive integer. It is fairly
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obvious that a single line (corresponding to the case n = 1) divides the plane into two regions. Two lines,
if they are not parallel, can easily be seen to divide the plane into four regions. (Two parallel lines produce
only three regions.) If we call the number of regions produced by n lines, no two of which are parallel and
no three of which are coincident, Rn, then R1 = 2 and R2 = 4.

Figure 8.1 : Three lines dividing the plane

What does the situation look like when n = 3? Figure 8.1 is representative of this situation. In this case, the
number of regions is 7, so R3 = 7. To find R4, we must add a fourth line to the diagram. This suggests trying
to compute R4 in terms of R3 so that we begin to think of Rn as a recurrence relation. Figure 8.2 shows
what the situation looks like when a fourth line is added to the three existing lines. From the assumptions
that no two of the lines are parallel and no three pass through a single point, it follows that the new line
must intersect each of the existing three lines in exactly one point. This means that the new line passes
through exactly four of the regions formed by the original three lines. Each region that it passes through
is divided into two regions, so the total number of new regions added by the fourth point is 4. Thus,
R4 = R3 + 4. Similar arguments for a general configuration of lines reveals that Rn satisfies the recurrence
relation Rn = Rn−1 + n.

Figure 8.2 : Four lines dividing the plane

Furthermore, we have already computed the initial condition R1 = 2. This is enough to solve the
recurrence.
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In[77]:= Clear[R];
R=R/.First[RSolve[{R[n]==R[n-1]+n,R[1]==2},R,n]]

Out[78]= Function[{n},
1
2

(2+n+n2)]

To answer the question: how many regions is the plane divided by 1000 lines with no two parallel and no
three coincident?

In[79]:= R[1000]

Out[79]= 500501

8.3 Divide-and-Conquer Algorithms and Recurrence Relations
A very good example of divide and conquer relations is the one provided by the binary search algorithm.
Here, we consider a practical application of this algorithm in an implementation of a binary search on a
sorted list of integers. This is the implementation of the algorithm described in Algorithm 3 in Section 3.1
of the textbook and first presented in Section 3.1 of this manual.

In[80]:= binarySearch[x_Integer,A:{__Integer}]/;Less@@A:=
Module[{n,i,j,m,location},

n=Length[A];
i=1;
j=n;
While[i<j,

m=Floor[(i+j)/2];
If[x>A[[m]],

i=m+1,
j=m

]
];
If[x==A[[i]],

location=i,
location=0

];
location

]

The variable A is the list of integers to search, which is assumed to be sorted in increasing order, and x is
the integer to search for. The local variables j and i are initialized to the number of elements in the list
and 1, respectively. The While loop continues as long as i and j are different from each other. Each step
of the loop serves to narrow the difference between them by calculating the middle of the list, represented
by m, and determining which half x is in. Eventually, the search will focus on one location in the list,
which is either x or, if not, the search has failed and the function returns 0.

Let us do the analysis of the algorithm to see how divide and conquer recurrence relations are generated.
In general, a divide and conquer type recurrence relation has the form

f (n) = a ⋅ f (n∕b) + g(n)
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Each iteration of the While loop of binarySearch produces a single list half the size of the original.
Thus, a = 1 and b = 2. The function g(n), which measures the number of comparisons added in performing
the reduction, is identically 2. This is because one comparison is added to see which half of the list the key
is on, and one is added to see if the While loop needs to continue. Therefore, for the binarySearch
algorithm, the recurrence relation is

f (n) = f (n∕2) + 2

Additionally, we can see that f (1) = 2, because if the list is of length 1, then the algorithm will do one
comparison to determine that the While loop is unnecessary and one comparison to make sure that the
element being searched for is the one element in the list. We can now use RSolve to solve this recurrence.

In[81]:= RSolve[{b[n]==b[n/2]+2,b[1]==2},b[n],n]

Out[81]= {{b[n]→2 (1+
Log[n]

Log[2]
)}}

8.4 Generating Functions
Generating functions are a powerful tool for manipulating sequences of numbers and for solving a vari-
ety of counting problems. In this section, we will see how Mathematica can be used to represent and
manipulate generating functions.

The generating function G(x) for a sequence {ak} is the formal power series

∞∑
k=0

akxk = a0 + a1x + a2x2 + a3x3 + · · · + akxk + · · ·

It is called formal because we are not interested in evaluating it as a function of x. Our focus is on finding a
formula for its coefficients. In particular, this means that there are no convergence issues to be considered.

Generating Functions Tools
The Wolfram Language provides extensive facilities for manipulating generating functions.

The first thing we need to do is to learn how to create a power series in the Wolfram Language, which
is done with the function GeneratingFunction. This function requires three arguments. The last
argument is the variable, such as x, that the generating function is to be written in terms of. The second
argument is a variable, such as n, representing the index of summation. The first argument is an expression
in terms of the index of summation that computes the coefficients of the series.

For example, to create the generating function for the sequence
{

3k
}

, we use the following code.

In[82]:= GeneratingFunction[3^k,k,x]

Out[82]=
1

1-3 x

Observe that Mathematica has automatically found a rational expression for the generating function. While
this is a useful and exact representation of the generating function, you often want to be able to view the
generating function as a power series.
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To obtain a series representation of the generating function, we use the Series function. Series is
used to find the Taylor series of a function about a point. If you have taken Calculus, you may remember
Taylor series. If not, it is enough to know that the Taylor series of a generating function around x = 0 is
the correct power series for our purposes.

The Series function requires two arguments. The first is the function, for example,
1

1−3x
. The second is

a list of length three: the variable x, the number 0, and the largest order, or exponent, to be displayed. For
example, to display the first ten terms of the power series for

1

1−3x
, we enter the following.

In[83]:= seriesEx=Series[1/(1-3x),{x,0,10}]

Out[83]= 1+3 x+9 x2+27 x3+81 x4+243 x5+729 x6+
2187 x7+6561 x8+19683 x9+59049

x10+O[x]11

The output ends with O[x]11O[x]11O[x]11, which indicates that the series continues with terms of degree 11 and higher.

If you wish to view the coefficients, without the generating function, you can apply CoefficientList,
as shown below. The first argument is the series and the second is the variable.

In[84]:= CoefficientList[seriesEx,x]

Out[84]= {1,3,9,27,81,243,729,2187,6561,19683,59049}

To create a power series from a recurrence relation, we need to combine the techniques of the last section
for using RSolve to solve a recurrence relation with the GeneratingFunction command. For
example, consider the recurrence relation given by an = 2an−1 − an−2 + 1 with initial conditions a0 = 1
and a1 = 2.

First, we apply the RSolve function and extract an expression for the general term of the sequence. Note
that because we are interested in an expression that we can use in GeneratingFunction, it makes
sense to solve for a[n] rather than solving for a and obtaining a pure Function. Either approach would
work, however.

In[85]:= recurrenceFormula=a[n]/.First[
RSolve[{a[n]==2*a[n-1]-a[n-2]+1,a[0]==1,a[1]==2},

a[n],n]
]

Out[85]=
1
2

(2+n+n2)

Now, we apply GeneratingFunction to this formula.

In[86]:= recurrenceGFunction=
GeneratingFunction[recurrenceFormula,n,x]

Out[86]=
-1+x-x2

(-1+x)3

As above, we can use Series to view this as a formal power series.

In[87]:= recurrenceSeries=Series[recurrenceGFunction,{x,0,5}]

Out[87]= 1+2 x+4 x2+7 x3+11 x4+16 x5+O[x]6
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We can also use the function SeriesCoefficient to obtain specific coefficients, rather than the entire
series. This function has two distinct forms that are useful. First, you can give the output of Series as
the first argument and an integer as the second, and SeriesCoefficient will return the coefficient
of that term. Note that for this to work, you must have already computed the series to the desired term.
That is, the second argument of SeriesCoefficient must be no greater than the order of the output
from Series.

In[88]:= SeriesCoefficient[recurrenceSeries,3]

Out[88]= 7

The second, and even more useful, application of SeriesCoefficient has the same arguments as
Series. Specifically, a generating function and a list consisting of the variable used in the function, the
number 0, and a positive integer n. However, where Series outputs the entire series out to the term of
degree n, SeriesCoefficient just returns the coefficient of xn.

In[89]:= SeriesCoefficient[recurrenceGFunction,{x,0,3}]

Out[89]= 7

Solving Problems with Generating Functions
Generating functions are more than just a convenient way to represent numerical sequences. They are a
powerful tool for solving recurrence relations, as well as other kinds of counting problems. This power
stems from our ability to manipulate them like ordinary power series from Calculus and to interpret
those manipulations. To illustrate Mathematica’s facilities for manipulating generating functions, consider
Example 12 from Section 8.4 of the text:

Use generating functions to determine the number of ways to insert tokens worth $1, $2,
and $5 into a vending machine to pay for an item that costs 7 dollars in both the cases when
the order in which the tokens are inserted does not matter and when the order does matter.

Following the text, the solution to the problem when order does matter is the coefficient of xr in the
generating function(

1 + x + x2 + x3 + · · ·
) (

1 + x2 + x4 + x6 + · · ·
) (

1 + x5 + x10 + x15 + · · ·
)

To solve the problem, we need to create the three power series and multiply them together. To create the
first series, we can use the GeneratingFunction command demonstrated above. For example, the
first series has every coefficient equal to 1, so its generating function can be found as shown below.

In[90]:= token1D=GeneratingFunction[1,n,x]

Out[90]=
1
1-x

For the $2 tokens, we need to represent 1 + x2 + x4 + · · ·. Remember that GeneratingFunction
requires an expression for the general coefficient as its first argument. In this case, it is easier to describe
the series if we can include the entire term, not just the coefficients. That is, it is easier to say that the
series is

∑∞
k = 0 x2k than to write a formula for the coefficients.
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Fortunately, we can do exactly that by applying the Sum function. Recall that the first argument to Sum is
an expression for the generic term in terms of an index of summation, and the second argument defines
the bounds of the summation. In this case, those bounds are 0 and Infinity.

In[91]:= token2D=Sum[x^(2*k),{k,0,Infinity}]

Out[91]=
1

1-x2

Observe that Mathematica has automatically calculated the rational expression for this sum.

We could also use Sum for the $5 tokens. Alternatively, we could just refer to Table 1 in Section 8.4 of
the text and enter the rational form

1

1−x5
directly.

In[92]:= token5D=1/(1-x^5)

Out[92]=
1

1-x5

We can use Series to confirm that Mathematica does in fact recognize this as the generating function
1 + x5 + x10 + x15 + · · ·.

In[93]:= Series[token5D,{x,0,20}]

Out[93]= 1+x5+x10+x15+x20+O[x]21

We algebraically combine the series with the usual multiplication and Series will show us the power
series expansion of the result.

In[94]:= tokens=token1D*token2D*token5D

Out[94]=
1

(1-x) (1-x2) (1-x5)
In[95]:= Series[tokens,{x,0,7}]

Out[95]= 1+x+2 x2+2 x3+3 x4+4 x5+5 x6+6 x7+O[x]8

We can see from the above that there are 6 ways to pay for a $7 item (since the coefficient of x7 is 6), just
as was computed in the text. If we wanted to know the number of ways to pay for an item costing $234,
all we would need to do is find the coefficient of x234.

In[96]:= SeriesCoefficient[tokens,{x,0,234}]

Out[96]= 2832

For the second part of the question, the case where the order does matter, the text explains that the gener-
ating function we need is

1 +
(
x + x2 + x5

)
+
(
x + x2 + x5

)2 + · · · = 1

1 − (x + x2 + x5)

Again, if we did not already know the rational expression for the generating function, Mathematica could
find it using Sum.

In[97]:= tokens2=Sum[(x+x^2+x^5)^n,{n,0,Infinity}]

Out[97]=
1

1-x-x2-x5
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In[98]:= SeriesCoefficient[tokens2,{x,0,7}]

Out[98]= 26

Thus, the coefficient of x7 is 26, so there are 26 ways to pay for a $7 item when order does matter.

8.5 Inclusion–Exclusion
In this section, we will apply the principle of inclusion and exclusion. At the heart of the principle of
inclusion and exclusion is the formula

|A ∪ B| = |A| + |B| − |A ∩ B|
which says that, for two finite sets A and B, the number of elements in the union A ∪ B of the two sets may
be found by adding the sizes of A and B and then subtracting the number of elements common to both A
and B, which would otherwise be counted twice. This formula can be generalized to count the number of
elements in the union of any finite number of finite sets.

Recall that in the Wolfram Language, sets are represented as lists, but that the set operations put elements
in a canonical order and remove duplicates.

In[99]:= A={1,2,3}

Out[99]= {1,2,3}

To find the cardinality of a set, you can use Length.

In[100]:= Length[A]

Out[100]= 3

The set operations Union and Intersection can be applied in functional form, with each set an
argument. You can also access operator forms with the aliases ESC un ESC and ESC inter ESC .

In[101]:= X={1,2,3,4,5};
Y={4,5,6,7,8};

In[103]:= Union[X,Y]

Out[103]= {1,2,3,4,5,6,7,8}

In[104]:= X∪∪∪Y

Out[104]= {1,2,3,4,5,6,7,8}

In[105]:= Intersection[X,Y]

Out[105]= {4,5}

The set theoretic difference is computed by the Mathematica function Complement. The following com-
putes X − Y .

In[106]:= Complement[X,Y]

Out[106]= {1,2,3}
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Let us use the operations to illustrate the principle of inclusion and exclusion with a particular example.

In[107]:= flintstones={"Fred","Wilma","Pebbles"};
rubbles={"Barney","Betty","Bam Bam"};
husbands={"Fred","Barney"};
wives={"Wilma","Betty"};
kids={"Pebbles","Bam Bam"};

If this were a complete census, then the number of children living in Bedrock would be

In[112]:= Length[kids]

Out[112]= 2

The number of Bedrock inhabitants who are either Flintstones or children is

In[113]:= Length[Union[flintstones,kids]]

Out[113]= 4

According to the principle of inclusion and exclusion, this number should be the same as

In[114]:= Length[flintstones]+Length[kids]-
Length[Intersection[flintstones,kids]]

Out[114]= 4

which, of course, it is.

As another example, consider the problem of determining the number of positive integers less than or
equal to 100 that are not divisible by either 2 or 11. First, we generate the set of positive integers less than
or equal to 100.

In[115]:= hundred=Range[100]

Out[115]= {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
17,18,19,20,21,22,23,24,25,26,27,28,29,30,
31,32,33,34,35,36,37,38,39,40,41,42,43,44,
45,46,47,48,49,50,51,52,53,54,55,56,57,58,
59,60,61,62,63,64,65,66,67,68,69,70,71,72,
73,74,75,76,77,78,79,80,81,82,83,84,85,86,
87,88,89,90,91,92,93,94,95,96,97,98,99,100}

Next, we remove those elements that are divisible by 2:

In[116]:= divBy2=Complement[hundred,Table[2*i,{i,50}]]

Out[116]= {1,3,5,7,9,11,13,15,17,19,21,23,25,
27,29,31,33,35,37,39,41,43,45,47,49,
51,53,55,57,59,61,63,65,67,69,71,73,
75,77,79,81,83,85,87,89,91,93,95,97,99}

and those that are divisible by 11:
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In[117]:= divBy11=Complement[hundred,Table[11*i,{i,9}]]

Out[117]= {1,2,3,4,5,6,7,8,9,10,12,13,14,15,16,17,18,19,
20,21,23,24,25,26,27,28,29,30,31,32,34,35,36,
37,38,39,40,41,42,43,45,46,47,48,49,50,51,52,
53,54,56,57,58,59,60,61,62,63,64,65,67,68,69,
70,71,72,73,74,75,76,78,79,80,81,82,83,84,
85,86,87,89,90,91,92,93,94,95,96,97,98,100}

We are looking for integers that belong to either or both of those sets, that is, to their union, so we calculate:

In[118]:= Length[Union[divBy2,divBy11]]

Out[118]= 96

According to the principle of inclusion and exclusion, this value could also be computed as

In[119]:= Length[divBy2]+Length[divBy11]-
Length[Intersection[divBy2,divBy11]]

Out[119]= 96

8.6 Applications of Inclusion–Exclusion
In this section, we will explore the following problem: Three sets of twins, Ashley and Amanda Abel,
Brandon and Benjamin Bernoulli, and Christopher and Courtney Cartan (none of whom bear any relation
to the mathematicians with the same surname), are to be seated in a row. List the ways in which they can
be seated so that no person sits next to their twin.

The principle of inclusion–exclusion gives us insight into how we might accomplish this task. Rather than
attempting to generate only those seating arrangements in which no person sits next to their twin, it will
be easier to consider all the possible arrangements of the twins and then exclude those that do not satisfy
the condition. To begin, we define lists to store the names of the twins.

In[120]:= abels={"Ashley","Amanda"};
bernoullis={"Brandon","Benjamin"};
cartans={"Christopher","Courtney"};

In[123]:= twins={abels,bernoullis,cartans}

Out[123]= {{Ashley,Amanda},
{Brandon,Benjamin},{Christopher,Courtney}}

Next, we create a function to test whether an arrangement satisfies the condition of having no twins seated
next to each other. We will use this function to determine which seatings to accept.

To test whether a given arrangement has a pair of twins seated next to one another, we will consider the
five pairs of seats, 1 and 2, 2 and 3, ..., 5 and 6, and check to see if the people seated in those positions are
twins.
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In[124]:= testSeating[seating_List]:=Module[{i,twinpair},
Catch[

For[i=1,i≤≤≤5,i++,
Do[If[MemberQ[twinpair,seating[[i]]]&&

MemberQ[twinpair,seating[[i+1]]],Throw[False]]
,{twinpair,twins}]

];
Throw[True]

]
]

The function is passed a list of the six people’s names, representing a seating, so that the person in the
third seat is seating[[3]]. The For loop indexed by i goes through the five pairs of seats. The inner
Do loop avoids having to duplicate the If statement. We could have written one If statement checking to
see if the people in seats i and i + 1 are both Abels, and then a second If statement to see if they are both
Bernoullis, and then a third to see if they are both Cartans. Instead, the loop sets the twinpair variable
to each of the lists in twins in turn. That is, twinpair represents, at each step in the loop, one of the
families. Then, the If statement checks to see whether the people in the seats i and i + 1 are members
of that family, using the MemberQ test. Recall that MemberQ returns true if the second argument is a
member of the first. If any of these If statements are true, that the people in the pair of consecutive seats
are from the same family, then false is thrown to the enclosing Catch, indicating that the seating is not
acceptable. If the seating survives all of the If statements, then the function returns true.

To check the testSeating function, consider the following potential seatings.

In[125]:= seating1={"Ashley","Amanda","Brandon","Benjamin",
"Christopher","Courtnet"};

seating2={"Ashley","Brandon","Christopher","Amanda",
"Benjamin","Courtney"};

We see that the first seating fails but the second passes, as they should.

In[127]:= testSeating[seating1]

Out[127]= False

In[128]:= testSeating[seating2]

Out[128]= True

We now have a function to test a potential seating for the condition of not having twins seated next to each
other. To generate a list of all of such seatings, we will use the Wolfram Language’s Permutations
function to generate all the possible permutations of the people and then test to see which are valid and
which should be discarded. The Permutations command takes a list and returns all the possible per-
mutations of the objects. (Refer to Chapter 6 of this manual for more information about this function.)

Note that the Permutations function expects a list of objects, so we will need a list of all the people.
We can use the Flatten function to turn our twins list into a list of all the names. Flatten takes a
list and removes any nesting of lists so that the result is a list of the objects.
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In[129]:= Flatten[twins]

Out[129]= {Ashley,Amanda,Brandon,Benjamin,Christopher,Courtney}

To create the list of only the valid seatings, we will apply the Select function. Select requires two
arguments. The first is a list of objects, and the second is a function of one argument that returns true for
those elements of the list that satisfy the desired criterion. The result is the list of the elements that passed
the test.

We apply Select to all of the permutations of the flattened list of twins with criterion function
testSeating and store its output in the variable twinSeatings but suppress the output. Then, we
use Length to check how many possible seatings there are. (It is generally a good idea to suppress the
output of a function that is listing what may be a very large number of possibilities until you know how
many there are, as the output may take some time to display.)

In[130]:= twinSeatings=Select[Permutations[Flatten[twins]],
testSeating];

In[131]:= Length[twinSeatings]

Out[131]= 240

In[132]:= twinSeatings[[123]]

Out[132]= {Benjamin,Ashley,Christopher,Amanda,Brandon,Courtney}

We see that there are 240 possible seatings and have displayed the 123rd seating.

Solutions to Computer Projects and Computations and
Explorations

Computer Projects 12
Given positive integers m and n, find the number of onto functions from a set with m elements to a set
with n elements.

Solution: We have a very convenient formula:

n−1∑
k=0

(−1)kC(n, k)(n − k)m

This is the number of onto functions from a set of m elements to a set of n elements, assuming m ≥ n. This
formula is derived in the textbook from the principle of inclusion–exclusion (see Theorem 1 of Section
8.6). The only input required in this formula are the integer parameters m and n, which represent the
sizes of the domain and codomain, respectively. The Wolfram Language’s Sum function will compute
summations such as the one above. The first argument is an expression in terms of an index of summation
(e.g., k), and the second is of the form {k,a,b} indicating the bounds of the summation. For example,
to compute

8∑
k=3

1

k
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you would enter the following expressions.

In[133]:= Sum[1/k,{k,3,8}]

Out[133]=
341
280

We now create a function encapsulating the formula above.

In[134]:= ontoFunctions[m_Integer,n_Integer]/;m>0&&n>0:=
If[m≥≥≥n,Sum[(-1)^k * Binomial[n,k]*(n-k)^m,

{k,0,n-1}],0]

The If statement captures the fact that there are no onto functions from a set to a set that is larger and
ensures that the result is 0 in that case. The Condition (/;) ensures that the input to the function is
positive and will return no output if not, since it is meaningless to ask about functions between sets of
nonpositive cardinalities.

In[135]:= ontoFunctions[4,9]

Out[135]= 0

In[136]:= ontoFunctions[-3,0]

Out[136]= ontoFunctions[-3,0]

As an example, we can use our function to compute the number of onto functions from a set with 100
elements to a set with 20 elements.

In[137]:= ontoFunctions[100,20]

Out[137]= 1123819591031965792853944703814317028551789497509576949629431
9007413091913959828334936464196298192508890182316163261067934
269440000

Computations and Explorations 2
Find the smallest Fibonacci number greater than 1000000, greater than 1000000000, and greater than
1000000000000.

Solution: We can solve this quite easily with Mathematica using a simple While loop. In this chapter, we
have seen several ways to compute Fibonacci numbers, including the fibonacci function we created
in Section 8.1 and the formula fibonacci2 in Section 8.2. For this exercise, we will use the Wolfram
Language built-in function Fibonacci.

The idea is to compute Fibonacci numbers until the value exceeds the target. The While loop is well
suited to this sort of problem. We will create a function that takes the target value as input and prints out
the desired Fibonacci number and its index.

In[138]:= findFib[target_Integer]:=Module[{n=1},
While[Fibonacci[n]<target,n++];
Print["The ",n,"th Fibonacci number is ",

Fibonacci[n]]
]
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As long as the nth Fibonacci number is smaller than the target value, the index n is increased. Once
the target has been exceeded, the Print statement displays the index and the value of the Fibonacci
number.

The numbers called for by the question are:

In[139]:= findFib[1000000]

The 31th Fibonacci number is 1346269

In[140]:= findFib[1000000000]

The 45th Fibonacci number is 1134903170

In[141]:= findFib[1000000000000]

The 60th Fibonacci number is 1548008755920

Computations and Explorations 3
Find as many prime Fibonacci numbers as you can. It is unknown whether there are infinitely many of
these.

Solution: Using Mathematica, this sort of problem becomes fairly straightforward. We can simply use
the Wolfram Language function Fibonacci to generate Fibonacci numbers and use the PrimeQ func-
tion to test each for primality. We will wrap this in a function that takes a number of seconds as an
argument and uses TimeConstrained to control the length of the evaluation. Note the use of Sow
within the TimeConstrained block and Reap surrounding it. This allows the termination of the
TimeConstrained portion of the function to trigger the Reap.

In[142]:= primeFib[time_]:=Module[{i=0,temp,primes={}},
Reap[

TimeConstrained[
While[True,

i++;
temp=Fibonacci[i];
If[PrimeQ[temp],Sow[temp]]

],time]
][[2,1]]

]

We can obtain several examples even in only a hundredth of a second.

In[143]:= primeFib[0.01]

Out[143]= {2,3,5,13,89,233,1597,28657,514229,
433494437,2971215073,99194853094755497,
1066340417491710595814572169,
19134702400093278081449423917}
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Computations and Explorations 11
Compute the probability that a permutation of n objects is a derangement for all positive integers not
exceeding 20 and determine how quickly these probabilities approach the number 1∕e.

Solution: To solve this problem, we will make use of the formula which gives the number of derangements
of n objects, namely,

Dn = n!
[
1 − 1

1!
+ 1

2!
− 1

3!
+… + (−1)n 1

n!

]

The total number of permutations of n objects is, of course, n!; so, the probability that one of them is a

derangement is the ratio
Dn

n!
, which is given by the expression

1 − 1

1!
+ 1

2!
− 1

3!
+… + (−1)n 1

n!

A very simple Mathematica function will compute these values for us.

In[144]:= derangementP[n_Integer]/;n>0:=
Sum[(-1)^k*1/k!,{k,0,n}]

The probabilities that a permutation of n objects is a derangement for n ≤ 20 are:

In[145]:= Table[derangementP[n],{n,20}]

Out[145]= {0,
1
2
,
1
3
,
3
8
,
11
30

,
53
144

,
103
280

,
2119
5760

,
16687
45360

,
16481
44800

,

1468457
3991680

,
16019531
43545600

,
63633137
172972800

,
2467007773
6706022400

,

34361893981
93405312000

,
15549624751
42268262400

,
8178130767479
22230464256000

,

138547156531409
376610217984000

,
92079694567171
250298560512000

,
4282366656425369
11640679464960000

}

To see how these probabilities differ from 1∕e, we multiply them by e and subtract 1. The symbol E
represents the number e in the Wolfram Language. We apply N with second argument 10 in order to
obtain numerical approximations with 10 digits of precision.

In[146]:= Table[N[E*derangementP[n]-1,10],{n,20}]

Out[146]= {-1.000000000,0.3591409142,-0.09390605718,
0.01935568567,-0.003296662898,0.0004787285301,
-0.00006061310257,6.804601513×10-6,-6.862544954×10-7,
6.283110546×10-8,-5.267585531×10-9,4.073053851×10-10,
-2.922468532×10-11,1.956033996×10-12,
-1.226806251×10-13,7.239038692×10-15,-4.032944742×10-16,
2.127959055×10-17,-1.066412864×10-18,5.088730674×10-20}
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Exercises
1. Implement a function to find the optimal schedule that maximizes total attendance.

2. Implement a dynamic programming algorithm for finding the maximum sum of consecutive
terms of a sequence of real numbers. (See Exercise 56 in Section 8.1.)

3. Implement a dynamic programming algorithm for optimally computing matrix-chain
multiplication. (See Exercise 57 in Section 8.1.)

4. Use Mathematica to solve the following recurrence relations.

a. an = an−1 − an−2, a1 = 1, a2 = 1;

b. an = 15an−1 +
1

2
an−2, a1 =

23

22
, a2 =

7

2

5. Solve each of the recurrence relations in Exercise 1 in Section 8.2 of the textbook. (Solve even
those that are not linear homogeneous recurrence relations with constant coefficients.)

6. Write a general solver in the Wolfram Language for linear homogeneous recurrence relations
with constant coefficients of degree 3 with distinct roots. Your solver should check that the roots
are in fact distinct and, if they are not, should issue a Message and return $Failed , which is a
standard return value for a Wolfram Language function when it cannot complete a computation
for some reason.

7. Use Mathematica to investigate the behavior of the limit

lim
n→∞

𝜑n

𝜓n

where 𝜑n is defined to be the number of prime Fibonacci numbers less than or equal to n, and 𝜓n
is defined to be the number of Fermat numbers less than or equal to n.

8. Implement the recursive algorithm described in Example 12 of Section 8.3 of the textbook for
solving the closest-pair problem.

9. Use Mathematica to find the number of square-free integers less than 100000000.

10. Use Mathematica to find the number of onto functions from a set with 1000000 elements to a set
with 1000 elements.

11. It is probably obvious that the number of onto functions from one set to another increases with
the sizes of either the domain or the range. Using Mathematica to experiment, explore whether an
increase in the size of the domain or the size of the range has the greater impact on the number of
onto functions.

12. To generate the lucky numbers, start with the positive integers and delete every second integer in
the list, starting the count with 1 (e.g., delete 2, 4, 6, etc., leaving 1, 3, 5, 7, ...). Other than 1, the
smallest integer left is 3. Continue by deleting every third integer from those that remain, starting
the counting with 1 (since 1, 3, 5, 7, 9, ... remain, 1 is the first number left, 3 is the second one
left, 5 is the third left and gets deleted, and so on). Continue the process where at each stage,
every kth integer is deleted, where k is the smallest integer left, other than 1 and the previous
values of k. The integers that remain are the lucky numbers. Develop a function in the Wolfram
Language that generates the lucky numbers up to n.
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13. Can you make any conjectures about lucky numbers by looking at a list of the first 1000 of them?
For example, what sort of conjectures can you make about twin lucky numbers? What evidence
do you have for your conjectures?

14. Generalize the listSeatings function to accept one argument, a list of lists (the same
structure as the twins list), and determines the arrangements such that no two from the same
sublist are seated next to one another.

15. Further generalize the listSeatings function so that it takes two arguments: a list of lists as
before and a number n. The function should determine the arrangements of the people such that
no n from the same sublist are seated together.
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