
0 Introduction

Preface
This book is intended to supplement Ken Rosen’s Discrete Mathematics and Its Applications, Eighth
Edition, published by McGraw-Hill. It was developed with Mathematica 11, created by Wolfram Research.

This is intended to be a guide as you explore concepts in discrete mathematics and to provide you with

tools you can use to investigate further on your own. This text can significantly enhance a traditional course

in discrete mathematics in several ways. First, it makes a plethora of examples readily available that you

can interact with easily. Second, it makes the notion of algorithm, which is central in discrete mathematics,

concrete by giving you the opportunity to actually implement algorithms rather than only analyze them

in the abstract. Finally, and most significantly, it provides you greater freedom to make conjectures and

experiment without getting bogged down in repetitive calculation.

The focus of this manual is on Wolfram Language code and does not attempt to explain discrete math-

ematics. It is expected that you are taking, or have taken, a course in discrete mathematics. Ideally, you

have access to Ken Rosen’s Discrete Mathematics and Its Applications. It is not assumed that you have

any prior experience with Mathematica or the Wolfram Language. The introductory chapter that follows

this preface is designed to introduce you to Mathematica and the Wolfram Language. Likewise, it is not

assumed that you have any experience with computer programming languages. Part of the Introduction

is devoted to the basic concepts and techniques of computer programming. Subsequent chapters gradu-

ally introduce increasingly sophisticated programming ideas. While this is not a textbook on computer

programming, you will likely find yourself fairly comfortable with the basics of programming by the end.

With the exception of the Introduction, the structure of this book follows that of Discrete Mathematics
and Its Applications. For each section of each chapter in that text, this manual contains a correspond-

ing section describing built-in Wolfram Language functions and developing additional functions that are

used to explore the mathematics topics in that section. Each chapter also contains solutions to some of

the Computer Projects and Computations and Explorations exercises found at the end of the chapter of

Discrete Mathematics and Its Applications. You will also find a number of exercises at the conclusion

of each chapter designed to suggest additional questions that you can explore.

This manual strikes a balance between describing existing Wolfram Language functions and creating new

procedures that extend Mathematica’s capabilities for exploring discrete mathematics. For example, the

Wolfram Language does not explicitly support calculations with ordered graphs. Therefore, in Chapter 10,

in addition to describing the Wolfram Language’s capabilities for modeling graphs, we also write functions

relating to ordered graphs. Some readers may not be interested in the detailed descriptions of how new

functions and programs like these are created. However, even if you are not interested in the programming

aspect, the functions we create are still available to you to explore those topics.

This manual is based on Exploring Discrete Mathematics with Maple and retains the spirit and goals of

that work. We therefore reproduce the preface of the original book below.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

2

Changes in the New Edition
The previous version of this manual was written for the seventh edition of Ken Rosen’s Discrete Math-
ematics and Its Applications and developed with Mathematica version 9. The current version includes

significant revisions and updates to reflect the revisions in the eighth edition of the textbook and the

improvements present in version 11 of Mathematica. Some of the most notable revisions include:

◾ Exposition and programming examples have been improved, with a focus on simplifying and
clarifying both to help you more easily understanding connections to the mathematics content.

◾ Functions defined in each chapter are now provided online as plain text source files with the
extension .wl. These files can be imported into a Mathematica or other Wolfram System session,
or they can be opened with any other software capable of viewing plain text files.

◾ Additional examples have been added to reflect new content in the eighth edition of Discrete
Mathematics and Its Applications, including solving the n-Queens problem via satisfiability,
implementing the naive string matching algorithm, illustrating homomorphic encryption, and
exploring semantic networks.

◾ Wolfram Language functions that have been improved or added to the Language since the last
version of the manual have been incorporated. In some cases, most prominently with regard to
graph theory, the improvements to the built-in functions have made it no longer necessary to
develop functions within this manual to fill gaps in the Wolfram Language. Several “from scratch”
functions duplicating built-in capabilities remain when doing so illustrates important mathematics
content or programming techniques.

◾ In version 10, Associations were added to the Wolfram Language. This is an important and
fundamental data structure and has been incorporated throughout the manual, largely replacing the
need for indexed objects and downvalues. Associations are introduced in Chapter 2 to represent
fuzzy sets and functions on finite domains. The related structure Dataset was also added in
version 10 and is described in relation to relational databases.

◾ Users of the previous edition of this manual should be aware that some of the improvements in the
Wolfram Language have resulted in sometimes subtle changes to the functions defined in the text.
For example, SubsetQ was added to the Wolfram Language in version 10. The predicate defined in
the previous version of the manual to fill that gap in the language has been retained as an example
of programming control structures (a Do loop with Catch and Throw). However, the manual’s
function was revised to match the order of arguments in the built-in function.

Acknowledgments
I am deeply grateful to Ken Rosen for having trusted me with this work and for his wisdom and guidance.

I am indebted to the authors of the original Exploring Discrete Mathematics with Maple for providing an

excellent foundation on which to build.

I also wish to thank Nora Devlin, the Product Developer at McGraw-Hill Higher Education for Discrete
Mathematics and Its Applications, eighth edition, for her patience and confidence.

Thanks also to those who have provided feedback on the previous version.

I am grateful to Martin Erickson for his mentorship. To Daniel Baack, Jason Beckfield, Elizabeth

Davis-Berg, Julie Minbiole, Christopher Shaw, Michael Welsh, and Heather Minges Wols for their

constant support and encouragement. Finally, I am always grateful to my parents for all they have done.

Daniel R. Jordan
djordan@colum.edu

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

3

Preface to the First Edition of Exploring Discrete Mathematics with Maple
This book is a supplement to Ken Rosen’s text Discrete Mathematics and Its Applications, Third Edition,

published by McGraw-Hill. It is unique as an ancillary to a discrete mathematics text in that its entire focus

is on the computational aspects of the subject. This focus has allowed us to cover extensively and com-

prehensively how computations in the different areas of discrete mathematics can be performed, as well

as how results of these computations can be used in explorations. This book provides a new perspective

and a set of tools for exploring concepts in discrete mathematics, complementing the traditional aspects of

an introductory course. We hope the users of this book will enjoy working with it as much as the authors

have enjoyed putting this book together.

This book was written by a team of people, including Stan Devitt, one of the principle authors of the Maple

system, and Eithne Murray, who has developed code for certain Maple packages. Two other authors, Troy

Vasiga and James McCarron, have mastered discrete mathematics and Maple through their studies at the

University of Waterloo, a key center of discrete mathematics research and the birthplace of Waterloo

Maple Inc.

To effectively use this book, a student should be taking, or have taken, a course in discrete mathematics.

For maximum effectiveness, the text used should be Ken Rosen’s Discrete Mathematics and Its Applica-
tions, although this volume will be useful even if this is not the case. We assume that the student has access

to Maple, Release 3 or later. We have included material based on Maple shareware and on Release 4 with

explicit indication of where this is done. (Where to obtain Maple shareware is described in the Introduc-

tion.) We do not assume that the student has previously used Maple. In fact, working through the book can

teach students Maple while they are learning discrete mathematics. Of course, the level of sophistication

of students with respect to programming will determine their ability to write their own Maple routines. We

make peripheral use of calculus in this book. Although all places where calculus is used can be omitted,

students who have studied calculus will find this material of interest.

This volume contains a great deal of Maple code, much based on existing Maple functions. But substantial

extensions to Maple can be found throughout the book; new Maple routines have been added in key places,

extending the capabilities of what is currently part of Maple. An excellent example is new Maple code

for displaying trees, providing functionality not currently part of the network package of Maple. All the

Maple code in this book is available over the Internet; see the Introduction for details.

This volume contains an Introduction and 13 Chapters. The Introduction describes the philosophy and

contents of the chapters and provides an introduction to the use of Maple, both for computation and for

programming. This chapter is especially important to students who have not used Maple before. (More

material on programming with Maple is found throughout the text, especially in Chapters 1 and 2.)

Chapters 1 to 10 correspond to the respective chapters of Discrete Mathematics and Its Applications.

Each chapter contains a discussion of how to use Maple to carry out computation on the subject of that

chapter. Each chapter also contains a discussion of the Computations and Explorations found at the end

of the corresponding chapter of Discrete Mathematics and Its Applications along with a set of exercises

and projects designed for further work.

Users of this book are encourage to provide feedback, either via the postal service or the Internet. We

expect that students and faculty members using this book will develop material that they want to share

with others. Consult the Introduction for details about how to download Maple software associated with

this book and for information about how to upload your own Maple code and worksheets.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

4

Introduction
Modern mathematical computation systems, such as Mathematica and other products implementing the

Wolfram System, allow us to carry out complicated computations quickly and easily. As a supplement to

traditional exercises solved by hand, having computational tools available while learning discrete mathe-

matics provides a new dimension to the learning experience. Specifically, computational tools support an

inquiry and experimental approach to learning. This book is designed to connect the traditional approach

to learning discrete mathematics with this experimental approach.

Using computational software, students can experiment directly with many objects that are important in

discrete mathematics. These include sets, large integers, combinatorial objects, graphs, and trees. Further-

more, by using interactive computational software, students can explore these examples more thoroughly,

fostering a deeper understanding of concepts, applications, and problem-solving techniques.

This manual has two main goals. The first is to help students learn how to model and solve problems in

discrete mathematics using the Wolfram Language. The second is to be a guide and a model as students

discover mathematics with the use of computational tools.

This book is intended for use by any student of discrete mathematics. No previous familiarity with the

Wolfram Language or Mathematica is required. Likewise, we do not assume any previous experience with

computer programming. The fundamentals of the Wolfram Language and the basic concepts of computer

programming will be thoroughly explained as they are needed.

This manual was created within the desktop version of Mathematica, which is one of the products that

implement the Wolfram System. Roughly, the Wolfram System is the computational engine and the

Wolfram Language is the programming language and built-in functions that are evaluated by the System.

This manual will teach you the basics of the Wolfram Language, and there are numerous products cre-

ated by Wolfram Research that you can use, including Mathematica (both desktop and online), Wolfram

Programming Lab, and Wolfram Development Platform. For the sake of brevity, this manual will use the

word Mathematica to refer to whatever particular product you may be using.

Structure of This Manual
This supplement begins with a brief introduction to Mathematica, its capabilities, and its use. The mate-

rial in this introductory chapter explains the philosophy behind working with Mathematica, how to use

Mathematica to carry out computations, and its basic structure. This introduction continues by explaining

the basic concepts and syntax for programming with the Wolfram Language. This will provide those who

are new to the Wolfram Language in particular and programming languages in general the background

that they will need in the rest of the book.

Following the introduction, the main body of this book contains 13 Chapters. Each chapter parallels a

chapter of Discrete Mathematics and Its Applications, Eighth Edition, by Kenneth H. Rosen (henceforth

referred to as the text or the textbook). Each chapter includes comprehensive coverage explaining how

the Wolfram Language and Mathematica can be used to explore the topics of the corresponding chapter

of the text. This includes a discussion of relevant Wolfram Language functions, many new functions that

are written expressly for this book, and examples illustrating how to use Mathematica to explore topics in

the text.

Additionally, we discuss selected Computer Projects and Computations and Explorations from the cor-

responding chapter of the text. We provide guidance, partial solutions, or complete solutions to these

exercises. A similar philosophy governs the inclusion of these solutions as does the inclusion of answers

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

5

to selected exercises in the back of most mathematics textbooks. You should attempt the problem on your

own first. The solutions in this manual are intended to be referred to: after you have succeeded in solving

a problem to see a (potentially) different approach; when you have stopped making progress on your own

and need a slight boost to continue; or when you are trying to solve a similar problem.

Finally, each chapter concludes with a set of additional questions for you to explore. Some of these are

straightforward computational exercises, whereas others are more accurately described as projects requir-

ing substantial additional work, including programming.

The chapters of this manual are available in two formats: as a PDF document and as a Mathematica
Notebook. The PDF format contains all of the text and Mathematica functions and other information that

you need. The Mathematica Notebook version of the chapter includes additional features, specifically

active Mathematica code and links to Mathematica documentation. If you are using the desktop version

of Mathematica, it is recommended that you primarily work with the Mathematica Notebook version of

this manual. However, the Notebooks are quite large and some of the elements may not work well with the

cloud-based systems, in which case the PDF version may be the better option. Even so, the definitions of

the functions created within the text of the manual are available as simple .wl files, which can be uploaded

to the cloud, so that you do not need to retype the code. Instructions for how to do this is provided near

the end of this chapter.

When you first open the Mathematica Notebook for any chapter, it is recommended that you evaluate

the initialization cells in that notebook by selecting Evaluate Initialization CellsEvaluate Initialization CellsEvaluate Initialization Cells from the EvaluationEvaluationEvaluation

menu. This way, the essential symbols within the chapter, those associated with variables and functions

you may want to use, will be available for you, without your having to execute each of their definitions

manually.

If you do not explicitly cause the initialization cells to be evaluated, the first time you evaluate any cell

in the notebook, you will see a dialog box asking whether you wish to evaluate the initialization cells.

Selecting “Yes” is recommended and will cause all of the initialization cells to be executed.

Alternatively, selecting Evaluate NotebookEvaluate NotebookEvaluate Notebook from the EvaluationEvaluationEvaluation menu will cause every input cell in the

notebook to be evaluated. If you choose this option, you will also see a message asking whether or not

you want to evaluate all of the initialization cells. In this case, having selected Evaluate NotebookEvaluate NotebookEvaluate Notebook, it is

recommended you choose “No” in the dialog. Selecting “Yes” will cause all of the initialization cells to

be evaluated and then every cell in the notebook will be evaluated, meaning the initialization cells would

each be evaluated twice, which is unnecessary.

For some chapters, you may also see a warning that the file “contains potentially unsafe dynamic content.”

This will appear when the file contains an animation or an interactive element. If you see this warning,

it is recommended that you click on the button to “Enable Dynamics” in order to fully engage with the

content.

The main benefit of the Mathematica Notebook version of this book is that it is interactive. That is, you

can execute the Wolfram Language functions demonstrated in the chapter. Even better, you can modify

the examples so that you can experiment right within the body of the chapter. Additionally, you have

immediate access to the Wolfram Language help and documentation pages. Within the text of this manual,

Wolfram Language functions appear in blue and are underlined indicating that clicking on them will open

the corresponding documentation page.

This book has been designed to help students achieve the main goals of a course in discrete mathematics.

These goals, as described in the preface of the textbook, are the mastery of mathematical thinking,

combinatorial analysis, discrete structures, algorithmic thinking, and applications and modeling.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

6

This supplement demonstrates how to use the interactive computational environment of Mathematica to

enhance and accelerate the achievement of these goals.

Interactive Mathematica
Exploring discrete mathematics with Mathematica is like exploring a mathematical topic with an expert

assistant at your side. As you investigate a topic, you should always be asking questions. In many cases, the

answer to your question can be found by experimenting. Mathematica, your highly trained mathematical

assistant, can often carry out these directed experiments quickly and accurately, often with only a few

simple instructions.

By hand, the magnitude and quantity of work required to investigate even one reasonable test case may be

prohibitive. By delegating the details to Mathematica, your efforts can be much more focused on choosing

the right mathematical questions and on interpreting results. Moreover, with a system such as Mathemat-
ica, the types of objects you are investigating, and tools for manipulating them, already exist as part of the

basic infrastructure provided by the system. This includes lists, variables, polynomials, graphs, arbitrarily

large integers, rational numbers, and most important, support for exact and fast computations.

The use of Mathematica is merely a means to the end of achieving the goals of a course in discrete

mathematics. As with any tool, to use it effectively you must have some basic understanding of the tool

and its capabilities. In this section, we introduce Mathematica by working through a sample interactive

session.

Starting Mathematica
A new Mathematica session begins when you start the Mathematica software or log in to the web interface.

If you are using the desktop version of Mathematica, you may see a welcome screen like the one below.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

7

The central portion of the welcome screen welcomes you to Mathematica and provides links to documen-

tation, support, and demonstrations.

On the left side of the welcome screen are icons for creating new documents or opening existing doc-

uments. To open an existing file that is not in the list of recent documents, perhaps a notebook that

you created or one of the chapters of this manual, you click on “Open...” and a standard file selec-

tion dialog will appear that allows to you select the file you want. Otherwise, to create a new docu-

ment to work in, simply click on “Notebook” under “New Document” at the top of the left panel. If

the welcome screen does not appear, you can open existing and create new Notebooks using the File

menu items.

If you are using Mathematica Online or Wolfram Programming Lab or another one of the online systems,

when you log in, you may also be presented with a welcome screen, such as the one below, with an option

to create a new document. Again, clicking on the red button will reveal additional options, and you should

select Notebook. You may also have the option to upload existing Notebook files.

Using the Wolfram Programming Lab in the Open Cloud, you may need to scroll to the bottom of the

welcome window to find the Create a New Notebook link.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

8

Mathematica Notebooks
All the chapters of this manual were created as Mathematica Notebooks. A Notebook can be thought of

like a document in a word processing program. You can type text, change the font, insert images, and

use other typical word processing tasks. However, you also have a powerful mathematical engine at your

fingertips.

In a Notebook, everything you enter and all of the results of computations are stored in cells. We will

mention three kinds of cells: input, output, and text.

To create a new cell, use the mouse or keyboard arrow keys to the bottom of a Notebook or between two

existing cells. You should see a faint horizontal line across the entire window with a plus sign on or below

the line at the left margin.

By clicking on the plus symbol, Mathematica will present you with a menu of the most common cell

types. To create an input cell, click on “Wolfram Language input”, or click on “Plain Text” to create a text

cell.

Alternately, you can press the command key (the cloverleaf on a Mac) and the number 7 (CMD +7 or

+7) to create a text cell. For an input cell, press CMD +9 or +9.

Finally, if you simply start typing, Mathematica will automatically create a new cell for you. The kind of

cell depends on options set in the software and on the particular Notebook’s style, but for a brand new

Notebook with the default options, an input cell should be created if you start typing with the cursor not

in an existing cell.

Evaluating Expressions
To evaluate a mathematical expression, first make sure that the cursor is somewhere in the input cell

containing the expression you wish to evaluate. Then, press shift together with the enter or return key

on the keyboard. Alternatively, if your keyboard includes a numeric keypad, you can press the enter key

alone on the keypad. Try this with the input below.

In[1]:= 2+3

Out[1]= 5

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

9

Here are a few more expressions. Try entering them on your computer.

In[2]:= Sum[i^2,{i,1,10}]

Out[2]= 385

In[3]:= Integrate[(x-1)^3,x]

Out[3]=
1
4

(-1+x)4

In[4]:= Expand[%]

Out[4]=
1
4
-x+

3 x2

2
-x3+

x4

4

The percent symbol, referred to in the Wolfram Language as Out (%), is used to refer to the contents of

the most recent output cell. It does not always refer to the value immediately above it, as evaluation can

be done out of order.

The line numbers, which are automatically attached to the input and output cells, can be used to refer to

specific results by following the Out (%) with the line number. For example, to use the value from output

line 3, you would enter %3.

In[5]:= %3+1

Out[5]= 1+
1
4

(-1+x)4

Note that Out (%) is useful when working interactively, but line numbers change every time you evaluate

cells. In particular, if you save a Notebook and quit Mathematica and then reopen the same Notebook

later, the line numbers may not refer to the same expressions, particularly if you do not evaluate the same

cells in the same order. We tend to avoid using Out (%) in this manual, but you should keep it in mind for

your own computations.

A First Encounter with Mathematica
As already indicated, working with Mathematica is like working with an expert mathematical assistant.

This requires a subtle change in the way you think about a problem. When working on an exercise by hand,

your attention is focused on the details and quite often you can lose sight of the “big picture.” Mathematica
takes care of the details for you and frees you to focus on deciding what needs to be done next. This is not

to say that the details are not important, nor does it imply that you should forgo learning how to solve the

problems by hand.

Much of discrete mathematics is about understanding the relationships between objects or sets of objects

and using mathematical models to capture some property of these objects. Understanding these relation-

ships often requires that you view either the objects or the associated mathematical model in different

ways.

Mathematica allows you to manipulate the mathematical models almost casually. For example, the poly-

nomial (x + y(x + z))3 can be entered in the Wolfram Language as

In[6]:= (x+y*(x+z))^3

Out[6]= (x+y (x+z))3

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

http://reference.wolfram.com/language/ref/Out
http://reference.wolfram.com/language/ref/Out
http://reference.wolfram.com/language/ref/Out
http://reference.wolfram.com/language/ref/Out

10

The result of evaluating this expression is displayed immediately. In this case, Mathematica simply echoes

the polynomial as no special computations were requested.

The power of having a computational tool is that a wide range of standard operations become immediately

available. For example, you can expand, differentiate, and integrate just by telling Mathematica to do so.

Suppose you decided that it would be useful to see the full expansion of the polynomial above. All you

need to do is issue the appropriate command. In this case, the function you would want is the Expand
function, which tells Mathematica to expand the polynomial.

In[7]:= Expand[%]

Out[7]= x3+3 x3 y+3 x3 y2+x3 y3+3 x2 y z+6 x2 y2 z+3
x2 y3 z+3 x y2 z2+3 x y3 z2+y3 z3

(Recall that the percent symbol, the Out (%) operator, refers to the last result.)

Perhaps you decide it would be useful to look at this as a polynomial in the variable x, with the variables

y and z part of the coefficients of x. In this case, you would use the Collect function.

In[8]:= Collect[%,x]

Out[8]= x3 (1+3 y+3 y2+y3)+y3 z3+x2 (3 y z+6 y2 z+3 y3 z)+ x (3
y2 z2+3 y3 z2)

To return to the factored form, simply Factor the previous result.

In[9]:= Factor[%]

Out[9]= (x+x y+y z)3

We used several functions above without explanation. Rest assured that in the body of this manual we

will always provide detailed explanations of the usage and syntax of new functions. The purpose of the

last several paragraphs was not to introduce the commands, but to illustrate how easy it is to quickly

move between different representations of the same object. Having these kinds of routine tasks performed

quickly and accurately means that you are freer to experiment and explore.

A second very important benefit is that the particular computations that you choose to have Mathematica
evaluate are performed accurately. Thus, the results you get from your experiments are much more likely

to be feedback on the model you had chosen rather than nonsense arising from simple arithmetic errors.

Finally, the sheer computational power of Mathematica allows you to run much more extensive experi-

ments and many more of them. This can be important when trying to establish or identify a relationship

between a mathematical model and a collection of discrete objects.

It is worth making some comments about terminology and syntax. First, in this manual, we will use the

terms function or command to refer to Expand, Collect, Factor, and so on. Wolfram Language

functions will appear in blue and will be underlined to indicate that they are links to the Mathematica
documentation.

Second, when you apply a function to one or more objects, the objects are referred to as arguments. To

evaluate a function, you type its name followed by a pair of square brackets. Inside the brackets, you list

the arguments, separated by commas.

In[10]:= Max[9,2,12,14,7,11]

Out[10]= 14

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

http://reference.wolfram.com/language/ref/Expand
http://reference.wolfram.com/language/ref/Out
http://reference.wolfram.com/language/ref/Collect
http://reference.wolfram.com/language/ref/Factor
http://reference.wolfram.com/language/ref/Expand
http://reference.wolfram.com/language/ref/Collect
http://reference.wolfram.com/language/ref/Factor

11

Even functions that do not need any arguments require the brackets. For example, the TimeUsed function

returns the total amount of computer time that the current Mathematica session has used.

In[11]:= TimeUsed[]

Out[11]= 0.80126

The Basics
This section and the next are devoted to introducing you to the most essential Wolfram Language functions

and concepts that will be used throughout this manual. Some of this material will be repeated, often in

more depth, in the first few chapters when the topics arise naturally in conjunction with the content of the

textbook. This section is focused on basic commands and the next focuses on programming.

Help
The most important command is the help command. There is extensive documentation available on all of

the Wolfram Language functions, including examples of how the function is used. There are three primary

ways to access this documentation. First, you can select Wolfram DocumentationWolfram DocumentationWolfram Documentation from the HelpHelpHelp menu.

The documentation center window will open and from there you can browse or search for the function

you need.

Second, within a Notebook, you can enter a question mark (?) followed by the name of a function. For

example, if you wanted more information on the function for computing square roots, you would enter the

following:

In[12]:= ?Sqrt

Sqrt[z] or z gives the square root of z. >>

A brief description is displayed. If you click on the ≫, the full documentation page will open for the

function. Remember that functions discussed in this manual will appear blue and underlined. Clicking

on them will open the documentation page for the function, provided you are using the Mathematica
Notebook version of the chapter with the desktop version of Mathematica.

Third, the complete documentation for the most current version of the Wolfram Language is available at

the website https://reference.wolfram.com.

Wolfram-Alpha Integration
Another useful feature of Mathematica is the integration with Wolfram-Alpha. In particular, you can use

the seamless integration to take advantage of the free-form linguistic input to have Wolfram-Alpha help

you determine the appropriate Wolfram Language syntax. For example, suppose you want to compute the

square root of 9, but do not know about the Sqrt function. You invoke the free-form linguistic interpreta-

tion by beginning an input with an equal sign or selecting “Free-form input” from the new cell drop-down

menu (obtained by clicking on the plus sign visible when the cursor is between cells). Then, you simply

type what you want, for example, “square root of 9”.

= square root of 9

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

http://reference.wolfram.com/language/ref/TimeUsed
https://reference.wolfram.com
http://www.wolframalpha.com
http://www.wolframalpha.com
http://reference.wolfram.com/language/ref/Sqrt

12

When you evaluate such a cell, Mathematica connects to Wolfram-Alpha to interpret your input and dis-

plays the proper Wolfram Language function. Mathematica then evaluates that expression to obtain the

result.

ln[13]:= square root of 9

Sqrt [9]

=

Out[13]= 3

This is a useful way to determine the right function to use. Then, you can explore the documentation to

learn more about the function and its arguments in order to get precisely what you want.

Also note that beginning an input cell with two equal signs will produce results just as if you entered the

query on the Wolfram-Alpha website.

Arithmetic
The Wolfram Language uses the typical notation for arithmetic. For addition and subtraction, the notation

is + and - just as you would expect. The - symbol is used for negation as well. Multiplication and division

are performed with * and /, and ˆ is used for exponentiation.

Mathematica obeys the usual order of precedence for arithmetic operators, and parentheses serve as group-

ing symbols. However, brackets, braces, and angle brackets all have different meanings in the Wolfram

Language and cannot be used as grouping symbols in arithmetic expressions. Thus, to compute the expres-

sion 7 + 2 ⋅
[

5 −
(

2

3
𝜋

)2
]

, you would enter the following, using Pi for 𝜋 and parentheses in place of the

brackets.

In[14]:= 7+2*(5-(2/3*Pi)^2)

Out[14]= 7+2
(
5-

4 𝜋
2

9

)
Note that the multiplication symbol following the 2 is optional. In addition, Mathematica performs some

algebraic simplifications automatically. If you desire additional simplification, you can use theSimplify
function.

In[15]:= Simplify[%]

Out[15]= 17-
8 𝜋

2

9
If you prefer a floating-point approximation of the result, you can use the N function. This function takes

one required argument, an expression, and evaluates it with floating-point arithmetic.

In[16]:= N[%]

Out[16]= 8.22702

Note that N can accept an optional second argument, a positive integer specifying the number of digits of

precision.

In[17]:= N[Pi,10]

Out[17]= 3.141592654

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

http://www.wolframalpha.com
http://www.wolframalpha.com
http://reference.wolfram.com/language/ref/Pi
http://reference.wolfram.com/language/ref/Simplify
http://reference.wolfram.com/language/ref/N
http://reference.wolfram.com/language/ref/N

13

Mathematica works with exact values such as integers and the symbol Pi differently from floating-point

values. By including any decimal in an expression, Mathematica will treat the entire expression as a

floating-point computation. Compare the following two expressions.

In[18]:= 2/3+3/2

Out[18]=
13
6

In[19]:= 2/3+3.0/2

Out[19]= 2.16667

The presence of 3.0 caused Mathematica to evaluate with floating-point computations rather than rational

arithmetic. Note that the trailing 0 is not necessary: entering 3. is sufficient to indicate that you want the

number evaluated using floating-point arithmetic.

In[20]:= 3./5

Out[20]= 0.6

This discussion illustrates the concept of a type. A computer can be much more efficient if it knows what

kinds of things it will be working with. If the computer knows that one object is going to be a floating-point

number whereas another is going to be a string, it will allocate memory differently for the two objects, for

instance.

Types also allow programming languages to make use of operator overloading. This means that the symbol

+ means one thing when applied to two integers, something else when applied to floating-point num-

bers, and something completely different when applied to matrices. The concept of type is what makes it

possible for Mathematica to figure out which version of + is called for at the time.

In the Wolfram Language, types are implemented using heads. Everything in the Wolfram Language is

an expression and every expression is of the form h[...], just like a function, at least in the internal

representation. The symbol h is called the head of the expression. You can use the function Head to

determine the head of any expression.

In[21]:= Head[3]

Out[21]= Integer

In[22]:= Head[3.]

Out[22]= Real

To reveal the internal representation of an expression, you use the FullForm function. Below, we see

that even an expression as simple as x + 3 is viewed by Mathematica as a function applied to arguments.

In[23]:= FullForm[x+3]

Out[23]//FullForm=

Plus[3,x]

In the chapters that follow, understanding the internal representation of expressions will be very useful

to us.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

http://reference.wolfram.com/language/ref/Pi
http://reference.wolfram.com/language/ref/Head
http://reference.wolfram.com/language/ref/FullForm

14

The functions just discussed, N, Head, and FullForm, are similar in that they each require only one

argument. It is common in the Wolfram Language to apply functions such as these, particularly those

whose primary effect is on the form of output, using the Postfix (//) operator, which allows you to

apply a function by ending an expression with the symbol // followed by the name of the function. This

is illustrated below.

In[24]:= E//N

Out[24]= 2.71828

In[25]:= {1,2,3}//Head

Out[25]= List

In[26]:= 3x//FullForm

Out[26]//FullForm=

Times[3,x]

Symbols, Assignment, and Equality
In mathematics, we talk about variables as letters that stand in for something else. In the Wolfram Lan-

guage, this role is filled by symbols. The simplest definition of a symbol in the Wolfram Language is that

a symbol must begin with a letter and may be followed by letters or digits. The following are all valid

symbols: n, x, Pi, and a15.

Symbols can be used as a variable in an algebraic expression as in the following:

In[27]:= 3x^2+5x-7

Out[27]= -7+5 x+3 x2

Symbols can also be used to store particular values using the assignment operator, which is called

Set (=). To assign a value to a symbol, you begin with the symbol, followed by the assignment operator

(the equals sign) and then the expression that you want stored in the symbol. For example, to assign the

value 12 to the symbol y, you type the statement below.

In[28]:= y=12

Out[28]= 12

When a value or other expression has been assigned to a symbol, then any time that symbol appears in an

expression, it is resolved to the value stored in it.

In[29]:= y+5x

Out[29]= 12+5 x

When Mathematica encounters an assignment statement, it first evaluates the right-hand side of the expres-

sion and then makes the assignment. You can use this fact to modify values as follows:

In[30]:= y=2y+1

Out[30]= 25

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

http://reference.wolfram.com/language/ref/N
http://reference.wolfram.com/language/ref/Head
http://reference.wolfram.com/language/ref/FullForm
http://reference.wolfram.com/language/ref/Postfix
http://reference.wolfram.com/language/ref/Pi
http://reference.wolfram.com/language/ref/Set

15

In the statement above, the right-hand side is evaluated first, meaning that the y on the right is resolved

to its “old” value of 12. Mathematica then computes 2 ⋅ 12 + 1 and assigns the value 25 to the symbol y,

overwriting the value stored earlier.

You can remove the value assigned to a symbol by using the Clear function applied to the symbol or

with the Unset (=.) operator. Both of these are illustrated below.

In[31]:= Clear[y]

In[32]:= y=.

Practically any expression can be assigned to a symbol, not just numbers. For example, we can assign the

algebraic expression 2y + 5x to the symbol f.

In[33]:= f=2y+5x

Out[33]= 5 x+2 y

Now, every time f appears, it is resolved to this expression.

In[34]:= Sqrt[f]

Out[34]=
√
5 x+2 y

Even an equation can be assigned to a symbol.

In[35]:= eqn=F==(9/5)*C + 32

Out[35]= F==32+
9 C
5

Observe in the previous example the use of the equal sign as the Set (=) operator defining the symbol

eqn. To express mathematical equality, you must use the Equal (==) relation, which consists of two equal

signs. The previous statement assigns the symbol eqn to the mathematical equation F = 9

5
C + 32. Since

Mathematica understands this to be an equation, we can, for instance, solve it. Given an equation and a

symbol appearing in the equation, the Solve function solves the equation for the given symbol. We can

solve for C as follows.

In[36]:= Solve[eqn,C]

Out[36]= {{C→
5
9

(-32+F)}}

We will have more to say about the format of the output in later chapters. Here, it suffices to understand

that Mathematica has solved the equation eqn and determined that C is
5

9
(−32 + F).

Numbers and Strings
We have already seen that the Wolfram Language distinguishes between integers and real numbers. It also

recognizes rational and complex numbers, with the symbol I used to indicate the imaginary unit.

In[37]:= Head[2/3]

Out[37]= Rational

In[38]:= Head[3+4I]

Out[38]= Complex

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

http://reference.wolfram.com/language/ref/Clear
http://reference.wolfram.com/language/ref/Unset
http://reference.wolfram.com/language/ref/Set
http://reference.wolfram.com/language/ref/Equal
http://reference.wolfram.com/language/ref/Solve
http://reference.wolfram.com/language/ref/I

16

Strings are another basic kind of object in the Wolfram Language. You form a string by enclosing any

sequence of characters within a pair of double quotes. For example, Einstein wrote,

In[39]:= quotation=
"Pure mathematics is, in its way, the poetry of

logical ideas."
Out[39]= Pure mathematics is, in its way, the poetry of logical ideas.

In[40]:= Head[quotation]

Out[40]= String

String may be combined with the concatenation function StringJoin (<>) or its operator, as demon-

strated below.

In[41]:= quotation<>" - Einstein"

Out[41]= Pure mathematics is, in its way,
the poetry of logical ideas. - Einstein

In[42]:= StringJoin["abc","def"]

Out[42]= abcdef

Lists
In the Wolfram Language, a list is an ordered sequence of expressions. Note that the elements or members

of a list can be any expression whatsoever, from numbers to graphics objects. You create a list by entering

the members separated by commas and enclosed in a pair of braces. For example, the following is the list

of integers from 6 to 12.

In[43]:= L={6,7,8,9,10,11,12}

Out[43]= {6,7,8,9,10,11,12}

The head of a list is List.

In[44]:= Head[L]

Out[44]= List

The Part Function
Given a list, you access individual elements, and sublists, with the Part ([[...]]) function, typically

using the double-bracket operator. Elements of a list are indexed beginning with 1, that is, the first element

is in location 1, the second element is in position 2, etc. Thus, to access the third element of the list L, you

enter the following.

In[45]:= L[[3]]

Out[45]= 8

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

http://reference.wolfram.com/language/ref/StringJoin
http://reference.wolfram.com/language/ref/List
http://reference.wolfram.com/language/ref/Part

17

Negative integers can be used with Part ([[...]]) in order to refer to elements of a list counting from

the end. That is, −1 refers to the last element of the list, −2 refers to the next to last, etc.

In[46]:= L[[-2]]

Out[46]= 11

The Wolfram Language also provides two functions, First and Last, that can be used to access those

elements. These have the same effect as calling Part ([[...]]) with index 1 or −1, but are more

descriptive.

In[47]:= First[L]

Out[47]= 6

In[48]:= Last[L]

Out[48]= 12

Lists can be nested, as in the example below.

In[49]:= nestedL={{1,2,3},{4,5,6},{7,8,9}}

Out[49]= {{1,2,3},{4,5,6},{7,8,9}}

Using Part ([[...]]) with a single index will refer to the corresponding sublist.

In[50]:= nestedL[[2]]

Out[50]= {4,5,6}

To obtain individual elements in the sublist, you can either apply Part ([[...]]) a second time or

follow the index of the sublist with a comma and an index into the sublist. Both of the following access

the first element of the second sublist.

In[51]:= nestedL[[2]][[1]]

Out[51]= 4

In[52]:= nestedL[[2,1]]

Out[52]= 4

Part ([[...]]) is also used to obtain sublists. To do this, you provide a list (enclosed in braces) of the

desired indices to Part ([[...]]). Note that the order of the indices determines the order of the output.

For example, to obtain the sublist of L consisting of the third, seventh, and fifth elements, you enter the

following.

In[53]:= L[[{3,7,5}]]

Out[53]= {8,12,10}

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

http://reference.wolfram.com/language/ref/Part
http://reference.wolfram.com/language/ref/First
http://reference.wolfram.com/language/ref/Last
http://reference.wolfram.com/language/ref/Part
http://reference.wolfram.com/language/ref/Part
http://reference.wolfram.com/language/ref/Part
http://reference.wolfram.com/language/ref/Part
http://reference.wolfram.com/language/ref/Part

18

You can use the Span (;;) operator in conjunction with Part ([[...]]) in order to obtain a sublist.

Within Part ([[...]]), a;;b refers to the sublist of elements from index a to index b. The following

produces the sublist of L from index 2 through 5.

In[54]:= L[[2;;5]]

Out[54]= {7,8,9,10}

You can use 1 and −1 within a Span (;;) to refer to the beginning and end of the original list. You

can also simply omit a or b and Mathematica will interpret that Span (;;) as beginning at the start or

stopping at the end of the list, respectively.

In[55]:= L[[;;3]]

Out[55]= {6,7,8}

In[56]:= L[[5;;]]

Out[56]= {10,11,12}

We mentioned above that every expression in the Wolfram Language is, internally, represented as a head

applied to a number of arguments. Lists are no different, as FullForm reveals.

In[57]:= FullForm[L]

Out[57]//FullForm=

List[6,7,8,9,10,11,12]

This recognition leads us to two observations.

First, Part ([[...]]) is not a function that applies exclusively to lists. Rather, it can be used with any

expression, with the index referring to the positions of the elements within the brackets. For example,

consider the sum below.

In[58]:= sum=a+b+c+d+e

Out[58]= a+b+c+d+e

In[59]:= FullForm[sum]

Out[59]//FullForm=

Plus[a,b,c,d,e]

We can use Part ([[...]]) to access the individual elements being summed.

In[60]:= sum[[3]]

Out[60]= c

The second observation is that this universality of Part ([[...]]) provides a natural meaning to the

index 0. Namely, index 0 refers to the head of the expression.

In[61]:= L[[0]]

Out[61]= List

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

http://reference.wolfram.com/language/ref/Span
http://reference.wolfram.com/language/ref/Part
http://reference.wolfram.com/language/ref/Part
http://reference.wolfram.com/language/ref/Span
http://reference.wolfram.com/language/ref/Span
http://reference.wolfram.com/language/ref/FullForm
http://reference.wolfram.com/language/ref/Part
http://reference.wolfram.com/language/ref/Part
http://reference.wolfram.com/language/ref/Part

19

In[62]:= sum[[0]]

Out[62]= Plus

The Range Function
Having discussed Part ([[...]]) for accessing elements of lists (and other expressions), we now turn

to two important functions for creating lists. The first of these is Range, which is used to create simple

lists comprised of sequential numbers.

Range can accept one, two, or three arguments. Given a single argument, max, Range produces the

list of positive integers beginning with 1 and up to max. For example, the code below creates the list of

integers from 1 to 10.

In[63]:= Range[10]

Out[63]= {1,2,3,4,5,6,7,8,9,10}

With two arguments, min and max, the output of Range is the numbers beginning with min and up to

max. For example, the following produces the list of integers from −3 to 7.

In[64]:= Range[-3,7]

Out[64]= {-3,-2,-1,0,1,2,3,4,5,6,7}

Adding a third argument, step, Range will output the list beginning at min up to a maximum of max and

increasing by step each time. For example, to produce the even integers from 10 to 20, you would give a

step of 2.

In[65]:= Range[10,20,2]

Out[65]= {10,12,14,16,18,20}

Note that max is not necessarily an element of the output, it serves as an upper bound. In the example

below, the maximum will not be included in the list, given the step.

In[66]:= Range[1,10,4]

Out[66]= {1,5,9}

Also note that the arguments to the Range function are not required to be integers, as the following

illustrate:

In[67]:= Range[3.7]

Out[67]= {1,2,3}

In[68]:= Range[2.3,7.9]

Out[68]= {2.3,3.3,4.3,5.3,6.3,7.3}

In[69]:= Range[.1,1.5,.2]

Out[69]= {0.1,0.3,0.5,0.7,0.9,1.1,1.3,1.5}

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

http://reference.wolfram.com/language/ref/Part
http://reference.wolfram.com/language/ref/Range
http://reference.wolfram.com/language/ref/Range
http://reference.wolfram.com/language/ref/Range
http://reference.wolfram.com/language/ref/Range
http://reference.wolfram.com/language/ref/Range
http://reference.wolfram.com/language/ref/Range

20

The Table function
The Table function is a more flexible way to create lists. Table requires two arguments. The first

argument is an expression, usually written in terms of a variable called the table variable or table index.

The second argument specifies the values that the table variable are to take. The result of Table is that

the expression given as the first argument is evaluated for each of the specified values of the table index,

and a list is built out of those results.

To make this more precise, consider the example below, which produces the list of the squares of the first

ten positive integers.

In[70]:= Table[i^2,{i,10}]

Out[70]= {1,4,9,16,25,36,49,64,81,100}

In the above, the symbol i is used as the table variable. The first argument to Table, the expression iˆ2,

indicates that the list that is produced will contain the squares of the values of i. The second argument

to Table, called the iteration specification, has a variety of forms. In the above, the first element of the

iteration specification identifies i as the table variable. The second element, 10, indicates that the variable

iwill be assigned the integers from 1 up to a maximum of 10. Note the similarity to the syntax of Range.

There are two more forms of the iteration specification corresponding to the other ways to invoke Range.

To specify both a minimum and maximum for the table variable, you give the iteration specification as

{var,min,max}, where var is the table variable. The following produces the squares of the integers from

5 to 12.

In[71]:= Table[i^2,{i,5,12}]

Out[71]= {25,36,49,64,81,100,121,144}

A step is specified by the iteration specification {var,min,max, step}. The following outputs the list of

squares of the first 10 even integers.

In[72]:= Table[i^2,{i,2,20,2}]

Out[72]= {4,16,36,64,100,144,196,256,324,400}

You can also identify a specific list of possible values by giving the iteration specification {var, list}. For

example, the following produces the list of the squares of the first 6 primes.

In[73]:= Table[i^2,{i,{2,3,5,7,11,13}}]

Out[73]= {4,9,25,49,121,169}

Note that this form can be used with nonnumeric iteration specifications. For example, the following

uses the StringJoin (<>) operator with Table to create a list of the five English words of the form

“p”-vowel-“t”.

In[74]:= Table["p"<>v<>"t",{v,{"a","e","i","o","u"}}]

Out[74]= {pat,pet,pit,pot,put}

The last possible iteration specification consists of a single integer, omitting the table variable. The output

from Table will be that number of copies of the first argument. For example, the following produces a

list of 10 zeros.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

http://reference.wolfram.com/language/ref/Table
http://reference.wolfram.com/language/ref/Table
http://reference.wolfram.com/language/ref/Table
http://reference.wolfram.com/language/ref/Table
http://reference.wolfram.com/language/ref/Table
http://reference.wolfram.com/language/ref/Range
http://reference.wolfram.com/language/ref/Range
http://reference.wolfram.com/language/ref/StringJoin
http://reference.wolfram.com/language/ref/Table
http://reference.wolfram.com/language/ref/Table

21

In[75]:= Table[0,10]

Out[75]= {0,0,0,0,0,0,0,0,0,0}

Note that the same effect can be obtained with ConstantArray.

In[76]:= ConstantArray[0,10]

Out[76]= {0,0,0,0,0,0,0,0,0,0}

The table below summarizes the possible forms of the iteration specification for Table.

count count copies

{i,max} i ranges from 1 to max
{i,min,max} iranges from min to max

{i,min,max, step} i ranges from min to max by step
{i, list} i ranges over elements of list

The Map Function
The Map (/@) function is used to apply a function to a list of elements. As a function, Map (/@) takes two

arguments: the name of a function and a list. (Technically, the second argument can be any expression, not

just a list, but we will not explore that here.) For example, the following applies the square root function

to a list of elements.

In[77]:= Map[Sqrt,{4,9,16,25,36}]

Out[77]= {2,3,4,5,6}

Observe that the function used in Map (/@) is the name of a function, not an expression, and there is

no variable involved. Map (/@) should be viewed as a more fundamental version of Table, and in fact,

Table could be defined as a particular application of Map (/@).

Like many of the fundamental commands, Map (/@) has an operator form, which is illustrated below.

In[78]:= Sqrt/@{4,9,16,25,36}

Out[78]= {2,3,4,5,6}

It can be helpful to look at the result of applying Map (/@) with an undefined symbol in place of the

function.

In[79]:= function/@Range[5]

Out[79]= {function[1],function[2],function[3],function[4],function[5]}

This reveals the operation of Map (/@) very clearly. When Mathematica applies Map (/@) to a symbol

and a list, it applies the symbol to each member of the list. If the symbol is a defined function, Mathematica
would then evaluate the function at those values.

The Apply Function
Apply (@@) is another essential function. Keeping in mind that every expression in the Wolfram Language

consists of a head followed by a list of arguments in brackets, Apply (@@) simply replaces the head of an

expression.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

http://reference.wolfram.com/language/ref/ConstantArray
http://reference.wolfram.com/language/ref/Table
http://reference.wolfram.com/language/ref/Map
http://reference.wolfram.com/language/ref/Map
http://reference.wolfram.com/language/ref/Map
http://reference.wolfram.com/language/ref/Map
http://reference.wolfram.com/language/ref/Table
http://reference.wolfram.com/language/ref/Table
http://reference.wolfram.com/language/ref/Map
http://reference.wolfram.com/language/ref/Map
http://reference.wolfram.com/language/ref/Map
http://reference.wolfram.com/language/ref/Map
http://reference.wolfram.com/language/ref/Map
http://reference.wolfram.com/language/ref/Apply
http://reference.wolfram.com/language/ref/Apply

22

We can make this explicit by using Apply (@@) with two undefined heads. First, we define an expression

applyExample.

In[80]:= applyExample=head1[1,2,3,4,5]

Out[80]= head1[1,2,3,4,5]

Since head1 is undefined, Mathematica simply echoes the definition. Using Apply (@@), we can replace

the head head1 with a new head, say head2.

In[81]:= head2@@applyExample

Out[81]= head2[1,2,3,4,5]

One important use ofApply (@@) is to apply a function to a list. More precisely, given a list and a function,

Apply (@@) can be used to evaluate the function with the elements of the list as arguments. For example,

using Apply (@@) and the Plus function, we can sum the elements of a list.

In[82]:= Plus@@{1,2,3,4,5}

Out[82]= 15

Using symbols instead of actual numbers and FullForm reveals that, just as before, Apply (@@) is

causing the head of the expression to be replaced, this time List is replaced by Plus.

In[83]:= applyExample2={val1,val2,val3,val4,val5}

Out[83]= {val1,val2,val3,val4,val5}

In[84]:= FullForm[applyExample2]

Out[84]//FullForm=

List[val1,val2,val3,val4,val5]

In[85]:= Plus@@applyExample2

Out[85]= val1+val2+val3+val4+val5

In[86]:= FullForm[%]

Out[86]//FullForm=

Plus[val1,val2,val3,val4,val5]

Printing
We end this section with a brief description of the Print function. In most cases, the only information

we need to display is the final result of some computation. However, occasionally we may want to explic-

itly cause some information to be displayed. For example, in troubleshooting functions you create, it is

common to have information printed as the function is evaluated so as to track internal variables.

The Print function can be applied to any number of arguments. The result is that the values of the

arguments are displayed together on a single line of output. For example, the following displays the value

of 2 + 3, the string “hello”, and the list L from above.

In[87]:= Print[2+3,"hello",L]

5hello{6,7,8,9,10,11,12}

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

http://reference.wolfram.com/language/ref/Apply
http://reference.wolfram.com/language/ref/Apply
http://reference.wolfram.com/language/ref/Apply
http://reference.wolfram.com/language/ref/Apply
http://reference.wolfram.com/language/ref/Apply
http://reference.wolfram.com/language/ref/Plus
http://reference.wolfram.com/language/ref/FullForm
http://reference.wolfram.com/language/ref/Apply
http://reference.wolfram.com/language/ref/List
http://reference.wolfram.com/language/ref/Plus
http://reference.wolfram.com/language/ref/Print
http://reference.wolfram.com/language/ref/Print

23

Observe that the arguments to Print are evaluated, but no space is added. Also observe that Print
does not produce output (technically, its output is the special symbol Null).

Similar to Print is Row, which is applied to a list and displays the elements in a row.

In[88]:= Row[{2+3,"hello",L}]

Out[88]= 5hello{6,7,8,9,10,11,12}

Row can take a second argument, which is used as a separator between elements of the list. For example,

to add a comma and space between the elements when displayed, enter the following.

In[89]:= Row[{2+3,"hello",L},", "]

Out[89]= 5, hello, {6,7,8,9,10,11,12}

Note that both Print and Row will split lines as needed to fit to the width of your window.

Finally, Column is used to print the elements of a list vertically.

In[90]:= Column[{2+3,"hello",L}]

Out[90]= 5
hello
{6,7,8,9,10,11,12}

Column can accept a second argument specifying the alignment of the elements. Valid options are Left,

Center, and Right.

In[91]:= Column[{2+3,"hello",L},Center]

Out[91]= 5
hello

6,7,8,9,10,11,12

A third argument can be used to increase the vertical spacing between rows.

In[92]:= Column[{2+3,"hello",L},Center,1]

Out[92]= 5

hello

6,7,8,9,10,11,12

Programming Preliminaries
This section is intended for those readers who have little or no previous exposure to programming. We

will endeavor to provide you with enough information to get you started so that you can work productively

with the Wolfram Language. For further information, you are encouraged to consult the Wolfram Lan-

guage guides and tutorials, which will provide you with additional examples of the use of Mathematica’s

programming facilities.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

http://reference.wolfram.com/language/ref/Print
http://reference.wolfram.com/language/ref/Print
http://reference.wolfram.com/language/ref/Null
http://reference.wolfram.com/language/ref/Print
http://reference.wolfram.com/language/ref/Row
http://reference.wolfram.com/language/ref/Row
http://reference.wolfram.com/language/ref/Print
http://reference.wolfram.com/language/ref/Row
http://reference.wolfram.com/language/ref/Column
http://reference.wolfram.com/language/ref/Column
http://reference.wolfram.com/language/ref/Left
http://reference.wolfram.com/language/ref/Center
http://reference.wolfram.com/language/ref/Right

24

All programming languages provide a few basic means for the construction of algorithms. On the most

basic level, a computer program is a sequence of instructions that the computer executes one after the

other. Programs become more sophisticated when you start changing the flow of execution. The Wolfram

Language provides the same sort of mechanisms for flow control as is found in traditional programming

languages such as C. While the syntax varies from one computer language to the next, there are two

primary kinds of control structures used: branching and iteration.

The Wolfram Language, from a programming perspective, is a multi-paradigm language, which gives it

flexibility. However, given the style of syntax, it is most natural to work with it as a functional language,

which gives it a substantially different flavor from an imperative, or procedural, paradigm. Those readers

with experience with imperative languages, and object-oriented languages particularly, will find that a

functional approach requires a shift in the way you think about programs.

Branching
We will first discuss the concept of branching and its implementation in the Wolfram Language. Branch-

ing is a mechanism that allows you to choose between expressions based on conditions that can only

be determined during a program’s execution or evaluation. This is also called a selection or conditional

statement.

If
As an example, suppose that you want to display a message based on whether a particular value is positive.

First, we assign a value to the symbol z.

In[93]:= z=5

Out[93]= 5

The following will output the string “That’s positive” if the value stored in z is greater than zero.

In[94]:= If[z>0,
"That’s positive"

]

Out[94]= That’s positive

First note that, in order to begin a new line within an input cell, you simply press the return or enter key on

the alpha-numeric keyboard (without holding the shift key down). The line breaks and extra spaces are not

required, however, and in fact Mathematica ignores them entirely. That said, they often make functions

easier to read and understand.

Typically, the condition in an If depends on a value input to a function, some intermediary calculation,

or a value that changes during execution. In these examples, think about the symbol z as storing some

value that varies based on some other computations. For instance, z could be the value of some function

at a particular point. In that case, the value of z would depend on which point was chosen.

Let us now dissect the expression above. You can think of the expression as an application of a function

If to two arguments. It perhaps seems odd to think of If as a function, especially if you are familiar with

imperative languages, and it may be more comfortable to think of the input above merely as an expression

with head If. However, If is a perfectly valid function, in that it accepts arguments and returns output.

The first argument to If is a conditional expression, that is, an expression that Mathematica can evaluate

to True or False. Conditional expressions may include expressions that include relational operators

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

http://reference.wolfram.com/language/ref/If
http://reference.wolfram.com/language/ref/If
http://reference.wolfram.com/language/ref/If
http://reference.wolfram.com/language/ref/If
http://reference.wolfram.com/language/ref/If
http://reference.wolfram.com/language/ref/If
http://reference.wolfram.com/language/ref/True
http://reference.wolfram.com/language/ref/False

25

(e.g., <, <=, ==, >, >=, =!), logical operators (&&, ||, !), or functions that return logical values (True
or False). We will see many examples of conditional expressions in Chapter 1.

The second argument to If is the expression evaluated in the case that the condition evaluates to True.

This is commonly referred to as the “then clause” in many languages. Note that you can include more than

one expression in the “then clause” by separating them with semicolons.

When you evaluate the expression above, Mathematica first evaluates the conditional expression z > 0.

Since this is a true statement (because z happened to be 5), Mathematica evaluates the second argument

of the If. The result of evaluating the “then clause,” that is, the second argument, is the output from the

If expression. If the first argument had not evaluated to True, then the second argument would not have

been evaluated and the output of the function would have been Null.

Below is another example, in which the conditional statement is false.

In[95]:= If[z≥≥≥10,
"That has at least two digits."

]

Notice that, in this case, nothing is displayed. In fact, the output is the symbol Null, which we can see

by applying FullForm to the outcome of the expression.

In[96]:= FullForm[%]

Out[96]//FullForm=

Null

The Else Clause
Often, you will want to take one action if a condition is true and a different action if a condition is false.

The optional third argument to If, called the “else clause” in many languages, allows you to specify an

expression to be evaluated if the condition is false.

In[97]:= If[z<0,
"Negative",
"Not negative"

]

Out[97]= Not negative

In the expression above, Mathematica determines that the result of evaluating z < 0 is False. Since there

is a third argument to the If expression, Mathematica then evaluates that third expression causing it to

be the output for the cell.

Note that, in the Wolfram Language, many expressions are neither True nor False. For example, the

expression in the first argument of an If could evaluate to a number, as below.

In[98]:= If[z+2,
"true",
"false"

]

Out[98]= If[7,true,false]

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

http://reference.wolfram.com/language/ref/True
http://reference.wolfram.com/language/ref/False
http://reference.wolfram.com/language/ref/If
http://reference.wolfram.com/language/ref/True
http://reference.wolfram.com/language/ref/If
http://reference.wolfram.com/language/ref/If
http://reference.wolfram.com/language/ref/True
http://reference.wolfram.com/language/ref/Null
http://reference.wolfram.com/language/ref/Null
http://reference.wolfram.com/language/ref/FullForm
http://reference.wolfram.com/language/ref/If
http://reference.wolfram.com/language/ref/False
http://reference.wolfram.com/language/ref/If
http://reference.wolfram.com/language/ref/True
http://reference.wolfram.com/language/ref/False
http://reference.wolfram.com/language/ref/If

26

To handle cases such as this, If allows for a fourth argument to be evaluated whenever the first argument

resolves to any value other than True or False.

In[99]:= If[z+2,
"true",
"false",
"neither"

]

Out[99]= neither

This is particularly useful to ensure that the expressions you create are robust, that is, they can handle “bad

data.” For example, if the symbol z were assigned to a letter, Mathematica will not evaluate a comparison

using Greater (>).

In[100]:= z2="x"

Out[100]= x

In[101]:= z2>0

Out[101]= x>0

In this case, the If expression above will simply be echoed.

In[102]:= If[z2<0,
"Negative",
"Not negative"

]

Out[102]= If[x<0,Negative,Not negative]

The fourth argument can be used to call attention to the bad value.

In[103]:= If[z2<0,
"Negative",
"Not negative",
"Something’s wrong"

]

Out[103]= Something’s wrong

Which
Many programming languages provide an “else if” structure. In the Wolfram Language, this is accom-

plished via the Which function.

The Which function requires an even number of arguments in test/value pairs. Consider the following

example.

In[104]:= z3=1

Out[104]= 1

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

http://reference.wolfram.com/language/ref/If
http://reference.wolfram.com/language/ref/True
http://reference.wolfram.com/language/ref/False
http://reference.wolfram.com/language/ref/Greater
http://reference.wolfram.com/language/ref/If
http://reference.wolfram.com/language/ref/Which
http://reference.wolfram.com/language/ref/Which

27

In[105]:= Which[
z3==0,
"z3 is 0",
z3==1,
"z3 is 1",
z3==2,
"z3 is 2"

]

Out[105]= z3 is 1

The Which expression above has six arguments, that is, three test/result pairs. The first argument, z3==0,

the third argument, z3==1, and the fifth argument, z3==2, are expressions that test the value of z3
against the integers 0, 1, and 2. The result arguments, that is, the second, fourth, and sixth, express the

output should the corresponding test evaluate to True. In the above, since z3 was set to 1, the output is

the value expression following the test comparing z3 to 1.

When Mathematica encounters a Which expression, it first evaluates the first argument. If the result of the

first argument is True, then it evaluates the second argument and that result is the output of the Which.

If the first argument does not evaluate to True, then Mathematica moves on to the third argument and

evaluates it. If the third argument evaluates to True, then the fourth argument is evaluated and is the

output. Continuing in the same way, Mathematica evaluates each odd argument in turn until one produces

True, at which point the next result argument is evaluated and that value is the output of the Which.

If no test argument evaluates to True, then the output of the Which will be Null.

Note that once a test expression evaluates to True, Mathematica evaluates the corresponding value

expression and then terminates evaluation of the Which. In particular, no further test expressions are eval-

uated, so if multiple test expressions evaluate to True, the output is determined by the value expression

from the first such test.

To illustrate this, we modify the Which expression above to test for less than or equal. We also use the

fact that each argument can be given as a sequence of expressions separated by semicolons in order to

embed Print statements within the test arguments. This allows us to see exactly which arguments in the

Which are being evaluated.

In[106]:= Which[
Print["testing <=0"];z3≤≤≤0,
"z3 is at most 0",
Print["testing <=1"];z3≤≤≤1,
"z3 is at most 1",
Print["testing <=2"];z3≤≤≤2,
"z3 is at most 2"

]

testing <=0

testing <=1

Out[106]= z3 is at most 1

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

http://reference.wolfram.com/language/ref/Which
http://reference.wolfram.com/language/ref/True
http://reference.wolfram.com/language/ref/Which
http://reference.wolfram.com/language/ref/True
http://reference.wolfram.com/language/ref/Which
http://reference.wolfram.com/language/ref/True
http://reference.wolfram.com/language/ref/True
http://reference.wolfram.com/language/ref/True
http://reference.wolfram.com/language/ref/Which
http://reference.wolfram.com/language/ref/True
http://reference.wolfram.com/language/ref/Which
http://reference.wolfram.com/language/ref/Null
http://reference.wolfram.com/language/ref/True
http://reference.wolfram.com/language/ref/Which
http://reference.wolfram.com/language/ref/True
http://reference.wolfram.com/language/ref/Which
http://reference.wolfram.com/language/ref/Print
http://reference.wolfram.com/language/ref/Which

28

Observe that “testing <=2” is never printed, indicating that the third test argument is never evaluated.

Once a true test is encountered, any further arguments are ignored.

To include an “else clause” within a Which, that is, to specify output for the case where none of the tests

evaluate to True, simply include a final test/result pair with the test expression set to True. If any of the

other test expressions are satisfied, then Mathematica will never encounter the final test. However, if none

of the other tests are true, then True certainly is satisfied and the final result will be evaluated. This is

illustrated below.

In[107]:= Which[
z3==5,
"z3 is 5",
z3==6,
"z3 is 6",
True,
"z3 is neither 5 nor 6"

]

Out[107]= z3 is neither 5 nor 6

Iteration
The previous subsection showed how to use branching in the Wolfram Language to evaluate different

expressions depending on whether or not a specified condition was met. In this section, we look at ways

to repeat a block of code. Iteration is the mechanism for doing a given task repeatedly and is typically

accomplished by a loop structure.

For Loops
One of the most commonly used types of iteration is the For loop. The simplest kind of For loop executes

a statement for each integer in a particular range. The example below prints the squares of the integers

from 3 to 5.

In[108]:= For[i=3,
i≤≤≤5,
i++,
Print[i^2]

]

9

16

25

A For expression in the Wolfram Language has four arguments with the following structure:

For[init, test, incr, body]. The first argument, init, is the initialization statement. This is typically, such as

i=3, an assignment of a symbol, called the loop variable, to an initial value. Note that the loop variable

in a For loop is not automatically local to the loop, so if i had meaning before the loop above was

evaluated, that value is now changed. Later in this chapter, we will see how to define scope for variables.

The second argument to aFor loop, the test, defines the bound of the loop. This is commonly an inequality.

In the example, i<=5 indicates that the loop will continue until the value of the loop variable is greater

than 5.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

http://reference.wolfram.com/language/ref/Which
http://reference.wolfram.com/language/ref/True
http://reference.wolfram.com/language/ref/True
http://reference.wolfram.com/language/ref/True
http://reference.wolfram.com/language/ref/For
http://reference.wolfram.com/language/ref/For
http://reference.wolfram.com/language/ref/For
http://reference.wolfram.com/language/ref/For
http://reference.wolfram.com/language/ref/For

29

The third argument, incr, is the increment. This argument defines how the loop variable is to be mod-

ified each time the body of the loop completes. Be certain that your increment expression modifies the

loop variable, or the loop will never terminate. In the example, we used the Increment (++) opera-

tor, which is equivalent to i=i+1. The Decrement (--) operator, which decreases the value of the

variable by 1, is also popular for this purpose, but any expression that modifies the value of the loop

variable is valid for the third argument, provided that repeated execution of incr will eventually cause the

test to fail.

The final argument is the body of the loop. This argument contains the expression, or sequence of expres-

sions separated by semicolons, to be executed.

Now that we have established the meaning of each of the arguments to For, let us trace through what

Mathematica actually does when evaluating a loop like the above.

First, Mathematica evaluates the initialization expression. In our example, this sets the loop variable

i to 3.

Second, Mathematica immediately evaluates the test. If test evaluates to False, then the loop is ter-

minated. Observe that this makes For loops that never execute their body possible, if the initialization

assignment causes the test to immediately fail. This is a sometimes useful technique.

Third, assuming the initial value passes the test, the body is evaluated next.

Each time the body has been evaluated, evaluation then moves to the third argument, the increment. Again,

the increment argument needs to modify the loop variable in such a way as to eventually force the test to

fail. Otherwise, you will create an infinite loop, which can cause Mathematica to crash and you to lose

your work. Always be careful with loops and save your work before evaluating them.

After each increment, test is evaluated. If the test is True, then flow returns to the body, otherwise the

loop is terminated.

Note that the output of a For loop is always Null. They are typically used not to produce output of their

own, but to repeatedly perform some action that affects values or structures stored in symbols.

While Loops
A While loop is a more general type of loop structure. A While expression in the Wolfram Language

involves only two arguments: a test and a body. In aWhile loop, the test and body are evaluated alternately

until the test fails to produce True.

Consider the following example.

In[109]:= i=2;
While[i<10^7,

Print[i];
i=i^2+2

]

2

6

38

1446

2090918

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

http://reference.wolfram.com/language/ref/Increment
http://reference.wolfram.com/language/ref/Decrement
http://reference.wolfram.com/language/ref/For
http://reference.wolfram.com/language/ref/False
http://reference.wolfram.com/language/ref/For
http://reference.wolfram.com/language/ref/True
http://reference.wolfram.com/language/ref/For
http://reference.wolfram.com/language/ref/Null
http://reference.wolfram.com/language/ref/While
http://reference.wolfram.com/language/ref/While
http://reference.wolfram.com/language/ref/While
http://reference.wolfram.com/language/ref/True

30

Let us look at that example carefully. First, we assigned the value 2 to the symbol i. This is similar to the

initialization in aFor loop, but must take place outside the structure of theWhile expression. This should

be viewed as adding flexibility, since in many cases the initialization process itself can be quite involved.

The first argument is the conditional statement that controls the loop. This can be any condition you want.

The condition is followed by the body of the loop. The statement sequence is executed repeatedly until

the condition is false.

In our example, there are two expressions in the body argument. First, the current value of i is printed.

Then, the value of i is changed to the result of squaring it and adding 2. This continues as long as the

value of i is less than 107.

It is very important in a While loop to be sure that the body of the loop will eventually have the effect

of making the controlling condition false. Think about what would happen if the second expression in the

body of the previous loop had been i=i-2. In that case, i would have started out equal to 2. It would

then become 0, then −2, then −4, then −6, etc, and it would never exceed 107, so it would never cease—an

infinite loop. It requires great care to avoid creating infinite loops in While loops, even more so than with

For loops.

Do Loops
A third kind of loop in the Wolfram Language is the Do loop. While the Do loop is less flexible than

While, its syntax and unique semantics make it very useful.

A Do expression requires two arguments, but unlike both While and For, the body of the loop is the first

argument. The second argument defines a loop variable and specifies its iteration using the same syntax

as the Table function. In fact, Do and Table operate in very similar ways, the difference being in the

output. Where Table builds a list from the results of evaluating its body, Do should be thought of as

merely executing the commands in its body and outputs Null, just as For and While.

For reference, we repeat the table of allowed iteration specifications from above.

count count copies

{i,max} i ranges from 1 to max
{i,min,max} iranges from min to max

{i,min,max, step} i ranges from min to max by step
{i, list} i ranges over elements of list

Below, we use a Do loop to print the squares of a list of integers.

In[111]:= Do[
Print["The square of ",i," is ",i^2],
{i,{2,5,6,11,8}}

]

The square of 2 is 4

The square of 5 is 25

The square of 6 is 36

The square of 11 is 121

The square of 8 is 64

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

http://reference.wolfram.com/language/ref/For
http://reference.wolfram.com/language/ref/While
http://reference.wolfram.com/language/ref/While
http://reference.wolfram.com/language/ref/While
http://reference.wolfram.com/language/ref/For
http://reference.wolfram.com/language/ref/Do
http://reference.wolfram.com/language/ref/Do
http://reference.wolfram.com/language/ref/While
http://reference.wolfram.com/language/ref/Do
http://reference.wolfram.com/language/ref/While
http://reference.wolfram.com/language/ref/For
http://reference.wolfram.com/language/ref/Table
http://reference.wolfram.com/language/ref/Do
http://reference.wolfram.com/language/ref/Table
http://reference.wolfram.com/language/ref/Table
http://reference.wolfram.com/language/ref/Do
http://reference.wolfram.com/language/ref/Null
http://reference.wolfram.com/language/ref/For
http://reference.wolfram.com/language/ref/While
http://reference.wolfram.com/language/ref/Do

31

Premature Loop Exit
Sometimes it is necessary to terminate a loop prematurely. This may be in order to prevent an error or

because the logic of a particular problem dictates that it must. In imperative and procedural languages, it

is common to use “break” statements to terminate a loop or “return” statements to terminate a loop with

a particular value. The Wolfram Language includes both of these.

Breakwill immediate exit the enclosing Do, For, or While loop. Note that Breakmust be called with

brackets but no argument.

Similarly, Returnwill also terminate a loop in which it is contained. Return can also be called with no

argument, but it is typically given an argument, in which case that argument will be the output from the

loop it is terminating. Return can also be used within a function definition or module (described below)

to prematurely terminate evaluation of those structures.

In this manual, we generally avoid the use of both Break and Return. Part of the reason for this

is practical. In particular, Return behaves somewhat differently in the Wolfram Language than

in many other programming languages, specifically with regard to its scope. While its behavior in

the Wolfram Language is completely predictable, it can be confusing if you are used to procedural

languages. The other part of the reason for avoiding Break and Return is stylistic. The Wolfram

Language has a functional flavor, whereas Break and Return are more properly part of imperative

languages.

Instead, we will use the Catch and Throw mechanism. In some languages, “catch” and “throw” are

used for error handling. In the Wolfram Language, they are used for more general flow control and short

circuiting of loops. They have a more functional style than Break and Return and, unlike Return,

their scope is explicit.

The basic idea of Catch and Throw is that you surround an expression, such as a loop construct or

sequence of expressions, within Catch. The first time Throw is encountered, evaluation within the

Catch is terminated and the output of the Catch block is set to be the argument of Throw.

Consider the example below, which determines the smallest positive integer n for which the total stopping

time of n is greater than 50. (The reader is encouraged to research the Collatz conjecture, which forms the

basis of this example.)

In[112]:= n=1;
Catch[

While[True,
n=n+1;
m=n;
count=0;
While[m≠≠≠1,

If[OddQ[m],
m=3*m+1,
m=m/2

];
count=count+1;

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

http://reference.wolfram.com/language/ref/Break
http://reference.wolfram.com/language/ref/Do
http://reference.wolfram.com/language/ref/For
http://reference.wolfram.com/language/ref/While
http://reference.wolfram.com/language/ref/Break
http://reference.wolfram.com/language/ref/Return
http://reference.wolfram.com/language/ref/Return
http://reference.wolfram.com/language/ref/Return
http://reference.wolfram.com/language/ref/Break
http://reference.wolfram.com/language/ref/Return
http://reference.wolfram.com/language/ref/Return
http://reference.wolfram.com/language/ref/Break
http://reference.wolfram.com/language/ref/Return
http://reference.wolfram.com/language/ref/Break
http://reference.wolfram.com/language/ref/Return
http://reference.wolfram.com/language/ref/Catch
http://reference.wolfram.com/language/ref/Throw
http://reference.wolfram.com/language/ref/Break
http://reference.wolfram.com/language/ref/Return
http://reference.wolfram.com/language/ref/Return
http://reference.wolfram.com/language/ref/Catch
http://reference.wolfram.com/language/ref/Throw
http://reference.wolfram.com/language/ref/Catch
http://reference.wolfram.com/language/ref/Throw
http://reference.wolfram.com/language/ref/Catch
http://reference.wolfram.com/language/ref/Catch
http://reference.wolfram.com/language/ref/Throw

32

If[count>50,
Throw[n]

]
]

]
]

Out[113]= 27

In the above, the first While loop is intentionally an infinite loop—the condition under which it continues

is the expression True. The inner While loop executes the Collatz process, which, given an integer m,

either multiples by 3 and adds 1 if it is odd or divides by 2 if it is even. Once this is done, count is

incremented. The inner While loop is conditioned on the relation m ≠ 1, so the loop will continue until

m becomes 1. When the inner While loop terminates, the value of count will be the number of steps of

the Collatz process required to take the integer n to 1. This value is called the total stopping time of n.

The If expression within the inner While watches for the value of count to exceed 50. When count
is found to be greater than 50, the Throw is encountered with argument n. This causes evaluation to stop,

terminating both loops, and causing the value of n to be the outcome of the Catch.

Defining Functions and Modules
In the Wolfram Language, functions and programs are nearly synonymous. Here, we will explain how

to define functions in the Wolfram Language and how the module structure is used to protect symbol

definitions.

A function definition consists of four elements: the symbol used to name the function, the definition of

the allowed arguments, the assignment operator, and the body of the function.

We first comment on the assignment operator. Thus far, we have usedSet (=) to define values for symbols.

When defining a function, however, you should always use SetDelayed (:=). This prevents the body

of the function from being prematurely evaluated, which can result in a variety of unexpected behavior.

Consider the simple function definition below, which creates a function that simply adds its arguments.

In[114]:= mySum[a_,b_]:=a+b

To the left of the SetDelayed (:=) operator is the name of the function we are defining, mySum,

followed by square brackets surrounding the argument specification. The arguments are given as a list of

patterns. We will return to patterns momentarily. On the right side of the assignment is the expression

defining the function, written in terms of the names of the arguments.

Observe the function behaves as expected.

In[115]:= mySum[1,2]

Out[115]= 3

Now, we briefly explain the patterns that define the parameters to the function. In the Wolfram Language,

whenever you attempt to evaluate an expression, it looks to see whether the head of the expression is

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

http://reference.wolfram.com/language/ref/While
http://reference.wolfram.com/language/ref/True
http://reference.wolfram.com/language/ref/While
http://reference.wolfram.com/language/ref/While
http://reference.wolfram.com/language/ref/While
http://reference.wolfram.com/language/ref/If
http://reference.wolfram.com/language/ref/While
http://reference.wolfram.com/language/ref/Throw
http://reference.wolfram.com/language/ref/Catch
http://reference.wolfram.com/language/ref/Set
http://reference.wolfram.com/language/ref/SetDelayed
http://reference.wolfram.com/language/ref/SetDelayed

33

known, and, if so, whether the arguments match the pattern of the definition associated with the head. If

we attempted to call mySum with anything other than two arguments, Mathematica would simply echo

the input, indicating that it failed to find a definition for that form of an expression.

In[116]:= mySum[1,2,3]

Out[116]= mySum[1,2,3]

At the heart of any pattern is theBlank (_), which is entered as an underscore. ABlank (_) is the generic

wild card in the Wolfram Language, matching any single expression. For example, mySum is perfectly

suited to adding two polynomials since a polynomial is an expression.

In[117]:= mySum[3x^2+5x+7,2x-3]

Out[117]= 4+7 x+3 x2

By preceding a Blank (_) with a symbol, such as x or L, you effectively name the expression that matches

that particular Blank (_). In our example, the symbols a and b are identified with the arguments and

then used in the function definition.

You can restrict the types of expressions that are matched by a Blank (_) by following the underscore

with the name of a head. For example, to restrict the function to apply only to integers, which have head

Integer, you would define it as follows.

In[118]:= integerSum[a_Integer,b_Integer]:=a+b

This function works just as before on integers, but will not be applied if other kinds of expressions are

entered.

In[119]:= integerSum[1,2]

Out[119]= 3

In[120]:= integerSum[3x^2+5x+7,2x-3]

Out[120]= integerSum[7+5 x+3 x2,-3+2 x]

Note that symbols used to name patterns are automatically local to the function definition. That is, they

do not retain their value once the function is complete. Below, we see that a can be assigned a value and

that value neither affects the evaluation of mySum nor is modified by it.

In[121]:= a=23

Out[121]= 23

In[122]:= mySum[1,2]

Out[122]= 3

In[123]:= a

Out[123]= 23

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

http://reference.wolfram.com/language/ref/Blank
http://reference.wolfram.com/language/ref/Blank
http://reference.wolfram.com/language/ref/Blank
http://reference.wolfram.com/language/ref/Blank
http://reference.wolfram.com/language/ref/Blank
http://reference.wolfram.com/language/ref/Integer

34

This is not true, however, for other variables you may introduce in the body of the function. For example,

the function below, given a positive integer, uses the StringJoin (<>) operator and a Do loop to form

a string consisting of the given number of “x”s. (Note that there are certainly better ways to achieve this

result, but this example illustrates the relevant concept.)

In[124]:= xstring[n_]:=
(string="";
Do[string=string<>"x",{n}];
string)

Note that the parentheses are necessary to prevent the first semicolon from terminating the assignment.

Also note that the output of a semicolon separated sequence of expressions is the value of the final expres-

sion. Since Do has output Null, we must issue the expression string in order to obtain the desired output.

In[125]:= xstring[5]

Out[125]= xxxxx

Unlike mySum and the parameters a and b, the value of string remains after the function has been

executed.

In[126]:= string

Out[126]= xxxxx

More concerning, if string had previously been assigned a value, it would have been replaced.

The Wolfram Language provides the Module structure to encapsulate program definitions and, in par-

ticular, define variables to have local scope. We illustrate with a second example.

In[127]:= ystring[n_]:=Module[{string,i},
string="";
For[i=1,i≤≤≤n,i++,
string=string<>"y";

];
string

]

The Module encloses the entire body of the function. It begins with a list of the variables to be used

that are local to the function. This list is followed by the semicolon separated sequence of expressions

comprising the function body. The output of Module is the last expression evaluated, so again we must

end with the expression string.

Note that both of the variables used in ystring have values: string from its use in xstring and i
from the last time it was used in a loop.

In[128]:= string

Out[128]= xxxxx

In[129]:= i

Out[129]= 4371938082726

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

http://reference.wolfram.com/language/ref/StringJoin
http://reference.wolfram.com/language/ref/Do
http://reference.wolfram.com/language/ref/Do
http://reference.wolfram.com/language/ref/Null
http://reference.wolfram.com/language/ref/Module
http://reference.wolfram.com/language/ref/Module
http://reference.wolfram.com/language/ref/Module

35

If we call ystring on a positive integer, it produces the expected result.

In[130]:= ystring[11]

Out[130]= yyyyyyyyyyy

However, string and i are not changed.

In[131]:= string

Out[131]= xxxxx

In[132]:= i

Out[132]= 4371938082726

It is good practice to use Module when defining any but the simplest functions.

Mathematica Versions
This manual was created using Mathematica 11. Most of the functions used, however, are compatible with

older versions of the software.

On-Line Material
The files for this manual, including both the PDF and Mathematica Notebook versions of all chapters, are

available at the website for the eighth edition of Discrete Mathematics and Its Applications by Kenneth

Rosen: www.mhhe.com/rosen. This site includes many other kinds of supplementary material for students

and instructors.

In addition to the chapters of the manual, the website also includes Mathematica packages containing

the useful functions defined in the chapters that you may use to further explore the concepts of discrete

mathematics. To use these packages, you need to download them to your computer and load them into

your Mathematica session. The packages are saved as files named “Chapter##.wl”, where “##” refers to

the two-digit chapter number.

To load a package, you use the Get (<<) operator. Suppose that Chapter01.wl is located in the directory

/Users/myaccount/DiscreteMath/ on your computer or in your account for one of the cloud-based Wol-

fram systems. Then, you would execute the following expression, replacing the directory shown with the

directory on your computer.

<<"/Users/myaccount/DiscreteMath/Chapter01.wl"

If you have saved the notebook you are working with, you can determine its directory with

NotebookDirectory[]. This can be used in conjunction with StringJoin (<>) to load a

file in the same directory as your Notebook.

<<(NotebookDirectory[]<>"Chapter00.wl")

Loading the package will give you access to the functions defined in that chapter, without needing to open

and evaluate the function definitions in that chapter’s Notebook file.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

http://reference.wolfram.com/language/ref/Module
http://www.mhhe.com/rosen
http://reference.wolfram.com/language/ref/Get
http://reference.wolfram.com/language/ref/StringJoin

36

Exercises
1. Compute 17 ⋅

(
12634 − 93

)
.

2. Form the List of the first 100 positive integers that are 3 greater than a multiple of 7, using the
Table function.

3. Use a For loop to Print the string “Hello World!” 10 times.

4. Use a While loop to Print the string “Hello World!” 10 times.

5. Use a Do loop to Print the string “Hello World!” 10 times.

6. EvenQ applied to an integer returns True if the argument is even. Loop over the list you created
in Exercise 2, and within the loop, use an If expression to Print “even” or “odd” for each
element of the list.

7. Define a function f by the formula f (x) = x2 + 3x − 2 and then use Map to apply that function to
the list {−5,−4.5,−4,… , 4, 4.5, 5}.

8. Write a function using Module that has one parameter with head List and outputs the list in
reverse order. You should use only functions discussed in this Introduction.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

http://reference.wolfram.com/language/ref/List
http://reference.wolfram.com/language/ref/Table
http://reference.wolfram.com/language/ref/For
http://reference.wolfram.com/language/ref/Print
http://reference.wolfram.com/language/ref/While
http://reference.wolfram.com/language/ref/Print
http://reference.wolfram.com/language/ref/Do
http://reference.wolfram.com/language/ref/Print
http://reference.wolfram.com/language/ref/EvenQ
http://reference.wolfram.com/language/ref/True
http://reference.wolfram.com/language/ref/If
http://reference.wolfram.com/language/ref/Print
http://reference.wolfram.com/language/ref/Map
http://reference.wolfram.com/language/ref/Module
http://reference.wolfram.com/language/ref/List

