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Answers to Odd-Numbered Exercises

CHAPTER 1

Section 1.1

1. a) Yes, T b) Yes, F c) Yes, T d) Yes, F e) No

f) No 3. a) Linda is not younger than Sanjay. b) Mei does

not make more money than Isabella. c) Moshe is not taller

than Monica. d) Abby is not richer than Ricardo. 5. a) Mei

does not have an MP3 player. b) There is pollution in New

Jersey. c) 2 + 1 ≠ 3. d) The summer in Maine is not hot or

it is not sunny. 7. a) Steve does not have more than 100

GB free disk space on his laptop. b) Zach does not block e-

mails from Jennifer, or he does not block texts from Jennifer.

c) 7 ⋅ 11 ⋅ 13 ≠ 999. d) Diane did not ride her bike 100 miles

on Sunday. 9. a) F b) T c) T d) T e) T 11. a) Sharks

have not been spotted near the shore. b) Swimming at the

New Jersey shore is allowed, and sharks have been spotted

near the shore. c) Swimming at the New Jersey shore is not

allowed, or sharks have been spotted near the shore. d) If

swimming at the New Jersey shore is allowed, then sharks

have not been spotted near the shore. e) If sharks have not

been spotted near the shore, then swimming at the New Jersey

shore is allowed. f) If swimming at the New Jersey shore is

not allowed, then sharks have not been spotted near the shore.

g) Swimming at the New Jersey shore is allowed if and only

if sharks have not been spotted near the shore. h) Swimming

at the New Jersey shore is not allowed, and either swimming

at the New Jersey shore is allowed or sharks have not been

spotted near the shore. (Note that we were able to incorpo-

rate the parentheses by using the word “either” in the second

half of the sentence.) 13. a) p ∧ q b) p ∧ ¬q c) ¬p ∧ ¬q
d) p∨ q e) p→ q f) (p∨ q)∧ (p→¬q) g) q ↔ p 15. a) ¬p
b) p ∧ ¬q c) p → q d) ¬p → ¬q e) p → q f) q ∧ ¬p
g) q → p 17. a) r ∧ ¬p b) ¬p ∧ q ∧ r c) r → (q ↔ ¬p)

d) ¬ q∧ ¬p ∧ r e) (q →(¬r ∧ ¬p)) ∧ ¬((¬r ∧ ¬p) → q)

f) (p ∧ r) → ¬q 19. a) False b) True c) True d) True

21. a) Exclusive or: You get only one beverage. b) Inclusive

or: Long passwords can have any combination of symbols.

c) Inclusive or: A student with both courses is even more qual-

ified. d) Either interpretation possible; a traveler might wish

to pay with a mixture of the two currencies, or the store may

not allow that. 23. a) Inclusive or: It is allowable to take

discrete mathematics if you have had calculus or computer

science, or both. Exclusive or: It is allowable to take discrete

mathematics if you have had calculus or computer science,

but not if you have had both. Most likely the inclusive or is

intended. b) Inclusive or: You can take the rebate, or you can

get a low-interest loan, or you can get both the rebate and a

low-interest loan. Exclusive or: You can take the rebate, or

you can get a low-interest loan, but you cannot get both the

rebate and a low-interest loan. Most likely the exclusive or is

intended. c) Inclusive or: You can order two items from col-

umn A and none from column B, or three items from column

B and none from column A, or five items including two from

column A and three from column B. Exclusive or: You can

order two items from column A or three items from column

B, but not both. Almost certainly the exclusive or is intended.

d) Inclusive or: More than 2 feet of snow or windchill below

−100 ◦F, or both, will close school. Exclusive or: More than

2 feet of snow or windchill below −100 ◦F, but not both, will

close school. Certainly the inclusive or is intended. 25. a) If

the wind blows from the northeast, then it snows. b) If it

stays warm for a week, then the apple trees will bloom. c) If

the Pistons win the championship, then they beat the Lakers.

d) If you get to the top of Long’s Peak, then you must have

walked 8 miles. e) If you are world famous, then you will get

tenure as a professor. f) If you drive more than 400 miles,

then you will need to buy gasoline. g) If your guarantee is

good, then you must have bought your CD player less than

90 days ago. h) If the water is not too cold, then Jan will go

swimming. i) If people believe in science, then we will have a

future. 27. a) You buy an ice cream cone if and only if it is

hot outside. b) You win the contest if and only if you hold the

only winning ticket. c) You get promoted if and only if you

have connections. d) Your mind will decay if and only if you

watch television. e) The train runs late if and only if it is a day

I take the train. 29. a) Converse: “I will ski tomorrow only

if it snows today.” Contrapositive: “If I do not ski tomorrow,

then it will not have snowed today.” Inverse: “If it does not

snow today, then I will not ski tomorrow.” b) Converse: “If

I come to class, then there will be a quiz.” Contrapositive: “If

I do not come to class, then there will not be a quiz.” Inverse:

“If there is not going to be a quiz, then I don’t come to class.”

c) Converse: “A positive integer is a prime if it has no divisors

other than 1 and itself.” Contrapositive: “If a positive integer

has a divisor other than 1 and itself, then it is not prime.” In-

verse: “If a positive integer is not prime, then it has a divisor

other than 1 and itself.” 31. a) 2 b) 16 c) 64 d) 16

33. a) p ¬p p ∧ ¬p
T F F
F T F

b) p ¬p p ∨ ¬p
T F T
F T T

c) p q ¬q p ∨ ¬q ( p ∨ ¬q) → q
T T F T T
T F T T F
F T F F T
F F T T F

S-1
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d) p q p ∨ q p ∧ q ( p ∨ q) → ( p ∧ q)
T T T T T
T F T F F
F T T F F
F F F F T

e) ( p → q) ↔
p q p → q ¬q ¬p ¬q → ¬p (¬q → ¬p)
T T T F F T T
T F F T F F T
F T T F T T T
F F T T T T T

f) ( p → q) →
p q p → q q → p (q → p)
T T T T T
T F F T T
F T T F F
F F T T T

35. For parts (a), (b), (c), (d), and (f) we have this table.

p q ( p ∨ q) → ( p ⊕ q) ( p ⊕ q) → ( p ∧ q) ( p ∨ q) ⊕ ( p ∧ q) ( p ↔ q) ⊕ (¬p ↔ q) ( p ⊕ q) → ( p ⊕¬q)
T T F T F T T
T F T F T T F
F T T F T T F
F F T T F T T

For part (e) we have this table.

p q r ¬p ¬r p ↔ q ¬p ↔ ¬r ( p ↔ q) ⊕ (¬p ↔ ¬r)
T T T F F T T F
T T F F T T F T
T F T F F F T T
T F F F T F F F
F T T T F F F F
F T F T T F T T
F F T T F T F T
F F F T T T T F

37. ( p → q)∨ ( p → q)∧ ( p ↔ q)∨ (¬p ↔ ¬q) ↔
p q p → ¬q ¬p ↔ q (¬p → q) (¬p → q) (¬p ↔ q) ( p ↔ q)
T T F F T T T T
T F T T T F T T
F T T T T T T T
F F T F T F T T

39. ( p → q)∨ ( p → q)∧ ( p ↔ q)∨ (¬p ↔ ¬q) ↔
p q r p → (¬q ∨ r) ¬p → (q → r) (¬p → r) (¬p → r) (¬q ↔ r) (q ↔ r)
T T T T T T T T T
T T F F T T T T F
T F T T T T F T T
T F F T T T F F F
F T T T T T T F F
F T F T F T F T T
F F T T T T T T F
F F F T T T F T T



P1: 1

ANS Rosen-2311T MH03280-Rosen-v1.cls May 8, 2018 17:25

Answers to Odd-Numbered Exercises S-3

41. (p ↔ q) ↔
p q r s p ↔ q r ↔ s (r ↔ s)
T T T T T T T
T T T F T F F
T T F T T F F
T T F F T T T
T F T T F T F
T F T F F F T
T F F T F F T
T F F F F T F
F T T T F T F
F T T F F F T
F T F T F F T
F T F F F T F
F F T T T T T
F F T F T F F
F F F T T F F
F F F F T T T

43. The first clause is true if and only if at least one of p, q, and

r is true. The second clause is true if and only if at least one

of the three variables is false. Therefore, the entire statement

is true if and only if there is at least one T and one F among the

truth values of the variables, in other words, that they don’t all

have the same truth value. 45.
(⋀n−1

i=1

⋀n
j=i+1

(¬pi ∨¬pj)
)
∧(⋁n

i=1
pi
)

47. a) Bitwise OR is 111 1111; bitwise AND is

000 0000; bitwise XOR is 111 1111. b) Bitwise OR is 1111

1010; bitwise AND is 1010 0000; bitwise XOR is 0101 1010.

c) Bitwise OR is 10 0111 1001; bitwise AND is 00 0100 0000;

bitwise XOR is 10 0011 1001. d) Bitwise OR is 11 1111 1111;

bitwise AND is 00 0000 0000; bitwise XOR is 11 1111 1111.

49. 0.2, 0.6 51. 0.8, 0.6 53. a) The 99th statement is true

and the rest are false. b) Statements 1 through 50 are all true

and statements 51 through 100 are all false. c) This cannot

happen; it is a paradox, showing that these cannot be state-

ments.

Section 1.2

1. e → a 3. g → (r∧ (¬m)∧ (¬b)) 5. e → (a∧ (b∨p)∧ r)

7. a) q→ p b) q ∧ ¬p c) q→ p d) ¬q→¬p 9. Not

consistent 11. Consistent 13. NEW AND JERSEY

AND BEACHES, (JERSEY AND BEACHES) NOT NEW

15. “ETHIOPIAN RESTAURANTS” AND (“NEW YORK”

OR “NEW JERSEY”) 17. a) Queen cannot say this.

b) Queen can say this, but one cannot determine location

of treasure. c) Queen can say this; treasure is in Trunk 1.

d) Queen cannot say this. 19. “If I were to ask you whether

the right branch leads to the ruins, would you answer yes?”

21. If the first professor did not want coffee, then he would

know that the answer to the hostess’s question was “no.”

Therefore the hostess and the remaining professors know

that the first professor did want coffee. Similarly, the sec-

ond professor must want coffee. When the third professor

said “no,” the hostess knows that the third professor does

not want coffee. 23. A is a knight and B is a knave. 25.
A is a knight and B is a knight. 27. A is a knave and B
is a knight. 29. A is the knight, B is the spy, C is the

knave. 31. A is the knight, B is the spy, C is the knave.

33. Any of the three can be the knight, any can be the

spy, any can be the knave. 35. No solutions 37. In or-

der of decreasing salary: Fred, Maggie, Janice 39. The

detective can determine that the butler and cook are lying

but cannot determine whether the gardener is telling the

truth or whether the handyman is telling the truth. 41. The

Japanese man owns the zebra, and the Norwegian drinks wa-

ter. 43. One honest, 49 corrupt 45. a) ¬(p ∧ (q ∨ ¬r))

b) ((¬p) ∧ (¬q)) ∨ (p ∧ r)

47. p

r

q

p

q

r

Section 1.3

1. The equivalences follow by showing that the appropriate

pairs of columns of this table agree.

p p ∧ T p ∨ F p ∧ F p ∨ T p ∨ p p ∧ p
T T T F T T T
F F F F T F F

3. a) p q p ∨ q q ∨ p
T T T T
T F T T
F T T T
F F F F

b) p q p ∧ q q ∧ p
T T T T
T F F F
F T F F
F F F F

5. (p ∧ q)∨
p q r q ∨ r p ∧ (q ∨ r) p ∧ q p ∧ r (p ∧ r)
T T T T T T T T
T T F T T T F T
T F T T T F T T
T F F F F F F F
F T T T F F F F
F T F T F F F F
F F T T F F F F
F F F F F F F F

7. a) Jan is not rich, or Jan is not happy. b) Carlos will not bi-

cycle tomorrow, and Carlos will not run tomorrow. c) Mei

does not walk to class, and Mei does not take the bus to

class. d) Ibrahim is not smart, or Ibrahim is not hard working.

9. a) ¬p ∨ ¬q b) (p ∧ ¬q) ∨ r c) ¬p ∨ ¬q



P1: 1

ANS Rosen-2311T MH03280-Rosen-v1.cls May 8, 2018 17:25

S-4 Answers to Odd-Numbered Exercises

11. a) p q p ∧ q (p ∧ q) → p
T T T T
T F F T
F T F T
F F F T

b) p q p ∨ q p → (p ∨ q)
T T T T
T F T T
F T T T
F F F T

c) p q ¬p p → q ¬p → (p → q)
T T F T T
T F F F T
F T T T T
F F T T T

d) p q p ∧ q p → q (p ∧ q) → (p → q)
T T T T T
T F F F T
F T F T T
F F F T T

e) p q p → q ¬(p → q) ¬(p → q) → p
T T T F T
T F F T T
F T T F T
F F T F T

f) p q p → q ¬(p → q) ¬q ¬(p → q) → ¬q
T T T F F T
T F F T T T
F T T F F T
F F T F T T

13. a) If this were not a tautology, then p ∧ q would be true

but p would be false. This cannot happen, because the truth of

p ∧ q implies the truth of p. b) If this were not a tautology,

then p would be true but p ∨ q would be false. This cannot

happen, because the truth of p implies the truth of p∨q. c) If

this were not a tautology, then p would be false and p → q
would be false. This cannot happen, because p → q is true

when p is false. d) If this were not a tautology, then p ∧ q
would be true and p → q would be false. This cannot happen,

because p → q is true when both p and q are true. e) If

this were not a tautology, then p → q would be false and p
would be false. This cannot happen, because p → q is true

when p is false. f) If this were not a tautology, then p → q
would be false and q would be true. This cannot happen, be-

cause p → q is true when q is true. 15. a) (p ∧ q) → p ≡
¬(p ∧ q) ∨ p ≡ ¬p ∨ ¬q ∨ p ≡ (p ∨ ¬p) ∨ ¬q ≡ T ∨ ¬q ≡ T
b) p → (p ∨ q) ≡ ¬p ∨ (p ∨ q) ≡ (¬p ∨ p) ∨ q ≡ T ∨ q ≡ T
c) ¬p → (p → q) ≡ p∨ (p → q) ≡ p∨(¬p∨q) ≡ (p∨¬p)∨q ≡

T ∨ q ≡ T d) (p ∧ q) → (p → q) ≡ ¬(p ∧ q) ∨ (¬p ∨ q) ≡
¬p∨¬q∨¬p∨q ≡ (¬p∨¬p)∨(¬q∨q) ≡ ¬p∨T ≡ T e) ¬(p →
q) → p ≡ (p → q)∨p ≡ ¬p∨q∨p ≡ (¬p∨p)∨q ≡ T∨q ≡ T
f) ¬(p → q) → ¬q ≡ (p → q)∨¬q ≡ ¬p∨q∨¬q ≡ ¬p∨T ≡ T
17. That the fourth column of the truth table shown is identical

to the first column proves part (a), and that the sixth column

is identical to the first column proves part (b).

p q p ∧ q p ∨ (p ∧ q) p ∨ q p ∧ (p ∨ q)
T T T T T T
T F F T T T
F T F F T F
F F F F F F

19. It is a tautology. 21. Each of these is true precisely

when p and q have opposite truth values. 23. The propo-

sition ¬p ↔ q is true when ¬p and q have the same truth

values, which means that p and q have different truth val-

ues. Similarly, p ↔ ¬q is true in exactly the same cases.

Therefore, these two expressions are logically equivalent.

25. The proposition ¬(p ↔ q) is true when p ↔ q is false,

which means that p and q have different truth values. Because

this is precisely when ¬p ↔ q is true, the two expressions are

logically equivalent. 27. For (p → r) ∧ (q → r) to be false,

one of the two conditional statements must be false, which

happens exactly when r is false and at least one of p and q is

true. But these are precisely the cases in which p∨q is true and

r is false, which is precisely when (p∨q) → r is false. Because

the two propositions are false in exactly the same situations,

they are logically equivalent. 29. For (p → r) ∨ (q → r) to

be false, both of the two conditional statements must be false,

which happens exactly when r is false and both p and q are

true. But this is precisely the case in which p ∧ q is true and r
is false, which is precisely when (p∧ q) → r is false. Because

the two propositions are false in exactly the same situations,

they are logically equivalent. 31. This fact was observed

in Section 1 when the biconditional was first defined. Each

of these is true precisely when p and q have the same truth

values. 33. The last column is all Ts.

(p → q)∧
(p → q)∧ (q → r) →

p q r p → q q → r (q → r) p → r (p → r)
T T T T T T T T
T T F T F F F T
T F T F T F T T
T F F F T F F T
F T T T T T T T
F T F T F F T T
F F T T T T T T
F F F T T T T T

35. These are not logically equivalent because when p, q, and

r are all false, (p → q) → r is false, but p → (q → r) is

true. 37. Many answers are possible. If we let r be true and
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p, q, and s be false, then (p → q) → (r → s) will be false,

but (p → r) → (q → s) will be true. 39. a) p ∨ ¬q ∨ ¬r
b) (p ∨ q ∨ r) ∧ s c) (p ∧ T) ∨ (q ∧ F) 41. If we take

duals twice, every ∨ changes to an ∧ and then back to an

∨, every ∧ changes to an ∨ and then back to an ∧, every T
changes to an F and then back to a T, every F changes to

a T and then back to an F. Hence, (s∗)∗ = s. 43. Let p
and q be equivalent compound propositions involving only

the operators ∧, ∨, and ¬, and T and F. Note that ¬p and ¬q
are also equivalent. Use De Morgan’s laws as many times as

necessary to push negations in as far as possible within these

compound propositions, changing ∨s to ∧s, and vice versa,

and changing Ts to Fs, and vice versa. This shows that ¬p
and ¬q are the same as p∗ and q∗ except that each atomic

proposition pi within them is replaced by its negation. From

this we can conclude that p∗ and q∗ are equivalent because

¬p and ¬q are. 45. (p∧ q∧¬r)∨ (p∧¬q∧ r)∨ (¬p∧ q∧ r)

47. Given a compound proposition p, form its truth table

and then write down a proposition q in disjunctive normal

form that is logically equivalent to p. Because q involves

only ¬, ∧, and ∨, this shows that these three operators form

a functionally complete set. 49. By Exercise 47, given a

compound proposition p, we can write down a proposi-

tion q that is logically equivalent to p and involves only

¬, ∧, and ∨. By De Morgan’s law we can eliminate all the

∧s by replacing each occurrence of p1 ∧ p2 ∧⋯ ∧ pn with

¬(¬p1 ∨ ¬p2 ∨⋯ ∨ ¬pn). 51. ¬(p ∧ q) is true when either

p or q, or both, are false, and is false when both p and q are

true. Because this was the definition of p ∣ q, the two com-

pound propositions are logically equivalent. 53. ¬(p ∨ q)

is true when both p and q are false, and is false otherwise.

Because this was the definition of p ↓ q, the two are logically

equivalent. 55. ((p ↓ p) ↓ q) ↓ ((p ↓ p) ↓ q) 57. This fol-

lows immediately from the truth table or definition of p ∣ q.

59. 16 61. If the database is open, then either the system

is in its initial state or the monitor is put in a closed state.

63. All nine 65. a) Satisfiable b) Not satisfiable c) Not

satisfiable 67. a)
(⋀2

i=1

⋁2

j=1
p(i, j)

)
∧
(⋀2

i=1

⋀1

j=1

⋀2

k=j+1

(¬p(i, j) ∨ ¬p(i, k))
)

∧
(⋀2

j=1

⋀1

i=1

⋀2

k=i+1
(¬p(i, j)∨

¬p(k, j))
)

∧
(⋀2

i=2

⋀1

j=1

⋀min(i−1,2−j)
k=1

(¬p(i, j) ∨ ¬p(i − k,

k + j))
)

∧
(⋀1

i=1

⋀1

j=1

⋀min(2−i,2−j)
k=1

(¬p(i, j) ∨ ¬p(i + k,

j + k))
)

; No solutions possible. b)
(⋀3

i=1

⋁3

j=1
p(i, j)

)
∧(⋀3

i=1

⋀2

j=1

⋀3

k=j+1
(¬p(i, j) ∨ ¬p(i, k))

)
∧
(⋀3

j=1

⋀2

i=1

⋀3

k=i+1

(¬p(i, j) ∨ ¬p(k, j))
)

∧
(⋀3

i=2

⋀2

j=1

⋀min(i−1,3−j)
k=1

(¬p(i, j)∨

¬p(i − k, k + j))
)
∧
(⋀2

i=1

⋀2

j=1

⋀min(3−i,3−j)
k=1

(¬p(i, j) ∨ ¬p(i + k,

j + k))
)

; No solutions possible. c)
(⋀4

i=1

⋁4

j=1
p(i, j)

)
∧(⋀4

i=1

⋀3

j=1

⋀4

k=j+1
(¬p(i, j) ∨ ¬p(i, k))

)
∧
(⋀4

j=1

⋀3

i=1

⋀4

k=i+1

(¬p(i, j) ∨ ¬p(k, j))
)

∧
(⋀4

i=2

⋀3

j=1

⋀min(i−1,4−j)
k=1

(¬p(i, j)∨

¬p(i − k, k + j))
)

∧
(⋀3

i=1

⋀3

j=1

⋀min(4−i,4−j)
k=1

(¬p(i, j)∨

¬p(i + k, j + k))
)

; (1, 2), (2, 4), (3, 1), (4, 3) or

(1, 3), (2, 1), (3, 4), (4, 2) 69. Use the same propositions

as were given in the text for a 9 × 9 Sudoku puzzle, with

the variables indexed from 1 to 4, instead of from 1 to 9,

and with a similar change for the propositions for the 2 × 2

blocks:
⋀1

r=0

⋀1

s=0

⋀4

n=1

⋁2

i=1

⋁2

j=1
p(2r + i, 2s + j, n)

71.
⋁9

i=1
p(i, j, n) asserts that column j contains the num-

ber n, so
⋀9

n=1

⋁9

i=1
p(i, j, n) asserts that column j contains

all 9 numbers; therefore
⋀9

j=1

⋀9

n=1

⋁9

i=1
p(i, j, n) asserts that

every column contains every number.

Section 1.4

1. a) T b) T c) F 3. a) T b) F c) F d) F 5. a) There

is a student who spends more than 5 hours every weekday

in class. b) Every student spends more than 5 hours ev-

ery weekday in class. c) There is a student who does not

spend more than 5 hours every weekday in class. d) No

student spends more than 5 hours every weekday in class.

7. a) Every comedian is funny. b) Every person is a funny

comedian. c) There exists a person such that if she or he

is a comedian, then she or he is funny. d) Some comedi-

ans are funny. 9. a) ∃x(P(x) ∧ Q(x)) b) ∃x(P(x) ∧ ¬Q(x))

c) ∀x(P(x)∨Q(x)) d) ∀x¬(P(x)∨Q(x)) 11. a) T b) T c) F

d) F e) T f) F 13. a) T b) T c) T d) T 15. a) T b) F

c) T d) F 17. a) P(0) ∨ P(1) ∨ P(2) ∨ P(3) ∨ P(4)

b) P(0) ∧ P(1) ∧ P(2) ∧ P(3) ∧ P(4) c) ¬P(0) ∨ ¬P(1) ∨
¬P(2) ∨ ¬P(3) ∨ ¬P(4) d) ¬P(0) ∧ ¬P(1) ∧ ¬P(2)∧¬P(3) ∧
¬P(4) e) ¬(P(0)∨P(1)∨P(2)∨P(3)∨P(4)) f) ¬(P(0)∧P(1) ∧
P(2)∧ P(3)∧ P(4)) 19. a) P(1)∨ P(2)∨ P(3)∨ P(4)∨ P(5)

b) P(1) ∧ P(2) ∧ P(3) ∧ P(4) ∧ P(5) c) ¬(P(1) ∨ P(2) ∨
P(3) ∨P(4) ∨P(5)) d) ¬(P(1) ∧ P(2) ∧ P(3) ∧ P(4) ∧ P(5))

e) (P(1)∧P(2) ∧ P(4) ∧ P(5)) ∨ (¬P(1) ∨ ¬P(2) ∨ ¬P(3) ∨
¬P(4) ∨ ¬P(5)) 21. Many answers are possible. a) All

students in your discrete mathematics class; all students in

the world b) All United States senators; all college football

players c) George W. Bush and Jeb Bush; all politicians in

the United States d) Bill Clinton and George W. Bush; all

politicians in the United States 23. Let C(x) be the proposi-

tional function “x is in your class.” a) ∃xH(x) and ∃x(C(x)∧
H(x)), where H(x) is “x can speak Hindi” b) ∀xF(x) and

∀x(C(x) → F(x)), where F(x) is “x is friendly” c) ∃x¬B(x)

and ∃x(C(x)∧¬B(x)), where B(x) is “x was born in California”

d) ∃xM(x) and ∃x(C(x)∧M(x)), where M(x) is “x has been in

a movie” e) ∀x¬L(x) and ∀x(C(x) → ¬L(x)), where L(x) is “x
has taken a course in logic programming” 25. Let P(x) be

“x is perfect”; let F(x) be “x is your friend”; and let the domain

be all people. a) ∀x ¬P(x) b) ¬∀x P(x) c) ∀x(F(x) → P(x))

d) ∃x(F(x)∧P(x)) e) ∀x(F(x)∧P(x)) or (∀x F(x))∧ (∀x P(x))

f) (¬∀x F(x))∨ (∃x¬P(x)) 27. Let Y(x) be the propositional

function that x is in your school or class, as appropriate. a) If

we let V(x) be “x has lived in Vietnam,” then we have ∃xV(x)

if the domain is just your schoolmates, or ∃x(Y(x) ∧ V(x))

if the domain is all people. If we let D(x, y) mean that per-

son x has lived in country y, then we can rewrite this last one
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as ∃x(Y(x) ∧ D(x, Vietnam)). b) If we let H(x) be “x can

speak Hindi,” then we have ∃x¬H(x) if the domain is just your

schoolmates, or ∃x(Y(x) ∧ ¬H(x)) if the domain is all people.

If we let S(x, y) mean that person x can speak language y, then

we can rewrite this last one as ∃x(Y(x) ∧ ¬S(x, Hindi)). c) If

we let J(x), P(x), and C(x) be the propositional functions as-

serting x’s knowledge of Java, Prolog, and C++, respectively,

then we have ∃x(J(x) ∧ P(x) ∧ C(x)) if the domain is just

your schoolmates, or ∃x(Y(x) ∧ J(x) ∧ P(x) ∧ C(x)) if the do-

main is all people. If we let K(x, y) mean that person x knows

programming language y, then we can rewrite this last one as

∃x(Y(x) ∧ K(x, Java) ∧ K(x, Prolog) ∧ K(x, C++)). d) If

we let T(x) be “x enjoys Thai food,” then we have ∀x T(x) if

the domain is just your classmates, or ∀x(Y(x) → T(x)) if

the domain is all people. If we let E(x, y) mean that person

x enjoys food of type y, then we can rewrite this last one as

∀x(Y(x) → E(x, Thai)). e) If we let H(x) be “x plays hockey,”

then we have ∃x ¬H(x) if the domain is just your classmates,

or ∃x(Y(x)∧¬H(x)) if the domain is all people. If we let P(x, y)

mean that person x plays game y, then we can rewrite this last

one as ∃x(Y(x)∧¬P(x, hockey)). 29. Let T(x) mean that x is
a tautology and C(x) mean that x is a contradiction. a) ∃x T(x)

b) ∀x(C(x) → T(¬x)) c) ∃x∃y(¬T(x) ∧ ¬C(x) ∧ ¬T(y) ∧
¬C(y)∧T(x ∨ y)) d) ∀x∀y((T(x) ∧T(y)) → T(x∧y))

31. a) Q(0, 0, 0) ∧ Q(0, 1, 0) b) Q(0, 1, 1) ∨ Q(1, 1, 1) ∨
Q(2, 1, 1) c) ¬Q(0, 0, 0) ∨ ¬Q(0, 0, 1) d) ¬Q(0, 0, 1) ∨
¬Q(1, 0, 1) ∨ ¬Q(2, 0, 1) 33. a) Let T(x) be the predicate

that x can learn new tricks, and let the domain be old dogs.

Original is ∃x T(x). Negation is ∀x ¬T(x): “No old dogs can

learn new tricks.” b) Let C(x) be the predicate that x knows

calculus, and let the domain be rabbits. Original is ¬∃x C(x).

Negation is ∃x C(x): “There is a rabbit that knows calculus.”

c) Let F(x) be the predicate that x can fly, and let the domain

be birds. Original is ∀x F(x). Negation is ∃x ¬F(x): “There

is a bird who cannot fly.” d) Let T(x) be the predicate that

x can talk, and let the domain be dogs. Original is ¬∃x T(x).

Negation is ∃x T(x): “There is a dog that talks.” e) Let F(x)

and R(x) be the predicates that x knows French and knows

Russian, respectively, and let the domain be people in this

class. Original is ¬∃x(F(x) ∧ R(x)). Negation is ∃x(F(x) ∧
R(x)): “There is someone in this class who knows French and

Russian.” 35. a) ∃x(x ≤ 1) b) ∃x(x > 2) c) ∀x(x < 4)

d) ∀x(x ≥ 0) e) ∃x((x ≥ −1) ∧ (x ≤ 2)) f) ∀x((x ≥ 4)

∧ (x ≤ 7)) 37. a) There is no counterexample. b) x = 0

c) x= 2 39. a) ∀x((F(x, 25,000) ∨ S(x, 25)) → E(x)), where

E(x) is “Person x qualifies as an elite flyer in a given year,”

F(x, y) is “Person x flies more than y miles in a given year,”

and S(x, y) is “Person x takes more than y flights in a given

year” b) ∀x(((M(x)∧T(x, 3))∨ (¬M(x) ∧ T(x, 3.5))) → Q(x)),

where Q(x) is “Person x qualifies for the marathon,” M(x)
is “Person x is a man,” and T(x, y) is “Person x has run the

marathon in less than y hours” c) M → ((H(60) ∨ (H(45) ∧
T)) ∧ ∀y G(B, y)), where M is the proposition “The student

received a masters degree,” H(x) is “The student took at least

x course hours,” T is the proposition “The student wrote a

thesis,” and G(x, y) is “The person got grade x or higher in

course y” d) ∃x ((T(x, 21) ∧ G(x, 4.0)), where T(x, y) is “Per-
son x took more than y credit hours” and G(x, p) is “Person x
earned grade point average p” (we assume that we are talking

about one given semester) 41. a) If there is a printer that

is both out of service and busy, then some job has been lost.

b) If every printer is busy, then there is a job in the queue.

c) If there is a job that is both queued and lost, then some

printer is out of service. d) If every printer is busy and every

job is queued, then some job is lost. 43. a) (∃x F(x, 10)) →
∃x S(x), where F(x, y) is “Disk x has more than y kilobytes

of free space,” and S(x) is “Mail message x can be saved”

b) (∃x A(x)) → ∀x(Q(x) → T(x)), where A(x) is “Alert x
is active,” Q(x) is “Message x is queued,” and T(x) is “Mes-

sage x is transmitted” c) ∀x((x ≠ main console) → T(x)),
where T(x) is “The diagnostic monitor tracks the status of sys-

tem x” d) ∀x(¬L(x) → B(x)), where L(x) is “The host of the

conference call put participant x on a special list” and B(x)

is “Participant x was billed” 45. They are not equivalent.

Let P(x) be any propositional function that is sometimes true

and sometimes false, and let Q(x) be any propositional func-

tion that is always false. Then ∀x(P(x) → Q(x)) is false but

∀xP(x) → ∀xQ(x) is true. 47. Both statements are true pre-

cisely when at least one of P(x) and Q(x) is true for at least

one value of x in the domain. 49. a) If A is true, then both

sides are logically equivalent to ∀xP(x). If A is false, the left-

hand side is clearly false. Furthermore, for every x, P(x) ∧ A
is false, so the right-hand side is false. Hence, the two sides

are logically equivalent. b) If A is true, then both sides are

logically equivalent to ∃x P(x). If A is false, the left-hand side

is clearly false. Furthermore, for every x, P(x) ∧ A is false,

so ∃x(P(x) ∧ A) is false. Hence, the two sides are logically

equivalent. 51. We can establish these equivalences by ar-

guing that one side is true if and only if the other side is true.

a) Suppose that A is true. Then for each x, P(x) → A is true;

therefore, the left-hand side is always true in this case. By sim-

ilar reasoning the right-hand side is always true in this case.

Therefore, the two propositions are logically equivalent when

A is true. On the other hand, suppose that A is false. There
are two subcases. If P(x) is false for every x, then P(x) → A
is vacuously true, so the left-hand side is vacuously true. The

same reasoning shows that the right-hand side is also true,

because in this subcase ∃xP(x) is false. For the second sub-

case, suppose that P(x) is true for some x. Then for that x,

P(x) → A is false, so the left-hand side is false. The right-

hand side is also false, because in this subcase ∃xP(x) is true

but A is false. Thus, in all cases, the two propositions have

the same truth value. b) If A is true, then both sides are triv-

ially true, because the conditional statements have true con-

clusions. If A is false, then there are two subcases. If P(x) is
false for some x, then P(x) → A is vacuously true for that x,

so the left-hand side is true. The same reasoning shows that

the right-hand side is true, because in this subcase ∀xP(x)

is false. For the second subcase, suppose that P(x) is true
for every x. Then for every x, P(x) → A is false, so the

left-hand side is false (there is no x making the conditional

statement true). The right-hand side is also false, because it

is a conditional statement with a true hypothesis and a false
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conclusion. Thus, in all cases, the two propositions have
the same truth value. 53. To show these are not logi-

cally equivalent, let P(x) be the statement “x is positive,”

and let Q(x) be the statement “x is negative” with domain

the set of integers. Then ∃x P(x) ∧ ∃x Q(x) is true, but

∃x(P(x) ∧ Q(x)) is false. 55. a) True b) False, unless

the domain consists of just one element or the hypothe-

sis is false. c) True 57. a) Yes b) No c) juana, kiko

d) math273, cs301 e) juana, kiko 59. sibling(X,Y)
:- mother(M,X), mother(M,Y), father(F,X),

father(F,Y) 61. a) ∀x(P(x) → ¬Q(x)) b) ∀x(Q(x) →
R(x)) c) ∀x(P(x) → ¬R(x)) d) The conclusion does not follow.

There may be vain professors, because the premises do not

rule out the possibility that there are other vain people besides

ignorant ones. 63. a) ∀x(P(x) → ¬Q(x)) b) ∀x(R(x) → ¬S(x))

c) ∀x(¬Q(x)→S(x)) d) ∀x(P (x) → ¬R(x)) e) The conclusion

follows. Suppose x is a baby. Then, by the first premise, x is

illogical, so by the third premise, x is despised. The second

premise says that if x could manage a crocodile, then x would

not be despised. Therefore, x cannot manage a crocodile.

Section 1.5

1. a) For every real number x there exists a real number y such

that x is less than y. b) For every real number x and real num-

ber y, if x and y are both nonnegative, then their product is non-

negative. c) For every real number x and real number y, there

exists a real number z such that xy = z. 3. a) There is some

student in your class who has sent a message to some student

in your class. b) There is some student in your class who

has sent a message to every student in your class. c) Every

student in your class has sent a message to at least one student

in your class. d) There is a student in your class who has been

sent a message by every student in your class. e) Every stu-

dent in your class has been sent a message from at least one

student in your class. f) Every student in the class has sent

a message to every student in the class. 5. a) Sarah Smith

has visited www.att.com. b) At least one person has visited

www.imdb.org. c) Jose Orez has visited at least one website.

d) There is a website that both Ashok Puri and Cindy Yoon

have visited. e) There is a person besides David Belcher who

has visited all the websites that David Belcher has visited.

f) There are two different people who have visited exactly

the same websites. 7. a) Abdallah Hussein does not like

Japanese cuisine. b) Some student at your school likes Ko-

rean cuisine, and everyone at your school likes Mexican cui-

sine. c) There is some cuisine that either Monique Arsenault

or Jay Johnson likes. d) For every pair of distinct students at

your school, there is some cuisine that at least one them does

not like. e) There are two students at your school who like

exactly the same set of cuisines. f) For every pair of students

at your school, there is some cuisine about which they have

the same opinion (either they both like it or they both do not

like it). 9. a) ∀xL(x, Jerry) b) ∀x∃yL(x, y) c) ∃y∀xL(x, y)

d) ∀x∃y¬L(x, y) e) ∃x¬L(Lydia, x) f) ∃x∀y¬L(y, x)

g) ∃x(∀yL(y, x) ∧ ∀z((∀wL(w, z)) → z = x)) h) ∃x∃y(x ≠

y∧L(Lynn, x)∧ L(Lynn, y)∧ ∀z(L(Lynn, z) → (z = x∨ z= y)))

i) ∀xL(x, x) j) ∃x ∀ y (L(x, y) ↔ x = y) 11. a) A(Lois,

Professor Michaels) b) ∀x(S(x) → A(x, Professor Gross))

c) ∀x(F(x) → (A(x, Professor Miller) ∨ A(Professor Miller,

x))) d) ∃x(S(x)∧∀y(F(y) → ¬A(x, y))) e) ∃x(F(x) ∧ ∀y(S(y) →
¬A(y, x))) f) ∀y(F(y) →∃x(S(x) ∨ A(x, y))) g) ∃x(F(x) ∧
∀y((F(y) ∧ (y ≠ x)) →A(x, y))) h) ∃x(S(x) ∧ ∀y(F(y) →
¬A(y, x))) 13. a) ¬M (Chou, Koko) b) ¬M(Arlene, Sarah)∧
¬T(Arlene, Sarah) c) ¬M (Deborah, Jose) d) ∀xM(x, Ken)

e) ∀x¬T(x, Nina) f) ∀x(T(x, Avi) ∨M(x, Avi)) g) ∃x∀y(y ≠
x → M(x, y)) h) ∃x∀y(y ≠ x → (M(x, y) ∨ T(x, y)))
i) ∃x∃y(x ≠ y∧M(x, y) ∧ M(y, x)) j) ∃xM(x, x) k) ∃x∀y(x ≠
y → (¬M(x, y)∧¬T(y, x))) l) ∀x(∃y(x ≠ y∧(M(y, x)∨T(y, x))))

m) ∃x∃y(x ≠ y ∧ M(x, y) ∧ T(y, x)) n) ∃x∃y(x ≠ y ∧
∀z((z ≠ x ∧ z ≠ y) → (M (x, z) ∨ M (y, z) ∨ T(x, z) ∨ T(y, z))))
15. a) ∀xP(x), where P(x) is “x needs a course in discrete
mathematics” and the domain consists of all computer sci-

ence students b) ∃xP(x), where P(x) is “x owns a personal

computer” and the domain consists of all students in this class
c) ∀x∃yP(x, y), where P(x, y) is “x has taken y,” the domain

for x consists of all students in this class, and the domain for y
consists of all computer science classes d) ∃x∃yP(x, y), where

P(x, y) and domains are the same as in part (c) e) ∀x∀yP(x, y),

where P(x, y) is “x has been in y,” the domain for x consists

of all students in this class, and the domain for y consists of

all buildings on campus f) ∃x∃y∀z(P(z, y) → Q(x, z)), where

P(z, y) is “z is in y” and Q(x, z) is “x has been in z”; the domain

for x consists of all students in the class, the domain for y con-

sists of all buildings on campus, and the domain of z consists

of all rooms. g) ∀x∀y∃z(P(z, y) ∧ Q(x, z)), with same en-

vironment as in part (f) 17. a) ∀u∃m(A(u, m) ∧ ∀n(n ≠
m → ¬A(u, n))), where A(u, m) means that user u has

access to mailbox m b) ∃p∀e(H(e) ∧ S(p, running))

→ S (kernel, working correctly), where H(e) means that

error condition e is in effect and S(x, y) means that the

status of x is y c) ∀u∀s(E(s, .edu) → A(u, s)), where

E(s, x) means that website s has extension x, and A(u, s)

means that user u can access website s d) ∃x∃y(x ≠
y ∧ ∀z((∀s M(z, s)) ↔ (z = x ∨ z = y))), where M(a, b) means

that system a monitors remote server b 19. a) ∀x∀y((x <

0) ∧ (y < 0) → (x + y < 0)) b) ¬∀x∀y ((x > 0) ∧
(y > 0) → (x − y > 0)) c) ∀x∀y (x2 + y2 ≥ (x + y)2)

d) ∀x∀y (|xy| = |x||y|) 21. ∀x∃a∃b∃c∃d ((x > 0) →
x = a2 + b2 + c2 + d2), where the domain consists of all in-

tegers 23. a) ∀x ∀y ((x < 0) ∧ (y < 0) → (xy > 0))

b) ∀x(x − x = 0) c) ∀x∃a∃b(a ≠ b ∧ ∀c(c2 = x ↔ (c = a ∨
c = b))) d) ∀x((x < 0) → ¬∃y(x = y2)) 25. a) There

is a multiplicative identity for the real numbers. b) The
product of two negative real numbers is always a positive

real number. c) There exist real numbers x and y such that

x2 exceeds y but x is less than y. d) The real numbers are

closed under the operation of addition. 27. a) True b) True

c) True d) True e) True f) False g) False h) True i) False

29. a) P(1, 1) ∧ P(1, 2) ∧ P(1, 3) ∧ P(2, 1) ∧ P(2, 2) ∧
P(2, 3) ∧ P(3, 1) ∧ P(3, 2) ∧ P(3, 3) b) P(1, 1) ∨
P(1, 2) ∨ P(1, 3) ∨ P(2, 1) ∨ P(2, 2) ∨ P(2, 3) ∨ P(3,1) ∨
P(3, 2) ∨ P(3, 3) c) (P(1, 1) ∧ P(1, 2) ∧ P(1, 3)) ∨
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(P(2, 1) ∧ P(2, 2) ∧ P(2, 3)) ∨ (P(3, 1) ∧ P(3, 2) ∧ P(3, 3))

d) (P(1, 1) ∨ P(2, 1) ∨ P(3, 1)) ∧ (P(1, 2) ∨ P(2, 2) ∨
P(3, 2)) ∧ (P(1, 3) ∨ P(2, 3) ∨ P(3, 3)) 31. a) ∃x∀y∃z ¬T
(x, y, z) b) ∃x∀y¬P(x, y) ∧ ∃x∀y ¬ Q(x, y) c) ∃x∀y
(¬P(x, y) ∨ ∀z ¬R(x, y, z)) d) ∃x∀y(P(x, y) ∧ ¬Q(x, y))

33. a) ∃x∃y¬P(x, y) b) ∃y∀x¬P(x, y) c) ∃y∃x(¬P(x,
y) ∧ ¬Q(x, y)) d) (∀x∀yP(x, y)) ∨ (∃x∃y¬Q(x, y))

e) ∃x(∀y∃z¬P(x, y, z) ∨ ∀z∃y¬P(x, y, z)) 35. Any do-

main with four or more members makes the statement true;

any domain with three or fewer members makes the state-
ment false. 37. a) There is someone in this class such

that for every two different math courses, these are not

the two and only two math courses this person has taken.

b) Every person has either visited Libya or has not visited

a country other than Libya. c) Someone has climbed ev-

ery mountain in the Himalayas. d) There is someone who

has neither been in a movie with Kevin Bacon nor has been
in a movie with someone who has been in a movie with

Kevin Bacon. 39. a) x = 2, y = −2 b) x = −4

c) x = 17, y = −1 41. ∀x ∀y ∀ z((x⋅y) ⋅z = x ⋅ (y ⋅ z))

43. ∀m ∀b (m ≠ 0 → ∃x(mx + b = 0 ∧ ∀w(mw + b =
0 → w = x))) 45. a) True b) False c) True

47. ¬(∃x∀yP(x, y)) ↔ ∀x(¬∀yP(x, y)) ↔ ∀x∃y¬P(x,y)

49. a) Suppose that∀xP(x)∧∃xQ(x) is true. Then P(x) is true

for all x and there is an element y for which Q(y) is true. Be-
cause P(x) ∧ Q(y) is true for all x and there is a y for which

Q(y) is true, ∀x∃y(P(x) ∧ Q(y)) is true. Conversely, suppose

that the second proposition is true. Let x be an element in the

domain. There is a y such that Q(y) is true, so ∃xQ(x) is true.

Because ∀xP(x) is also true, it follows that the first proposi-

tion is true. b) Suppose that ∀xP(x) ∨ ∃xQ(x) is true. Then

either P(x) is true for all x, or there exists a y for which Q(y)

is true. In the former case, P(x) ∨ Q(y) is true for all x, so
∀x∃y(P(x) ∨ Q(y)) is true. In the latter case, Q(y) is true for a

particular y, so P(x) ∨ Q(y) is true for all x and consequently

∀x∃y(P(x) ∨ Q(y)) is true. Conversely, suppose that the sec-

ond proposition is true. If P(x) is true for all x, then the first

proposition is true. If not, P(x) is false for some x, and for this

x there must be a y such that P(x) ∨ Q(y) is true. Hence, Q(y)
must be true, so ∃yQ(y) is true. It follows that the first propo-

sition must hold. 51. We will show how an expression can

be put into prenex normal form (PNF) if subexpressions in it

can be put into PNF. Then, working from the inside out, any

expression can be put in PNF. (To formalize the argument,

it is necessary to use the method of structural induction that

will be discussed in Section 5.3.) By Exercise 49 of Section

1.3, we can assume that the proposition uses only ∨ and ¬ as

logical connectives. Now note that any proposition with no

quantifiers is already in PNF. (This is the basis case of the

argument.) Now suppose that the proposition is of the form

QxP(x), where Q is a quantifier. Because P(x) is a shorter

expression than the original proposition, we can put it into
PNF. Then Qx followed by this PNF is again in PNF and

is equivalent to the original proposition. Next, suppose that

the proposition is of the form ¬P. If P is already in PNF,

we slide the negation sign past all the quantifiers using the

equivalences in Table 2 in Section 1.4. Finally, assume that

proposition is of the form P ∨ Q, where each of P and Q is in

PNF. If only one of P and Q has quantifiers, then we can use

Exercise 48 in Section 1.4 to bring the quantifier in front of

both. If both P and Q have quantifiers, we can use Exercise

47 in Section 1.4, Exercise 48, or part (b) of Exercise 49 to

rewrite P ∨ Q with two quantifiers preceding the disjunction

of a proposition of the form R ∨ S, and then put R ∨ S into

PNF.

Section 1.6

1. Modus ponens; valid; the conclusion is true, because

the hypotheses are true. 3. a) Addition b) Simplification

c) Modus ponens d) Modus tollens e) Hypothetical syllo-

gism 5. Let w be “Randy works hard,” let d be “Randy is

a dull boy,” and let j be “Randy will get the job.” The hy-

potheses are w, w → d, and d → ¬j. Using modus ponens

and the first two hypotheses, d follows. Using modus ponens

and the last hypothesis, ¬j, which is the desired conclusion,

“Randy will not get the job,” follows. 7. Universal instan-

tiation is used to conclude that “If Socrates is a man, then

Socrates is mortal.” Modus ponens is then used to conclude

that Socrates is mortal. 9. a) Valid conclusions are “I did

not take Tuesday off,” “I took Thursday off,” and “It rained

on Thursday.” b) “I did not eat spicy foods and it did not

thunder” is a valid conclusion. c) “I am clever” is a valid

conclusion. d) “Ralph is not a CS major” is a valid conclu-

sion. e) “That you buy lots of stuff is good for the U.S. and

is good for you” is a valid conclusion. f) “Mice gnaw their

food” and “Rabbits are not rodents” are valid conclusions.

11. Suppose that p1, p2,… , pn are true. We want to establish

that q → r is true. If q is false, then we are done, vacuously.

Otherwise, q is true, so by the validity of the given argument

form (that whenever p1, p2, … , pn, q are true, then r must be

true), we know that r is true. 13. a) Let c(x) be “x is in this

class,” j(x) be “x knows how to write programs in JAVA,”

and h(x) be “x can get a high-paying job.” The premises are

c(Doug), j(Doug), ∀x( j(x) → h(x)). Using universal instan-

tiation and the last premise, j(Doug) → h(Doug) follows.

Applying modus ponens to this conclusion and the second

premise, h(Doug) follows. Using conjunction and the first

premise, c(Doug) ∧ h(Doug) follows. Finally, using existen-

tial generalization, the desired conclusion, ∃x(c(x) ∧ h(x))

follows. b) Let c(x) be “x is in this class,” w(x) be “x enjoys

whale watching,” and p(x) be “x cares about ocean pollution.”

The premises are ∃x(c(x) ∧ w(x)) and ∀x(w(x) → p(x)). From

the first premise, c(y) ∧ w(y) for a particular person y. Using

simplification, w(y) follows. Using the second premise and

universal instantiation, w(y) → p(y) follows. Using modus

ponens, p(y) follows, and by conjunction, c(y) ∧ p(y) follows.

Finally, by existential generalization, the desired conclusion,

∃x(c(x) ∧ p(x)), follows. c) Let c(x) be “x is in this class,” p(x)

be “x owns a PC,” and w(x) be “x can use a word-processing

program.” The premises are c(Zeke), ∀x(c(x) → p(x)), and
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∀x(p(x) → w(x)). Using the second premise and universal

instantiation, c(Zeke) → p(Zeke) follows. Using the first

premise and modus ponens, p(Zeke) follows. Using the third

premise and universal instantiation, p(Zeke) → w(Zeke) fol-

lows. Finally, using modus ponens, w(Zeke), the desired con-

clusion, follows. d) Let j(x) be “x is in New Jersey,” f (x)

be “x lives within 50 miles of the ocean,” and s(x) be “x
has seen the ocean.” The premises are ∀x(j(x) → f (x)) and

∃x(j(x) ∧ ¬s(x)). The second hypothesis and existential in-

stantiation imply that j(y)∧¬s(y) for a particular person y. By

simplification, j(y) for this person y. Using universal instanti-

ation and the first premise, j(y) → f (y), and by modus ponens,

f (y) follows. By simplification, ¬s(y) follows from j(y)∧¬s(y).

So f (y) ∧ ¬s(y) follows by conjunction. Finally, the desired

conclusion, ∃x(f (x) ∧ ¬s(x)), follows by existential gener-

alization. 15. a) Correct, using universal instantiation and

modus ponens b) Invalid; fallacy of affirming the conclusion

c) Invalid; fallacy of denying the hypothesis d) Correct, us-

ing universal instantiation and modus tollens 17. We know

that some x exists that makes H(x) true, but we cannot con-

clude that Lola is one such x. 19. a) Fallacy of affirming

the conclusion b) Fallacy of begging the question c) Valid

argument using modus tollens d) Fallacy of denying the

hypothesis 21. By the second premise, there is some lion

that does not drink coffee. Let Leo be such a creature. By

simplification we know that Leo is a lion. By modus ponens

we know from the first premise that Leo is fierce. Hence,

Leo is fierce and does not drink coffee. By the definition of

the existential quantifier, there exist fierce creatures that do

not drink coffee, that is, some fierce creatures do not drink

coffee. 23. The error occurs in step (5), because we cannot

assume, as is being done here, that the c that makes P true

is the same as the c that makes Q true. 25. We are given

the premises ∀x(P(x) → Q(x)) and ¬Q(a). We want to show

¬P(a). Suppose, to the contrary, that ¬P(a) is not true. Then

P(a) is true. Therefore, by universal modus ponens, we have

Q(a). But this contradicts the given premise ¬Q(a). There-

fore, our supposition must have been wrong, and so ¬P(a) is

true, as desired.

27. Step Reason
1. ∀x(P(x) ∧ R(x)) Premise
2. P(a) ∧ R(a) Universal instantiation from (1)
3. P(a) Simplification from (2)
4. ∀x(P(x) → Premise

(Q(x) ∧ S(x)))
5. Q(a) ∧ S(a) Universal modus ponens from(3)

and (4)
6. S(a) Simplification from (5)
7. R(a) Simplification from (2)
8. R(a) ∧ S(a) Conjunction from (7) and (6)
9. ∀x(R(x) ∧ S(x)) Universal generalization from (5)

29. Step Reason
1. ∃x¬P(x) Premise
2. ¬P(c) Existential instantiation from (1)
3. ∀x(P(x) ∨ Q(x)) Premise
4. P(c) ∨ Q(c) Universal instantiation from (3)
5. Q(c) Disjunctive syllogism from (4)

and (2)
6. ∀x(¬Q(x) ∨ S(x)) Premise
7. ¬Q(c) ∨ S(c) Universal instantiation from (6)
8. S(c) Disjunctive syllogism from (5)

and (7)
9. ∀x(R(x) → ¬S(x)) Premise
10. R(c) → ¬S(c) Universal instantiation from (9)
11. ¬R(c) Modus tollens from (8) and (10)
12. ∃x¬R(x) Existential generalization from

(11)

31. Let p be “It is raining”; let q be “Yvette has her umbrella”;

let r be “Yvette gets wet.” Assumptions are ¬p ∨ q, ¬q ∨ ¬r,

and p ∨ ¬r. Resolution on the first two gives ¬p ∨ ¬r. Res-

olution on this and the third assumption gives ¬r, as desired.

33. Assume that this proposition is satisfiable. Using resolu-

tion on the first two clauses enables us to conclude q ∨ q; in

other words, we know that q has to be true. Using resolution

on the last two clauses enables us to conclude ¬q ∨ ¬q; in

other words, we know that ¬q has to be true. This is a contra-

diction. So this proposition is not satisfiable. 35. Valid

Section 1.7

1. Let n = 2k + 1 and m = 2l + 1 be odd inte-

gers. Then n+m= 2(k+ l+ 1) is even. 3. Suppose that n
is even. Then n = 2k for some integer k. Therefore, n2 =
(2k)2 = 4k2 = 2(2k2). Because we have written n2 as 2 times an

integer, we conclude that n2 is even. 5. Direct proof: Sup-

pose that m+ n and n+ p are even. Then m+ n = 2s for some

integer s and n+p = 2t for some integer t. If we add these, we

get m + p + 2n = 2s + 2t. Subtracting 2n from both sides and

factoring, we have m + p = 2s + 2t − 2n = 2(s + t − n).

Because we have written m + p as 2 times an integer, we

conclude that m + p is even. 7. Because n is odd, we can

write n = 2k + 1 for some integer k. Then (k + 1)2 − k2 =
k2 + 2k + 1 − k2 = 2k + 1 = n. 9. Suppose that r is

rational and i is irrational and s = r + i is rational. Then by

Example 8, s + (−r) = i is rational, which is a contradiction.

11. Because
√

2 ⋅
√

2 = 2 is rational and
√

2 is irrational, the

product of two irrational numbers is not necessarily irrational.

13. Proof by contraposition: If 1∕x were rational, then by def-

inition 1∕x = p∕q for some integers p and q with q ≠ 0.

Because 1∕x cannot be 0 (if it were, then we’d have the con-

tradiction 1 = x ⋅ 0 by multiplying both sides by x), we know

that p ≠ 0. Now x = 1∕(1∕x) = 1∕(p∕q) = q∕p by the

usual rules of algebra and arithmetic. Hence, x can be written

as the quotient of two integers with the denominator nonzero.

Thus, by definition, x is rational. 15. Assume that
√

x were

rational. Then, because the product of two rational numbers
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is rational,
(√

x
)2 = x is also rational. This contradicts the

hypothesis that x is irrational. 17. Assume that it is not true

that x ≥ 1 or y ≥ 1. Then x < 1 and y < 1. Adding these

two inequalities, we obtain x + y < 2, which is the negation

of x+ y ≥ 2. 19. a) Assume that n is odd, so n = 2k + 1 for

some integer k. Then n3 + 5 = 2(4k3 + 6k2 + 3k+ 3). Because

n3 + 5 is two times some integer, it is even. b) Suppose that

n3 + 5 is odd and n is odd. Because n is odd and the prod-

uct of two odd numbers is odd, it follows that n2 is odd and

then that n3 is odd. But then 5 = (n3 + 5) − n3 would have

to be even because it is the difference of two odd numbers.

Therefore, the supposition that n3 + 5 and n were both odd

is wrong. 21. The proposition is vacuously true because 0

is not a positive integer. Vacuous proof. 23. P(1) is true be-
cause (a+b)1 = a+b ≥ a1+b1 = a+b. Direct proof. 25. If

we chose 9 or fewer days on each day of the week, this would

account for at most 9⋅7 = 63 days. But we chose 64 days. This

contradiction shows that at least 10 of the days we chose must

be on the same day of the week. 27. Suppose by way of con-

tradiction that a∕b is a rational root, where a and b are integers

and this fraction is in lowest terms (that is, a and b have no

common divisor greater than 1). Plug this proposed root into

the equation to obtain a3∕b3 + a∕b+ 1 = 0. Multiply through

by b3 to obtain a3 +ab2 +b3 = 0. If a and b are both odd, then

the left-hand side is the sum of three odd numbers and there-

fore must be odd. If a is odd and b is even, then the left-hand

side is odd+even+even, which is again odd. Similarly, if a is

even and b is odd, then the left-hand side is even+even+odd,

which is again odd. Because the fraction a∕b is in simplest

terms, it cannot happen that both a and b are even. Thus, in all

cases, the left-hand side is odd, and therefore cannot equal 0.
This contradiction shows that no such root exists. 29. First,

assume that n is odd, so that n = 2k + 1 for some integer k.

Then 5n+6 = 5(2k+1)+6 = 10k+11 = 2(5k+5)+1. Hence,
5n + 6 is odd. To prove the converse, suppose that n is even,

so that n = 2k for some integer k. Then 5n + 6 = 10k + 6 =
2(5k + 3), so 5n + 6 is even. Hence, n is odd if and only if

5n+6 is odd. 31. This proposition is true. Suppose that m is

neither 1 nor −1. Then mn has a factor m larger than 1. On the
other hand, mn = 1, and 1 has no such factor. Hence, m = 1 or

m = −1. In the first case n = 1, and in the second case n = −1,

because n = 1∕m. 33. We prove that all these are equivalent

to x being even. If x is even, then x = 2k for some integer k.

Therefore, 3x+2 = 3⋅2k+2 = 6k+2 = 2(3k+1), which is even,

because it has been written in the form 2t, where t = 3k + 1.

Similarly, x+5 = 2k+5 = 2k+4+1 = 2(k+2)+1, so x+5 is

odd; and x2 = (2k)2 = 2(2k2), so x2 is even. For the converses,

we will use a proof by contraposition. So assume that x is not

even; thus, x is odd and we can write x = 2k+1 for some inte-

ger k. Then 3x+2 = 3(2k+1)+2 = 6k+5 = 2(3k+2)+1, which
is odd (i.e., not even), because it has been written in the form

2t+1, where t = 3k+2. Similarly, x+5 = 2k+1+5 = 2(k+3),

so x + 5 is even (i.e., not odd). That x2 is odd was already

proved in Example 1. 35. We give proofs by contraposition

of (i ) → (ii), (ii) → (i ), (i ) → (iii ), and (iii ) → (i ). For the
first of these, suppose that 3x + 2 is rational, namely, equal to

p∕q for some integers p and q with q ≠ 0. Then we can write

x = ((p∕q)−2)∕3 = (p−2q)∕(3q), where 3q ≠ 0. This shows

that x is rational. For the second conditional statement, sup-

pose that x is rational, namely, equal to p∕q for some integers

p and q with q ≠ 0. Then we can write 3x + 2 = (3p + 2q)∕q,

where q ≠ 0. This shows that 3x + 2 is rational. For the third

conditional statement, suppose that x∕2 is rational, namely,

equal to p∕q for some integers p and q with q ≠ 0. Then

we can write x = 2p∕q, where q ≠ 0. This shows that

x is rational. And for the fourth conditional statement, sup-

pose that x is rational, namely, equal to p∕q for some integers

p and q with q ≠ 0. Then we can write x∕2 = p∕(2q),

where 2q ≠ 0. This shows that x∕2 is rational. 37. No

39. Suppose that p1 → p4 → p2 → p5 → p3 → p1.

To prove that one of these propositions implies any of the

others, just use hypothetical syllogism repeatedly. 41. We

will give a proof by contradiction. Suppose that a1, a2,… , an
are all less than A, where A is the average of these numbers.

Then a1 + a2 +⋯ + an < nA. Dividing both sides by n shows

that A = (a1 + a2 +⋯ + an)∕n < A, which is a contradiction.

43. We will show that the four statements are equivalent by

showing that (i ) implies (ii ), (ii ) implies (iii ), (iii ) implies

(iv), and (iv) implies (i). First, assume that n is even. Then

n = 2k for some integer k. Then n + 1 = 2k + 1, so

n + 1 is odd. This shows that (i) implies (ii ). Next, suppose

that n + 1 is odd, so n + 1 = 2k + 1 for some integer k.

Then 3n + 1 = 2n + (n + 1) = 2(n + k) + 1, which

shows that 3n+1 is odd, showing that (ii ) implies (iii ). Next,

suppose that 3n + 1 is odd, so 3n + 1 = 2k + 1 for some

integer k. Then 3n = (2k + 1) − 1 = 2k, so 3n is even.

This shows that (iii ) implies (iv). Finally, suppose that n is

not even. Then n is odd, so n = 2k + 1 for some integer k.

Then 3n = 3(2k + 1) = 6k + 3 = 2(3k + 1) + 1, so 3n is odd.

This completes a proof by contraposition that (iv) implies (i).

Section 1.8

1. 12 + 1 = 2 ≥ 2 = 21; 22 + 1 = 5 ≥ 4 = 22; 32 + 1 =
10 ≥ 8 = 23; 42 + 1 = 17 ≥ 16 = 24 3. We must show

that for all positive integers x it is not true that x3 = 100.

Case (i): If x ≤ 4, then x3 ≤ 64, so x3 ≠ 100. Case (ii):
If x ≥ 5, then x3 ≥ 125, so x3 ≠ 100. 5. If x ≤ y, then

max(x, y) + min(x, y) = y + x = x + y. If x ≥ y, then

max(x, y) +min(x, y) = x + y. Because these are the only two

cases, the equality always holds. 7. Because |x−y| = |y−x|,
the values of x and y are interchangeable. Therefore, with-

out loss of generality, we can assume that x ≥ y. Then

(x+ y− (x− y))∕2 = (x+ y− x+ y)∕2 = 2y∕2 = y = min(x, y).

Similarly, (x+y+ (x−y))∕2 = (x+y+x−y)∕2 = 2x∕2 = x =
max(x, y). 9. There are four cases. Case 1: x ≥ 0 and y ≥ 0.

Then |x| + |y| = x + y = |x + y|. Case 2: x < 0 and y < 0.

Then |x| + |y| = −x + (−y) = −(x + y) = |x + y| because

x+ y < 0. Case 3: x ≥ 0 and y < 0. Then |x|+ |y| = x+ (−y).

If x ≥ −y, then |x + y| = x + y. But because y < 0,−y > y,

so |x| + |y| = x + (−y) > x + y = |x + y|. If x < −y, then|x + y| = −(x + y) = −x + (−y). But because x ≥ 0, x ≥ −x,
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so |x| + |y|= x + (−y) ≥−x + (−y) = |x + y|. Case 4: x < 0

and y ≥ 0. Identical to Case 3 with the roles of x and y re-

versed. 11. 10,001, 10,002,… , 10,100 are all nonsquares,

because 1002 = 10,000 and 1012 = 10,201; constructive.

13. 8 = 23 and 9 = 32 15. Let x = 2 and y =
√

2. If

xy = 2
√

2 is irrational, we are done. If not, then let x = 2
√

2 and

y =
√

2∕4. Then xy = (2
√

2)
√

2∕4 = 2
√

2⋅(
√

2)∕4 = 21∕2 =
√

2.

17. a) This statement asserts the existence of x with a certain

property. If we let y = x, then we see that P(x) is true. If y
is anything other than x, then P(x) is not true. Thus, x is the

unique element that makes P true. b) The first clause here says

that there is an element that makes P true. The second clause

says that whenever two elements both make P true, they are

in fact the same element. Together these say that P is satisfied

by exactly one element. c) This statement asserts the exis-

tence of an x that makes P true and has the further property

that whenever we find an element that makes P true, that ele-

ment is x. In other words, x is the unique element that makes

P true. 19. The equation |a−c| = |b−c| is equivalent to the

disjunction of two equations: a− c = b− c or a− c = −b+ c.

The first of these is equivalent to a = b, which contradicts the

assumptions made in this problem, so the original equation is

equivalent to a − c = −b + c. By adding b + c to both sides

and dividing by 2, we see that this equation is equivalent to
c = (a + b)∕2. Thus, there is a unique solution. Furthermore,

this c is an integer, because the sum of the odd integers a and b
is even. 21. We are being asked to solve n = (k−2)+(k+3)

for k. Using the usual, reversible, rules of algebra, we see that

this equation is equivalent to k = (n−1)∕2. In other words, this

is the one and only value of k that makes our equation true.

Because n is odd, n−1 is even, so k is an integer. 23. If x is

itself an integer, then we can take n = x and 𝜖 = 0. No other so-

lution is possible in this case, because if the integer n is greater

than x, then n is at least x + 1, which would make 𝜖 ≥ 1. If x
is not an integer, then round it up to the next integer, and call

that integer n. Let 𝜖 = n−x. Clearly 0 ≤ 𝜖 < 1; this is the only

𝜖 that will work with this n, and n cannot be any larger, be-

cause 𝜖 is constrained to be less than 1. 25. The harmonic

mean of distinct positive real numbers x and y is always less

than their geometric mean. To prove 2xy∕(x + y) <
√

xy,

multiply both sides by (x + y)∕(2
√

xy) to obtain the equiv-

alent inequality
√

xy < (x + y)∕2, which is proved in Ex-
ample 14. 27. The parity (oddness or evenness) of the sum

of the numbers written on the board never changes, because

j + k and |j − k| have the same parity (and at each step we

reduce the sum by j + k but increase it by |j − k|). There-

fore the integer at the end of the process must have the same

parity as 1 + 2 + ⋯ + (2n) = n(2n + 1), which is odd

because n is odd. 29. Without loss of generality we can as-

sume that n is nonnegative, because the fourth power of an

integer and the fourth power of its negative are the same. We

divide an arbitrary positive integer n by 10, obtaining a quo-

tient k and remainder l, whence n = 10k + l, and l is an

integer between 0 and 9, inclusive. Then we compute n4 in

each of these 10 cases. We get the following values, where X
is some integer that is a multiple of 10, whose exact value we

do not care about. (10k + 0)4 = 10,000k4 = 10,000k4 + 0,

(10k + 1)4 = 10,000k4 + X ⋅ k3 + X ⋅ k2 + X ⋅ k + 1,

(10k + 2)4 = 10,000k4 + X ⋅ k3 + X ⋅ k2 + X ⋅ k + 16,

(10k + 3)4 = 10,000k4 + X ⋅ k3 + X ⋅ k2 + X ⋅ k + 81,

(10k + 4)4 = 10,000k4 + X ⋅ k3 + X ⋅ k2 + X ⋅ k + 256,

(10k + 5)4 = 10,000k4 + X ⋅ k3 + X ⋅ k2 + X ⋅ k + 625,

(10k + 6)4 = 10,000k4 + X ⋅ k3 + X ⋅ k2 + X ⋅ k + 1296,

(10k + 7)4 = 10,000k4 + X ⋅ k3 + X ⋅ k2 + X ⋅ k + 2401,

(10k + 8)4 = 10,000k4 + X ⋅k3 + X ⋅ k2 + X ⋅ k + 4096,

(10k + 9)4 = 10,000k4 + X ⋅ k3 + X ⋅ k2 + X ⋅ k + 6561.

Because each coefficient indicated by X is a multiple of 10,
the corresponding term has no effect on the ones digit of the

answer. Therefore, the ones digits are 0, 1, 6, 1, 6, 5, 6, 1, 6,

1, respectively, so it is always a 0, 1, 5, or 6. 31. Because

n3 > 100 for all n > 4, we need only note that n = 1, n = 2,

n = 3, and n = 4 do not satisfy n2 + n3 = 100. 33. Because

54 = 625, both x and y must be less than 5. Then x4 +
y4 ≤ 44 + 44 = 512 < 625. 35. If it is not true that a ≤ 3

√
n,

b ≤ 3
√

n, or c ≤ 3
√

n, then a > 3
√

n, b > 3
√

n, and c > 3
√

n.

Multiplying these inequalities of positive numbers together

we obtain abc < ( 3
√

n)3 = n, which implies the negation

of our hypothesis that n = abc. 37. By finding a common

denominator, we can assume that the given rational numbers

are a∕b and c∕b, where b is a positive integer and a and c are

integers with a < c. In particular, (a + 1)∕b ≤ c∕b. Thus,

x = (a + 1

2

√
2)∕b is between the two given rational numbers,

because 0 <
√

2 < 2. Furthermore, x is irrational, because if

x were rational, then 2(bx−a) =
√

2 would be as well, in vio-

lation of Example 11 in Section 1.7. 39. a) Without loss of

generality, we can assume that the x sequence is already sorted

into nondecreasing order, because we can relabel the indices.

There are only a finite number of possible orderings for the y
sequence, so if we can show that we can increase the sum (or

at least keep it the same) whenever we find yi and yj that are

out of order (i.e., i < j but yi > yj) by switching them, then we

will have shown that the sum is largest when the y sequence is

in nondecreasing order. Indeed, if we perform the swap, then

we have added xiyj + xjyi to the sum and subtracted xiyi + xjyj.

The net effect is to have added xiyj + xjyi − xiyi − xjyj =
(xj − xi)(yi − yj), which is nonnegative by our ordering as-

sumptions. b) Similar to part (a) 41. a) 6 → 3 → 10 →
5 → 16 → 8 → 4 → 2 → 1 b) 7 → 22 → 11 → 34 →
17 → 52 → 26 → 13 → 40 → 20 → 10 → 5 → 16 →
8 → 4 → 2 → 1 c) 17 → 52 → 26 → 13 → 40 →
20 → 10 → 5 → 16 → 8 → 4 → 2 → 1

d) 21 → 64 → 32 → 16 → 8 → 4 → 2 → 1 43. Without

loss of generality, assume that the upper left and upper right

corners of the board are removed. Place three dominoes hor-

izontally to fill the remaining portion of the first row, and fill

each of the other seven rows with four horizontal dominoes.

45. Because there is an even number of squares in all, either

there is an even number of squares in each row or there is an

even number of squares in each column. In the former case,

tile the board in the obvious way by placing the dominoes hor-

izontally, and in the latter case, tile the board in the obvious

way by placing the dominoes vertically. 47. We can rotate
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the board if necessary to make the removed squares be 1 and

16. Square 2 must be covered by a domino. If that domino is

placed to cover squares 2 and 6, then the following domino

placements are forced in succession: 5-9, 13-14, and 10-11,

at which point there is no way to cover square 15. Otherwise,

square 2 must be covered by a domino placed at 2-3. Then

the following domino placements are forced: 4-8, 11-12, 6-7,

5-9, and 10-14, and again there is no way to cover square 15.

49. Remove the two black squares adjacent to a white corner,

and remove two white squares other than that corner. Then no

domino can cover that white corner.

51. a)
(1) (2) (3) (4) (5)

b) The picture shows tilings for the first four patterns.

1 3

2 4

To show that pattern 5 cannot tile the checkerboard, label the

squares from 1 to 64, one row at a time from the top, from left

to right in each row. Thus, square 1 is the upper left corner,

and square 64 is the lower right. Suppose we did have a tiling.

By symmetry and without loss of generality, we may suppose

that the tile is positioned in the upper left corner, covering

squares 1, 2, 10, and 11. This forces a tile to be adjacent to

it on the right, covering squares 3, 4, 12, and 13. Continue in

this manner and we are forced to have a tile covering squares

6, 7, 15, and 16. This makes it impossible to cover square 8.

Thus, no tiling is possible.

Supplementary Exercises

1. a) q → p b) q ∧ p c) ¬q ∨ ¬p d) q ↔ p 3. a) The

proposition cannot be false unless ¬p is false, so p is true. If

p is true and q is true, then ¬q ∧ (p → q) is false, so the

conditional statement is true. If p is true and q is false, then

p → q is false, so ¬q ∧ (p → q) is false and the conditional

statement is true. b) The proposition cannot be false unless

q is false. If q is false and p is true, then (p ∨ q) ∧ ¬p is false,

and the conditional statement is true. If q is false and p is

false, then (p ∨ q) ∧ ¬p is false, and the conditional statement

is true. 5. ¬q → ¬p; p → q; ¬p → ¬q 7. (p ∧ q ∧ r
∧ ¬s)∨(p ∧ q ∧ ¬r ∧ s) ∨ (p ∧¬ q ∧ r ∧ s)∨ (¬ p ∧ q ∧ r ∧ s)

9. Translating these statements into symbols, using the obvi-

ous letters, we have ¬t → ¬g, ¬g → ¬q, r → q, and ¬t ∧ r.

Assume the statements are consistent. The fourth statement

tells us that ¬t must be true. Therefore, by modus ponens with

the first statement, we know that ¬g is true, hence (from the

second statement), that ¬q is true. Also, the fourth statement

tells us that r must be true, and so again modus ponens (third

statement) makes q true. This is a contradiction: q∧¬q. Thus,

the statements are inconsistent. 11. Reject-accept-reject-

accept, accept-accept-accept-accept, accept-accept-reject-

accept, reject-reject-reject-reject, reject-reject-accept-reject,

and reject-accept-accept-accept 13. Aaron is a knave and

Crystal is a knight; it cannot be determined what Bohan is.

15. Brenda 17. The premises cannot both be true, because

they are contradictory. Therefore, it is (vacuously) true that

whenever all the premises are true, the conclusion is also

true, which by definition makes this a valid argument. Be-

cause the premises are not both true, we cannot conclude

that the conclusion is true. 19. Use the same propositions

as were given in Section 1.3 for a 9 × 9 Sudoku puzzle,

with the variables indexed from 1 to 16, instead of from 1

to 9, and with a similar change for the propositions for the

4 × 4 blocks:
⋀3

r=0

⋀3

s=0

⋀16

n=1

⋁4

i=1

⋁4

j=1
p(4r + i, 4s + j, n).

21. a) F b) T c) F d) T e) F f) T 23. Many an-

swers are possible. One example is United States sena-

tors. 25. ∀x∃y∃z (y ≠ z ∧ ∀w(P(w, x) ↔ (w = y ∨ w = z)))

27. a) ¬∃xP(x) b) ∃x(P(x) ∧ ∀y(P(y) → y = x))

c) ∃x1∃x2(P(x1) ∧ P(x2) ∧ x1 ≠ x2 ∧ ∀y (P(y) → (y = x1∨y =
x2))) d) ∃x1 ∃ x2 ∃ x3(P(x1)∧P(x2) ∧P(x3)∧x1 ≠ x2 ∧ x1 ≠
x3 ∧ x2 ≠ x3 ∧ ∀y(P(y) → (y = x1 ∨ y = x2 ∨ y = x3)))

29. Suppose that ∃x(P(x) → Q(x)) is true. Then either Q(x0)

is true for some x0, in which case ∀xP(x) → ∃x Q(x) is true;

or P(x0) is false for some x0, in which case ∀xP(x) → ∃xQ(x)

is true. Conversely, suppose that ∃x(P(x) → Q(x)) is false.

That means that ∀x(P(x) ∧ ¬Q(x)) is true, which implies

∀xP(x) and ∀x(¬Q(x)). This latter proposition is equiva-

lent to ¬∃xQ(x). Thus, ∀xP(x) → ∃xQ(x) is false. 31. No

33. ∀x ∀z ∃y T(x, y, z), where T(x, y, z) is the statement

that student x has taken class y in department z, where

the domains are the set of students in the class, the set of

courses at this university, and the set of departments in the

school of mathematical sciences 35. ∃!x∃!y T(x, y) and

∃x∀z((∃y∀w(T(z, w) ↔ w = y)) ↔ z = x), where T(x, y)

means that student x has taken class y and the domain is all

students in this class 37. P(a) → Q(a) and Q(a) → R(a)

by universal instantiation; then ¬Q(a) by modus tollens and

¬P(a) by modus tollens 39. This is not true. Let x = 21∕3.

Then x2 = 41∕3 is irrational (the proof of this is very similar

to the proof in Example 11 in Section 1.7), but x3 = 2 is

rational. 41. We can give a constructive proof by letting

m = 10500 + 1. Then m2 = (10500 + 1)2 > (10500)2 = 101000.

43. 23 cannot be written as the sum of eight cubes. 45. 223

cannot be written as the sum of 36 fifth powers.
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CHAPTER 2

Section 2.1

1. a) {−1,1} b) {1,2,3,4,5,6,7,8,9,10,11} c) {0,1,4, 9, 16,
25, 36, 49, 64, 81} d) ∅ 3. a) [0, 5), [0, 5] b) (0, 5), (0, 5],

[0, 5), [0, 5] c) (0, 5), (0, 5], [0, 5), [0, 5], (1, 4], [2, 3] d) (0, 5),

(0, 5], [0, 5), [0, 5], (1, 4], [2, 3] e) (0, 5), (0, 5], [0, 5), [0, 5],

(1, 4] f) (0, 5], [0, 5] 5. a) The second is a subset of the

first, but the first is not a subset of the second. b) Neither

is a subset of the other. c) The first is a subset of the sec-

ond, but the second is not a subset of the first. 7. a) Yes

b) No c) No 9. a) Yes b) No c) Yes d) No e) No f) No

11. a) False b) False c) False d) True e) False f) False

g) True 13. a) True b) True c) False d) True e) True

f) False

15.
January

May
June

July
August

November December

September October

March

February

April

17. The dots in certain regions indicate that those regions are

not empty.

C

U

B
A

19. Suppose that x ∈ A. Because A ⊆ B, this implies

that x ∈ B. Because B ⊆ C, we see that x ∈ C. Because

x ∈ A implies that x ∈ C, it follows that A⊆C. 21. a) 1

b) 1 c) 2 d) 3 23. a) {∅, {a}} b) {∅, {a}, {b}, {a, b}}
c) {∅, {∅}, {{∅}}, {∅, {∅}}} 25. a) 8 b) 16 c) 2 27. For

the “if” part, given A ⊆ B, we want to show that

(A) ⊆ (B), i.e., if C ⊆ A then C ⊆ B. But this fol-

lows directly from Exercise 19. For the “only if” part, given

that (A) ⊆ (B), we want to show that A ⊆ B. Suppose

a ∈ A. Then {a} ⊆ A, so {a} ∈ (A). Since (A) ⊆ (B), it

follows that {a} ∈ (B), which means that {a} ⊆ B. But this

implies a ∈ B, as desired. 29. a) {(a, y), (b, y), (c, y), (d, y),

(a, z), (b, z), (c, z), (d, z)} b) {(y, a), (y, b), (y, c), (y, d), (z, a),

(z, b), (z, c), (z, d)} 31. The set of triples (a, b, c), where a
is an airline and b and c are cities. A useful subset of this set

is the set of triples (a, b, c) for which a flies between b and c.

33. ∅ × A = {(x, y) ∣ x ∈ ∅ and y ∈ A} = ∅ = {(x, y) ∣
x ∈ A and y ∈ ∅} = A × ∅ 35. a) {(0, 0), (0, 1), (0, 3),

(1, 0), (1, 1), (1, 3), (3, 0), (3, 1), (3, 3)} b) {(1, 1), (1, 2), (1, a),

(1, b), (2, 1), (2, 2), (2, a), (2, b), (a, 1), (a, 2), (a, a), (a, b),

(b, 1), (b, 2), (b, a), (b, b)} 37. mn 39. mn 41. The ele-

ments of A × B × C consist of 3-tuples (a, b, c), where a ∈ A,

b ∈ B, and c ∈ C, whereas the elements of (A × B) × C look

like ((a, b), c)—ordered pairs, the first coordinate of which

is again an ordered pair. 43. This is not true. The simplest

counterexample is to let A = B = ∅. Then A × B = ∅
and (A × B) = {∅}, whereas (A) = (B) = {∅} and

(A) × (B) = {(∅, ∅)}. Thus, (A × B) ≠ (A) × (B).

45. a) The square of a real number is never −1. True b) There

exists an integer whose square is 2. False c) The square of ev-

ery integer is positive. False d) There is a real number equal

to its own square. True 47. a) {−1, 0, 1} b) Z−{0, 1} c) ∅
49. We must show that {{a}, {a, b}} = {{c}, {c, d}} if and

only if a = c and b = d. The “if” part is immediate. So as-

sume these two sets are equal. First, consider the case when

a ≠ b. Then {{a}, {a, b}} contains exactly two elements, one

of which contains one element. Thus, {{c}, {c, d}} must have

the same property, so c ≠ d and {c} is the element containing

exactly one element. Hence, {a} = {c}, which implies that

a = c. Also, the two-element sets {a, b} and {c, d} must be

equal. Because a = c and a ≠ b, it follows that b = d. Second,

suppose that a = b. Then {{a}, {a, b}} = {{a}}, a set with one

element. Hence, {{c}, {c, d}} has only one element, which

can happen only when c = d, and the set is {{c}}. It then

follows that a = c and b = d. 51. Let S = {a1, a2,… , an}.

Represent each subset of S with a bit string of length n, where

the ith bit is 1 if and only if ai ∈ S. To generate all subsets of

S, list all 2n bit strings of length n (for instance, in increasing

order), and write down the corresponding subsets.

Section 2.2

1. a) The set of students who live within one mile of school

and walk to classes b) The set of students who live within

one mile of school or walk to classes (or do both) c) The

set of students who live within one mile of school but

do not walk to classes d) The set of students who walk

to classes but live more than one mile away from school

3. a) {0,1,2,3,4,5,6} b) {3} c) {1, 2, 4,5} d) {0, 6} 5. A =
{x ∣ ¬(x ∈ A)} = {x ∣¬(¬x ∈ A)} = {x ∣ x ∈ A} = A
7. a) A ∪ U = {x ∣ x ∈ A ∨ x ∈ U} = {x ∣ x ∈ A ∨ T} =
{x ∣ T} = U b) A ∩ ∅ = {x ∣ x ∈ A ∧ x ∈ ∅} = {x ∣ x ∈
A ∧ F} = {x ∣ F} = ∅ 9. a) A ∪ A={x ∣ x∈A ∨ x∉A}=U
b) A ∩ A = {x ∣ x ∈ A ∧ x ∉ A} = ∅ 11. a) A ∪
B = {x ∣ x ∈ A ∨ x ∈ B} = {x ∣ x ∈ B ∨ x ∈ A} = B ∪ A
b) A ∩ B = {x ∣ x ∈ A ∧ x ∈ B} = {x ∣ x ∈ B ∧ x ∈ A} =
B ∩ A 13. Suppose x ∈ A ∩ (A ∪ B). Then x ∈ A and

x ∈ A ∪ B by the definition of intersection. Because x ∈ A,

we have proved that the left-hand side is a subset of the right-

hand side. Conversely, let x ∈ A. Then by the definition of

union, x ∈ A ∪ B as well. Therefore, x ∈ A ∩ (A ∪ B)

by the definition of intersection, so the right-hand side is

a subset of the left-hand side. 15. a) x ∈ A ∪ B ≡
x ∉A ∪ B ≡ ¬(x ∈ A ∨ x ∈ B) ≡ ¬(x ∈ A) ∧ ¬(x ∈ B) ≡
x ∉ A ∧ x ∉ B ≡ x ∈ A ∧ x ∈ B ≡ x ∈ A ∩ B
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b) A B A ∪ B A ∪ B A B A ∩ B
1 1 1 0 0 0 0
1 0 1 0 0 1 0
0 1 1 0 1 0 0
0 0 0 1 1 1 1

17. Suppose A ⊆ B. We must show that every element x of U
is an element of A ∪ B. Either x ∈ A or x ∈ A, and if x ∈ A
then x ∈ B. Thus, x ∈ A∪ B in all cases. Conversely, suppose

that A ∪ B = U, and let x ∈ A. Then x ∉ A, so it must be

that x ∈ B. This shows that A ⊆ B, and the proof is complete.

19. a) x ∈ A ∩ B ∩ C ≡ x ∉ A ∩ B ∩ C ≡ x ∉ A ∨ x ∉
B ∨ x∉C ≡ x∈A∨ x∈B ∨ x ∈ C ≡ x∈A ∪ B ∪ C

b) A B C A∩B∩C A∩B∩C A B C A∪B∪C

1 1 1 1 0 0 0 0 0
1 1 0 0 1 0 0 1 1
1 0 1 0 1 0 1 0 1
1 0 0 0 1 0 1 1 1
0 1 1 0 1 1 0 0 1
0 1 0 0 1 1 0 1 1
0 0 1 0 1 1 1 0 1
0 0 0 0 1 1 1 1 1

21. a) Both sides equal {x ∣ x ∈ A ∧ x ∉ B}. b) A = A ∩ U =
A ∩ (B ∪ B) = (A ∩ B) ∪ (A ∩ B) 23. x ∈ A ∪ (B ∪ C) ≡
(x ∈ A) ∨ (x ∈ (B ∪ C)) ≡ (x ∈ A) ∨ (x ∈ B ∨ x ∈
C) ≡ (x ∈ A ∨ x ∈ B) ∨ (x ∈ C) ≡ x ∈ (A ∪ B) ∪ C
25. x ∈ A ∪ (B ∩ C) ≡ (x ∈ A) ∨ (x ∈ (B ∩ C)) ≡
(x ∈ A) ∨ (x ∈ B ∧ x ∈ C) ≡ (x ∈ A ∨ x ∈
B) ∧ (x ∈ A ∨ x ∈ C) ≡ x ∈ (A ∪ B) ∩ (A ∪ C)

27. a) {4,6} b) {0,1,2,3,4,5,6,7,8,9,10} c) {4, 5, 6, 8, 10}
d) {0,2,4,5,6,7,8,9,10} 29. a) The double-shaded portion

is the desired set.

A B

C

b) The desired set is the entire shaded portion.

BA

C

c) The desired set is the entire shaded portion.

A B

C

31. a) B ⊆ A b) A ⊆ B c) A ∩ B = ∅ d) Nothing, because

this is always true e) A = B 33. A ⊆ B ≡ ∀x(x ∈ A →
x ∈ B) ≡ ∀x(x ∉ B → x ∉ A) ≡ ∀x(x ∈ B → x ∈
A) ≡ B ⊆ A 35. By De Morgan’s law, the left-hand side

equals (A ∩ B) ∩ (B ∩ C) ∩ (A ∩ C). By the commuta-

tive, associative, and idempotent laws, this simplifies to the

right-hand side. 37. a) Let (x, y) ∈ A × (B − C), which

means that x ∈ A and y is an element of B but not C. Thus,

(x, y) ∈ A × B and (x, y) ∉ A × C, so by the definition

of set difference, (x, y) ∈ (A × B) − (A × C). Conversely,

let (x, y) ∈ (A × B) − (A × C). Then (x, y) ∈ A × B and

(x, y) ∉ A × C. Thus, x ∈ A and y ∈ B, and because x ∈ A,

it must be that y ∉ C. This implies that y ∈ B − C, so in-

deed (x, y) ∈ A × (B − C). b) Note that the complement in

the right-hand side must mean with respect to U × U. This is

not true. For example, let U = {a, b}, A = {a}, B = {b},

and C = ∅. Then the left-hand side is {(b, a)}, whereas the

right-hand side is {(a, a), (b, a), (b, b)}. 39. The set of stu-

dents who are computer science majors but not mathematics

majors or who are mathematics majors but not computer sci-

ence majors 41. An element is in (A ∪ B) − (A ∩ B) if it is

in the union of A and B but not in the intersection of A and B,

which means that it is in either A or B but not in both A and

B. This is exactly what it means for an element to belong to

A ⊕ B. 43. a) A ⊕ A = (A − A) ∪ (A − A) = ∅ ∪ ∅ = ∅
b) A ⊕ ∅ = (A − ∅) ∪ (∅ − A) = A ∪ ∅ = A c) A ⊕ U =
(A − U) ∪ (U − A) = ∅ ∪ A = A d) A ⊕ A = (A − A) ∪
(A − A) = A ∪ A = U 45. B = ∅ 47. Yes 49. Yes

51. If A∪B were finite, then it would have n elements for some

natural number n. But A already has more than n elements, be-

cause it is infinite, and A ∪ B has all the elements that A has,

so A ∪ B has more than n elements. This contradiction shows

that A ∪ B must be infinite. 53. a) {1, 2, 3,… , n} b) {1}
55. a) An b) {0, 1} 57. a) Z, {−1, 0, 1} b) Z − {0}, ∅
c) R, [−1, 1] d) [1, ∞), ∅ 59. a) {1, 2, 3, 4, 7, 8, 9, 10}
b) {2, 4, 5, 6, 7} c) {1, 10} 61. The bit in the ith position of

the bit string of the difference of two sets is 1 if the ith bit of

the first string is 1 and the ith bit of the second string is 0,

and is 0 otherwise. 63. a) 11 1110 0000 0000 0000 0000

0000 ∨ 01 1100 1000 0000 0100 0101 0000 = 11 1110 1000

0000 0100 0101 0000, representing {a, b, c, d, e, g, p, t, v}
b) 11 1110 0000 0000 0000 0000 0000 ∧ 01 1100 1000 0000

0100 0101 0000 = 01 1100 0000 0000 0000 0000 0000, rep-

resenting {b, c, d} c) (11 1110 0000 0000 0000 0000 0000 ∨
00 0110 0110 0001 1000 0110 0110) ∧ (01 1100 1000 0000

0100 0101 0000 ∨ 00 1010 0010 0000 1000 0010 0111) =
11 1110 0110 0001 1000 0110 0110 ∧ 01 1110 1010 0000

1100 0111 0111 = 01 1110 0010 0000 1000 0110 0110, rep-

resenting {b, c, d, e, i, o, t, u, x, y} d) 11 1110 0000 0000 0000

0000 0000 ∨ 01 1100 1000 0000 0100 0101 0000 ∨ 00 1010

0010 0000 1000 0010 0111 ∨ 00 0110 0110 0001 1000 0110

0110 = 11 1110 1110 0001 1100 0111 0111, representing

{a,b,c,d,e,g,h,i,n,o,p,t,u,v,x,y,z} 65. a) {1, 2, 3, {1, 2, 3}}
b) {∅} c) {∅, {∅}} d) {∅, {∅}, {∅, {∅}}} 67. a) {3 ⋅ a, 3 ⋅
b, 1 ⋅ c, 4 ⋅d} b) {2 ⋅a, 2 ⋅b} c) {1 ⋅a, 1 ⋅ c} d) {1 ⋅b, 4 ⋅d}
e) {5 ⋅a, 5 ⋅b, 1 ⋅c, 4 ⋅d} 69. These all follow from the defi-

nitions of the multiset operations. a) False, because the union

is actually {a, a, a} b) False, because the union is actually

{a, a, a} c) True d) False, because the correct intersection is

as stated in part (c) e) True 71. a) 0, 1 b) 1∕3, 2∕3 c) 1, 0

d) 1∕6, 5∕6 73. F = {0.4 Alice, 0.1 Brian, 0.6 Fred, 0.9 Os-

car, 0.5 Rita}, R = {0.6 Alice, 0.2 Brian, 0.8 Fred, 0.1 Oscar,
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0.3 Rita} 75. {0.4 Alice, 0.8 Brian, 0.2 Fred, 0.1 Oscar,

0.5 Rita}

Section 2.3

1. a) f (0) is not defined. b) f (x) is not defined for x < 0. c) f (x)

is not well defined because there are two distinct values as-

signed to each x. 3. a) Not a function b) A function c) Not a

function 5. a) Domain the set of bit strings; range the set of

integers b) Domain the set of bit strings; range the set of even

nonnegative integers c) Domain the set of bit strings; range

the set of nonnegative integers not exceeding 7 d) Domain

the set of positive integers; range the set of squares of pos-

itive integers = {1, 4, 9, 16, …} 7. a) Domain Z+×Z+;

range Z+ b) Domain Z+; range {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
c) Domain the set of bit strings; range N d) Domain the set of

bit strings; range N 9. a) 1 b) 0 c) 0 d) −1 e) 3 f) −1 g) 2

h) 1 11. Only the function in part (a) 13. Only the func-

tions in parts (a) and (d) 15. a) Onto b) Not onto c) Onto

d) Not onto e) Onto 17. a) Depends on whether teach-

ers share offices b) One-to-one assuming only one teacher per

bus c) Most likely not one-to-one, especially if salary is set by

a collective bargaining agreement d) One-to-one 19. An-

swers will vary. a) Set of offices at the school; probably not

onto b) Set of buses going on the trip; onto, assuming every

bus gets a teacher chaperone c) Set of real numbers; not onto

d) Set of strings of nine digits with hyphens after third and

fifth digits; not onto 21. a) The function f (x) with f (x) =
3x + 1 when x ≥ 0 and f (x) = −3x + 2 when x < 0

b) f (x) = |x| + 1 c) The function f (x) with f (x) = 2x + 1

when x ≥ 0 and f (x) = −2x when x < 0 d) f (x) = x2 + 1

23. a) Yes b) No c) Yes d) No 25. Suppose that f is strictly

decreasing. This means that f (x) > f (y) whenever x < y. To

show that g is strictly increasing, suppose that x < y. Then

g(x) = 1∕f (x) < 1∕f (y) = g(y). Conversely, suppose that

g is strictly increasing. This means that g(x) < g(y) when-

ever x < y. To show that f is strictly decreasing, suppose that

x < y. Then f (x) = 1∕g(x) > 1∕g(y) = f (y). 27. a) Let

f be a given strictly decreasing function from R to itself. If

a < b, then f (a) > f (b); if a > b, then f (a) < f (b).

Thus, if a ≠ b, then f (a) ≠ f (b). b) Answers will vary; for

example, f (x) = 0 for x < 0 and f (x) = −x for x ≥ 0.

29. The function is not one-to-one, so it is not invertible. On

the restricted domain, the function is the identity function on

the nonnegative real numbers, f (x) = x, so it is its own in-

verse. 31. a) f (S) = {0, 1, 3} b) f (S) = {0, 1, 3, 5, 8}
c) f (S) = {0, 8, 16, 40} d) f (S) = {1, 12, 33, 65} 33. a) Let

x and y be distinct elements of A. Because g is one-to-one, g(x)

and g(y) are distinct elements of B. Because f is one-to-one,

f (g(x)) = (f◦g)(x) and f (g(y)) = (f◦g)(y) are distinct elements

of C. Hence, f◦g is one-to-one. b) Let y ∈ C. Because f is

onto, y = f (b) for some b ∈ B. Now because g is onto, b = g(x)

for some x ∈ A. Hence, y = f (b) = f (g(x)) = (f◦g)(x). It

follows that f◦g is onto. 35. Let A = {a}, B = {b1, b2},

C = {c}, g(a) = b1, and f (b1) = f (b2) = c. 37. No. For

example, suppose that A = {a}, B = {b, c}, and C = {d}.

Let g(a) = b, f (b) = d, and f (c) = d. Then f and f◦g
are onto, but g is not. 39. ( f + g)(x) = x2 + x + 3,

(fg)(x) = x3 + 2x2 + x + 2 41. f is one-to-one because

f (x1) = f (x2) → ax1 + b = ax2 + b → ax1 = ax2 → x1 = x2.

f is onto because f ((y − b)∕a) = y. f −1(y) = (y − b)∕a.

43. a) A = B = R, S = { x ∣ x > 0}, T = { x ∣ x < 0}, f (x) = x2

b) It suffices to show that f (S) ∩ f (T) ⊆ f (S ∩ T). Let y ∈ B
be an element of f (S) ∩ f (T). Then y ∈ f (S), so y = f (x1) for

some x1 ∈ S. Similarly, y = f (x2) for some x2 ∈ T . Because f
is one-to-one, it follows that x1 = x2. Therefore, x1 ∈ S ∩ T ,

so y ∈ f (S∩T). 45. a) {x ∣ 0 ≤ x < 1} b) {x ∣ −1 ≤ x < 2}
c) ∅ 47. f −1(S) = {x ∈ A ∣ f (x) ∉ S} = {x ∈ A ∣ f (x) ∈ S}
= f −1(S) 49. Let x = ⌊x⌋+ 𝜖, where 𝜖 is a real number with

0 ≤ 𝜖 < 1. If 𝜖 <
1

2
, then ⌊x⌋ − 1 < x − 1

2
< ⌊x⌋, so⌈x − 1

2
⌉ = ⌊x⌋ and this is the integer closest to x. If 𝜖 >

1

2
,

then ⌊x⌋ < x − 1

2
< ⌊x⌋ + 1, so ⌈x − 1

2
⌉ = ⌊x⌋ + 1 and

this is the integer closest to x. If 𝜖 = 1

2
, then ⌈x − 1

2
⌉ = ⌊x⌋,

which is the smaller of the two integers that surround x and

are the same distance from x. 51. Write the real number x
as ⌊x⌋+ 𝜖, where 𝜖 is a real number with 0 ≤ 𝜖 < 1. Because

𝜖 = x − ⌊x⌋, it follows that 0 ≤ −⌊x⌋ < 1. The first two

inequalities, x − 1 < ⌊x⌋ and ⌊x⌋ ≤ x, follow directly. For the

other two inequalities, write x = ⌈x⌉ − 𝜖′, where 0 ≤ 𝜖′ < 1.

Then 0 ≤ ⌈x⌉ − x < 1, and the desired inequality follows.

53. a) If x < n, because ⌊x⌋ ≤ x, it follows that ⌊x⌋ < n.

Suppose that x ≥ n. By the definition of the floor function,

it follows that ⌊x⌋ ≥ n. This means that if ⌊x⌋ < n, then

x < n. b) If n < x, then because x ≤ ⌈x⌉, it follows that

n ≤ ⌈x⌉. Suppose that n ≥ x. By the definition of the ceiling

function, it follows that ⌈x⌉ ≤ n. This means that if n < ⌈x⌉,

then n < x. 55. If n is even, then n = 2k for some integer k.

Thus, ⌊n∕2⌋ = ⌊k⌋ = k = n∕2. If n is odd, then n = 2k + 1

for some integer k. Thus, ⌊n∕2⌋ = ⌊k + 1

2
⌋ = k = (n − 1)∕2.

57. Assume that x ≥ 0. The left-hand side is ⌈−x⌉ and the

right-hand side is−⌊x⌋. If x is an integer, then both sides equal

−x. Otherwise, let x = n+𝜖, where n is a natural number and 𝜖

is a real number with 0 ≤ 𝜖 < 1. Then ⌈−x⌉ = ⌈−n− 𝜖⌉ = −n
and −⌊x⌋ = −⌊n + 𝜖⌋ = −n also. When x < 0, the equa-

tion also holds because it can be obtained by substituting −x
for x. 59. ⌈b⌉ − ⌊a⌋ − 1 61. a) 1 b) 3 c) 126 d) 3600

63. a) 100 b) 256 c) 1030 d) 30,200

65.

–2

–1

0–1–2 2 431

1

3

2

4
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67.

–2

–1

0–1–2

1

2 31

3

2

–3

69. a) 3

2

1

–2–4 2 4

–2

–3

–1

b) 3

2

1

–2

–3

–1–2 1 2
–1

c) 3

2

1

–2

–3

–1
–6–12 –3–9 6 123 9

d)
3

2

1

4

–2

–3

–1
–1 1

e)
3

2

1

4

–2

–3

–4

–1
–2 –1 21

f)

3

2

1

4

5

–2 –1 1 2

–2

–3

–1

–4

g) See part (a). 71. f −1(y) = (y − 1)1∕3 73. a) fA∩B(x) =
1 ↔ x ∈ A ∩ B ↔ x ∈ A and x ∈ B ↔ fA(x) = 1 and fB(x) =
1 ↔ fA(x)fB(x) = 1 b) fA∪B(x) = 1 ↔ x ∈ A ∪ B ↔ x ∈ A or

x ∈ B ↔ fA(x) = 1 or fB(x) = 1 ↔ fA(x)+ fB(x)− fA(x)fB(x)= 1

c) fA(x) = 1 ↔ x ∈ A ↔ x ∉ A ↔ fA(x) = 0 ↔ 1 − fA(x) = 1

d) fA⊕B(x) = 1 ↔ x ∈ A ⊕ B ↔ (x ∈ A and x ∉ B)

or (x ∉ A and x ∈ B) ↔ fA(x) + fB(x) − 2fA(x)fB(x) = 1

75. a) True; because ⌊x⌋ is already an integer, ⌈⌊x⌋⌉ = ⌊x⌋.

b) False; x = 1

2
is a counterexample. c) True; if x or y is an

integer, then by property 4b in Table 1, the difference is 0. If

neither x nor y is an integer, then x = n + 𝜖 and y = m + 𝛿,

where n and m are integers and 𝜖 and 𝛿 are positive real num-

bers less than 1. Then m + n < x + y < m + n + 2, so⌈x + y⌉ is either m + n + 1 or m + n + 2. Therefore, the given

expression is either (n + 1) + (m + 1) − (m + n + 1) = 1 or

(n + 1) + (m + 1) − (m + n + 2) = 0, as desired. d) False;

x = 1

4
and y = 3 is a counterexample. e) False; x = 1

2
is

a counterexample. 77. a) If x is a positive integer, then the

two sides are equal. So suppose that x = n2 + m + 𝜖, where

n2 is the largest perfect square less than x, m is a nonnegative

integer, and 0 < 𝜖 ≤ 1. Then both
√

x and
√⌊x⌋ =

√
n2 + m

are between n and n + 1, so both sides equal n. b) If x is

a positive integer, then the two sides are equal. So suppose

that x = n2 − m − 𝜖, where n2 is the smallest perfect square

greater than x, m is a nonnegative integer, and 𝜖 is a real num-

ber with 0 < 𝜖 ≤ 1. Then both
√

x and
√⌈x⌉ =

√
n2 − m

are between n − 1 and n. Therefore, both sides of the equa-

tion equal n. 79. a) Domain is Z; codomain is R; domain of

definition is the set of nonzero integers; the set of values for

which f is undefined is {0}; not a total function. b) Domain is

Z; codomain is Z; domain of definition is Z; set of values for

which f is undefined is ∅; total function. c) Domain is Z×Z;

codomain is Q; domain of definition is Z × (Z − {0}); set of

values for which f is undefined is Z×{0}; not a total function.

d) Domain is Z × Z; codomain is Z; domain of definition is

Z×Z; set of values for which f is undefined is ∅; total function.

e) Domain is Z × Z; codomain is Z; domain of definitions is

{(m, n) ∣ m > n}; set of values for which f is undefined is

{(m, n) ∣ m ≤ n}; not a total function. 81. a) By defini-

tion, to say that S has cardinality m is to say that S has exactly

m distinct elements. Therefore we can assign the first object

to 1, the second to 2, and so on. This provides the one-to-one

correspondence. b) By part (a), there is a bijection f from S to

{1, 2,… , m} and a bijection g from T to {1, 2,… , m}. Then

the composition g−1◦f is the desired bijection from S to T .

Section 2.4

1. a) 3 b) −1 c) 787 d) 2639 3. a) a0 = 2, a1 = 3,
a2 = 5, a3 = 9 b) a0 = 1, a1 = 4, a2 = 27, a3 = 256

c) a0 = 0, a1 = 0, a2 = 1, a3 = 1 d) a0 = 0, a1 = 1,

a2 = 2, a3 = 3 5. a) 2, 5, 8, 11, 14, 17, 20, 23, 26, 29

b) 1, 1, 1, 2, 2, 2, 3, 3, 3, 4 c) 1, 1, 3, 3, 5, 5, 7, 7, 9, 9

d) −1, −2, −2, 8, 88, 656, 4912, 40064, 362368,

3627776 e) 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536

f) 2, 4, 6, 10, 16, 26, 42, 68, 110, 178 g) 1, 2, 2, 3, 3, 3, 3, 4,
4, 4 h) 3, 3, 5, 4, 4, 3, 5, 5, 4, 3 7. Each term could be

twice the previous term; the nth term could be obtained from

the previous term by adding n − 1; the terms could be the

positive integers that are not multiples of 3; there are in-

finitely many other possibilities. 9. a) 2, 12, 72, 432, 2592

b) 2, 4, 16, 256, 65, 536 c) 1, 2, 5, 11, 26 d) 1, 1, 6, 27, 204

e) 1, 2, 0, 1, 3 11. a) 6, 17, 49, 143, 421 b) 49 = 5⋅17−6⋅6,

143 = 5 ⋅ 49 − 6 ⋅ 17, 421 = 5 ⋅ 143 − 6 ⋅ 49 c) 5an−1 −
6an−2 =5(2n−1 + 5⋅3n−1)− 6(2n−2 + 5⋅3n−2) = 2n−2(10−6)+
3n−2(75 − 30) = 2n−2 ⋅ 4 + 3n−2 ⋅ 9 ⋅ 5 = 2n + 3n ⋅ 5 = an
13. a) Yes b) No c) No d) Yes e) Yes f) Yes g) No

h) No 15. a) an−1 + 2an−2 + 2n − 9 = −(n − 1) + 2 +
2[−(n − 2) + 2] + 2n − 9 = −n +2 = an b) an−1 +
2an−2 + 2n − 9 = 5(−1)n−1 − (n − 1) + 2 + 2[5(−1)n−2 −
(n − 2) + 2] + 2n − 9 = 5(−1)n − 2(−1 + 2) − n + 2 = an
c) an−1 + 2an−2 + 2n − 9 = 3(−1)n−1+2n−1 − (n − 1) + 2 +
2[3(−1)n−2 + 2n−2 − (n − 2) + 2] + 2n − 9 = 3(−1)n−2

(−1 + 2) + 2n−2 (2 + 2) − n + 2 = an d) an−1 +
2an−2 + 2n − 9 = 7 ⋅ 2n−1 − (n − 1) + 2 + 2[7 ⋅ 2n−2 −
(n − 2) + 2] + 2n − 9 = 2n−2(7 ⋅ 2 + 2 ⋅ 7) − n + 2 = an
17. a) an = 2 ⋅ 3n b) an = 2n + 3 c) an = 1 + n(n + 1)∕2

d) an = n2 + 4n + 4 e) an = 1 f) an = (3n+1 − 1)∕2

g) an = 5n! h) an = 2nn! 19. a) an = 3an−1 b) 5,904,900

21. a) an = n+ an−1, a0 = 0 b) a12 = 78 c) an = n(n+ 1)∕2
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23. B(k) = [1 + (0.07∕12)]B(k − 1) − 100, with B(0) = 5000

25. a) One 1 and one 0, followed by two 1s and two 0s, fol-

lowed by three 1s and three 0s, and so on; 1, 1, 1 b) The

positive integers are listed in increasing order with each

even positive integer listed twice; 9, 10, 10. c) The terms

in odd-numbered locations are the successive powers of 2;

the terms in even-numbered locations are all 0; 32, 0, 64.

d) an = 3 ⋅ 2n−1; 384, 768, 1536 e) an = 15 − 7(n − 1) =
22 − 7n; −34, −41, −48 f) an = (n2 + n + 4)∕2; 57, 68,

80 g) an = 2n3; 1024, 1458, 2000 h) an = n! + 1; 362881,

3628801, 39916801 27. Among the integers 1, 2, … , an,

where an is the nth positive integer not a perfect square, the

nonsquares are a1, a2,… , an and the squares are 12, 22,… , k2,

where k is the integer with k2 < n+k < (k+1)2. Consequently,

an = n + k, where k2 < an < (k + 1)2. To find k, first note

that k2 < n + k < (k + 1)2, so k2 + 1 ≤ n + k ≤ (k + 1)2 − 1.

Hence, (k− 1

2
)2 + 3

4
= k2 − k+ 1 ≤ n ≤ k2 + k = (k+ 1

2
)2 − 1

4
.

It follows that k − 1

2
<

√
n < k + 1

2
, so k = {

√
n} and

an = n + k = n + {
√

n}. 29. a) 20 b) 11 c) 30 d) 511

31. a) 1533 b) 510 c) 4923 d) 9842 33. a) 21 b) 78

c) 18 d) 18 35.
∑n

j=1
(aj − aj−1) = an − a0 37. a) n2

b) n(n + 1)∕2 39. 15150 41. 34320 43. n(n+1)(2n+1)

3
+

n(n+1)

2
+ (n + 1)(m − (n + 1)2 + 1), where n = ⌊√m⌋ − 1

45. a) 0 b) 1680 c) 1 d) 1024 47. 34

Section 2.5

1. a) Countably infinite, −1, −2, −3, −4, … b) Countably

infinite, 0, 2, −2, 4, −4, … c) Countably infinite,

99, 98, 97, … d) Uncountable e) Finite f) Countably infi-

nite, 0, 7, −7, 14, −14, … 3. a) Countable: match n with

the string of n 1s. b) Countable. To find a correspondence,

follow the path in Example 4, but omit fractions in the top

three rows (as well as continuing to omit fractions not in low-

est terms). c) Uncountable d) Uncountable 5. Suppose m
new guests arrive at the fully occupied hotel. Move the guest

in Room n to Room m + n for n = 1, 2, 3, …; then the new

guests can occupy rooms 1 to m. 7. For n = 1, 2, 3,…, put

the guest currently in Room 2n into Room n, and the guest

currently in Room 2n − 1 into Room n of the new build-

ing. 9. Move the guest currently in Room i to Room 2i+ 1

for i = 1, 2, 3, …. Put the jth guest from the kth bus into

Room 2k(2j + 1). 11. a) A = [1, 2] (closed interval of

real numbers from 1 to 2), B = [3, 4] b) A = [1, 2] ∪ Z+,

B = [3, 4] ∪ Z+ c) A = [1, 3], B = [2, 4] 13. Suppose

that A is countable. Then either A has cardinality n for some

nonnegative integer n, in which case there is a one-to-one

function from A to a subset of Z+ (the range is the first n pos-

itive integers), or there exists a one-to-one correspondence f
from A to Z+; in either case we have satisfied Definition 2.

Conversely, suppose that |A| ≤ |Z+|. By definition, this

means that there is a one-to-one function from A to Z+, so A
has the same cardinality as a subset of Z+ (namely the range

of that function). By Exercise 16 we conclude that A is count-

able. 15. Assume that B is countable. Then the elements of

B can be listed as b1, b2, b3, .… Because A is a subset of B,

taking the subsequence of {bn} that contains the terms that

are in A gives a listing of the elements of A. Because A is

uncountable, this is impossible. 17. Assume that A − B is

countable. Then, because A = (A−B)∪ (A∩B), the elements

of A can be listed in a sequence by alternating elements of

A − B and elements of A ∩ B. This contradicts the uncount-

ability of A. 19. We are given bijections f from A to B and g
from C to D. Then the function from A×C to B×D that sends

(a, c) to (f (a), g(c)) is a bijection. 21. By the definition of|A| ≤ |B|, there is a one-to-one function f : A → B. Similarly,

there is a one-to-one function g : B → C. By Exercise 33

in Section 2.3, the composition g◦f : A → C is one-to-one.

Therefore, by definition |A| ≤ |C|. 23. Using the Axiom

of Choice from set theory, choose distinct elements a1, a2,

a3, . . . of A one at a time (this is possible because A is infi-

nite). The resulting set {a1, a2, a3, …} is the desired infinite

subset of A. 25. The set of finite strings of characters over

a finite alphabet is countably infinite, because we can list

these strings in alphabetical order by length. Therefore, the

infinite set S can be identified with an infinite subset of this

countable set, which by Exercise 16 is also countably infinite.

27. Suppose that A1, A2, A3, … are countable sets. Because

Ai is countable, we can list its elements in a sequence as

ai1, ai2, ai3,… . The elements of the set
⋃n

i=1
Ai can be listed

by listing all terms aij with i + j = 2, then all terms aij
with i + j = 3, then all terms aij with i + j = 4, and so

on. 29. There are a finite number of bit strings of length m,

namely, 2m. The set of all bit strings is the union of the sets

of bit strings of length m for m = 0, 1, 2, … . Because the

union of a countable number of countable sets is countable

(see Exercise 27), there are a countable number of bit strings.

31. It is clear from the formula that the range of values the

function takes on for a fixed value of m + n, say m + n = x, is

(x − 2)(x − 1)∕2 + 1 through (x − 2)(x − 1)∕2 + (x − 1), be-

cause m can assume the values 1, 2, 3,… , (x − 1) under these

conditions, and the first term in the formula is a fixed positive

integer when m + n is fixed. To show that this function is

one-to-one and onto, we merely need to show that the range

of values for x + 1 picks up precisely where the range of

values for x left off, i.e., that f (x− 1, 1)+ 1 = f (1, x). We have

f (x − 1, 1) + 1 = (x−2)(x− 1)

2
+ (x − 1) + 1 = x2 − x+ 2

2
=

(x− 1)x
2

+ 1 = f (1, x). 33. By the Schröder-Bernstein theo-

rem, it suffices to find one-to-one functions f : (0, 1) → [0, 1]

and g : [0, 1] → (0, 1). Let f (x) = x and g(x) = (x + 1)∕3.

35. Each element A of the power set of the set of positive

integers (i.e., A ⊆ Z+) can be represented uniquely by the

bit string a1a2a3 …, where ai = 1 if i ∈ A and ai = 0

if i ∉ A. Assume there were a one-to-one correspondence

f : Z+ → (Z+). Form a new bit string s = s1s2s3 … by set-

ting si to be 1 minus the ith bit of f (i). Then because s differs

in the i bit from f (i), s is not in the range of f , a contradiction.

37. For any finite alphabet there are a finite number of strings

of length n, whenever n is a positive integer. It follows by the

result of Exercise 27 that there are only a countable number

of strings from any given finite alphabet. Because the set of
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all computer programs in a particular language is a subset of

the set of all strings of a finite alphabet, which is a count-

able set by the result from Exercise 16, it is itself a countable

set. 39. Exercise 37 shows that there are only a countable

number of computer programs. Consequently, there are only

a countable number of computable functions. Because, as

Exercise 38 shows, there are an uncountable number of func-

tions, not all functions are computable. 41. a) Note that if

x is in the chain generated by y, then by the way the chains

are generated, y is in the chain generated by x, so these two

chains are the same. Thus, if x is in both the chain generated

by y1 and the chain generated by y2, then the chain generated

by y1 and the chain generated by y2 are both the same as the

chain generated by x and are therefore the same chain. b) A

moment’s reflection will show that by the way the chains

are constructed, this is true. c) Again, this is clear from the

construction. d) Because the chains are disjoint and every

element of A appears in exactly one chain and every element

of B appears in exactly one chain, the function h cannot map

two different elements of A to the same element of B. e) If an

element b of B appears in a chain of types 1, 2, or 3, then it is

preceded by an element of A, which maps to it under h. If b
appears in a chain of type 4, then it is followed by an element

of A, which maps to it under h.

Section 2.6

1. a) 3 × 4 b)
⎡⎢⎢⎣
1
4
3

⎤⎥⎥⎦ c)
[
2 0 4 6

]
d) 1

e) ⎡⎢⎢⎢⎣
1 2 1
1 0 1
1 4 3
3 6 7

⎤⎥⎥⎥⎦
3. a) [

1 11
2 18

] b) ⎡⎢⎢⎣
2 −2 −3
1 0 2
9 −4 4

⎤⎥⎥⎦
c) ⎡⎢⎢⎢⎣

−4 15 −4 1
−3 10 2 −3
0 2 −8 6
1 −8 18 −13

⎤⎥⎥⎥⎦
5. [ 9∕5 −6∕5

−1∕5 4∕5

]

7. 0 + A =
[
0 + aij

]
=

[
aij + 0

]
= 0 + A 9. A + (B+ C) =[

aij + (bij + cij)
]
=

[
(aij + bij) + cij

]
= (A+B) + C 11. The

number of rows of A equals the number of columns of B, and

the number of columns of A equals the number of rows of B.

13. A(BC) =
[∑

qaiq
(∑

rbqrcrl
)]

=
[∑

q
∑

raiqbqrcrl

]
=[∑

r
∑

qaiqbqrcrl

]
=

[∑
r

(∑
qaiqbqr

)
crl

]
= (AB)C

15. An =
[

1 n
0 1

]
17. a) Let A = [aij] and B = [bij]. Then

A + B = [aij + bij]. We have (A + B)t = [aji + bji] = [aji] +
[bji] = At +Bt. b) Using the same notation as in part (a), we

have BtAt =
[∑

q bqiajq

]
=

[∑
q ajqbqi

]
= (AB)t, because

the (i, j)th entry is the (j, i)th entry of AB. 19. The result

follows because

[
a b
c d

] [
d −b
−c a

]
=
[

ad−bc 0
0 ad−bc

]
=

(ad − bc)I2 =
[

d −b
−c a

] [
a b
c d

]
. 21. An(A−1)n =

A(A ⋯(A(AA−1)A−1) ⋯ A−1)A−1 by the associative law.

Because AA−1 = I, working from the inside shows that

An(A−1)n = I. Similarly (A−1)nAn = I. Therefore, (An)−1 =
(A−1)n. 23. The (i, j)th entry of A + At is aij + aji, which

equals aji + aij, the (j, i)th entry of A + At, so by definition

A + At is symmetric. 25. x1 = 1, x2 = −1, x3 = −2

27. a) ⎡⎢⎢⎣
1 1 1
1 1 1
1 0 1

⎤⎥⎥⎦
b) ⎡⎢⎢⎣

0 0 1
1 0 0
0 0 1

⎤⎥⎥⎦
c) ⎡⎢⎢⎣

1 1 1
1 1 1
1 0 1

⎤⎥⎥⎦
29. a) ⎡⎢⎢⎣

1 0 0
1 1 0
1 0 1

⎤⎥⎥⎦
b) ⎡⎢⎢⎣

1 0 0
1 0 1
1 1 0

⎤⎥⎥⎦
c) ⎡⎢⎢⎣

1 0 0
1 1 1
1 1 1

⎤⎥⎥⎦
31. a) A∨B = [aij ∨ bij] = [bij∨aij] = B ∨ A b) A ∧ B =
[aij ∧ bij] = [bij ∧ aij] = B ∧ A 33. a) A ∨ (B ∧ C) =
[aij] ∨ [bij ∧ cij] = [aij ∨ (bij ∧ cij)] = [(aij ∨ bij) ∧
(aij∨cij)] = [aij∨bij] ∧[aij∨cij] = (A∨B)∧(A∨C) b) A∧(B∨
C) = [aij]∧[bij∨cij] = [aij∧(bij∨cij)] = [(aij∧bij)∨(aij∧cij)] =
[aij ∧bij]∨ [aij ∧ cij] = (A∧B)∨ (A∧C) 35. A⊙ (B⊙C) =[⋁

qaiq ∧
(⋁

r
(
bqr ∧ crl

))]
=

[⋁
q
⋁

r
(
aiq ∧ bqr ∧crl

)]
=[⋁

r
⋁

q
(
aiq∧bqr ∧crl

)]
=

[⋁
r

(⋁
q
(
aiq ∧ bqr

))
∧ crl

]
=

(A ⊙ B) ⊙ C

Supplementary Exercises

1. a) A b) A ∩ B c) A − B d) A ∩ B e) A ⊕ B
3. Yes 5. A− (A−B) = A− (A ∩ B) = A ∩ (A∩B) = A ∩
(A ∪ B) = (A ∩ A) ∪ (A ∩ B) = ∅ ∪ (A ∩ B) = A ∩ B 7. Let

A = {1}, B = ∅, C = {1}. Then (A − B) − C = ∅, but

A − (B − C) = {1}. 9. No. For example, let A = B =
{a, b}, C = ∅, and D = {a}. Then (A − B) − (C − D) =
∅ − ∅ = ∅, but (A − C) − (B − D) = {a, b} − {b} = {a}.

11. a) |∅| ≤ |A ∩ B| ≤ |A| ≤ |A ∪ B| ≤ |U| b) |∅| ≤|A − B| ≤ |A ⊕ B| ≤ |A ∪ B| ≤ |A| + |B| 13. a) Yes, no

b) Yes, no c) f has inverse with f −1(a) = 3, f −1(b) = 4,

f −1(c) = 2, f −1(d) = 1; g has no inverse. 15. If f is one-to-

one, then f provides a bijection between S and f (S), so they

have the same cardinality. If f is not one-to-one, then there ex-

ist elements x and y in S such that f (x) = f (y). Let S = {x, y}.

Then |S| = 2 but |f (S)| = 1. 17. Let x ∈ A. Then

Sf ({x}) = {f (y) ∣ y ∈ {x}} = {f (x)}. By the same reasoning,

Sg({x}) = {g(x)}. Because Sf = Sg, we can conclude that

{f (x)} = {g(x)}, and so necessarily f (x) = g(x). 19. The

equation is true if and only if the sum of the fractional parts

of x and y is less than 1. 21. The equation is true if and only

if either both x and y are integers, or x is not an integer but the

sum of the fractional parts of x and y is less than or equal to 1.

23. If x is an integer, then ⌊x⌋ + ⌊m − x⌋ = x + m − x = m.

Otherwise, write x in terms of its integer and fractional parts:

x = n + 𝜖, where n = ⌊x⌋ and 0 < 𝜖 < 1. In this case ⌊x⌋ +
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⌊m− x⌋=⌊n + 𝜖⌋ + ⌊m − n − 𝜖⌋ = n + m − n − 1 = m − 1.

25. Write n = 2k+1 for some integer k. Then n2 = 4k2+4k+1,

so n2∕4 = k2 + k + 1

4
. Therefore, ⌈n2∕4⌉ = k2 + k + 1. But

(n2 + 3)∕4 = (4k2 + 4k + 1 + 3)∕4 = k2 + k + 1. 27. Let

x = n + (r∕m) + 𝜖, where n is an integer, r is a nonnegative

integer less than m, and 𝜖 is a real number with 0 ≤ 𝜖 < 1∕m.

The left-hand side is ⌊nm + r + m𝜖⌋ = nm + r. On the right-

hand side, the terms ⌊x⌋ through ⌊x + (m + r − 1)∕m⌋ are all

just n and the terms from ⌊x + (m − r)∕m⌋ on are all n + 1.

Therefore, the right-hand side is (m− r)n+ r(n+1) = nm+ r,

as well. 29. 101 31. a1 = 1; a2n+1 = n ⋅ a2n for all

n > 0; and a2n = n + a2n−1 for all n > 0. The next

four terms are 5346, 5353, 37, 471, and 37, 479. 33. If each

f −1(j) is countable, then S = f −1(1) ∪ f −1(2) ∪ ⋯ is the

countable union of countable sets and is therefore countable

by Exercise 27 in Section 2.5. 35. Because there is a one-

to-one correspondence between R and the open interval (0, 1)

(given by f (x) = 2 arctan(x)∕𝜋), it suffices to shows that|(0, 1)× (0, 1)| = |(0, 1)|. By the Schröder-Bernstein theorem

it suffices to find injective functions f : (0, 1) → (0, 1)× (0, 1)

and g : (0, 1) × (0, 1) → (0, 1). Let f (x) = (x, 1

2
). For g we

follow the hint. Suppose (x, y) ∈ (0, 1) × (0, 1), and represent

x and y with their decimal expansions x = 0.x1x2x3 … and

y = 0. y1y2y3 …, never choosing the expansion of any number

that ends in an infinite string of 9s. Let g(x, y) be the decimal

expansion obtained by interweaving these two strings, namely

0.x1y1x2y2x3y3 …. 37. A4n =
[

1 0
0 1

]
, A4n+1 =

[
0 1
−1 0

]
,

A4n+2 =
[
−1 0
0 −1

]
, A4n+3 =

[
0 −1
1 0

]
, for n ≥ 0

39. Suppose that A =
[

a b
c d

]
. Let B =

[
0 1
0 0

]
. Be-

cause AB = BA, it follows that c = 0 and a = d. Let

B =
[

0 0
1 0

]
. Because AB = BA, it follows that b = 0.

Hence, A =
[

a 0
0 a

]
= aI. 41. a) Let A ⊙ 0 =

[
bij

]
. Then

bij = (ai1∧0) ∨⋯∨(aip∧0) = 0. Hence, A⊙0 = 0. Similarly,

0⊙A = 0. b) A∨0 =
[
aij ∨ 0

]
=

[
aij

]
= A. Hence, A∨0 = A.

Similarly, 0 ∨ A = A. c) A ∧ 0 =
[
aij ∧ 0

]
= [0] = 0. Hence,

A ∧ 0 = 0. Similarly, 0 ∧ A = 0.

CHAPTER 3

Section 3.1

1. max := 1, i := 2, max := 8, i := 3, max := 12, i := 4,

i := 5, i := 6, i := 7, max := 14, i := 8, i := 9, i := 10, i := 11

3. procedure AddUp(a1,… , an: integers)

sum := a1

for i : = 2 to n
sum := sum + ai

return sum

5. procedure duplicates(a1, a2,… , an: integers in

nondecreasing order)

k := 0 {this counts the duplicates}
j := 2

while j ≤ n
if aj = aj−1 then

k := k + 1

ck := aj
while j ≤ n and aj = ck

j := j + 1

j := j + 1

{c1, c2,… , ck is the desired list}
7. procedure last even location(a1,a2,… ,an: integers)

k := 0

for i := 1 to n
if ai is even then k := i

return k {k = 0 if there are no evens}
9. procedure palindrome check(a1a2 … an: string)

answer := true
for i := 1 to ⌊n∕2⌋

if ai ≠ an+1−i then answer := false
return answer

11. procedure interchange(x, y: real numbers)

z := x
x := y
y := z

The minimum number of assignments needed is three.

13. Linear search: i := 1, i := 2, i := 3, i := 4, i := 5, i := 6,

i := 7, location := 7; binary search: i := 1, j := 8, m := 4,

i := 5, m := 6, i := 7, m := 7, j := 7, location := 7

15. procedure insert(x, a1, a2,… , an: integers)

{the list is in order: a1 ≤ a2 ≤ ⋯ ≤ an}
an+1 := x + 1

i := 1

while x > ai
i := i + 1

for j := 0 to n − i
an−j+1 := an−j

ai := x
{x has been inserted into correct position}

17. procedure first largest(a1,… , an: integers)

max := a1

location := 1

for i := 2 to n
if max < ai then

max := ai
location := i

return location
19. procedure mean-median-max-min(a, b, c: integers)

mean := (a + b + c)∕ 3

{the six different orderings of a, b, c with respect

to ≥ will be handled separately}
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if a ≥ b then
if b ≥ c then median := b; max := a; min := c
⋮

(The rest of the algorithm is similar.)

21. procedure first-three(a1, a2,… , an: integers)

if a1 > a2 then interchange a1 and a2

if a2 > a3 then interchange a2 and a3

if a1 > a2 then interchange a1 and a2

23. procedure onto( f : function from A to B, where

A = {a1,… , an}, B = {b1,… , bm}, a1,… , an,

b1,… , bm are integers)

for i := 1 to m
hit(bi) := 0

count := 0

for j := 1 to n
if hit( f (aj)) = 0 then

hit( f (aj)) := 1

count := count + 1

if count = m then return true else return false
25. procedure ones(a: bit string, a = a1a2 … an)

count:= 0

for i := 1 to n
if ai := 1 then

count := count + 1

return count
27. procedure ternary search(s: integer, a1,a2,… , an:

increasing integers)

i := 1

j := n
while i < j − 1

l := ⌊(i + j)∕3⌋
u := ⌊2(i + j)∕3⌋
if x > au then i := u + 1

else if x > al then
i := l + 1

j := u
else j := l

if x = ai then location := i
else if x = aj then location := j
else location := 0

return location {0 if not found}
29. procedure find a mode(a1, a2,… , an: nondecreasing

integers)

modecount := 0

i := 1

while i ≤ n
value := ai
count := 1

while i ≤ n and ai = value
count := count + 1

i := i + 1

if count > modecount then
modecount := count
mode := value

return mode

31. Assume the input is strings a1a2…an and b1b2…bn,

where each character is a letter, A through Z. Assume also

that a function index is available, such that index(x) is the

position of the letter x in the alphabet (index(‘A’) = 1, . . . ,

index(‘Z’) = 26). a) Initialize a-count and b-count to be

lists of length 26 with all values equal to 0. For i from 1

to n increment a-count(index(ai)) and b-count(index(bi)). If

a-count(i) = b-count(i) for all i from 1 to 26, then return

“true”; otherwise return “false.” b) Sort both strings into al-

phabetical order. Then the two original strings were anagrams

if and only if the sorted strings are identical.

33. procedure find duplicate(a1, a2,… , an: integers)

location := 0

i := 2

while i ≤ n and location = 0

j := 1

while j < i and location = 0

if ai = aj then location := i
else j := j + 1

i := i + 1

return location
{location is the subscript of the first value that

repeats a previous value in the sequence}
35. procedure find decrease(a1, a2,… , an: positive

integers)

location := 0

i := 2

while i ≤ n and location = 0

if ai < ai−1 then location := i
else i := i + 1

return location
{location is the subscript of the first value less than

the immediately preceding one}
37. At the end of the first pass: 1, 3, 5, 4, 7; at the end of the

second pass: 1, 3, 4, 5, 7; at the end of the third pass: 1, 3, 4,

5, 7; at the end of the fourth pass: 1, 3, 4, 5, 7

39. procedure better bubblesort(a1,… , an: integers)

i : = 1; done : = false
while i < n and done = false

done : = true
for j : = 1 to n − i

if aj > aj+1 then
interchange aj and aj+1

done : = false
i : = i + 1

{a1,… , an is in increasing order}
41. At the end of the first, second, and third passes: 1, 3, 5, 7, 4;

at the end of the fourth pass: 1, 3, 4, 5, 7 43. a) 1, 5, 4, 3, 2;

1, 2, 4, 3, 5; 1, 2, 3, 4, 5; 1, 2, 3, 4, 5 b) 1, 4, 3, 2, 5; 1,

2, 3, 4, 5; 1, 2, 3, 4, 5; 1, 2, 3, 4, 5 c) 1, 2, 3, 4, 5; 1, 2, 3,

4, 5; 1, 2, 3, 4, 5; 1, 2, 3, 4, 5 45. We carry out the linear

search algorithm given as Algorithm 2 in this section, except

that we replace x ≠ ai by x < ai, and we replace the else
clause with else location := n+ 1. 47. 2+ 3+ 4+⋯+ n =
(n2+n−2)∕2 49. Find the location for the 2 in the list 3 (one
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comparison), and insert it in front of the 3, so the list now

reads 2, 3, 4, 5, 1, 6. Find the location for the 4 (compare it

to the 2 and then the 3), and insert it, leaving 2, 3, 4, 5, 1, 6.

Find the location for the 5 (compare it to the 3 and then the

4), and insert it, leaving 2, 3, 4, 5, 1, 6. Find the location for

the 1 (compare it to the 3 and then the 2 and then the 2 again),

and insert it, leaving 1, 2, 3, 4, 5, 6. Find the location for the 6

(compare it to the 3 and then the 4 and then the 5), and insert

it, giving the final answer 1, 2, 3, 4, 5, 6.

51. procedure binary insertion sort(a1, a2,… , an:

real numbers with n ≥ 2)

for j := 2 to n
{binary search for insertion location i}
left := 1

right := j − 1

while left < right
middle := ⌊(left + right)∕2⌋
if aj > amiddle then left := middle + 1

else right := middle
if aj < aleft then i := left else i := left + 1

{insert aj in location i by moving ai through aj−1

toward back of list}
m := aj
for k := 0 to j − i − 1

aj−k := aj−k−1

ai := m
{a1, a2,… , an are sorted}

53. The variation from Exercise 52 55. m = 3, n = 8; s = 0,

j = 1, no match; s = 1, j = 1, j = 2, j = 3, no match; s = 2,

j = 1, no match; s = 3, j = 1, j = 2, no match; s = 4,

j = 1, no match; s = 5, j = 1, j = 2, j = 3, j = 4,

“5 is a valid shift” 57. a) Two quarters, one penny b) Two

quarters, one dime, one nickel, four pennies c) Three quar-

ters, one penny d) Two quarters, one dime 59. Cashier’s

algorithm uses fewest coins in parts (a), (c), and (d). a) Two

quarters, one penny b) Two quarters, one dime, nine pen-

nies c) Three quarters, one penny d) Two quarters, one dime

61. The 9:00–9:45 talk, the 9:50–10:15 talk, the 10:15–10:45

talk, the 11:00–11:15 talk 63. a) Order the talks by start-

ing time. Number the lecture halls 1, 2, 3, and so on. For each

talk, assign it to lowest numbered lecture hall that is currently

available. b) If this algorithm uses n lecture halls, then at the

point the nth hall was first assigned, it had to be used (other-

wise a lower-numbered hall would have been assigned), which

means that n talks were going on simultaneously (this talk

just assigned and the n − 1 talks currently in halls 1 through

n−1). 65. Here we assume that the men are the suitors and

the women the suitees.

procedure stable(M1, M2,… , Ms, W1, W2,… , Ws:

preference lists)

for i := 1 to s
mark man i as rejected

for i := 1 to s
set man i’s rejection list to be empty

for j := 1 to s
set woman j’s proposal list to be empty

while rejected men remain

for i := 1 to s
if man i is marked rejected then add i to the

proposal list for the woman j who ranks highest

on his preference list but does not appear on his

rejection list, and mark i as not rejected

for j := 1 to s
if woman j’s proposal list is nonempty then
remove from j’s proposal list all men i
except the man i0 who ranks highest on her

preference list, and for each such man i mark

him as rejected and add j to his rejection list

for j := 1 to s
match j with the one man on j’s proposal list

{This matching is stable.}
67. If the assignment is not stable, then there is a man m and a

woman w such that m prefers w to the woman w′ with whom

he is matched, and w prefers m to the man with whom she is

matched. But m must have proposed to w before he proposed

to w′, because he prefers the former. Because m did not end

up matched with w, she must have rejected him. Women reject

a suitor only when they get a better proposal, and they even-

tually get matched with a pending suitor, so the woman with

whom w is matched must be better in her eyes than m, con-

tradicting our original assumption. Therefore, the marriage is

stable. 69. a) (adapted from Wikipedia) Let m be the ma-

jority element. Let n be a number defined at any step of the

algorithm to be either the counter, if the majority candidate

is m, or the negative of the counter otherwise. Then at each

step in which the algorithm encounters a value equal to m,

the value of n will increase by 1, and at each step at which

it encounters a different value, the value of n may either in-

crease or decrease by one. If m truly is the majority element,

there will be more increases than decreases, and n will be pos-

itive at the end of the algorithm. But this can be true only when

the final stored element is m, the majority element. b) A coun-

terexample is ABABC. 71. Run the two programs on their

inputs concurrently and report which one halts.

Section 3.2

1. The choices of C and k are not unique. a) C = 1, k = 10

b) C = 4, k = 7 c) No d) C = 5, k = 1 e) C = 1, k = 0

f) C = 1, k = 2 3. x4 + 9x3 + 4x + 7 ≤ 4x4 for all x > 9;

witnesses C = 4, k = 9 5. (x2+1)∕(x+1) = x−1+2∕(x+1) <

x for all x > 1; witnesses C = 1, k = 1 7. The choices of

C and k are not unique. a) n = 3, C = 3, k = 1 b) n = 3,

C = 4, k = 1 c) n = 1, C = 2, k = 1 d) n = 0, C = 2, k = 1

9. x2 + 4x + 17 ≤ 3x3 for all x > 17, so x2 + 4x + 17 is O(x3),

with witnesses C = 3, k = 17. However, if x3 were

O(x2 + 4x + 17), then x3 ≤ C(x2 + 4x + 17) ≤ 3Cx2 for

some C, for all sufficiently large x, which implies that x ≤ 3C
for all sufficiently large x, which is impossible. Hence, x3 is

not O(x2 + 4x + 17). 11. 3x4 + 1 ≤ 4x4 = 8(x4∕2) for

all x > 1, so 3x4 + 1 is O(x4∕2), with witnesses C = 8,

k = 1. Also x4∕2 ≤ 3x4 + 1 for all x > 0, so x4∕2 is
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O(3x4 + 1), with witnesses C = 1, k = 0. 13. Because

2n ≤ 3n for all n > 0, it follows that 2n is O(3n), with wit-

nesses C = 1, k = 0. However, if 3n were O(2n), then for

some C, 3n ≤ C ⋅ 2n for all sufficiently large n. This says

that C ≥ (3∕2)n for all sufficiently large n, which is impos-

sible. Hence, 3n is not O(2n). 15. All functions for which

there exist real numbers k and C with |f (x)| ≤ C for x > k.

These are the functions f (x) that are bounded for all suffi-

ciently large x. 17. There are constants C1, C2, k1, and k2

such that |f (x)| ≤ C1|g(x)| for all x > k1 and |g(x)| ≤ C2|h(x)|
for all x > k2. Hence, for x > max(k1, k2) it follows

that |f (x)| ≤ C1|g(x)| ≤ C1C2|h(x)|. This shows that f (x) is

O(h(x)). 19. 2n+1 is O(2n); 22n is not. 21. 1000 log n;√
n; n log n; n2∕1,000,000; 2n; 3n; 2n! 23. The algo-

rithm that uses n log n operations 25. a) O(n3) b) O(n5)

c) O(n3 ⋅ n!) 27. a) O(n2 log n) b) O(n2(log n)2) c) O(n2n
)

29. a) Neither Θ(x2) nor Ω(x2) b) Θ(x2) and Ω(x2) c) Neither

Θ(x2) nor Ω(x2) d) Ω(x2), but not Θ(x2) e) Ω(x2), but not

Θ(x2) f) Ω(x2) and Θ(x2) 31. If f (x) is Θ(g(x)), then there

exist constants C1 and C2 with C1|g(x)| ≤ |f (x)| ≤ C2|g(x)|.
It follows that |f (x)| ≤ C2|g(x)| and |g(x)| ≤ (1∕C1)|f (x)| for

x > k. Thus, f (x) is O(g(x)) and g(x) is O(f (x)). Conversely,

suppose that f (x) is O(g(x)) and g(x) is O(f (x)). Then there

are constants C1, C2, k1, and k2 such that |f (x)| ≤ C1|g(x)|
for x > k1 and |g(x)| ≤ C2|f (x)| for x > k2. We can as-

sume that C2 > 0 (we can always make C2 larger). Then we

have (1∕C2)|g(x)| ≤ |f (x)| ≤ C1|g(x)| for x > max(k1, k2).

Hence, f (x) is Θ(g(x)). 33. If f (x) is Θ(g(x)), then f (x) is

both O(g(x)) and Ω(g(x)). Hence, there are positive constants

C1, k1, C2, and k2 such that |f (x)| ≤ C2|g(x)| for all x > k2

and |f (x)| ≥ C1|g(x)| for all x > k1. It follows that

C1|g(x)| ≤ |f (x)| ≤ C2|g(x)| whenever x > k, where

k = max(k1,k2). Conversely, if there are positive constants C1,

C2, and k such that C1|g(x)| ≤ |f (x)| ≤ C2|g(x)| for x > k,

then taking k1 = k2 = k shows that f (x) is both O(g(x))

and Θ(g(x)).

35.

k x

y C2g(x)

C1g (x)

f (x)

37. If f (x) is Θ(1), then |f (x)| is bounded between posi-

tive constants C1 and C2. In other words, f (x) cannot grow

larger than a fixed bound or smaller than the negative of this

bound and must not get closer to 0 than some fixed bound.

39. Because f (x) is O(g(x)), there are constants C and k such

that |f (x)| ≤ C|g(x)| for x > k. Hence, |f n(x)| ≤ Cn|gn(x)|
for x > k, so f n(x) is O(gn(x)) by taking the constant to be Cn.

41. Because f (x) and g(x) are increasing and unbounded, we

can assume f (x) ≥ 1 and g(x) ≥ 1 for sufficiently large x.

There are constants C and k with f (x) ≤ Cg(x) for x > k.

This implies that log f (x) ≤ logC + log g(x) < 2 log g(x) for

sufficiently large x. Hence, log f (x) is O(log g(x)). 43. By

definition there are positive constraints C1, C′
1
, C2, C′

2
, k1,

k′
1
, k2, and k′

2
such that f1(x) ≥ C1|g(x)| for all x > k1,

f1(x) ≤ C′
1
|g(x)| for all x > k′

1
, f2(x) ≥ C2|g(x)| for all x > k2,

and f2(x) ≤ C′
2
|g(x)| for all x > k′

2
. Adding the first and third

inequalities shows that f1(x) + f2(x) ≥ (C1 + C2)|g(x)| for

all x > k where k = max(k1, k2). Adding the second and

fourth inequalities shows that f1(x) + f2(x) ≤ (C′
1
+ C′

2
)|g(x)|

for all x > k′ where k′ = max(k′
1
, k′

2
). Hence, f1(x) + f2(x) is

Θ(g(x)). This is no longer true if f1 and f2 can assume negative

values. 45. This is false. Let f1 = x2 +2x, f2(x) = x2 +x, and

g(x) = x2. Then f1(x) and f2(x) are both O(g(x)), but ( f1−f2)(x)

is not. 47. Take f (n) to be the function with f (n) = n if n
is an odd positive integer and f (n) = 1 if n is an even pos-

itive integer and g(n) to be the function with g(n) = 1 if n
is an odd positive integer and g(n) = n if n is an even pos-

itive integer. 49. There are positive constants C1, C2, C′
1
,

C′
2
, k1, k′

1
, k2, and k′

2
such that |f1(x)| ≥ C1|g1(x)| for all

x > k1, |f1(x)| ≤ C′
1
|g1(x)| for all x ≥ k′

1
, |f2(x)| > C2|g2(x)|

for all x > k2, and |f2(x)| ≤ C′
2
|g2(x)| for all x > k′

2
. Be-

cause f2 and g2 are never zero, the last two inequalities can

be rewritten as |1∕f2(x)| ≤ (1∕C2)|1∕g2(x)| for all x > k2

and |1∕f2(x)| ≥ (1∕C′
2
)|1∕g2(x)| for all x > k′

2
. Multi-

plying the first and rewritten fourth inequalities shows that|f1(x)∕f2(x)| ≥ (C1∕C′
2
)|g1(x)∕g2(x)| for all x > max(k1, k′

2
),

and multiplying the second and rewritten third inequali-

ties gives |f1(x)∕f2(x)| ≤ (C′
1
∕C2)|g1(x)∕g2(x)| for all x >

max(k′
1
, k2). It follows that f1∕f2 is big-Theta of g1∕g2.

51. There exist positive constants C1, C2, k1, k2, k′
1
, k′

2
such

that |f (x, y)| ≤ C1|g(x, y)| for all x > k1 and y > k2 and|f (x, y)| ≥ C2|g(x, y)| for all x > k′
1

and y > k′
2
. 53. (x2 +

xy + x log y)3 < (3x2y3) = 27x6y3 for x > 1 and

y > 1, because x2 < x2y, xy < x2y, and x log y < x2y.

Hence, (x2 + xy + x log y)3 is O(x6y3). 55. For all positive

real numbers x and y, ⌊xy⌋ ≤ xy. Hence, ⌊xy⌋ is O(xy) from

the definition, taking C = 1 and k1 = k2 = 0. 57. Clearly

nd < nc for all n ≥ 2; therefore, nd is O(nc). The ratio

nd∕nc = nd−c is unbounded so there is no constant C such

that nd ≤ Cnc for large n. 59. If f and g are positive-

valued functions such that limn→∞ f (x)∕g(x) = C < ∞,

then f (x) < (C + 1)g(x) for large enough x, so f (n) is O(g(n)).

If that limit is ∞, then f (n) is not O(g(n)). Here repeated ap-

plications of L’Hôpital’s rule shows that limx→∞ xd∕bx = 0

and limx→∞ bx∕xd = ∞. 61. To show that cn is O(n!), as-

sume WLOG that c is an integer greater than 1. Claim that if

n ≥ c2+c, then n! ≥ cn. Both n! and cn have n factors. Replac-

ing each of the factors from c2 + 1 to c2 + c in n! by c2 only

makes the product smaller. But then each of these factors c2

can be factored as c ⋅ c and one of those factors of c moved to

pair with the factors 1 through c in n!. At this point every fac-

tor of n! is greater than or equal to c, so the product is greater

than or equal to cn. To show that n! is not O(cn), look at the ra-

tio n!∕cn and write this as (c!∕cc)⋅((c+1)∕c)⋅((c+2)∕c)⋅((c+
3)∕c)⋯ ((2c)∕c)⋅((2c+1)∕c)⋯ (n∕c). Treat the product of the
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first c+1 factors as a constant and note that every other factor

is greater than 2. Thus, the product is greater than an arbitrar-

ily large power of 2 as n → ∞, which therefore approaches

∞. Therefore, n! cannot be bounded by a constant times cn.

63. a) limx→∞ x2∕x3 = limx→∞ 1∕x = 0 b) limx→∞
x log x

x2
=

limx→∞
log x

x
= limx→∞

1

x ln 2
= 0 (using L’Hôpital’s rule)

c) limx→∞
x2

2x = limx→∞
2x

2x⋅ln 2
= limx→∞

2

2x⋅(ln 2)2
= 0 (using

L’Hôpital’s rule) d) limx→∞
x2+x+1

x2
= limx→∞

(
1 + 1

x
+ 1

x2

)
=

1 ≠ 0

65.

x

y

x log x
x log x

x2

x log x

x2
= 0lim

x ∞

x2

67. No. Take f (x) = 1∕x2 and g(x) = 1∕x. 69. a) Because

limx→∞ f (x)∕g(x) = 0, |f (x)|∕|g(x)| < 1 for sufficiently large

x. Hence, |f (x)| < |g(x)| for x > k for some constant k.

Therefore, f (x) is O(g(x)). b) Let f (x) = g(x) = x. Then

f (x) is O(g(x)), but f (x) is not o(g(x)) because f (x)∕g(x) = 1.

71. Because f2(x) is o(g(x)), from Exercise 69(a) it follows

that f2(x) is O(g(x)). By Corollary 1, we have f1(x) + f2(x)

is O(g(x)). 73. We can show that (n − i)(i + 1) ≥ n for

i = 0,1, … , n − 1. Hence, (n!)2 = (n ⋅ 1)((n − 1) ⋅ 2) ⋅
((n − 2) ⋅ 3) ⋯ (2 ⋅ (n − 1)) ⋅ (1 ⋅ n) ≥ nn. Therefore,

2 log n! ≥ n log n. 75. Compute that log 5! ≈ 6.9 and

(5 log 5)∕4 ≈ 2.9, so the inequality holds for n = 5. As-

sume n ≥ 6. Because n! is the product of all the integers from

n down to 1, we have n! > n(n − 1)(n − 2) ⋯ ⌈n∕2⌉ (be-

cause at least the term 2 is missing). Note that there are more

than n∕2 terms in this product, and each term is at least as big

as n∕2. Therefore, the product is greater than (n∕2)(n∕2). Tak-

ing the log of both sides of the inequality, we have log n! >

log
(

n
2

)n∕2

= n
2
log n

2
= n

2
(log n − 1) > (n log n)∕4, be-

cause n > 4 implies log n − 1 > (log n)∕2. 77. All are not

asymptotic.

Section 3.3

1. O(1) 3. O(n2) 5. 2n − 1 7. Linear 9. O(n)

11. a) procedure disjointpair(S1, S2,… , Sn :

subsets of {1, 2,… , n})

answer := false
for i := 1 to n

for j := i + 1 to n
disjoint := true

for k := 1 to n
if k ∈ Si and k ∈ Sj then disjoint := false

if disjoint then answer := true
return answer

b) O(n3) 13. a) power := 1, y := 1; i := 1, power := 2,

y := 3; i := 2, power := 4, y := 15 b) 2n multiplications

and n additions 15. a) 2109 ≈103× 108 b) 109 c) 3.96× 107

d) 3.16 × 104 e) 29 f) 12 17. a) 2260⋅1012

b) 260⋅1012

c) ⌊2
√

60⋅106⌋ ≈ 2 × 102331768 d) 60,000,000 e) 7,745,966

f) 45 g) 6 19. a) 36 years b) 13 days c) 19 minutes

21. a) Less than 1 millisecond more b) 100 milliseconds

more c) 2n+ 1 milliseconds more d) 3n2 + 3n+ 1 millisec-

onds more e) Twice as much time f) 22n+1 times as many

milliseconds g) n + 1 times as many milliseconds 23. The

average number of comparisons is (3n+ 4)∕2. 25. O(log n)

27. O(n) 29. O(n2) 31. O(n) 33. O(n) 35. O(log n)

comparisons; O(n2) swaps 37. O(m(n−m)) 39. a) O(n2)

b) O(n log n) 41. O(n22n) 43. a) doubles b) increases

by 1 45. Use Algorithm 1, where A and B are now n × n
upper triangular matrices, by replacing m by n in line 1, and

having q iterate only from i to j, rather than from 1 to k.

47. n(n + 1)(n + 2)∕6 49. A((BC)D)

Supplementary Exercises

1. a) procedure last max(a1,… , an: integers)

max := a1

last := 1

i := 2

while i ≤ n
if ai ≥ max then

max := ai
last := i

i := i + 1

return last

b) 2n − 1 = O(n) comparisons

3. a) procedure pair zeros(b1b2 … bn: bit string, n ≥ 2)

x := b1

y := b2

k := 2

while k < n and (x ≠ 0 or y ≠ 0)

k := k + 1

x := y
y := bk

if x = 0 and y = 0 then print “YES”

else print “NO”

b) O(n)

5. a) and b)
procedure smallest and largest(a1, a2,… , an: integers)

min := a1

max := a1
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for i := 2 to n
if ai < min then min := ai
if ai > max then max := ai

{min is the smallest integer among the input, and max is the

largest}

c) 2n − 2

7. Before any comparisons are done, there is a possibility that

each element could be the maximum and a possibility that

it could be the minimum. This means that there are 2n dif-

ferent possibilities, and 2n − 2 of them have to be elimi-

nated through comparisons of elements, because we need to

find the unique maximum and the unique minimum. We clas-

sify comparisons of two elements as “virgin” or “nonvirgin,”

depending on whether or not both elements being compared

have been in any previous comparison. A virgin comparison

eliminates the possibility that the larger one is the minimum

and that the smaller one is the maximum; thus, each virgin

comparison eliminates two possibilities, but it clearly cannot

do more. A nonvirgin comparison must be between two ele-

ments that are still in the running to be the maximum or two

elements that are still in the running to be the minimum, and

at least one of these elements must not be in the running for

the other category. For example, we might be comparing x
and y, where all we know is that x has been eliminated as the

minimum. If we find that x > y in this case, then only one

possibility has been ruled out—we now know that y is not the

maximum. Thus, in the worst case, a nonvirgin comparison

eliminates only one possibility. (The cases of other nonvirgin

comparisons are similar.) Now there are at most ⌊n∕2⌋ com-

parisons of elements that have not been compared before, each

removing two possibilities; they remove 2⌊n∕2⌋ possibilities

altogether. Therefore, we need 2n−2−2⌊n∕2⌋ more compar-

isons that, as we have argued, can remove only one possibility

each, in order to find the answers in the worst case, because

2n − 2 possibilities have to be eliminated. This gives us a

total of 2n − 2 − 2⌊n∕2⌋ + ⌊n∕2⌋ comparisons in all. But

2n − 2 − 2⌊n∕2⌋ + ⌊n∕2⌋ = 2n − 2 − ⌊n∕2⌋ = 2n − 2 +⌈−n∕2⌉ =⌈2n− n∕2⌉− 2 = ⌈3n∕2⌉− 2, as desired. 9. The

following algorithm has worst-case complexity O(n4).

procedure equal sums(a1, a2,… , an)

for i := 1 to n
for j := i + 1 to n {since we want i < j}

for k := 1 to n
for l := k + 1 to n {since we want k < l}

if ai + aj = ak + al and (i, j) ≠ (k, l)
then output these pairs

11. At end of first pass: 3, 1, 4, 5, 2, 6; at end of second

pass: 1, 3, 2, 4, 5, 6; at end of third pass: 1, 2, 3, 4, 5, 6;

fourth pass finds nothing to exchange and algorithm termi-

nates 13. There are possibly as many as n passes through

the list, and each pass uses O(n) comparisons. Thus, there are

O(n2) comparisons in all. 15. Because log n < n, we have

(n log n+ n2)3 ≤ (n2 + n2)3 ≤ (2n2)3 = 8n6 for all n > 0. This

proves that (n log n+ n2)3 is O(n6), with witnesses C = 8 and

k = 0. 17. O(x22x) 19. Note that
n!
2n = n

2
⋅ n−1

2
⋯ 3

2
⋅ 2

2
⋅ 1

2
>

n
2
⋅ 1 ⋅ 1 ⋯ 1 ⋅ 1

2
= n

4
. 21. All of these functions are of the

same order. 23. 2107 25. (log n)2, 2
√
log2 n, n(log n)1001,

n1.0001, 1.0001n, nn 27. For example, f (n) = n2⌊n∕2⌋+1 and

g(n) = n2⌈n∕2⌉
29. a) procedure brute(a1, a2,… , an : integers)

for i := 1 to n − 1

for j := i + 1 to n
for k := 1 to n

if ai + aj = ak then return true
else return false

b) O(n3)

31. For m1: w1 and w2; for m2: w1 and w3; for m3: w2 and

w3; for w1: m1 and m2; for w2: m1 and m3; for w3: m2 and

m3 33. A matching in which each woman is assigned her

valid partner ranking highest on her preference list is female

optimal; a matching in which each man is assigned his valid

partner ranking lowest on his preference list is male pessi-

mal. 35. a) Modify the preamble to Exercise 64 in Sec-

tion 3.1 so that there are s men m1, m2, … , ms and t women

w1, w2, … , wt. A matching will contain min(s, t) marriages.

The definition of “stable marriage” is the same, with the

understanding that each person prefers any mate to being

unmatched. b) Create |s− t| fictitious people (men or women,

whichever is in shorter supply) so that the number of men

and the number of women become the same, and put these

fictitious people at the bottom of everyone’s preference lists.

c) This follows immediately from Exercise 67 in Section 3.1.

37. 5; 15 39. The first situation in Exercise 37 41. a) For

each subset S of {1, 2, … , n}, compute
∑

j∈S wj. Keep track

of the subset giving the largest such sum that is less than or

equal to W, and return that subset as the output of the algo-

rithm. b) The food pack and the portable stove 43. a) The

makespan is always at least as large as the load on the pro-

cessor assigned to do the lengthiest job, which must be at

least maxj=1,2,…,n tj. Therefore, the minimum makespan satis-

fies this inequality. b) The total amount of time the processors

need to spend working on the jobs (the total load) is
∑n

j=1
tj.

Therefore, the average load per processor is
1

p

∑n
j=1

tj. The

maximum load cannot be any smaller than the average, so the

minimum makespan is always at least this large. 45. Pro-

cessor 1: jobs 1, 4; processor 2: job 2; processor 3: jobs 3, 5

CHAPTER 4

Section 4.1

1. a) Yes b) No c) Yes d) No 3. Suppose that a ∣ b.

Then there exists an integer k such that ka = b. Because

a(ck) = bc it follows that a ∣ bc. 5. If a ∣ b and b ∣ a,

there are integers c and d such that b = ac and a = bd.

Hence, a = acd. Because a ≠ 0 it follows that cd = 1. Thus,

either c = d = 1 or c = d = −1. Hence, either a = b
or a = −b. 7. Because ac ∣ bc there is an integer k such
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that ack = bc. Hence, ak = b, so a ∣ b. 9. It is given that

b = m ⋅ a for some integer m. If a is not odd, then a = 2k
for some integer k, whence b = 2km. This means by defini-

tion that b is even. 11. If a is an integer that is not divisible

by 3, then it must leave a remainder of either 1 or 2 when di-

vided by 3. In the first case a = 3k + 1 for some integer k, so

(a+1)(a+2) = (3k+2)(3k+3) = 3(3k+2)(k+1) and so is di-

visible by 3. In the second case a = 3k+ 2 for some integer k,

so (a+ 1)(a+ 2) = (3k+ 3)(3k+ 4) = 3(k+ 1)(3k+ 4) and so

is divisible by 3. 13. a) 2, 5 b) −11, 10 c) 34, 7 d) 77, 0

e) 0, 0 f) 0, 3 g) −1, 2 h) 4, 0 15. a) 7:00 b) 8:00 c) 10:00

17. a) 10 b) 8 c) 0 d) 9 e) 6 f) 11 19. If d ∣ a, then a = md
for some integer m, and it follows that −a = (−m)d as well.

Therefore, −(a div d) = −m and (−a) div d = −m, as de-

sired. Conversely, if d does not divide a, then a = qd + r for

some r with 0 < r < d. Here q = a div d. It follows that

−a = (−q)d−r = (−q−1)d+ (d−r). Note that 0 < d−r < d,

so by definition (−a) div d = −q−1. But −(a div d) = −q, so

(−a) div d ≠ −(a div d). 21. If a mod m = b mod m, then

a and b have the same remainder when divided by m. Hence,

a = q1m + r and b = q2m + r, where 0 ≤ r < m. It follows

that a − b = (q1 − q2)m, so m ∣ (a − b). It follows that a ≡ b
(mod m). 23. There is some b with (b − 1)k < n ≤ bk.

Hence, (b − 1)k ≤ n − 1 < bk. Divide by k to obtain

b − 1 < n∕k ≤ b and b − 1 ≤ (n − 1)∕k < b. Hence,⌈n∕k⌉ = b and ⌊(n − 1)∕k⌋ = b − 1. 25. x mod m
if x mod m ≤ ⌈m∕2⌉ and (x mod m) − m if x mod m >⌈m∕2⌉ 27. a) 1 b) 2 c) 3 d) 9 29. a) 1, 109 b) 40,

89 c) −31, 222 d) −21, 38259 31. a) −15 b) −7 c) 140

33. −1, −26, −51, −76, 24, 49, 74, 99 35. a) No b) No

c) Yes d) No 37. a) 13 a) 6 39. a) 9 b) 4 c) 25 d) 0

41. Let m = tn. Because a ≡ b (mod m) there exists an integer

s such that a = b + sm. Hence, a = b+(st)n, so a ≡ b (mod n).

43. a) Let m = c = 2, a = 0, and b = 1. Then 0 = ac ≡ bc = 2

(mod 2), but 0 = a ≢ b = 1 (mod 2). b) Let m = 5,

a = b = 3, c = 1, and d = 6. Then 3 ≡ 3 (mod 5) and 1 ≡ 6

(mod 5), but 31 = 3 ≢ 4 ≡ 729 = 36 (mod 5). 45. By

Exercise 44 the sum of two squares must be either 0 + 0 = 0,

0 + 1 = 1, or 1 + 1 = 2, modulo 4, never 3, and therefore

not of the form 4k + 3. 47. Because a ≡ b (mod m), there

exists an integer s such that a = b + sm, so a − b = sm.

Then ak − bk = (a − b)(ak−1 + ak−2b + ⋯ + abk−2 + bk−1),

k ≥ 2, is also a multiple of m. It follows that ak ≡ bk (mod m).

49. To prove closure, note that a ⋅m b = (a ⋅ b) mod m, which

by definition is an element of Zm. Multiplication is associa-

tive because (a ⋅m b) ⋅m c and a ⋅m (b ⋅m c) both equal

(a ⋅ b ⋅ c) mod m and multiplication of integers is associa-

tive. Similarly, multiplication in Zm is commutative because

multiplication in Z is commutative, and 1 is the multiplicative

identity for Zm because 1 is the multiplicative identity for Z.

51. 0+50 = 0, 0+51 = 1, 0+52 = 2, 0+53 = 3, 0+54 =
4; 1+51 = 2, 1+52 = 3, 1+53 = 4, 1+54 = 0; 2+52 =
4, 2+53 = 0, 2+54 = 1; 3+53 = 1, 3+54 = 2; 4+44 = 3 and

0⋅50 = 0, 0⋅51 = 0, 0⋅52 = 0, 0⋅53 = 0, 0⋅54 = 0; 1⋅51 =
1, 1⋅52 = 2, 1⋅53 = 3, 1⋅54 = 4; 2⋅52 = 4, 2⋅53 = 1, 2⋅54 =

3; 3⋅53 = 4, 3⋅54 = 2; 4⋅54 = 1 53. f is onto but not

one-to-one (unless d = 1); g is neither.

Section 4.2

1. a) 1110 0111 b) 1 0001 1011 0100 c) 1 0111

11010110 1100 3. a) 31 b) 513 c) 341 d) 26,896

5. a) 1 0111 1010 b) 11 1000 0100 c) 1 0001 0011

d) 101 0000 1111 7. a) 1000 0000 1110 b) 1 0011

0101 1010 1011 c) 10101011 1011 1010 d) 1101

1110 1111 1010 11001110 1101 9. 1010 1011 1100

1101 1110 1111 11. (B7B)16 13. Adding up to

three leading 0s if necessary, write the binary expan-

sion as (…b23b22b21b20b13b12b11b10b03b02b01b00)2. The

value of this numeral is b00 + 2b01 + 4b02 + 8b03 +
24b10 + 25b11 + 26b12 + 27b13 + 28b20 + 29b21 + 210b22 +
211b23 + ⋯, which we can rewrite as b00 + 2b01 + 4b02 +
8b03 + (b10 + 2b11 + 4b12 + 8b13) ⋅ 24 + (b20 + 2b21 + 4b22 +
8b23) ⋅ 28 + ⋯. Now (bi3bi2bi1bi0)2 translates into the hex-

adecimal digit hi. So our number is h0 + h1 ⋅ 24 + h2 ⋅
28 + ⋯ = h0 + h1 ⋅ 16 + h2 ⋅ 162 + ⋯, which is the

hexadecimal expansion (…h1h1h0)16. 15. Adding up to

two leading 0s if necessary, write the binary expansion as

(… b22b21b20b12b11b10b02b01b00)2. The value of this numeral

is b00 + 2b01 + 4b02 + 23b10 + 24b11 + 25b12 + 26b20 + 27b21 +
28b22 + ⋯, which we can rewrite as b00 + 2b01 + 4b02 +
(b10 + 2b11 + 4b12) ⋅ 23 + (b20 + 2b21 + 4b22) ⋅ 26 +⋯. Now

(bi2bi1bi0)2 translates into the octal digit hi. So our number is

h0 + h1 ⋅ 23 + h2 ⋅ 26 + ⋯ = h0 + h1 ⋅ 8 + h2 ⋅ 82 + ⋯,

which is the octal expansion (… h1h1h0)8. 17. 1 1101 1100

1010 1101 0001, 1273)8 19. Convert the given octal nu-

meral to binary, then convert from binary to hexadecimal

using Example 7. 21. a) 1011 1110, 10 0001 0000 0001

b) 1 1010 1100, 1011 0000 0111 0011 c) 100 1001 1010,

101 0010 1001 0110 0000 d) 110 0000 0000,

1000 0000 0001 1111 1111 23. a) 1132, 144,305 b) 6273,

2,134,272 c) 2110, 1,107,667 d) 57,777, 237,326,216

25. 436 27. 27 29. The binary expansion of the integer

is the unique such sum. 31. Let a = (an−1an−2 … a1a0)10.

Then a = 10n−1an−1 + 10n−2an−2 + ⋯ + 10a1 + a0

≡ an−1 + an−2 + ⋯ + a1 + a0 (mod 3), because

10j ≡ 1 (mod 3) for all nonnegative integers j. It fol-

lows that 3 ∣ a if and only if 3 divides the sum of the dec-

imal digits of a. 33. Let a = (an−1an−2 … a1a0)2. Then

a = a0 + 2a1 + 22a2 + ⋯ + 2n−1an−1 ≡ a0 − a1 + a2 −
a3 + ⋯ ± an−1 (mod 3). It follows that a is divisible by

3 if and only if the sum of the binary digits in the even-

numbered positions minus the sum of the binary digits in the

odd-numbered positions is divisible by 3. 35. a) n is divis-

ible by 4 if and only if the two rightmost digits of the decimal

expansion, viewed as a two-digit integer (or the single digit

if it’s a one-digit integer), is divisible by 4. b) n is divisible

by 25 if and only if the two rightmost digits are 00 (or 0 if it’s

a one-digit integer), 25, 50, or 75. c) n is divisible by 20 if

and only if the rightmost digit of the decimal expansion is 0

and the digit in the tens place (if it’s not a one-digit integer)
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is 0, 2, 4, 6, or 8. 37. The base b representation of n has

k digits iff bk−1 ≤ n < bk iff k − 1 ≤ logb n < k iff⌊logb n⌋ + 1 = k. 39. 5(8n − 1)∕7 41. a) −6 b) 13

c) −14 d) 0 43. The one’s complement of the sum is found

by adding the one’s complements of the two integers except

that a carry in the leading bit is used as a carry to the last bit

of the sum. 45. If m ≥ 0, then the leading bit an−1 of the

one’s complement expansion of m is 0 and the formula reads

m =
∑n−2

i=0
ai2

i. This is correct because the right-hand side is

the binary expansion of m. When m is negative, the leading

bit an−1 of the one’s complement expansion of m is 1. The

remaining n − 1 bits can be obtained by subtracting −m from

111… 1 (where there are n − 1 1s), because subtracting a bit

from 1 is the same as complementing it. Hence, the bit string

an−2 … a0 is the binary expansion of (2n−1 − 1)− (−m). Solv-

ing the equation (2n−1−1)− (−m) =
∑n−2

i=0
ai2

i for m gives the

desired equation because an−1 = 1. 47. a) −7 b) 13 c) −15

d) −1 49. To obtain the two’s complement representation

of the sum of two integers, add their two’s complement rep-

resentations (as binary integers are added) and ignore any

carry out of the leftmost column. However, the answer is

invalid if an overflow has occurred. This happens when the

leftmost digits in the two’s complement representation of the

two terms agree and the leftmost digit of the answer differs.

51. If m ≥ 0, then the leading bit an−1 is 0 and the formula

reads m =
∑n−2

i=0
ai2

i. This is correct because the right-hand

side is the binary expansion of m. If m < 0, its two’s comple-

ment expansion has 1 as its leading bit and the remaining n−1

bits are the binary expansion of 2n−1 − (−m). This means that

(2n−1) − (−m) =
∑n−2

i=0
ai2

i. Solving for m gives the desired

equation because an−1 = 1. 53. 4n
55. procedure Cantor(x: positive integer)

n := 1; f := 1

while (n + 1) ⋅ f ≤ x
n := n + 1

f := f ⋅ n
y := x
while n > 0

an := ⌊y∕f ⌋
y := y − an ⋅ f
f := f∕n
n := n − 1

{x = ann! + an−1(n − 1)! +⋯ + a11!}
57. First step: c = 0, d = 0, s0 = 1; second step: c = 0, d = 1,

s1 = 0; third step: c = 1, d = 1, s2 = 0; fourth step: c = 1,

d = 1, s3 = 0; fifth step: c = 1, d = 1, s4 = 1; sixth step:

c = 1, s5 = 1

59. procedure subtract(a, b: positive integers, a > b,

a = (an−1an−2 … a1a0)2,

b = (bn−1bn−2 … b1b0)2)

B := 0 {B is the borrow}
for j := 0 to n − 1

if aj ≥ bj + B then
sj := aj − bj − B
B := 0

else
sj := aj + 2 − bj − B
B := 1

{(sn−1sn−2 … s1s0)2 is the difference}

61. procedure compare(a, b: positive integers,

a = (anan−1 … a1a0)2, b = (bnbn−1 … b1b0)2)

k := n
while ak = bk and k > 0

k := k − 1

if ak = bk then print “a equals b”

if ak > bk then print “a is greater than b”

if ak < bk then print “a is less than b”

63. O(log n) 65. The only time-consuming part of the algo-

rithm is the while loop, which is iterated q times. The work

done inside is a subtraction of integers no bigger than a, which

has log a bits. The result now follows from Example 9.

Section 4.3

1. 29, 71, 97 prime; 21, 111, 143 not prime 3. a) 23 ⋅ 11

b) 2 ⋅ 32 ⋅ 7 c) 36 d) 7 ⋅ 11 ⋅ 13 e) 11 ⋅ 101 f) 2 ⋅ 33⋅
5 ⋅ 7 ⋅ 13 ⋅ 37 5. 28 ⋅ 34 ⋅ 52 ⋅ 7

7. procedure primetester(n : integer greater than 1)

isprime := true
d := 2

while isprime and d ≤
√

n
if n mod d = 0 then isprime := false
else d := d + 1

return isprime
9. Write n = rs, where r > 1 and s > 1. Then

2n−1 = 2rs−1 = (2r)s−1 = (2r−1)((2r)s−1+(2r)s−2+(2r)s−3+
⋯ + 1). The first factor is at least 22 − 1 = 3 and the second

factor is at least 22 + 1 = 5. This provides a factoring of

2n − 1 into two factors greater than 1, so 2n − 1 is composite.

11. Suppose that log2 3 = a∕b where a, b ∈ Z+ and b ≠ 0.

Then 2a∕b = 3, so 2a = 3b. This violates the fundamental the-

orem of arithmetic. Hence, log2 3 is irrational. 13. 3, 5, and

7 are primes of the desired form. 15. 1, 7, 11, 13, 17, 19, 23,

29 17. a) Yes b) No c) Yes d) Yes 19. Suppose that n
is not prime, so that n = ab, where a and b are integers greater

than 1. Because a > 1, by the identity in the hint, 2a − 1 is a

factor of 2n − 1 that is greater than 1, and the second factor in

this identity is also greater than 1. Hence, 2n − 1 is not prime.

21. a) 2 b) 4 c) 12 23. 𝜙(p k) = p k − p k−1 25. a) 35 ⋅ 53

b) 1 c) 2317 d) 41⋅43⋅53 e) 1 f) 1111 27. a) 211 ⋅37 ⋅59 ⋅73

b) 29 ⋅ 37 ⋅ 55 ⋅ 73 ⋅ 11 ⋅ 13 ⋅ 17 c) 2331 d) 41 ⋅ 43 ⋅ 53

e) 212313517721 f) Undefined 29. gcd (92928, 123552) =
1056; lcm(92928, 123552) = 10,872,576; both products

are 11,481,440,256. 31. Because min(x, y) + max(x, y) =
x + y, the exponent of pi in the prime factorization of

gcd(a, b) ⋅ lcm(a, b) is the sum of the exponents of pi in the

prime factorizations of a and b. 33. a) 6 b) 3 c) 11 d) 3

e) 40 f) 12 35. 9 37. By Exercise 36 it follows that

gcd(2b − 1, (2a − 1) mod (2b − 1)) = gcd(2b − 1, 2a mod b − 1).
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Because the exponents involved in the calculation are b and

a mod b, the same as the quantities involved in computing

gcd(a, b), the steps used by the Euclidean algorithm to com-

pute gcd(2a−1, 2b−1) run in parallel to those used to compute

gcd(a, b) and show that gcd(2a − 1, 2b − 1) = 2gcd(a,b) − 1.

39. a) 1 = (−1) ⋅ 10 + 1 ⋅ 11 b) 1 = 21 ⋅ 21 + (−10) ⋅ 44

c) 12 = (−1) ⋅ 36 + 48 d) 1 = 13 ⋅ 55 + (−21) ⋅ 34

e) 3 = 11 ⋅213+ (−20) ⋅117 f) 223 = 1 ⋅0+1 ⋅223 g) 1 = 37 ⋅
2347+(−706) ⋅123 h) 2= 1128 ⋅ 3454 +(−835) ⋅4666 i) 1 =
2468 ⋅ 9999 + (−2221) ⋅ 11111 41. (−3) ⋅ 26 + 1 ⋅ 91 = 13

43. 34 ⋅ 144 + (−55) ⋅ 89 = 1

45. procedure extended Euclidean(a, b: positive integers)

x := a
y := b
oldolds := 1

olds := 0

oldoldt := 0

oldt := 1

while y ≠ 0

q := x div y
r := x mod y
x := y
y := r
s := oldolds − q ⋅ olds
t := oldoldt − q ⋅ oldt
oldolds := olds
oldoldt := oldt
olds := s
oldt := t

{gcd(a, b) is x, and (oldolds)a+ (oldoldt)b = x}

47. a) an = 1 if n is prime and an = 0 otherwise. b) an is the

smallest prime factor of n with a1 = 1. c) an is the number of

positive divisors of n. d) an = 1 if n has no divisors that are

perfect squares greater than 1 and an = 0 otherwise. e) an is

the largest prime less than or equal to n. f) an is the product

of the first n − 1 primes. 49. Because every second integer

is divisible by 2, the product is divisible by 2. Because every

third integer is divisible by 3, the product is divisible by 3.

Therefore, the product has both 2 and 3 in its prime factoriza-

tion and is therefore divisible by 3 ⋅ 2 = 6. 51. n = 1601 is

a counterexample. 53. Setting k = a + b + 1 will produce

the composite number a(a + b + 1) + b = a2 + ab + a + b =
(a+1)(a+b). 55. Suppose that there are only finitely many

primes of the form 4k+3, namely, q1, q2,… , qn, where q1 = 3,

q2 = 7, and so on. Let Q = 4q1q2 ⋯ qn − 1. Note that Q is of

the form 4k+3 (where k = q1q2 ⋯ qn −1). If Q is prime, then

we have found a prime of the desired form different from all

those listed. If Q is not prime, then Q has at least one prime

factor not in the list q1, q2,… , qn, because the remainder when

Q is divided by qj is qj − 1, and qj − 1 ≠ 0. Because all odd

primes are either of the form 4k+1 or of the form 4k+3, and

the product of primes of the form 4k + 1 is also of this form

(because (4k + 1)(4m + 1) = 4(4km + k + m) + 1), there must

be a factor of Q of the form 4k + 3 different from the primes

we listed. 57. Given a positive integer x, we show that there

is exactly one positive rational number m∕n (in lowest terms)

such that K(m∕n) = x. From the prime factorization of x, read

off the m and n such that K(m∕n) = x. The primes that occur

to even powers are the primes that occur in the prime factor-

ization of m, with the exponents being half the corresponding

exponents in x; and the primes that occur to odd powers are

the primes that occur in the prime factorization of n, with the

exponents being half of one more than the exponents in x.

Section 4.4

1. 15 ⋅ 7 = 105 ≡ 1 (mod 26) 3. 7 5. a) 7 b) 52 c) 34

d) 73 7. Suppose that b and c are both inverses of a mod-

ulo m. Then ba ≡ 1 (mod m) and ca ≡ 1 (mod m). Hence,

ba ≡ ca (mod m). Because gcd(a, m) = 1 it follows by The-

orem 7 in Section 4.3 that b ≡ c (mod m). 9. 8 11. a) 67

b) 88 c) 146 13. 3 and 6 15. Let m′ = m∕ gcd(c, m).

Because all the common factors of m and c are divided out of

m to obtain m′, it follows that m′ and c are relatively prime.

Because m divides ac − bc = (a − b)c, it follows that m′

divides (a − b)c. By Lemma 2 in Section 4.3, we see that

m′ divides a − b, so a ≡ b (mod m′). 17. Suppose that

x2 ≡ 1 (mod p). Then p divides x2 − 1 = (x + 1)(x − 1). By

Lemma 3 in Section 4.3 it follows that p ∣ x + 1 or p ∣ x − 1,

so x ≡ −1 (mod p) or x ≡ 1 (mod p). 19. a) Suppose that

ia ≡ ja (mod p), where 1 ≤ i < j < p. Then p divides

ja − ia = a(j − i). By Lemma 3 in Section 4.3, because a is

not divisible by p, p divides j− i, which is impossible because

j− i is a positive integer less than p. b) By part (a), because no

two of a, 2a,… , (p − 1)a are congruent modulo p, each must

be congruent to a different number from 1 to p − 1. It follows

that a ⋅ 2a ⋅ 3a ⋅ ⋯ ⋅ (p − 1) ⋅ a ≡ 1 ⋅ 2 ⋅ 3 ⋅ ⋯ ⋅ (p − 1)

(mod p). It follows that (p−1)! ⋅ap−1 ≡ p−1 (mod p). c) By

Wilson’s theorem and part (b), if p does not divide a, it fol-

lows that (−1) ⋅ap−1 ≡ −1 (mod p). Hence, ap−1 ≡ 1 (mod p).

d) If p ∣ a, then p ∣ ap. Hence, ap ≡ a ≡ 0 (mod p). If p does

not divide a, then ap−1 ≡ a (mod p), by part (c). Multiplying

both sides of this congruence by a gives ap ≡ a (mod p).

21. All integers of the form 323+ 330k, where k is an integer

23. All integers of the form 53 + 60k, where k is an integer

25. procedure chinese(m1, m2,… , mn : relatively

prime positive integers ; a1, a2,… , an : integers)

m := 1

for k := 1 to n
m := m ⋅ mk

for k := 1 to n
Mk := m∕mk
yk := M−1

k mod mk
x := 0

for k := 1 to n
x := x + akMkyk

while x ≥ m
x := x − m

return x {the smallest solution to the system

{x ≡ ak (mod mk), k = 1, 2,… , n }}
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27. All integers of the form 16 + 252k, where k is an integer

29. Suppose that p is a prime appearing in the prime factor-

ization of m1m2 ⋯mn. Because the mis are relatively prime, p
is a factor of exactly one of the mis, say mj. Because mj divides
a−b, it follows that a−b has the factor p in its prime factoriza-

tion to a power at least as large as the power to which it appears

in the prime factorization of mj. It follows that m1m2 ⋯mn di-

vides a−b, so a ≡ b (mod m1m2 ⋯mn). 31. x ≡ 1 (mod 6)

33. 7 35. ap−2 ⋅a = a⋅ap−2 = ap−1 ≡ 1 (mod p) 37. a) By

Fermat’s little theorem, we have 210 ≡ 1 (mod 11). Hence,

2340 = (210)34 ≡ 134 = 1 (mod 11). b) Because 32 ≡ 1

(mod 31), it follows that 2340 = (25)68 = 3268 ≡ 168 = 1

(mod 31). c) Because 11 and 31 are relatively prime, and

11 ⋅ 31 = 341, it follows by parts (a) and (b) and Exer-

cise 29 that 2340 ≡ 1 (mod 341). 39. a) 3, 4, 8 b) 983

41. Suppose that q is an odd prime with q ∣ 2p − 1. By Fer-

mat’s little theorem, q ∣ 2q−1 −1. From Exercise 37 in Section
4.3, gcd(2p−1, 2q−1−1) = 2gcd(p,q−1)−1. Because q is a com-
mon divisor of 2p − 1 and 2q−1 − 1, gcd(2p − 1, 2q−1 − 1) > 1.

Hence, gcd(p, q − 1) = p, because the only other possibility,

namely, gcd(p, q− 1) = 1, gives us gcd(2p − 1, 2q−1 − 1) = 1.

Hence, p ∣ q − 1, and therefore there is a positive integer

m such that q − 1 = mp. Because q is odd, m must be
even, say, m = 2k, and so every prime divisor of 2p − 1

is of the form 2kp + 1. Furthermore, the product of num-

bers of this form is also of this form. Therefore, all divisors
of 2p − 1 are of this form. 43. M11 is not prime; M17 is

prime. 45. First, 2047 = 23 ⋅ 89 is composite. Write

2047−1 = 2046 = 2 ⋅1023, so s = 1 and t = 1023 in the defi-
nition. Then 21023 = (211)93 = 204893 ≡ 193 = 1 (mod 2047),

as desired. 47. We must show that b2820 ≡ 1 (mod 2821)

for all b relatively prime to 2821. Note that 2821 = 7 ⋅ 13 ⋅ 31,

and if gcd(b, 2821) = 1, then gcd(b, 7) = gcd(b, 13) =
gcd(b, 31) = 1. Using Fermat’s little theorem we find that

b6 ≡ 1 (mod 7), b12 ≡ 1 (mod 13), and b30 ≡ 1 (mod 31).

It follows that b2820 ≡ (b6)470 ≡ 1 (mod 7), b2820 ≡ (b12)235 ≡
1 (mod 13), and b2820 ≡ (b30)94 ≡ 1 (mod 31). By Ex-
ercise 29 (or the Chinese remainder theorem) it follows that

b2820 ≡ 1 (mod 2821), as desired. 49. a) If we multiply

out this expression, we get n = 1296m3 + 396m2 + 36m + 1.

Clearly 6m | n − 1, 12m | n − 1, and 18m | n − 1. There-

fore, the conditions of Exercise 48 are met, and we conclude

that n is a Carmichael number. b) Letting m = 51 gives

n = 172,947,529. 51. 0 = (0, 0), 1 = (1, 1), 2 = (2, 2),

3 = (0, 3), 4 = (1, 4), 5 = (2, 0), 6 = (0, 1), 7 = (1, 2),

8 = (2, 3), 9 = (0, 4), 10 = (1, 0), 11 = (2, 1), 12 = (0, 2),
13 = (1, 3), 14 = (2, 4) 53. We have m1 = 99, m2 = 98,

m3 = 97, and m4 = 95, so m = 99 ⋅ 98 ⋅ 97 ⋅ 95 = 89,403,930.

We find that M1 = m∕m1 = 903,070, M2 = m∕m2 = 912,285,

M3 = m∕m3 = 921,690, and M4 = m∕m4 = 941,094.

Using the Euclidean algorithm, we compute that y1 = 37,

y2 = 33, y3 = 24, and y4 = 4 are inverses of Mk modulo mk
for k = 1, 2, 3, 4, respectively. It follows that the solution is

65 ⋅ 903,070 ⋅ 37 + 2 ⋅ 912,285 ⋅ 33 + 51 ⋅921,690 ⋅ 24+ 10 ⋅
941,094 ⋅ 4 = 3,397,886,480 ≡ 537,140 (mod 89,403,930).

55. log2 5 = 16, log2 6 = 14 57. log3 1 = 0, log3 2 = 14,

log3 3 = 1, log3 4 = 12, log3 5 = 5, log3 6 = 15,

log3 7 = 11, log3 8 = 10, log3 9 = 2, log3 10 = 3,

log3 11 = 7, log3 12 = 13, log3 13 = 4, log3 14 = 9,

log3 15 = 6, log3 16 = 8 59. Assume that s is a solu-

tion of x2 ≡ a (mod p). Then because (−s)2 = s2, −s is

also a solution. Furthermore, s ≢ −s (mod p). Otherwise,

p ∣ 2s, which implies that p ∣ s, and this implies, using

the original assumption, that p ∣ a, which is a contradiction.

Furthermore, if s and t are incongruent solutions modulo p,

then because s2 ≡ t2 (mod p), p ∣ s2 − t2. This implies that

p ∣ (s + t)(s − t), and by Lemma 3 in Section 4.3, p ∣ s − t
or p ∣ s + t, so s ≡ t (mod p) or s ≡ −t (mod p). Hence,

there are at most two solutions. 61. The value of
( a

p

)
de-

pends only on whether a is a quadratic residue modulo p, that

is, whether x2 ≡ a (mod p) has a solution. Because this de-

pends only on the equivalence class of a modulo p, it follows

that
( a

p

)
=

( b
p

)
if a ≡ b (mod p). 63. By Exercise 62,( a

p

)( b
p

)
= a(p−1)∕2b(p−1)∕2 = (ab)(p−1)∕2 ≡

( ab
p

)
(mod p).

65. x≡ 8, 13, 22, or 27 (mod 35) 67. Compute re mod p for

e = 0, 1, 2, … , p − 2 until we get the answer a. Worst case

and average case time complexity are O(p log p).

Section 4.5

1. 91, 57, 21, 5 3. a) 7, 19, 7, 7, 18, 0 b) Take the next avail-

able space mod 31. 5. 1, 5, 4, 1, 5, 4, 1, 5, 4,… 7. 2, 6, 7,

10, 8, 2, 6, 7, 10, 8, … 9. 2357, 5554, 8469, 7239, 4031,

2489, 1951, 8064 11. 2, 1, 1, 1, … 13. Only string (d)

15. 4 17. Correctly, of course 19. a) Not valid b) Valid

c) Valid d) Not valid 21. a) No b) 5 c) 7 d) 8

23. Transposition errors involving the last digit 25. a) Yes

b) No c) Yes d) No 27. Transposition errors will be de-

tected if and only if the transposed digits are an odd num-

ber of positions apart and do not differ by 5. 29. a) Valid

b) Not valid c) Valid d) Valid 31. Yes, as long as the

two digits do not differ by 7 33. a) Not valid b) Valid

c) Valid d) Not valid 35. The given congruence is equiva-

lent to 3d1 + 4d2 + 5d3 + 6d4 + 7d5 + 8d6 + 9d7 + 10d8 ≡ 0

(mod 11). Transposing adjacent digits x and y (with x on the

left) causes the left-hand side to increase by x − y. Because

x ≢ y (mod 11), the congruence will no longer hold. There-

fore, errors of this type are always detected.

Section 4.6

1. a) GR QRW SDVV JR b) QB ABG CNFF TB c) QX UXM

AHJJ ZX 3. a) KOHQV MCIF GHSD b) RVBXP TJPZ

NBZX c) DBYNE PHRM FYZA 5. a) SURRENDER

NOW b) BE MY FRIEND c) TIME FOR FUN 7. TO

SLEEP PERCHANCE TO DREAM 9. ANY SUFFI-

CIENTLY ADVANCED TECHNOLOGY IS INDISTIN-

GUISHABLE FROM MAGIC 11. p = 7c + 13 mod 26

13. a = 18, b = 5 15. BEWARE OF MARTIANS

17. Presumably something like an affine cipher

19. HURRICANE 21. The length of the key may well
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be the greatest common divisor of the distances between

the starts of the repeated string (or a factor of the gcd).

23. Suppose we know both n = pq and (p− 1)(q− 1). To find

p and q, first note that (p − 1)(q − 1) = pq − p − q + 1 =
n − (p + q) + 1. From this we can find s = p + q. Because

q = s − p, we have n = p(s − p). Hence, p2 − ps + n = 0. We

now can use the quadratic formula to find p. Once we have

found p, we can find q because q = n∕p. 25. 2545 2757

1211 27. SILVER 29. Alice sends 58 mod 23 = 16 to

Bob. Bob sends 55 mod 23 = 20 to Alice. Alice computes

208 mod 23 = 6 and Bob computes 165 mod 23 = 6.

The shared key is 6. 31. 2186 2087 1279 1251 0326 0816

1948 33. Alice can decrypt the first part of Cathy’s mes-

sage to learn the key, and Bob can decrypt the second part

of Cathy’s message, which Alice forwarded to him, to learn

the key. No one else besides Cathy can learn the key, be-

cause all of these communications use secure private keys.

35. Working modulo n2, E(m1 + m2) = gm1+m2 (r1r2)n =
(gm1 rn

1
)(gm2 rn

2
) = E(m1) ⋅ E(m2).

Supplementary Exercises

1. The actual number of miles driven is 46,518 + 100,000k
for some natural number k. 3. 5, 22,−12,−29 5. Because

ac ≡ bc (mod m), there is an integer k such that ac = bc +
km. Hence, a − b = km∕c. Because a − b is an integer,

c ∣ km. Letting d = gcd(m, c), write c = de. Because no

factor of e divides m∕d, it follows that d ∣ m and e ∣ k. Thus,

a − b = (k∕e)(m∕d), where k∕e ∈ Z and m∕d ∈ Z. There-

fore, a ≡ b (mod m∕d). 7. Proof of the contrapositive:

If n is odd, then n = 2k + 1 for some integer k. Therefore,

n2 + 1 = (2k + 1)2 + 1 = 4k2 + 4k + 2 ≡ 2 (mod 4). But

perfect squares of even numbers are congruent to 0 modulo 4

(because (2m)2 = 4m2), and perfect squares of odd numbers

are congruent to 1 or 3 modulo 4, so n2 + 1 is not a perfect

square. 9. n is divisible by 8 if and only if the binary expan-

sion of n ends with 000. 11. We assume that someone has

chosen a positive integer less than 2n, which we are to guess.

We ask the person to write the number in binary, using leading

0s if necessary to make it n bits long. We then ask, “Is the first

bit a 1?”, “Is the second bit a 1?”, “Is the third bit a 1?”, and so

on. After we know the answers to these n questions, we will

know the number, because we will know its binary expansion.

13. (anan−1 … a1a0)10 =
∑n

k=0
10kak ≡

∑n
k=0

ak (mod 9)

because 10k ≡ 1 (mod 9) for every nonnegative integer k.

15. Because for all k ≤ n, when Qn is divided by k the re-

mainder will be 1, it follows that no prime number less than

or equal to n is a factor of Qn. Thus, by the fundamental theo-

rem of arithmetic, Qn must have a prime factor greater than n.

17. Take a = 10 and b = 1 in Dirichlet’s theorem. 19. Every

number greater than 11 can be written as either 8+2n or 9+2n
for some n ≥ 2. 21. Assume that every even integer greater

than 2 is the sum of two primes, and let n be an integer greater

than 5. If n is odd, write n = 3 + (n − 3) and decompose

n − 3 = p + q into the sum of two primes; if n is even, then

write n = 2 + (n − 2) and decompose n − 2 = p + q into

the sum of two primes. For the converse, assume that every

integer greater than 5 is the sum of three primes, and let n be

an even integer greater than 2. Write n+ 2 as the sum of three

primes, one of which is necessarily 2, so n + 2 = 2 + p + q,

whence n = p + q. 23. Recall that a nonconstant poly-

nomial can take on the same value only a finite number of

times. Thus, f can take on the values 0 and ±1 only finitely

many times, so if there is not some y such that f (y) is com-

posite, then there must be some x0 such that ±f (x0) is prime,

say p. Look at f (x0 + kp). When we plug x0 + kp in for x in

the polynomial and multiply it out, every term will contain

a factor of p except for the terms that form f (x0). Therefore,

f (x0 + kp) = f (x0) + mp = (m ± 1)p for some integer m. As k
varies, this value can be 0, p, or −p only finitely many times;

therefore, it must be a composite number for some values of k.

25. 1 27. 1 29. If not, then suppose that q1, q2,… , qn are

all the primes of the form 6k + 5. Let Q = 6q1q2 ⋯ qn − 1.

Note that Q is of the form 6k + 5, where k = q1q2 ⋯ qn − 1.

Let Q = p1p2 ⋯ pt be the prime factorization of Q. No pi
is 2, 3, or any qj, because the remainder when Q is divided

by 2 is 1, by 3 is 2, and by qj is qj − 1. All odd primes other

than 3 are of the form 6k + 1 or 6k + 5, and the product of

primes of the form 6k + 1 is also of this form. Therefore, at

least one of the pis must be of the form 6k + 5, a contradic-

tion. 31. The product of numbers of the form 4k + 1 is of

the form 4k + 1, but numbers of this form might have num-

bers not of this form as their only prime factors. For exam-

ple, 49 = 4 ⋅ 12 + 1, but the prime factorization of 49 is

7 ⋅ 7 = (4 ⋅ 1 + 3)(4 ⋅ 1 + 3). 33. a) Not mutually relatively

prime b) Mutually relatively prime c) Mutually relatively

prime d) Mutually relatively prime 35. 1 37. x ≡ 28

(mod 30) 39. By the Chinese remainder theorem, it suffices

to show that n9 − n ≡ 0 (mod 2), n9 − n ≡ 0 (mod 3),

and n9 − n ≡ 0 (mod 5). Each in turn follows from apply-

ing Fermat’s little theorem. 41. By Fermat’s little theorem,

pq−1 ≡ 1 (mod q) and clearly qp−1 ≡ 0 (mod q). Therefore,

pq−1 + qp−1 ≡ 1 + 0 = 1 (mod q). Similarly, pq−1 + qp−1 ≡ 1

(mod p). It follows from the Chinese remainder theorem that

pq−1 + qp−1 ≡ 1 (mod pq). 43. If ai is changed from x
to y, then the change in the left-hand side of the congruence

is either y − x or 3(y − x), modulo 10, neither of which

can be 0 because 1 and 3 are relatively prime to 10. There-

fore, the sum can no longer be 0 modulo 10. 45. Working

modulo 10, solve for d9. The check digit for 11100002 is 5.

47. PLEASE SEND MONEY 49. a) QAL HUVEM AT

WVESGB b) QXB EVZZL ZEVZZRFS

CHAPTER 5

Section 5.1

1. Let P(n) be the statement that the train stops at station n.

Basis step: We are told that P(1) is true. Inductive step: We

are told that P(n) implies P(n + 1) for each n ≥ 1. Therefore,
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by the principle of mathematical induction, P(n) is true for all

positive integers n. 3. a) 12 = 1⋅2⋅3∕6 b) Both sides of P(1)

shown in part (a) equal 1. c) 12+22+⋯+k2 = k(k+1)(2k+
1)∕6 d) For each k ≥ 1 that P(k) implies P(k + 1); in other

words, that assuming the inductive hypothesis [see part (c)]

we can show 12+22+⋯+k2+(k+1)2 = (k+1)(k+2)(2k+3)∕6

e) (12 + 22 + ⋯ + k2) + (k + 1)2 = [k(k + 1)(2k +
1)∕6] + (k + 1)2 = [(k + 1)∕6][k(2k + 1) + 6(k +
1)] = [(k + 1)∕6](2k2 + 7k + 6) = [(k + 1)∕6](k +
2)(2k + 3) = (k + 1)(k + 2)(2k + 3)∕6 f) We have completed

both the basis step and the inductive step, so by the princi-

ple of mathematical induction, the statement is true for every

positive integer n. 5. Let P(n) be “12+32 +⋯+ (2n+1)2 =
(n + 1)(2n + 1)(2n + 3)∕3.” Basis step: P(0) is true because

12 = 1 = (0+1)(2 ⋅0+1)(2 ⋅0+3)∕3. Inductive step: Assume

that P(k) is true. Then 12+32+⋯+(2k+1)2+[2(k+1)+1]2 =
(k + 1)(2k + 1)(2k + 3)∕3+ (2k + 3)2 = (2k + 3)[(k + 1)(2k +
1)∕3+ (2k+ 3)] = (2k+ 3)(2k2 + 9k+ 10)∕3 = (2k+ 3)(2k+
5)(k + 2)∕3 = [(k + 1) + 1][2(k + 1) + 1][2(k + 1) + 3]∕3.

7. Let P(n) be “
∑n

j=0
3 ⋅ 5j = 3(5n+1 − 1)∕4.” Basis step:

P(0) is true because
∑0

j=0
3 ⋅ 5j = 3 = 3(51 − 1)∕4. In-

ductive step: Assume that
∑k

j=0
3 ⋅ 5j = 3(5k+1 − 1)∕4. Then∑k+1

j=0
3 ⋅5j = (

∑k
j=0

3 ⋅5j)+3 ⋅5k+1 = 3(5k+1−1)∕4+3 ⋅5k+1 =
3(5k+1 + 4 ⋅ 5k+1 − 1)∕4 = 3(5k+2 − 1)∕4. 9. a) 2 + 4 +
6 +⋯+ 2n = n(n + 1) b) Basis step: 2 = 1 ⋅ (1+ 1) is true.

Inductive step: Assume that 2 + 4 + 6 +⋯+ 2k = k(k + 1).

Then (2 + 4 + 6+⋯+ 2k) + 2(k + 1) = k(k + 1) + 2(k + 1) =
(k + 1)(k + 2). 11. a)

∑n
j=1

1∕2j = (2n − 1)∕2n b) Basis
step: P(1) is true because

1

2
= (21− 1)∕21. Inductive step:

Assume that
∑k

j=1
1∕2j = (2k − 1)∕2k. Then

∑k+1

j=1

1

2j =

(
∑k

j=1

1

2j ) +
1

2k+1
= 2k−1

2k + 1

2k+1
= 2k+1−2+1

2k+1
= 2k+1−1

2k+1
. 13. Let

P(n) be “12−22+32−⋯+(−1)n−1n2 = (−1)n−1n(n+1)∕2.” Ba-
sis step: P(1) is true because 12 = 1 = (−1)012. Inductive step:
Assume that P(k) is true. Then 12−22+32−⋯+ (−1)k−1k2 +
(−1)k(k + 1)2 = (−1)k−1k(k + 1)∕2 + (−1)k(k + 1)2 =
(−1)k(k + 1)[−k∕2 + (k + 1)] = (−1)k(k + 1)[(k∕2) + 1] =
(−1)k(k + 1)(k + 2)∕2. 15. Let P(n) be “1 ⋅ 2 + 2 ⋅ 3 +⋯ +
n(n+1) = n(n+1)(n+2)∕3.” Basis step: P(1) is true because

1 ⋅ 2 = 2 = 1(1 + 1)(1 + 2)∕3. Inductive step: Assume that

P(k) is true. Then 1 ⋅2+2 ⋅3+⋯+ k(k+1)+ (k+1)(k+2) =
[k(k+1)(k+2)∕3]+(k+1)(k+2) = (k+1)(k+2)[(k∕3)+1] =
(k + 1)(k + 2)(k + 3)∕3. 17. Let P(n) be the statement that

14+24+34+⋯ + n4 = n(n+1)(2n+1)(3n2+3n−1)∕30. P(1)

is true because 1 ⋅ 2 ⋅ 3 ⋅ 5∕30 = 1. Assume that P(k) is true.

Then (14+24+34+⋯+k4)+(k+1)4 = k(k+1)(2k+1)(3k2+
3k−1)∕30+ (k+1)4 = [(k+1)∕30][k(2k+1)(3k2 +3k−1)+
30(k+1)3] = [(k+1)∕30](6k4+39k3+91k2+89k+30) = [(k+
1)∕30](k+2)(2k+3)[3(k+1)2+3(k+1)−1]. This demonstrates

that P(k+1) is true. 19. a) 1+ 1

4
< 2− 1

2
b) This is true be-

cause 5∕4 is less than 6∕4. c) 1+ 1

4
+⋯+ 1

k2
< 2− 1

k
d) For each

k ≥ 2 that P(k) implies P(k + 1); in other words, we want to

show that assuming the inductive hypothesis [see part (c)] we

can show 1 + 1

4
+⋯ + 1

k2
+ 1

(k+1)2
< 2 − 1

k+1
e) 1 + 1

4
+⋯+

1

k2
+ 1

(k+1)2
< 2− 1

k
+ 1

(k+1)2
= 2−

[ 1

k
− 1

(k+1)2

]
= 2−

[ k2+2k+1−k
k(k+1)2

]
=

2− k2+k
k(k+1)2

− 1

k(k+1)2
= 2− 1

k+1
− 1

k(k+1)2
< 2− 1

k+1
f) We have

completed both the basis step and the inductive step, so by the

principle of mathematical induction, the statement is true for

every integer n greater than 1. 21. Let P(n) be “2n > n2.”

Basis step: P(5) is true because 25 = 32 > 25 = 52. In-
ductive step: Assume that P(k) is true, that is, 2k > k2. Then

2k+1 = 2 ⋅ 2k > k2 + k2 > k2 + 4k ≥ k2 + 2k + 1 = (k + 1)2

because k > 4. 23. By inspection we find that the inequality

2n + 3 ≤ 2n does not hold for n = 0, 1, 2, 3. Let P(n) be the

proposition that this inequality holds for the positive integer n.

P(4), the basis case, is true because 2 ⋅ 4 + 3 = 11 ≤ 16 = 24.

For the inductive step assume that P(k) is true. Then, by the

inductive hypothesis, 2(k + 1) + 3 = (2k + 3) + 2 < 2k + 2.

But because k ≥ 1, 2k + 2 ≤ 2k + 2k = 2k+1. This shows that

P(k+1) is true. 25. Let P(n) be “1+nh ≤ (1+h)n, h > −1.”

Basis step: P(0) is true because 1 + 0 ⋅ h = 1 ≤ 1 = (1 + h)0.

Inductive step: Assume 1 + kh ≤ (1 + h)k. Then because

(1 + h) > 0, (1 + h)k+1 = (1 + h)(1 + h)k ≥ (1 + h)(1 + kh) =
1 + (k + 1)h + kh2 ≥ 1 + (k + 1)h. 27. Let P(n) be

“1∕
√

1 + 1∕
√

2 + 1∕
√

3 +⋯ + 1∕
√

n > 2
(√

n + 1 − 1
)

.”

Basis step: P(1) is true because 1 > 2
(√

2 − 1
)

. Induc-
tive step: Assume that P(k) is true. Then 1 + 1∕

√
2 + ⋯ +

1∕
√

k + 1∕
√

k + 1 > 2
(√

k + 1 − 1
)
+ 1∕

√
k + 1. If we

show that 2
(√

k + 1 − 1
)
+ 1∕

√
k + 1 > 2

(√
k + 2 − 1

)
,

it follows that P(k + 1) is true. This inequality is equiv-

alent to 2
(√

k + 2 −
√

k + 1
)

< 1∕
√

k + 1, which is

equivalent to 2
(√

k + 2 −
√

k + 1
) (√

k + 2+
√

k + 1
)

<√
k + 1∕

√
k + 1 +

√
k + 2∕

√
k + 1. This is equivalent to

2 < 1 +
√

k + 2∕
√

k + 1, which is clearly true. 29. Let

P(n) be “H2n ≤ 1 + n.” Basis step: P(0) is true because

H20 = H1 = 1 ≤ 1 + 0. Inductive step: Assume

that H2k ≤ 1 + k. Then H2k+1 = H2k+
∑2k+1

j=2k+1

1

j
≤

1 + k + 2k
(

1

2k+1

)
< 1 + k + 1 = 1 + (k + 1). 31. Basis

step: 12 + 1 = 2 is divisible by 2. Inductive step: Assume
the inductive hypothesis, that k2 + k is divisible by 2. Then

(k + 1)2 + (k + 1) = k2 + 2k + 1+ k + 1 = (k2 + k)+ 2(k + 1),

the sum of a multiple of 2 (by the inductive hypothesis) and a

multiple of 2 (by definition), hence, divisible by 2. 33. Let

P(n) be “n5 − n is divisible by 5.” Basis step: P(0) is true

because 05 − 0 = 0 is divisible by 5. Inductive step: As-

sume that P(k) is true, that is, k5 − 5 is divisible by 5. Then

(k+1)5−(k+1) = (k5+5k4+10k3+10k2+5k+1)−(k+1) =
(k5 − k)+ 5(k4 + 2k3 + 2k2 + k) is also divisible by 5, because

both terms in this sum are divisible by 5. 35. Let P(n) be

the proposition that (2n − 1)2 − 1 is divisible by 8. The basis

case P(1) is true because 8 ∣ 0. Now assume that P(k) is true.

Because [(2(k + 1) − 1]2 − 1 = [(2k − 1)2 − 1] + 8k, P(k + 1)

is true because both terms on the right-hand side are divisible
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by 8. This shows that P(n) is true for all positive integers n, so

m2 −1 is divisible by 8 whenever m is an odd positive integer.

37. Basis step: 111+1 + 122⋅1−1 = 121 + 12 = 133 Inductive
step: Assume the inductive hypothesis, that 11n+1 + 122n−1 is

divisible by 133. Then 11(n+1)+1 + 122(n+1)−1 = 11 ⋅ 11n+1 +
144 ⋅ 122n−1 = 11 ⋅ 11n+1 + (11 + 133) ⋅ 122n−1 =
11(11n+1 + 122n−1) + 133 ⋅ 122n−1. The expression in paren-

theses is divisible by 133 by the inductive hypothesis, and

obviously the second term is divisible by 133, so the en-

tire quantity is divisible by 133, as desired. 39. Basis step:
A1 ⊆ B1 tautologically implies that

⋂1

j=1
Aj ⊆

⋂1

j=1
Bj. Induc-

tive step: Assume the inductive hypothesis that if Aj ⊆ Bj for

j = 1, 2,… , k, then
⋂k

j=1
Aj ⊆

⋂k
j=1

Bj. We want to show that

if Aj ⊆ Bj for j = 1, 2, … , k + 1, then
⋂k+1

j=1
Aj ⊆

⋂k+1

j=1
Bj.

Let x be an arbitrary element of
⋂k+1

j=1
Aj = (

⋂k
j=1

Aj) ∩ Ak+1.

Because x ∈
⋂k

j=1
Aj, we know by the inductive hypothe-

sis that x ∈
⋂k

j=1
Bj; because x ∈ Ak+1, we know from

the given fact that Ak+1 ⊆ Bk+1 that x ∈ Bk+1. There-

fore, x ∈
(⋂k

j=1
Bj

)
∩ Bk+1 =

⋂k+1

j=1
Bj. 41. Let P(n) be

“(A1 ∪ A2 ∪⋯ ∪ An) ∩ B = (A1 ∩ B) ∪ (A2 ∩ B) ∪⋯ ∪ (An ∩
B).” Basis step: P(1) is trivially true. Inductive step: Assume

that P(k) is true. Then (A1 ∪ A2 ∪ ⋯ ∪ Ak ∪ Ak+1) ∩ B =
[(A1 ∪A2 ∪⋯∪Ak)∪Ak+1]∩B = [(A1 ∪A2 ∪⋯∪Ak)∩B] ∪
(Ak+1∩B) = [(A1∩B)∪(A2∩B) ∪⋯∪(Ak ∩B)] ∪ (Ak+1 ∩ B) =
(A1 ∩ B) ∪ (A2 ∩ B) ∪ ⋯ ∪ (Ak ∩ B) ∪ (Ak+1 ∩ B).

43. Let P(n) be “
⋃n

k=1
Ak =

⋂n
k=1

Ak.” Basis step: P(1) is

trivially true. Inductive step: Assume that P(k) is true. Then⋃k+1

j=1
Aj =

(⋃k
j=1

Aj

)
∪ Ak+1 =

(⋃k
j=1

Aj

)
∩ Ak+1 =(⋂k

j=1
Aj

)
∩ Ak+1 =

⋂k+1

j=1
Aj. 45. Let P(n) be the state-

ment that a set with n elements has n(n − 1)∕2 two-element

subsets. P(2), the basis case, is true, because a set with two

elements has one subset with two elements—namely, itself—

and 2(2 − 1)∕2 = 1. Now assume that P(k) is true. Let

S be a set with k + 1 elements. Choose an element a in S
and let T = S − {a}. A two-element subset of S either

contains a or does not. Those subsets not containing a are

the subsets of T with two elements; by the inductive hypoth-

esis there are k(k − 1)∕2 of these. There are k subsets of

S with two elements that contain a, because such a subset

contains a and one of the k elements in T . Hence, there are

k(k − 1)∕2 + k = (k + 1)k∕2 two-element subsets of S. This

completes the inductive proof. 47. Reorder the locations if

necessary so that x1 ≤ x2 ≤ x3 ≤ ⋯ ≤ xd. Place the first

tower at position t1 = x1 +1. Assume tower k has been placed

at position tk. Then place tower k + 1 at position tk+1 = x + 1,

where x is the smallest xi greater than tk + 1. 49. The two

sets do not overlap if n + 1 = 2. In fact, the conditional state-

ment P(1) → P(2) is false. 51. The mistake is in applying

the inductive hypothesis to look at max(x− 1, y− 1), because

even though x and y are positive integers, x − 1 and y − 1

need not be (one or both could be 0). 53. For the basis step

(n = 2) the first person cuts the cake into two portions that

she thinks are each 1∕2 of the cake, and the second person

chooses the portion he thinks is at least 1∕2 of the cake (at

least one of the pieces must satisfy that condition). For the

inductive step, suppose there are k + 1 people. By the induc-

tive hypothesis, we can suppose that the first k people have

divided the cake among themselves so that each person is sat-

isfied that he got at least a fraction 1∕k of the cake. Each of

them now cuts his or her piece into k + 1 pieces of equal size.

The last person gets to choose one piece from each of the first

k people’s portions. After this is done, each of the first k peo-

ple is satisfied that she still has (1∕k)(k∕(k+1)) = 1∕(k+1) of

the cake. To see that the last person is satisfied, suppose that

he thought that the ith person (1 ≤ i ≤ k) had a portion pi of

the cake, where
∑k

i=1
pi = 1. By choosing what he thinks is

the largest piece from each person, he is satisfied that he has

at least
∑k

i=1
pi∕(k + 1) = (1∕(k + 1))

∑k
i=1

pi = 1∕(k + 1) of

the cake. 55. We use the notation (i, j) to mean the square in
row i and column j and use induction on i+ j to show that ev-

ery square can be reached by the knight. Basis step: There

are six base cases, for the cases when i + j ≤ 2. The

knight is already at (0, 0) to start, so the empty sequence of

moves reaches that square. To reach (1, 0), the knight moves

(0, 0) → (2, 1) → (0, 2) → (1, 0). Similarly, to reach (0, 1),

the knight moves (0, 0) → (1, 2) → (2, 0) → (0, 1). Note that

the knight has reached (2, 0) and (0, 2) in the process. For the

last basis step there is (0, 0) → (1, 2) → (2, 0) → (0, 1) →
(2, 2) → (0, 3) → (1, 1). Inductive step: Assume the inductive

hypothesis, that the knight can reach any square (i, j) for which

i + j = k, where k is an integer greater than 1. We must show

how the knight can reach each square (i, j) when i+ j = k+ 1.

Because k + 1 ≥ 3, at least one of i and j is at least 2. If i ≥ 2,

then by the inductive hypothesis, there is a sequence of moves

ending at (i−2, j+1), because i−2+ j+1 = i+ j−1 = k; from

there it is just one step to (i, j); similarly, if j ≥ 2. 57. Basis
step: The base cases n = 0 and n = 1 are true because

the derivative of x0 is 0 and the derivative of x1 = x is 1.

Inductive step: Using the product rule, the inductive hypoth-

esis, and the basis step shows that
d
dx

xk+1 = d
dx

(x ⋅ xk) =
x ⋅ d

dx
xk + xk d

dx
x = x ⋅ kxk−1 + xk ⋅ 1 = kxk + xk = (k + 1)xk.

59. Basis step: For k = 0, 1 ≡ 1 (mod m). Inductive step:
Suppose that a ≡ b (mod m) and ak ≡ bk (mod m); we must

show that ak+1 ≡ bk+1 (mod m). By Theorem 5 from Sec-

tion 4.1, a ⋅ak ≡ b ⋅bk (mod m), which by definition says that

ak+1 ≡ bk+1 (mod m). 61. Let P(n) be “[(p1 → p2)∧ (p2 →
p3) ∧ ⋯ ∧ (pn−1 → pn)] → [(p1 ∧ ⋯ ∧ pn−1) → pn].”

Basis step: P(2) is true because (p1 → p2) → (p1 → p2)

is a tautology. Inductive step: Assume P(k) is true. To show

[(p1 → p2) ∧ ⋯ ∧ (pk−1 → pk) ∧ (pk → pk+1)] →
[(p1∧⋯∧pk−1∧pk) → pk+1] is a tautology, assume that the hy-

pothesis of this conditional statement is true. Because both the

hypothesis and P(k) are true, it follows that (p1 ∧⋯∧pk−1) →
pk is true. Because this is true, and because pk → pk+1 is true

(it is part of the assumption) it follows by hypothetical syllo-

gism that (p1∧⋯∧pk−1) → pk+1 is true. The weaker statement

(p1 ∧⋯∧ pk−1 ∧ pk) → pk+1 follows from this. 63. We will

first prove the result when n is a power of 2, that is, if n = 2k,

k = 1, 2,… . Let P(k) be the statement A ≥ G, where A and G
are the arithmetic and geometric means, respectively, of a set
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of n = 2k positive real numbers. Basis step: k = 1 and n =
21 = 2. Note that (

√
a1 −

√
a2)2 ≥ 0. Expanding this shows

that a1 − 2
√

a1a2 + a2 ≥ 0, that is, (a1 + a2)∕2 ≥ (a1a2)1∕2.

Inductive step: Assume that P(k) is true, with n = 2k. We

will show that P(k + 1) is true. We have 2k+1 = 2n. Now

(a1 + a2 +⋯+ a2n)∕(2n) = [(a1 + a2 +⋯+ an)∕n + (an+1 +
an+2 + ⋯ + a2n)∕n]∕2 and similarly (a1a2 ⋯ a2n)1∕(2n) =
[(a1 ⋯ an)1∕n(an+1 ⋯ a2n)1∕n]1∕2. To simplify the notation, let

A(x, y, … ) and G(x, y, … ) denote the arithmetic mean and

geometric mean of x, y, … , respectively. Also, if x ≤ x′,
y ≤ y′, and so on, then A(x, y, … ) ≤ A(x′, y′, … ) and

G(x, y, … ) ≤ G(x′, y′, … ). Hence, A(a1, … , a2n) =
A(A(a1, … , an), A(an+1, … , a2n)) ≥ A(G(a1, … , an),

G(an+1, … , a2n)) ≥ G(G(a1, … , an), G(an+1, … , a2n)) =
G(a1, … , a2n). This finishes the proof for powers of 2. Now

if n is not a power of 2, let m be the next higher power of

2, and let an+1, … , am all equal A(a1, … , an) = a. Then

we have [(a1a2 ⋯ an)am−n
]1∕m ≤ A(a1,… , am), because m is

a power of 2. Because A(a1, … , am) = a, it follows that

(a1 ⋯ an)1∕ma1−n∕m ≤ an∕m
. Raising both sides to the (m∕n)th

power gives G(a1,… , an) ≤ A(a1,… , an). 65. Basis step:
For n = 1, the left-hand side is just

1

1
, which is 1. For n = 2,

there are three nonempty subsets {1}, {2}, and {1, 2}, so the

left-hand side is
1

1
+ 1

2
+ 1

1⋅2
= 2. Inductive step: Assume that

the statement is true for k. The set of the first k + 1 positive

integers has many nonempty subsets, but they fall into three

categories: a nonempty subset of the first k positive integers

together with k + 1, a nonempty subset of the first k positive

integers, or just {k+1}. By the inductive hypothesis, the sum

of the first category is k. For the second category, we can fac-

tor out 1∕(k+1) from each term of the sum and what remains

is just k by the inductive hypothesis, so this part of the sum is

k∕(k + 1). Finally, the third category simply yields 1∕(k + 1).

Hence, the entire summation is k+k∕(k+1)+1∕(k+1) = k+1.

67. Basis step: If A1 ⊆ A2, then A1 satisfies the condition of

being a subset of each set in the collection; otherwise A2 ⊆ A1,

so A2 satisfies the condition. Inductive step: Assume the in-

ductive hypothesis, that the conditional statement is true for

k sets, and suppose we are given k + 1 sets that satisfy the

given conditions. By the inductive hypothesis, there must be

a set Ai for some i ≤ k such that Ai ⊆ Aj for 1 ≤ j ≤ k.

If Ai ⊆ Ak+1, then we are done. Otherwise, we know that

Ak+1 ⊆ Ai, and this tells us that Ak+1 satisfies the condition

of being a subset of Aj for 1 ≤ j ≤ k + 1. 69. G(1) = 0,

G(2) = 1, G(3) = 3, G(4) = 4 71. To show that 2n − 4

calls are sufficient to exchange all the gossip, select persons 1,

2, 3, and 4 to be the central committee. Every person outside

the central committee calls one person on the central commit-

tee. At this point the central committee members as a group
know all the scandals. They then exchange information among

themselves by making the calls 1-2, 3-4, 1-3, and 2-4 in that

order. At this point, every central committee member knows

all the scandals. Finally, again every person outside the cen-

tral committee calls one person on the central committee, at

which point everyone knows all the scandals. [The total num-

ber of calls is (n−4)+4+(n−4) = 2n−4.] That this cannot be

done with fewer than 2n−4 calls is much harder to prove; see

Sandra M. Hedetniemi, Stephen T. Hedetniemi, and Arthur L.

Liestman, “A survey of gossiping and broadcasting in com-

munication networks,” Networks 18 (1988), no. 4, 319–349,

for details. 73. We prove this by mathematical induction.

The basis step (n = 2) is true tautologically. For n = 3,

suppose that the intervals are (a, b), (c, d), and (e, f ), where

without loss of generality we can assume that a ≤ c ≤ e.

Because (a, b) ∩ (e, f ) ≠ ∅, we must have e < b; for a

similar reason, e < d. It follows that the number halfway

between e and the smaller of b and d is common to all three

intervals. Now for the inductive step, assume that whenever

we have k intervals that have pairwise nonempty intersections

then there is a point common to all the intervals, and suppose

that we are given intervals I1, I2, … , Ik+1 that have pairwise

nonempty intersections. For each i from 1 to k, let Ji = Ii∩Ik+1.

We claim that the collection J1, J2,… , Jk satisfies the induc-

tive hypothesis, that is, that Ji1 ∩ Ji2 ≠ ∅ for each choice of

subscripts i1 and i2. This follows from the n = 3 case proved

above, using the sets Ii1 , Ii2 , and Ik+1. We can now invoke the

inductive hypothesis to conclude that there is a number com-

mon to all of the sets Ji for i = 1, 2, … , k, which perforce

is in the intersection of all the sets Ii for i = 1, 2, … , k + 1.

75. a) The basis step is
∑1

j=1
j∕(j + 1)! < 1, which is true

because the left-hand side equals 1∕2. It does not follow from∑k
j=1

j∕(j + 1)! < 1 that
∑k+1

j=1
j∕(j + 1)! < 1 because the

amount by which
∑k

j=1
j∕(j + 1)! is less than 1 could be less

than (k + 1)∕(k + 2)!, the new term being added in. b) Basis

step is the true statement that 1∕2! ≤ 1 − 1∕2!. Assuming in-

ductive hypothesis P(k) that
∑k

j=1
j∕(j+1)! ≤ 1−1∕(k+1)!, it

follows that
∑k+1

j=1
j∕(j+1)! =

∑k
j=1

j∕(j+1)!+(k+1)∕(k+2)! ≤
1− 1∕(k + 1)! + (k + 1)∕(k + 2)! = 1− (k + 2)∕(k + 2)! + (k +
1)∕(k + 2)! = 1− 1∕(k + 2)!, which is P(k + 1). 77. Pair up

the people. Have the people stand at mutually distinct small

distances from their partners but far away from everyone else.

Then each person throws a pie at his or her partner, so every-

one gets hit.

79.

81. Let P(n) be the statement that every 2n × 2n × 2n checker-

board with a 1 × 1 × 1 cube removed can be covered by tiles

that are 2 × 2 × 2 cubes each with a 1 × 1 × 1 cube removed.

The basis step, P(1), holds because one tile coincides with the

solid to be tiled. Now assume that P(k) holds. Now consider

a 2k+1 × 2k+1 × 2k+1 cube with a 1× 1× 1 cube removed. Split

this object into eight pieces using planes parallel to its faces

and running through its center. The missing 1 × 1 × 1 piece

occurs in one of these eight pieces. Now position one tile with
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its center at the center of the large object so that the missing

1 × 1 × 1 cube lies in the octant in which the large object is

missing a 1×1×1 cube. This creates eight 2k ×2k ×2k cubes,

each missing a 1 × 1 × 1 cube. By the inductive hypothesis

we can fill each of these eight objects with tiles. Putting these

tilings together produces the desired tiling.

83.

85. Let Q(n) be P(n + b − 1). The statement that P(n) is true

for n = b, b + 1, b + 2, … is the same as the statement that

Q(m) is true for all positive integers m. We are given that P(b)

is true [i.e., that Q(1) is true], and that P(k) → P(k+ 1) for all

k ≥ b [i.e., that Q(m) → Q(m+ 1) for all positive integers m].

Therefore, by the principle of mathematical induction, Q(m)

is true for all positive integers m.

Section 5.2

1. Basis step: We are told we can run one mile, so P(1) is

true. Inductive step: Assume the inductive hypothesis, that we

can run any number of miles from 1 to k. We must show that

we can run k + 1 miles. If k = 1, then we are already told

that we can run two miles. If k > 1, then the inductive hy-

pothesis tells us that we can run k − 1 miles, so we can run

(k− 1)+ 2 = k+ 1 miles. 3. a) P(8) is true, because we can

form 8 cents of postage with one 3-cent stamp and one 5-cent

stamp. P(9) is true, because we can form 9 cents of postage

with three 3-cent stamps. P(10) is true, because we can form

10 cents of postage with two 5-cent stamps. b) The state-

ment that using just 3-cent and 5-cent stamps we can form j
cents postage for all j with 8 ≤ j ≤ k, where we assume

that k ≥ 10 c) Assuming the inductive hypothesis, we can

form k + 1 cents postage using just 3-cent and 5-cent stamps

d) Because k ≥ 10, we know that P(k − 2) is true, that is, that

we can form k−2 cents of postage. Put one more 3-cent stamp

on the envelope, and we have formed k + 1 cents of postage.

e) We have completed both the basis step and the inductive

step, so by the principle of strong induction, the statement is

true for every integer n greater than or equal to 8. 5. a) 4,

8, 11, 12, 15, 16, 19, 20, 22, 23, 24, 26, 27, 28, and all values

greater than or equal to 30 b) Let P(n) be the statement that

we can form n cents of postage using just 4-cent and 11-cent

stamps. We want to prove that P(n) is true for all n ≥ 30. For

the basis step, 30 = 11+11+4+4. Assume that we can form

k cents of postage (the inductive hypothesis); we will show

how to form k + 1 cents of postage. If the k cents included

an 11-cent stamp, then replace it by three 4-cent stamps. Oth-

erwise, k cents was formed from just 4-cent stamps. Because

k ≥ 30, there must be at least eight 4-cent stamps involved.

Replace eight 4-cent stamps by three 11-cent stamps, and we

have formed k + 1 cents in postage. c) P(n) is the same as in

part (b). To prove that P(n) is true for all n ≥ 30, we check for

the basis step that 30 = 11+11+4+4, 31 = 11+4+4+4+4+4,

32 = 4+4+4+4+4+4+4+4, and 33 = 11+11+11. For the in-

ductive step, assume the inductive hypothesis, that P(j) is true

for all j with 30 ≤ j ≤ k, where k is an arbitrary integer greater

than or equal to 33. We want to show that P(k+1) is true. Be-

cause k−3 ≥ 30, we know that P(k−3) is true, that is, that we
can form k−3 cents of postage. Put one more 4-cent stamp on

the envelope, and we have formed k + 1 cents of postage. In

this proof, our inductive hypothesis was that P(j) was true for
all values of j between 30 and k inclusive, rather than just that

P(30) was true. 7. We can form all amounts except $1 and

$3. Let P(n) be the statement that we can form n dollars using

just 2-dollar and 5-dollar bills. We want to prove that P(n) is

true for all n ≥ 5. (It is clear that $1 and $3 cannot be formed

and that $2 and $4 can be formed.) For the basis step, note that

5 = 5 and 6 = 2+2+2. Assume the inductive hypothesis, that

P(j) is true for all j with 5 ≤ j ≤ k, where k is an arbitrary in-

teger greater than or equal to 6. We want to show that P(k+1)
is true. Because k − 1 ≥ 5, we know that P(k − 1) is true, that

is, that we can form k − 1 dollars. Add another 2-dollar bill,

and we have formed k + 1 dollars. 9. Let P(n) be the state-

ment that there is no positive integer b such that
√

2 = n∕b.

Basis step: P(1) is true because
√

2 > 1 ≥ 1∕b for all posi-

tive integers b. Inductive step: Assume that P(j) is true for all

j ≤ k, where k is an arbitrary positive integer; we prove that

P(k+1) is true by contradiction. Assume that
√

2 = (k+1)∕b
for some positive integer b. Then 2b2 = (k + 1)2, so (k + 1)2

is even, and hence, k + 1 is even. So write k + 1 = 2t for

some positive integer t, whence 2b2 = 4t2 and b2 = 2t2. By

the same reasoning as before, b is even, so b = 2s for some

positive integer s. Then
√

2 = (k + 1)∕b = (2t)∕(2s) = t∕s.

But t ≤ k, so this contradicts the inductive hypothesis, and

our proof of the inductive step is complete. 11. Basis step:
There are four base cases. If n = 1 = 4 ⋅ 0 + 1, then clearly

the second player wins. If there are two, three, or four matches

(n = 4 ⋅0+2, n = 4 ⋅0+3, or n = 4 ⋅1), then the first player can

win by removing all but one match. Inductive step: Assume

the strong inductive hypothesis, that in games with k or fewer

matches, the first player can win if k ≡ 0, 2, or 3 (mod 4) and

the second player can win if k ≡ 1 (mod 4). Suppose we have

a game with k + 1 matches, with k ≥ 4. If k + 1 ≡ 0 (mod 4),

then the first player can remove three matches, leaving k − 2

matches for the other player. Because k − 2 ≡ 1 (mod 4), by

the inductive hypothesis, this is a game that the second player

at that point (who is the first player in our game) can win. Sim-

ilarly, if k + 1 ≡ 2 (mod 4), then the first player can remove

one match; and if k + 1 ≡ 3 (mod 4), then the first player

can remove two matches. Finally, if k + 1 ≡ 1 (mod 4), then

the first player must leave k, k − 1, or k − 2 matches for the

other player. Because k ≡ 0 (mod 4), k−1 ≡ 3 (mod 4), and

k−2 ≡ 2 (mod 4), by the inductive hypothesis, this is a game

that the first player at that point (who is the second player

in our game) can win. 13. Let P(n) be the statement that
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exactly n − 1 moves are required to assemble a puzzle with n
pieces. Now P(1) is trivially true. Assume that P(j) is true for

all j ≤ k, and consider a puzzle with k + 1 pieces. The final

move must be the joining of two blocks, of size j and k+ 1− j
for some integer j with 1 ≤ j ≤ k. By the inductive hypoth-

esis, it required j − 1 moves to construct the one block, and

k + 1 − j − 1 = k − j moves to construct the other. Therefore,

1+ (j−1)+ (k− j) = k moves are required in all, so P(k+1) is

true. 15. Let the Chomp board have n rows and n columns.

We claim that the first player can win the game by making the

first move to leave just the top row and leftmost column. Let

P(n) be the statement that if a player has presented his oppo-

nent with a Chomp configuration consisting of just n cookies

in the top row and n cookies in the leftmost column, then he

can win the game. We will prove ∀nP(n) by strong induction.

We know that P(1) is true, because the opponent is forced to

take the poisoned cookie at his first turn. Fix k ≥ 1 and assume

that P( j) is true for all j ≤ k. We claim that P(k+1) is true. It is

the opponent’s turn to move. If she picks the poisoned cookie,

then the game is over and she loses. Otherwise, assume she

picks the cookie in the top row in column j, or the cookie in

the left column in row j, for some j with 2 ≤ j ≤ k + 1. The

first player now picks the cookie in the left column in row j,
or the cookie in the top row in column j, respectively. This

leaves the position covered by P(j − 1) for his opponent, so

by the inductive hypothesis, he can win. 17. Let P(n) be the

statement that if a simple polygon with n sides is triangulated,

then at least two of the triangles in the triangulation have two

sides that border the exterior of the polygon. We will prove

∀n ≥ 4 P(n). The statement is true for n = 4, because there

is only one diagonal, leaving two triangles with the desired

property. Fix k ≥ 4 and assume that P(j) is true for all j with

4 ≤ j ≤ k. Consider a polygon with k+1 sides, and some trian-

gulation of it. Pick one of the diagonals in this triangulation.

First suppose that this diagonal divides the polygon into one

triangle and one polygon with k sides. Then the triangle has

two sides that border the exterior. Furthermore, the k-gon has,

by the inductive hypothesis, two triangles that have two sides

that border the exterior of that k-gon, and only one of these

triangles can fail to be a triangle that has two sides that bor-

der the exterior of the original polygon. The only other case is

that this diagonal divides the polygon into two polygons with

j sides and k + 3 − j sides for some j with 4 ≤ j ≤ k − 1.

By the inductive hypothesis, each of these two polygons has

two triangles that have two sides that border their exterior,

and in each case only one of these triangles can fail to be a

triangle that has two sides that border the exterior of the orig-

inal polygon. 19. Let P(n) be the statement that the area of

a simple polygon with n sides and vertices all at lattice points

is given by I(P) + B(P)∕2 − 1. We will prove P(n) for all

n ≥ 3. We begin with an additivity lemma: If P is a simple

polygon with all vertices at lattice points, divided into poly-

gons P1 and P2 by a diagonal, then I(P) + B(P)∕2 − 1 =
[I(P1) + B(P1)∕2 − 1] + [I(P2) + B(P2)∕2 − 1]. To prove

this, suppose there are k lattice points on the diagonal, not

counting its endpoints. Then I(P) = I(P1) + I(P2) + k and

B(P) = B(P1) + B(P2) − 2k − 2; and the result follows by

simple algebra. What this says in particular is that if Pick’s

formula gives the correct area for P1 and P2, then it must give

the correct formula for P, whose area is the sum of the areas

for P1 and P2; and similarly if Pick’s formula gives the cor-

rect area for P and one of the Pi’s, then it must give the correct

formula for the other Pi. Next we prove the theorem for rect-

angles whose sides are parallel to the coordinate axes. Such

a rectangle necessarily has vertices at (a, b), (a, c), (d, b), and

(d, c), where a, b, c, and d are integers with b < c and a < d.

Its area is (c − b)(d − a). Also, B = 2(c − b + d − a) and

I = (c−b−1)(d−a−1) = (c−b)(d−a)− (c−b)− (d−a)+1.

Therefore, I+B∕2−1 = (c−b)(d−a)−(c−b)−(d−a)+1+(c−
b+d−a)−1 = (c−b)(d−a), which is the desired area. Next

consider a right triangle whose legs are parallel to the coordi-

nate axes. This triangle is half a rectangle of the type just con-

sidered, for which Pick’s formula holds, so by the additivity

lemma, it holds for the triangle as well. (The values of B and I
are the same for each of the two triangles, so if Picks’s formula

gave an answer that was either too small or too large, then it

would give a correspondingly wrong answer for the rectan-

gle.) For the next step, consider an arbitrary triangle with ver-

tices at lattice points that is not of the type already considered.

Embed it in as small a rectangle as possible. There are several

possible ways this can happen, but in any case (and adding

one more edge in one case), the rectangle will have been par-

titioned into the given triangle and two or three right triangles

with sides parallel to the coordinate axes. Again by the addi-

tivity lemma, we are guaranteed that Pick’s formula gives the

correct area for the given triangle. This completes the proof of

P(3), the basis step in our strong induction proof. For the in-

ductive step, given an arbitrary polygon, use Lemma 1 in the

text to split it into two polygons. Then by the additivity lemma

above and the inductive hypothesis, we know that Pick’s for-

mula gives the correct area for this polygon. 21. a) In the

left figure ∠abp is smallest, but bp is not an interior diago-

nal. b) In the right figure bd is not an interior diagonal. c) In

the right figure bd is not an interior diagonal. 23. a) When

we try to prove the inductive step and find a triangle in each

subpolygon with at least two sides bordering the exterior, it

may happen in each case that the triangle we are guaranteed

in fact borders the diagonal (which is part of the boundary of

that polygon). This leaves us with no triangles guaranteed to

touch the boundary of the original polygon. b) We proved the

stronger statement ∀n ≥ 4 T(n) in Exercise 17. 25. a) The

inductive step here allows us to conclude that P(3), P(5), …
are all true, but we can conclude nothing about P(2), P(4), … .

b) P(n) is true for all positive integers n, using strong induc-

tion. c) The inductive step here enables us to conclude that

P(2), P(4), P(8), P(16), . . . are all true, but we can conclude

nothing about P(n) when n is not a power of 2. d) This is

mathematical induction; we can conclude that P(n) is true for

all positive integers n. 27. Suppose, for a proof by contra-

diction, that there is some positive integer n such that P(n) is

not true. Let m be the smallest positive integer greater than

n for which P(m) is true; we know that such an m exists



P1: 1

ANS Rosen-2311T MH03280-Rosen-v1.cls May 8, 2018 17:25

Answers to Odd-Numbered Exercises S-35

because P(m) is true for infinitely many values of m. But we

know that P(m) → P(m − 1), so P(m − 1) is also true. Thus,

m − 1 cannot be greater than n, so m − 1 = n and P(n) is in

fact true. This contradiction shows that P(n) is true for all n.

29. The error is in going from the base case n = 0 to the next

case, n = 1; we cannot write 1 as the sum of two smaller

natural numbers. 31. Assume that the well-ordering prop-

erty holds. Suppose that P(1) is true and that the conditional

statement [P(1) ∧ P(2) ∧ ⋯ ∧ P(n)] → P(n + 1) is true for

every positive integer n. Let S be the set of positive integers

n for which P(n) is false. We will show S = ∅. Assume that

S ≠ ∅. Then by the well-ordering property there is a least

integer m in S. We know that m cannot be 1 because P(1) is

true. Because n = m is the least integer such that P(n) is false,

P(1), P(2), … , P(m − 1) are true, and m − 1 ≥ 1. Because

[P(1) ∧ P(2) ∧ ⋯ ∧ P(m − 1)] → P(m) is true, it follows

that P(m) must also be true, which is a contradiction. Hence,

S = ∅. 33. In each case, give a proof by contradiction based

on a “smallest counterexample,” that is, values of n and k such

that P(n, k) is not true and n and k are smallest in some sense.

a) Choose a counterexample with n + k as small as possible.

We cannot have n = 1 and k = 1, because we are given

that P(1, 1) is true. Therefore, either n > 1 or k > 1. In the

former case, by our choice of counterexample, we know that

P(n−1, k) is true. But the inductive step then forces P(n, k) to

be true, a contradiction. The latter case is similar. So our sup-

position that there is a counterexample must be wrong, and

P(n, k) is true in all cases. b) Choose a counterexample with

n as small as possible. We cannot have n = 1, because we

are given that P(1, k) is true for all k. Therefore, n > 1. By

our choice of counterexample, we know that P(n − 1, k) is

true. But the inductive step then forces P(n, k) to be true, a

contradiction. c) Choose a counterexample with k as small

as possible. We cannot have k = 1, because we are given

that P(n, 1) is true for all n. Therefore, k > 1. By our choice

of counterexample, we know that P(n, k − 1) is true. But the

inductive step then forces P(n, k) to be true, a contradiction.

35. Let P(n) be the statement that if x1, x2, … , xn are n dis-

tinct real numbers, then n − 1 multiplications are used to find

the product of these numbers no matter how parentheses are

inserted in the product. We will prove that P(n) is true using

strong induction. The basis case P(1) is true because 1−1 = 0

multiplications are required to find the product of x1, a product

with only one factor. Suppose that P(k) is true for 1 ≤ k ≤ n.

The last multiplication used to find the product of the n + 1

distinct real numbers x1, x2,… , xn, xn+1 is a multiplication of

the product of the first k of these numbers for some k and the

product of the last n + 1 − k of them. By the inductive hy-

pothesis, k − 1 multiplications are used to find the product of

k of the numbers, no matter how parentheses were inserted in

the product of these numbers, and n − k multiplications are

used to find the product of the other n + 1 − k of them, no

matter how parentheses were inserted in the product of these

numbers. Because one more multiplication is required to find

the product of all n + 1 numbers, the total number of multi-

plications used equals (k − 1) + (n − k) + 1 = n. Hence,

P(n + 1) is true. 37. Assume that a = dq + r = dq′ + r′
with 0 ≤ r < d and 0 ≤ r′ < d. Then d(q − q′) = r′ − r.

It follows that d divides r′ − r. Because −d < r′ − r < d,

we have r′ − r = 0. Hence, r′ = r. It follows that q = q′.

39. This is a paradox caused by self-reference. The answer

is “no.” There are a finite number of English words, so only

a finite number of strings of 15 words or fewer; therefore,

only a finite number of positive integers can be so described,

not all of them. 41. Suppose that the well-ordering prop-

erty were false. Let S be a nonempty set of nonnegative in-

tegers that has no least element. Let P(n) be the statement

“i ∉ S for i = 0, 1,… , n.” P(0) is true because if 0 ∈ S then

S has a least element, namely, 0. Now suppose that P(n) is

true. Thus, 0 ∉ S, 1 ∉ S,… , n ∉ S. Now, n + 1 cannot be in

S, for if it were, it would be its least element. Thus, P(n + 1)

is true. So by the principle of mathematical induction, n ∉ S
for all nonnegative integers n. Thus, S = ∅, a contradiction.

43. Strong induction implies the principle of mathematical in-

duction, for if one has shown that P(k) → P(k + 1) is true,

then one has also shown that [P(1)∧⋯∧P(k)] → P(k + 1) is

true. By Exercise 41, the principle of mathematical induction

implies the well-ordering property. Therefore, by assuming

strong induction as an axiom, we can prove the well-ordering

property.

Section 5.3

1. a) f (1) = 3, f (2) = 5, f (3) = 7, f (4) = 9 b) f (1) = 3,

f (2) = 9, f (3) = 27, f (4) = 81 c) f (1) = 2, f (2) = 4,

f (3) = 16, f (4) = 65,536 d) f (1) = 3, f (2) = 13, f (3) = 183,

f (4) = 33,673 3. a) f (2) = −1, f (3) = 5, f (4) = 2, f (5) = 17

b) f (2) = −4, f (3) = 32, f (4) = −4096, f (5) = 536,870,912

c) f (2) = 8, f (3) = 176, f (4) = 92,672, f (5) = 25,764,174,848

d) f (2) = − 1

2
, f (3) = −4, f (4) = 1

8
, f (5) = −32 5. a) Not

valid b) f (n) = 1− n. Basis step: f (0) = 1 = 1− 0. Inductive
step: if f (k) = 1−k, then f (k+1) = f (k)−1 = 1−k−1 = 1−
(k + 1). c) f (n) = 4 − n if n > 0, and f (0) = 2. Basis step:
f (0) = 2 and f (1) = 3 = 4 − 1. Inductive step (with k ≥ 1):

f (k + 1) = f (k) − 1 = (4 − k) − 1 = 4 − (k + 1).

d) f (n) = 2⌊(n+1)∕2⌋. Basis step: f (0) = 1 = 2⌊(0+1)∕2⌋
and f (1) = 2 = 2⌊(1+1)∕2⌋. Inductive step (with k ≥ 1):

f (k + 1) = 2f (k − 1) = 2 ⋅ 2⌊k∕2⌋ = 2⌊k∕2⌋+1 = 2⌊((k+1)+1)∕2⌋.
e) f (n) = 3n. Basis step: Trivial. Inductive step: For odd n,

f (n) = 3f (n − 1) = 3 ⋅ 3n−1 = 3n; and for even n > 1,

f (n) = 9f (n − 2) = 9 ⋅ 3n−2 = 3n. 7. There are many pos-

sible correct answers. We will supply relatively simple ones.

a) an+1 = an+6 for n ≥ 1 and a1 = 6 b) an+1 = an+2 for n ≥ 1

and a1 = 3 c) an+1 = 10an for n ≥ 1 and a1 = 10 d) an+1 = an
for n ≥ 1 and a1 = 5 9. F(0) = 0, F(n) = F(n − 1) + n for

n ≥ 1 11. Pm(0) = 0, Pm(n + 1) = Pm(n) + m 13. Let

P(n) be “f1 + f3 + ⋯+ f2n−1 = f2n.” Basis step: P(1) is true

because f1 = 1 = f2. Inductive step: Assume that P(k) is true.

Then f1 + f3 + ⋯ + f2k−1 + f2k+1 = f2k + f2k+1 = f2k+2 + f2(k+1).

15. Basis step: f0f1 + f1f2 = 0 ⋅ 1 + 1 ⋅ 1 = 12 = f 2
2

. In-
ductive step: Assume that f0f1 + f1f2 + ⋯ + f2k−1f2k = f 2

2k.

Then f0f1 + f1f2 + ⋯ + f2k−1f2k + f2kf2k+1 + f2k+1f2k+2 =
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f 2
2k + f2kf2k+1 + f2k+1f2k+2 = f2k(f2k + f2k+1) + f2k+1f2k+2 =

f2kf2k+2 + f2k+1f2k+2 = (f2k + f2k+1)f2k+2 = f 2
2k+2

. 17. The

number of divisions used by the Euclidean algorithm to find

gcd(fn+1, fn) is 0 for n = 0, 1 for n = 1, and n − 1

for n ≥ 2. To prove this result for n ≥ 2 we use math-

ematical induction. For n = 2, one division shows that

gcd(f3, f2) = gcd(2, 1) = gcd(1, 0) = 1. Now assume that k−1

divisions are used to find gcd(fk+1, fk). To find gcd(fk+2, fk+1),

first divide fk+2 by fk+1 to obtain fk+2 = 1 ⋅ fk+1 + fk. After

one division we have gcd(fk+2, fk+1) = gcd(fk+1, fk). By the in-

ductive hypothesis it follows that exactly k−1 more divisions

are required. This shows that k divisions are required to find

gcd(fk+2, fk+1), finishing the inductive proof. 19. |A| = −1.

Hence, |An| = (−1)n. It follows that fn+1fn−1 − f 2
n = (−1)n.

21. a) Proof by induction. Basis step: For n = 1, max(−a1) =
−a1 = −min(a1). For n = 2, there are two cases. If a2 ≥ a1,

then −a1 ≥ −a2, so max(−a1,−a2) = −a1 = −min(a1, a2).

If a2 < a1, then −a1 < −a2, so max(−a1, −a2) =
−a2 = − min(a1, a2). Inductive step: Assume true for k
with k ≥ 2. Then max(−a1, −a2, … , −ak, −ak+1) =
max(max(−a1, … , −ak), −ak+1) = max(− min(a1, … , ak),

−ak+1) = − min(min(a1, … , ak), ak+1) = − min(a1, … ,
ak+1). b) Proof by mathematical induction. Basis step: For

n = 1, the result is the identity a1+b1 = a1+b1. For n = 2, first

consider the case in which a1 + b1 ≥ a2 + b2. Then max(a1 +
b1, a2+b2) = a1+b1. Also note that a1 ≤max(a1, a2) and b1 ≤
max(b1, b2), so a1+b1 ≤max(a1, a2)+max(b1, b2). Therefore,

max(a1 + b1, a2 + b2) = a1 + b1 ≤ max(a1, a2)+max(b1, b2).

The case with a1 + b1 < a2 + b2 is similar. In-
ductive step: Assume that the result is true for k. Then

max(a1 + b1, a2 + b2, … , ak + bk, ak+1 + bk+1) =
max(max(a1 + b1, a2 + b2, … , ak + bk), ak+1 +
bk+1) ≤ max(max(a1, a2, … , ak) + max(b1, b2, … , bk),

ak+1 + bk+1) ≤ max(max(a1, a2, … , ak), ak+1) +
max(max(b1, b2, … , bk), bk+1) = max(a1, a2, … , ak, ak+1) +
max(b1, b2, … , bk, bk+1). c) Same as part (b), but replace

every occurrence of “max” by “min” and invert each inequal-

ity. 23. 5 ∈ S, and x+ y ∈ S if x, y ∈ S. 25. a) 0 ∈ S, and

if x ∈ S, then x+ 2 ∈ S and x− 2 ∈ S. b) 2 ∈ S, and if x ∈ S,

then x+3 ∈ S. c) 1 ∈ S, 2 ∈ S, 3 ∈ S, 4 ∈ S, and if x ∈ S, then

x + 5 ∈ S. 27. a) Basis step: 5 ≡ 5 (mod 10). Inductive
step: If n ≡ 5 (mod 10), then 3n ≡ 3 ⋅ 5 = 15 ≡ 5 (mod 10)

and n2 ≡ 52 = 25 ≡ 5 (mod 10). b) 35 ∉ S because 35 is

not a multiple of 3 nor a perfect square. 29. a) (0, 1), (1, 1),

(2, 1); (0, 2), (1, 2), (2, 2), (3, 2), (4, 2); (0, 3), (1, 3), (2, 3),

(3, 3), (4, 3), (5, 3), (6, 3); (0, 4), (1, 4), (2, 4), (3, 4), (4, 4),

(5, 4), (6, 4), (7, 4), (8, 4) b) Let P(n) be the statement that

a ≤ 2b whenever (a, b) ∈ S is obtained by n applications of

the recursive step. Basis step: P(0) is true, because the only

element of S obtained with no applications of the recursive

step is (0, 0), and indeed 0 ≤ 2 ⋅ 0. Inductive step: Assume

that a ≤ 2b whenever (a, b) ∈ S is obtained by k or fewer

applications of the recursive step, and consider an element ob-

tained with k + 1 applications of the recursive step. Because

the final application of the recursive step to an element (a, b)

must be applied to an element obtained with fewer applica-

tions of the recursive step, we know that a ≤ 2b. Add 0 ≤ 2,

1 ≤ 2, and 2 ≤ 2, respectively, to obtain a ≤ 2(b + 1),

a + 1 ≤ 2(b + 1), and a + 2 ≤ 2(b + 1), as desired. c) This

holds for the basis step, because 0 ≤ 0. If this holds for (a, b),

then it also holds for the elements obtained from (a, b) in the

recursive step, because adding 0 ≤ 2, 1 ≤ 2, and 2 ≤ 2,

respectively, to a ≤ 2b yields a ≤ 2(b + 1), a + 1 ≤ 2(b + 1),

and a + 2 ≤ 2(b + 1). 31. a) Define S by (1, 1) ∈ S, and

if (a, b) ∈ S, then (a + 2, b) ∈ S, (a, b + 2) ∈ S, and

(a+ 1, b+ 1) ∈ S. All elements put in S satisfy the condition,

because (1, 1) has an even sum of coordinates, and if (a, b) has

an even sum of coordinates, then so do (a + 2, b), (a, b + 2),

and (a + 1, b + 1). Conversely, we show by induction on the

sum of the coordinates that if a + b is even, then (a, b) ∈ S.

If the sum is 2, then (a, b) = (1, 1), and the basis step put

(a, b) into S. Otherwise the sum is at least 4, and at least one

of (a−2, b), (a, b−2), and (a−1, b−1) must have positive in-

teger coordinates whose sum is an even number smaller than

a+ b, and therefore must be in S. Then one application of the

recursive step shows that (a, b) ∈ S. b) Define S by (1, 1),

(1, 2), and (2, 1) are in S, and if (a, b) ∈ S, then (a + 2, b) and

(a, b+ 2) are in S. To prove that our definition works, we note

first that (1, 1), (1, 2), and (2, 1) all have an odd coordinate,

and if (a, b) has an odd coordinate, then so do (a + 2, b) and

(a, b+2). Conversely, we show by induction on the sum of the

coordinates that if (a, b) has at least one odd coordinate, then

(a, b) ∈ S. If (a, b) = (1, 1) or (a, b) = (1, 2) or (a, b) = (2, 1),

then the basis step put (a, b) into S. Otherwise either a or b is

at least 3, so at least one of (a− 2, b) and (a, b− 2) must have

positive integer coordinates whose sum is smaller than a + b,

and therefore must be in S. Then one application of the recur-

sive step shows that (a, b) ∈ S. c) (1, 6) ∈ S and (2, 3) ∈ S,

and if (a, b) ∈ S, then (a + 2, b) ∈ S and (a, b + 6) ∈ S.

To prove that our definition works, we note first that (1, 6) and

(2, 3) satisfy the condition, and if (a, b) satisfies the condition,

then so do (a + 2, b) and (a, b + 6). Conversely we show by

induction on the sum of the coordinates that if (a, b) satisfies

the condition, then (a, b) ∈ S. For sums 5 and 7, the only

points are (1, 6), which the basis step put into S, (2, 3), which

the basis step put into S, and (4, 3) = (2 + 2, 3), which is

in S by one application of the recursive definition. For a sum

greater than 7, either a ≥ 3, or a ≤ 2 and b ≥ 9, in which

case either (a − 2, b) or (a, b − 6) must have positive integer

coordinates whose sum is smaller than a + b and satisfy the

condition for being in S. Then one application of the recursive

step shows that (a, b) ∈ S. 33. If x is a set or a variable rep-

resenting a set, then x is a well-formed formula. If x and y are

well-formed formulae, then so are x, (x∪y), (x∩y), and (x−y).

35. a) If x ∈ D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, then m(x) = x;

if s = tx, where t ∈ D∗ and x ∈ D, then m(s) = min(m(s), x).

b) Let t = wx, where w ∈ D∗ and x ∈ D. If w = 𝜆,

then m(st) = m(sx) = min(m(s), x) = min(m(s), m(x)) by

the recursive step and the basis step of the definition of m.

Otherwise, m(st) = m((sw)x) = min(m(sw), x) by the

definition of m. Now m(sw) = min(m(s), m(w)) by the in-

ductive hypothesis of the structural induction, so m(st) =
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min(min(m(s), m(w)), x) = min(m(s), min(m(w), x)) by

the meaning of min. But min(m(w), x) = m(wx) = m(t)
by the recursive step of the definition of m. Thus, m(st) =
min(m(s), m(t)). 37. 𝜆R = 𝜆 and (ux)R = xuR for x ∈ Σ,

u ∈ Σ∗. 39. w0 = 𝜆 and wn+1 = wwn. 41. When the

string consists of n 0s followed by n 1s for some nonnegative

integer n 43. Let P(i) be “l(wi) = i ⋅ l(w).” P(0) is true

because l(w0) = 0 = 0 ⋅ l(w). Assume P(i) is true. Then

l(wi+1) = l(wwi) = l(w)+ l(wi) = l(w)+ i ⋅ l(w) = (i+1) ⋅ l(w).

45. Basis step: For the full binary tree consisting of just a root

the result is true because n(T) = 1 and h(T) = 0, and

1 ≥ 2 ⋅ 0 + 1. Inductive step: Assume that n(T1) ≥ 2h(T1) + 1

and n(T2) ≥ 2h(T2) + 1. By the recursive definitions of n(T)

and h(T), we have n(T) = 1 + n(T1) + n(T2) and h(T) =
1+max(h(T1), h(T2)). Therefore, n(T) = 1+ n(T1)+ n(T2) ≥
1+ 2h(T1)+ 1+ 2h(T2)+ 1 ≥ 1+ 2 ⋅max(h(T1), h(T2))+ 2 =
1+2(max(h(T1), h(T2))+1) = 1+2h(T). 47. Basis step:
a0,0 = 0 = 0+ 0. Inductive step: Assume that am′ ,n′ = m′ + n′

whenever (m′, n′) is less than (m, n) in the lexicographic or-

dering of N×N. If n = 0 then am,n = am−1,n+1 = m−1+n+1 =
m+n. If n > 0, then am,n = am,n−1+1 = m+n−1+1 = m+n.

49. a) Pm,m = Pm because a number exceeding m cannot be

used in a partition of m. b) Because there is only one way to

partition 1, namely, 1 = 1, it follows that P1,n = 1. Because

there is only one way to partition m into 1s, Pm,1 = 1. When

n > m it follows that Pm,n = Pm,m because a number exceed-

ing m cannot be used. Pm,m = 1 + Pm,m−1 because one extra

partition, namely, m = m, arises when m is allowed in the par-

tition. Pm,n = Pm,n−1 + Pm−n,n if m > n because a partition of

m into integers not exceeding n either does not use any ns and

hence, is counted in Pm,n−1 or else uses an n and a partition of

m − n, and hence, is counted in Pm−n,n. c) P5 = 7, P6 = 11

51. Let P(n) be “A(n, 2) = 4.” Basis step: P(1) is true be-

cause A(1, 2) = A(0, A(1, 1)) = A(0, 2) = 2 ⋅ 2 = 4.

Inductive step: Assume that P(n) is true, that is, A(n, 2) = 4.

Then A(n + 1, 2) = A(n, A(n + 1, 1)) = A(n, 2) = 4.

53. a) 16 b) 65,536 55. Use a double induction argument

to prove the stronger statement: A(m, k) > A(m, l) when

k > l. Basis step: When m = 0 the statement is true be-

cause k > l implies that A(0, k) = 2k > 2l = A(0, l).
Inductive step: Assume that A(m, x) > A(m, y) for all non-

negative integers x and y with x > y. We will show that this

implies that A(m + 1, k) > A(m + 1, l) if k > l. Basis
steps: When l = 0 and k > 0, A(m + 1, l) = 0 and either

A(m + 1, k) = 2 or A(m + 1, k) = A(m, A(m + 1, k − 1)). If

m = 0, this is 2A(1, k − 1) = 2k. If m > 0, this is greater than

0 by the inductive hypothesis. In all cases, A(m + 1, k) > 0,

and in fact, A(m + 1, k) ≥ 2. If l = 1 and k > 1, then

A(m + 1, l) = 2 and A(m + 1, k) = A(m, A(m + 1, k − 1)),

with A(m + 1, k − 1) ≥ 2. Hence, by the inductive hypoth-

esis, A(m, A(m + 1, k − 1)) ≥ A(m, 2) > A(m, 1) = 2.

Inductive step: Assume that A(m + 1, r) > A(m + 1, s) for all

r > s, s = 0, 1, … , l. Then if k + 1 > l + 1 it follows that

A(m + 1, k + 1) = A(m, A(m + 1, k)) > A(m, A(m + 1, k)) =
A(m+1, l+1). 57. From Exercise 56 it follows that A(i, j) ≥
A(i − 1, j) ≥ ⋯ ≥ A(0, j) = 2j ≥ j. 59. Let P(n) be “F(n) is

well defined.” Then P(0) is true because F(0) is specified. As-

sume that P(k) is true for all k < n. Then F(n) is well defined

at n because F(n) is given in terms of F(0), F(1),… , F(n−1).

So P(n) is true for all integers n. 61. a) The value of F(1)

is ambiguous. b) F(2) is not defined because F(0) is not de-

fined. c) F(3) is ambiguous and F(4) is not defined because

F(
4

3
) makes no sense. d) The definition of F(1) is ambigu-

ous because both the second and third clause seem to apply.

e) F(2) cannot be computed because trying to compute F(2)

gives F(2) = 1+F(F(1)) = 1+F(2). 63. a) 1 b) 2 c) 3

d) 3 e) 4 f) 4 g) 5 65. f ∗
0

(n) = ⌈n∕a⌉ 67. f ∗
2

(n) =⌈log log n⌉ for n ≥ 2, f ∗
2

(1) = 0

Section 5.4

1. First, we use the recursive step to write 5! = 5 ⋅ 4!. We

then use the recursive step repeatedly to write 4! = 4 ⋅ 3!,
3! = 3 ⋅ 2!, 2! = 2 ⋅ 1!, and 1! = 1 ⋅ 0!. Inserting the value

of 0! = 1, and working back through the steps, we see that

1! = 1 ⋅ 1 = 1, 2! = 2 ⋅ 1! = 2 ⋅ 1 = 2, 3! = 3 ⋅ 2! = 3 ⋅ 2 = 6,

4! = 4⋅3! = 4⋅6 = 24, and 5! = 5⋅4! = 5⋅24 = 120. 3. With

this input, the algorithm uses the else clause to find that

gcd(8, 13) = gcd(13 𝐦𝐨𝐝 8, 8) = gcd(5, 8). It uses this clause

again to find that gcd(5, 8) = gcd(8 𝐦𝐨𝐝 5, 5) = gcd(3, 5),

then to get gcd(3, 5) = gcd(5 𝐦𝐨𝐝 3, 3) = gcd(2, 3), then

gcd(2, 3) = gcd(3 𝐦𝐨𝐝 2, 2) = gcd(1, 2), and once more to

get gcd(1, 2) = gcd(2 𝐦𝐨𝐝 1, 1) = gcd(0, 1). Finally, to find

gcd(0, 1) it uses the first step with a = 0 to find that gcd(0, 1) =
1. Consequently, the algorithm finds that gcd(8, 13) = 1.

5. First, because n = 11 is odd, we use the else clause to

see that mpower(3, 11, 5) = (mpower (3, 5, 5)2 𝐦𝐨𝐝 5 ⋅
3 𝐦𝐨𝐝 5) 𝐦𝐨𝐝 5. We next use the else clause again to see

that mpower (3, 5, 5) = (mpower (3, 2, 5)2 𝐦𝐨𝐝 5 ⋅ 3

mod 5) 𝐦𝐨𝐝 5. Then we use the else if clause to see

that mpower (3, 2, 5) = mpower (3, 1, 5)2 𝐦𝐨𝐝 5. Us-

ing the else clause again, we have mpower (3, 1, 5) =
(mpower (3, 0, 5)2 𝐦𝐨𝐝 5 ⋅ 3 𝐦𝐨𝐝 5) 𝐦𝐨𝐝 5. Finally, using

the if clause, we see that mpower (3, 0, 5) = 1. Working

backward it follows that mpower (3, 1, 5) = (12 𝐦𝐨𝐝 5 ⋅
3 𝐦𝐨𝐝 5) 𝐦𝐨𝐝 5 = 3, mpower (3, 2, 5) = 32 mod 5 =
4, mpower (3, 5, 5) = (42 𝐦𝐨𝐝 5 ⋅3 𝐦𝐨𝐝 5) 𝐦𝐨𝐝 5 = 3, and

finally mpower (3, 11, 5) = (32 𝐦𝐨𝐝 5 ⋅ 3 𝐦𝐨𝐝 5) 𝐦𝐨𝐝 5 =
2. We conclude that 311 𝐦𝐨𝐝 5 = 2.

7. procedure mult(n: positive integer, x: integer)

if n = 1 then return x
else return x + mult (n − 1, x)

9. procedure sum of odds(n: positive integer)

if n = 1 then return 1

else return sum of odds (n − 1) + 2n − 1

11. procedure smallest(a1,… , an: integers)

if n = 1 then return a1

else return
min(smallest (a1,… , an−1), an)

13. procedure modfactorial(n, m: positive integers)

if n = 1 then return 1
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else return
(n ⋅ modfactorial(n − 1, m)) mod m

15. procedure gcd(a, b: nonnegative integers)

{a < b assumed to hold}
if a = 0 then return b
else if a = b − a then return a
else if a < b − a then return gcd(a, b − a)

else return gcd(b − a, a)

17. procedure multiply(x, y: nonnegative integers)

if y = 0 then return 0

else if y is even then
return 2 ⋅ multiply (x, y∕2)

else return 2 ⋅ multiply (x, (y−1)∕2) + x
19. We use strong induction on a. Basis step: If a = 0, we

know that gcd(0, b) = b for all b > 0, and that is precisely

what the if clause does. Inductive step: Fix k > 0, assume

the inductive hypothesis—that the algorithm works correctly

for all values of its first argument less than k—and consider

what happens with input (k, b), where k < b. Because k > 0,

the else clause is executed, and the answer is whatever the

algorithm gives as output for inputs (b 𝐦𝐨𝐝 k, k). Because

b 𝐦𝐨𝐝 k < k, the input pair is valid. By our inductive hy-

pothesis, this output is in fact gcd(b 𝐦𝐨𝐝 k, k), which equals

gcd(k, b) by Lemma 1 in Section 4.3. 21. If n = 1, then

nx = x, and the algorithm correctly returns x. Assume that

the algorithm correctly computes kx. To compute (k + 1)x it

recursively computes the product of k + 1 − 1 = k and x,

and then adds x. By the inductive hypothesis, it computes that

product correctly, so the answer returned is kx+ x = (k + 1)x,

which is correct.

23. procedure square(n: nonnegative integer)

if n = 0 then return 0

else return square (n − 1) + 2(n − 1) + 1

Let P(n) be the statement that this algorithm correctly com-

putes n2. Because 02 = 0, the algorithm works correctly

(using the if clause) if the input is 0. Assume that the algo-

rithm works correctly for input k. Then for input k + 1, it

gives as output (because of the else clause) its output when

the input is k, plus 2(k + 1 − 1) + 1. By the inductive

hypothesis, its output at k is k2, so its output at k + 1 is

k2 + 2(k + 1 − 1) + 1 = k2 + 2k + 1 = (k + 1)2, as desired.

25. n multiplications versus 2n 27. O(log n) versus n
29. procedure a(n: nonnegative integer)

if n = 0 then return 1

else if n = 1 then return 2

else return a(n − 1) ⋅ a(n − 2)

31. Iterative

33. procedure iterative(n: nonnegative integer)

if n = 0 then z := 1

else if n = 1 then z := 2

else
x := 1

y := 2

z := 3

for i := 1 to n − 2

w := x + y + z

x := y
y := z
z := w

return z {z is the nth term of the sequence}
35. We first give a recursive procedure and then an iterative

procedure.

procedure r(n: nonnegative integer)

if n < 3 then return 2n + 1

else return r(n − 1) ⋅ (r(n − 2))2 ⋅ (r(n − 3))3

procedure i(n: nonnegative integer)

if n = 0 then z := 1

else if n = 1 then z := 3

else
x := 1

y := 3

z := 5

for i := 1 to n − 2

w := z ⋅ y2 ⋅ x3

x := y
y := z
z := w

return z {z is the nth term of the sequence}
The iterative version is more efficient.

37. procedure reverse(w: bit string)

n := length(w)

if n ≤ 1 then return w
else return

substr(w, n, n)reverse (substr (w, 1, n − 1))

{substr(w, a, b) is the substring of w consisting of

the symbols in the ath through bth positions}
39. The procedure correctly gives the reversal of 𝜆 as 𝜆 (ba-

sis step), and because the reversal of a string consists of its

last character followed by the reversal of its first n − 1 char-

acters (see Exercise 37 in Section 5.3), the algorithm behaves

correctly when n > 0 by the inductive hypothesis. 41. The

algorithm implements the idea of Example 14 in Section 5.1.

If n = 1 (basis step), place the one right triomino so that its

armpit corresponds to the hole in the 2 × 2 board. If n > 1,

then divide the board into four boards, each of size 2n−1×2n−1,

notice which quarter the hole occurs in, position one right tri-

omino at the center of the board with its armpit in the quarter

where the missing square is (see Figure 7 in Section 5.1), and

invoke the algorithm recursively four times—once on each of

the 2n−1 × 2n−1 boards, each of which has one square missing

(either because it was missing to begin with, or because it is

covered by the central triomino).

43. procedure A(m, n: nonnegative integers)

if m = 0 then return 2n
else if n = 0 then return 0

else if n = 1 then return 2

else return A(m − 1, A(m, n − 1))



P1: 1

ANS Rosen-2311T MH03280-Rosen-v1.cls May 8, 2018 17:25

Answers to Odd-Numbered Exercises S-39

45. bdafghzpok

bdafg

bda

bd

b d

a

fg

f g

hzpok

hzp

hz

h z

p

ok

o k

abcdfghkopz

abdfg

abd

bd

b d a

fg

f g

hkopz

hpz

hz

h z p

ko

o k

47. Let the two lists be 1, 2, … , m − 1, m + n − 1 and

m, m + 1,… , m + n − 2, m + n, respectively. 49. If n = 1,

then the algorithm does nothing, which is correct because a

list with one element is already sorted. Assume that the algo-

rithm works correctly for n = 1 through n = k. If n = k + 1,

then the list is split into two lists, L1 and L2. By the inductive

hypothesis, mergesort correctly sorts each of these sublists;

furthermore, merge correctly merges two sorted lists into one

because with each comparison the smallest element in L1∪L2

not yet put into L is put there. 51. O(n) 53. 6 55. O(n2)

Section 5.5

1. Suppose that x = 0. The program segment first assigns the

value 1 to y and then assigns the value x + y = 0 + 1 = 1 to

z. 3. Suppose that y = 3. The program segment assigns the

value 2 to x and then assigns the value x + y = 2 + 3 = 5 to z.

Because y = 3 > 0 it then assigns the value z+ 1 = 5+ 1 = 6

to z.

5. (p∧ condition1){S1}q
(p∧ ¬condition1 ∧ condition2){S2}q

⋅
⋅
⋅

(p∧ ¬condition1 ∧ ¬condition2
⋯ ∧ ¬condition(n − 1)){Sn}q

∴ p{if condition1 then S1;
else if condition2 then S2;… ; else Sn}q

7. We will show that p = “power = xi−1 and i ≤ n + 1” is a

loop invariant. Note that p is true initially, because before the

loop starts, i = 1 and power = 1 = x0 = x1−1. Next, we must

show that if p is true and i ≤ n after an execution of the loop,

then p remains true after one more execution. The loop incre-

ments i by 1. Hence, because i ≤ n before this pass, i ≤ n + 1

after this pass. Also the loop assigns power⋅x to power. By the

inductive hypothesis we see that power is assigned the value

xi−1 ⋅ x = xi. Hence, p remains true. Furthermore, the loop

terminates after n traversals of the loop with i = n + 1 be-

cause i is assigned the value 1 prior to entering the loop, is

incremented by 1 on each pass, and the loop terminates when

i > n. Consequently, at termination power = xn, as desired.

9. Suppose that p is “m and n are integers.” Then if the con-

dition n < 0 is true, a = −n = |n| after S1 is executed. If the

condition n < 0 is false, then a = n = |n| after S1 is executed.

Hence, p{S1}q is true where q is p ∧ (a = |n|). Because S2

assigns the value 0 to both k and x, it is clear that q{S2}r is

true where r is q ∧ (k = 0) ∧ (x = 0). Suppose that r is true.

Let P(k) be “x = mk and k ≤ a.” We can show that P(k) is a

loop invariant for the loop in S3. P(0) is true because before

the loop is entered x = 0 = m ⋅ 0 and 0 ≤ a. Now assume P(k)

is true and k < a. Then P(k + 1) is true because x is assigned

the value x + m = mk + m = m(k + 1). The loop terminates

when k = a, and at that point x = ma. Hence, r{S3}s is

true where s is “a = |n| and x = ma.” Now assume that s
is true. Then if n < 0 it follows that a = −n, so x = −mn.

In this case S4 assigns −x = mn to product. If n > 0 then

x = ma = mn, so S4 assigns mn to product. Hence, s{S4}t
is true. 11. Suppose that the initial assertion p is true. Then

because p{S}q0 is true, q0 is true after the segment S is exe-

cuted. Because q0 → q1 is true, it also follows that q1 is true

after S is executed. Hence, p{S}q1 is true. 13. We will use

the proposition p, “gcd(a, b) = gcd(x, y) and y ≥ 0,” as the

loop invariant. Note that p is true before the loop is entered,

because at that point x = a, y = b, and y is a positive in-

teger, using the initial assertion. Now assume that p is true

and y > 0; then the loop will be executed again. Inside the

loop, x and y are replaced by y and x mod y, respectively. By

Lemma 1 of Section 4.3, gcd(x, y) = gcd(y, x mod y). There-

fore, after execution of the loop, the value of gcd(x, y) is the

same as it was before. Moreover, because y is the remainder,

it is at least 0. Hence, p remains true, so it is a loop invari-

ant. Furthermore, if the loop terminates, then y = 0. In this

case, we have gcd(x, y) = x, the final assertion. Therefore, the

program, which gives x as its output, has correctly computed

gcd(a, b). Finally, we can prove the loop must terminate, be-

cause each iteration causes the value of y to decrease by at

least 1. Therefore, the loop can be iterated at most b times.

Supplementary Exercises

1. Let P(n) be the statement that this equation holds. Basis
step: P(1) says 2∕3 = 1 − (1∕31), which is true. Inductive
step: Assume that P(k) is true. Then 2∕3+ 2∕9+ 2∕27+⋯+
2∕3n + 2∕3n+1 = 1− 1∕3n + 2∕3n+1 (by the inductive hypoth-

esis), and this equals 1 − 1∕3n+1, as desired. 3. Let P(n) be

“1 ⋅1+2 ⋅2+⋯+n ⋅2n−1 = (n−1)2n +1.” Basis step: P(1) is

true because 1 ⋅1 = 1 = (1−1)21 +1. Inductive step: Assume

that P(k) is true. Then 1 ⋅1+2 ⋅2+⋯+k ⋅2k−1 + (k+1) ⋅2k =
(k − 1)2k + 1+ (k + 1)2k = 2k ⋅ 2k + 1 = [(k + 1)− 1]2k+1 + 1.

5. Let P(n) be “1∕(1⋅4)+⋯+1∕[(3n−2)(3n+1)] = n∕(3n+1).”

Basis step: P(1) is true because 1∕(1 ⋅ 4) = 1∕4. Inductive
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step: Assume P(k) is true. Then 1∕(1 ⋅ 4) + ⋯ + 1∕[(3k −
2)(3k + 1)] + 1∕[(3k + 1)(3k + 4)] = k∕(3k + 1) +1∕[(3k +
1)(3k + 4)] = [k(3k + 4) + 1]∕[(3k + 1)(3k + 4)] =
[(3k + 1)(k + 1)]∕[(3k + 1)(3k + 4)] = (k + 1)∕(3k + 4).

7. Let P(n) be “2n > n3.” Basis step: P(10) is true because

1024 > 1000. Inductive step: Assume P(k) is true. Then

(k + 1)3 = k3 + 3k2 + 3k + 1 ≤ k3 + 9k2 ≤ k3 + k3 = 2k3 <

2 ⋅ 2k = 2k+1. 9. Let P(n) be “a − b is a factor of an − bn.”

Basis step: P(1) is trivially true. Assume P(k) is true. Then

ak+1 −bk+1 = ak+1 −abk +abk −bk+1 = a(ak −bk)+bk(a−b).

Then because a − b is a factor of ak − bk and a − b is a fac-

tor of a − b, it follows that a − b is a factor of ak+1 − bk+1.

11. Basis step: When n = 1, 6n+1 + 72n−1 = 36 + 7 = 43.

Inductive step: Assume the inductive hypothesis, that 43 di-

vides 6n+1+72n−1; we must show that 43 divides 6n+2+72n+1.

We have 6n+2 + 72n+1 = 6 ⋅ 6n+1 + 49 ⋅ 72n−1 = 6 ⋅ 6n+1 + 6 ⋅
72n−1 +43 ⋅72n−1 = 6(6n+1 +72n−1)+43 ⋅72n−1. By the induc-

tive hypothesis the first term is divisible by 43, and the second

term is divisible by 43; therefore, the sum is divisible by 43.

13. Let P(n) be “a+(a+d)+⋯+(a+nd) = (n+1)(2a+nd)∕2.”

Basis step: P(1) is true because a + (a + d) = 2a + d =
2(2a + d)∕2. Inductive step: Assume that P(k) is true. Then

a + (a + d) + ⋯ + (a + kd) + [a + (k + 1)d] =
(k + 1)(2a + kd)∕2 + a + (k + 1)d = 1

2
(2ak + 2a + k2d +

kd + 2a+ 2kd + 2d) = 1

2
(2ak + 4a+ k2d + 3kd + 2d) = 1

2
(k +

2)[2a + (k + 1)d]. 15. Basis step: This is true for n = 1 be-

cause 5∕6 = 10∕12. Inductive step: Assume that the equation

holds for n = k, and consider n = k+1. Then
∑k+1

i=1

i+4

i(i+1)(i+2)
=∑k

i=1

i+4

i(i+1)(i+2)
+ k+5

(k+1)(k+2)(k+3)
= k(3k+7)

2(k+1)(k+2)
+ k+5

(k+1)(k+2)(k+3)

(by the inductive hypothesis) = 1

(k+1)(k+2)
⋅ (

k(3k+7)

2
+ k+5

k+3
) =

1

2(k+1)(k+2)(k+3)
⋅[k(3k + 7) (k+3)+ 2(k + 5)] = 1

2(k+1)(k+2)(k+3)
⋅

(3k3+16k2 + 23k+ 10) = 1

2(k+1)(k+2)(k+3)
⋅ (3k+ 10)(k+ 1)2 =

1

2(k+2)(k+3)
⋅ (3k + 10)(k + 1) = (k+1)(3(k+1)+7)

2((k+1)+1)((k+1)+2)
, as desired.

17. Basis step: The statement is true for n = 1 because the

derivative of g(x) = xex is x ⋅ ex + ex = (x + 1)ex by the prod-

uct rule. Inductive step: Assume that the statement is true for

n = k, i.e., the kth derivative is given by g(k) = (x + k)ex.

Differentiating by the product rule gives the (k + 1)st deriva-

tive: g(k+1) = (x + k)ex + ex = [x + (k + 1)]ex, as de-

sired. 19. We will use strong induction to show that fn is

even if n ≡ 0 (mod 3) and is odd otherwise. Basis step: This

follows because f0 = 0 is even and f1 = 1 is odd. Inductive
step: Assume that if j ≤ k, then fj is even if j ≡ 0 (mod 3)

and is odd otherwise. Now suppose k + 1 ≡ 0 (mod 3). Then

fk+1 = fk + fk−1 is even because fk and fk−1 are both odd. If

k + 1 ≡ 1 (mod 3), then fk+1 = fk + fk−1 is odd because fk
is even and fk−1 is odd. Finally, if k + 1 ≡ 2 (mod 3), then

fk+1 = fk + fk−1 is odd because fk is odd and fk−1 is even.

21. Let P(n) be the statement that fkfn + fk+1fn+1 = fn+k+1

for every nonnegative integer k. Basis step: This consists of

showing that P(0) and P(1) both hold. P(0) is true because

fkf0 + fk+1f1 = fk+1 ⋅ 0 + fk+1 ⋅ 1 = f1. Because fkf1 + fk+1f2 =
fk + fk+1 = fk+2, it follows that P(1) is true. Inductive step:
Now assume that P(j) holds. Then, by the inductive hypoth-

esis and the recursive definition of the Fibonacci numbers, it

follows that fk+1fj+1 + fk+2fj+2 = fk(fj−1 + fj)+ fk+1(fj + fj+1) =
(fkfj−1 + fk+1fj)+ (fkfj + fk+1fj+1) = fj−1+k+1 + fj+k+1 = fj+k+2.

This shows that P(j + 1) is true. 23. Let P(n) be the state-

ment l2
0
+ l2

1
+ ⋯ + l2n = lnln+1 + 2. Basis step: P(0) and

P(1) both hold because l2
0

= 22 = 2 ⋅ 1 + 2 = l0l1 + 2

and l2
0
+ l2

1
= 22 + 12 = 1 ⋅ 3 + 2 = l1l3 + 2. In-

ductive step: Assume that P(k) holds. Then by the inductive

hypothesis l2
0
+ l2

1
+ ⋯ + l2k + l2k+1

= lklk+1 + 2 + l2k+1
=

lk+1(lk+lk+1)+2 = lk+1lk+2+2. This shows that P(k+1) holds.

25. Let P(n) be the statement that the identity holds for the in-

teger n. Basis step: P(1) is obviously true. Inductive step: As-

sume that P(k) is true. Then cos((k + 1)x) + i sin((k + 1)x) =
cos(kx + x) + i sin(kx + x) = cos kx cos x − sin kx sin x +
i(sin kx cos x + cos kx sin x) = cos x(cos kx + i sin kx)(cos x +
i sin x) = (cos x+i sin x)k(cos x+i sin x) = (cos x+i sin x)k+1. It

follows that P(k+1) is true. 27. Rewrite the right-hand side

as 2n+1(n2−2n+3)−6. For n = 1 we have 2 = 4⋅2−6. Assume

that the equation holds for n = k, and consider n = k + 1.

Then
∑k+1

j=1
j22j =

∑k
j=1

j22j + (k + 1)22k+1 = 2k+1(k2−
2k + 3) − 6 + (k2 + 2k + 1)2k+1 (by the inductive hypo-

thesis) = 2k+1(2k2 + 4) − 6 = 2k+2(k2 + 2) − 6 =
2k+2[(k + 1)2 − 2(k + 1) + 3] − 6. 29. Let P(n) be the

statement that this equation holds. Basis step: In P(2) both

sides reduce to 1∕3. Inductive step: Assume that P(k) is true.

Then
∑k+1

j=1
1∕(j2 − 1) =

(∑k
j=1

1∕(j2 − 1)
)

+ 1∕[(k +
1)2 − 1] = (k − 1)(3k + 2)∕[4k(k + 1)] + 1∕[(k + 1)2 − 1]

by the inductive hypothesis. This simplifies to (k − 1)(3k +
2)∕[4k(k+1)]+1∕(k2+2k) = (3k3+5k2)∕[4k(k+1)(k+2)] =
{[(k+1)−1][3(k+1)+2]}∕[4(k+1)(k+2)], which is exactly

what P(k + 1) asserts. 31. Let P(n) be the assertion that at

least n + 1 lines are needed to cover the lattice points in the

given triangular region. Basis step: P(0) is true, because we

need at least one line to cover the one point at (0, 0). Inductive
step: Assume the inductive hypothesis, that at least k+1 lines

are needed to cover the lattice points with x ≥ 0, y ≥ 0, and

x + y ≤ k. Consider the triangle of lattice points defined by

x ≥ 0, y ≥ 0, and x + y ≤ k + 1. By way of contradic-

tion, assume that k + 1 lines could cover this set. Then these

lines must cover the k + 2 points on the line x + y = k + 1.

But only the line x + y = k + 1 itself can cover more than

one of these points, because two distinct lines intersect in at

most one point. Therefore, none of the k + 1 lines that are

needed (by the inductive hypothesis) to cover the set of lattice

points within the triangle but not on this line can cover more

than one of the points on this line, and this leaves at least one

point uncovered. Therefore, our assumption that k + 1 lines

could cover the larger set is wrong, and our proof is complete.

33. Let P(n) be Bk = MAkM−1. Basis step: Part of the given

conditions. Inductive step: Assume the inductive hypothesis.

Then Bk+1 = BBk = MAM−1Bk = MAM−1MAkM−1 (by

the inductive hypothesis) = MAIAkM−1 = MAAkM−1 =
MAk+1M−1. 35. We prove by mathematical induction the

following stronger statement: For every n ≥ 3, we can write

n! as the sum of n of its distinct positive divisors, one of which
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is 1. That is, we can write n! = a1+a2+⋯+an, where each ai
is a divisor of n!, the divisors are listed in strictly decreasing

order, and an = 1. Basis step: 3! = 3 + 2 + 1. Inductive step:
Assume that we can write k! as a sum of the desired form, say

k! = a1 + a2 + ⋯ + ak, where each ai is a divisor of n!, the

divisors are listed in strictly decreasing order, and an = 1.

Consider (k + 1)!. Then we have (k + 1)! = (k + 1)k! =
(k + 1)(a1 + a2 + ⋯ + ak) = (k + 1)a1 + (k + 1)a2 + ⋯+
(k + 1)ak = (k + 1)a1 + (k + 1)a2 + ⋯ + k ⋅ ak + ak.

Because each ai was a divisor of k!, each (k+ 1)ai is a divisor

of (k + 1)!. Furthermore, k ⋅ ak = k, which is a divisor of

(k + 1)!, and ak = 1, so the new last summand is again 1.

(Notice also that our list of summands is still in strictly de-

creasing order.) Thus, we have written (k + 1)! in the desired

form. 37. When n = 1 the statement is vacuously true. As-

sume that the statement is true for n = k, and consider k + 1

people standing in a line, with a woman first and a man last.

If the kth person is a woman, then we have that woman stand-

ing in front of the man at the end. If the kth person is a man,

then the first k people in line satisfy the conditions of the in-

ductive hypothesis for the first k people in line, so again we

can conclude that there is a woman directly in front of a man

somewhere in the line. 39. Basis step: When n = 1 there

is one circle, and we can color the inside blue and the outside

red to satisfy the conditions. Inductive step: Assume the in-

ductive hypothesis that if there are k circles, then the regions

can be 2-colored such that no regions with a common bound-

ary have the same color, and consider a situation with k + 1

circles. Remove one of the circles, producing a picture with

k circles, and invoke the inductive hypothesis to color it in

the prescribed manner. Then replace the removed circle and

change the color of every region inside this circle. The result-

ing figure satisfies the condition, because if two regions have

a common boundary, then either that boundary involved the

new circle, in which case the regions on either side used to be

the same region and now the inside portion is different from

the outside, or else the boundary did not involve the new cir-

cle, in which case the regions are colored differently because

they were colored differently before the new circle was re-

stored. 41. If n = 1 then the equation reads 1 ⋅ 1 = 1 ⋅ 2∕2,

which is true. Assume that the equation is true for n and con-

sider it for n+1. Then
∑n+1

j=1
(2j−1)

(∑n+1

k=j
1

k

)
=

∑n
j=1

(2j−1)(∑n+1

k=j
1

k

)
+ [2(n + 1) − 1] ⋅ 1

n+1
=

∑n
j=1

(2j − 1)
(

1

n+1
+∑n

k=j
1

k

)
+ 2n+1

n+1
=

(
1

n+1

∑n
j=1

(2j − 1)
)
+

(∑n
j=1

(2j − 1)∑n
k=j

1

k

)
+ 2n+1

n+1
=

(
1

n+1
⋅ n2

)
+ n(n+1)

2
+ 2n+1

n+1
(by the inductive

hypothesis)= 2n2+n(n+1)2+(4n+2)

2(n+1)
= 2(n+1)2+n(n+1)2

2(n+1)
= (n+1)(n+2)

2
.

43. Let T(n) be the statement that the sequence of towers of 2

is eventually constant modulo n. We use strong induction to

prove that T(n) is true for all positive integers n. Basis step:
When n = 1 (and n = 2), the sequence of towers of 2 modulo

n is the sequence of all 0s. Inductive step: Suppose that k is an

integer with k ≥ 2. Suppose that T(j) is true for 1 ≤ j ≤ k− 1.

In the proof of the inductive step we denote the rth term of the

sequence modulo n by ar. First suppose k is even. Let k = 2sq
where s ≥ 1 and q < k is odd. When j is large enough, aj−2 ≥ s,

and for such j, aj = 22
aj−2

is a multiple of 2s. It follows that for

sufficiently large j, aj ≡ 0 (mod 2s). Hence, for large enough i,
2s divides ai+1 − ai. By the inductive hypothesis T(q) is true,

so the sequence a1, a2, a3,… is eventually constant modulo q.

This implies that for large enough i, q divides ai+1 − ai. Be-

cause gcd(q, 2s) = 1 and for sufficiently large i both q and

2s divide ai+1 − ai, k = 2sq divides ai+1 − ai for sufficiently

large i. Hence, for sufficiently large i, ai+1 − ai ≡ 0 (mod k).

This means that the sequence is eventually constant modulo k.

Finally, suppose k is odd. Then gcd(2, k) = 1, so by Euler’s

theorem (found in elementary number theory books, such as

[Ro10]), we know that 2𝜙(k) ≡ 1 (mod k). Let r = 𝜙(k). Be-

cause r < k, by the inductive hypothesis T(r), the sequence

a1, a2, a3, … is eventually constant modulo r, say equal to c.

Hence, for large enough i, for some integer ti, ai = tir + c.

Hence, ai+1 = 2ai = 2tir+c = (2r)ti 2c ≡ 2c (mod k). This shows

that a1, a2, … is eventually constant modulo k. 45. a) 92

b) 91 c) 91 d) 91 e) 91 f) 91 47. The basis step is

incorrect because n ≠ 1 for the sum shown. 49. Let P(n) be

“the plane is divided into n2−n+2 regions by n circles if every

two of these circles have two common points but no three have

a common point.” Basis step: P(1) is true because a circle di-

vides the plane into 2 = 12−1+2 regions. Inductive step: As-

sume that P(k) is true, that is, k circles with the specified prop-

erties divide the plane into k2 − k + 2 regions. Suppose that a

(k+1)st circle is added. This circle intersects each of the other

k circles in two points, so these points of intersection form 2k
new arcs, each of which splits an old region. Hence, there are

2k regions split, which shows that there are 2k more regions

than there were previously. Hence, k+ 1 circles satisfying the

specified properties divide the plane into k2−k+2+2k = (k2+
2k+1)−(k+1)+2 = (k+1)2−(k+1)+2 regions. 51. Suppose√

2 were rational. Then
√

2 = a∕b, where a and b are positive

integers. It follows that the set S = {n
√

2 ∣ n ∈ N} ∩ N is a

nonempty set of positive integers, because b
√

2 = a belongs

to S. Let t be the least element of S, which exists by the well-

ordering property. Then t = s
√

2 for some integer s. We have

t − s = s
√

2 − s = s(
√

2 − 1), so t − s is a positive integer

because
√

2 > 1. Hence, t − s belongs to S. This is a contra-

diction because t − s = s
√

2 − s < s. Hence,
√

2 is irrational.

53. a) Let d = gcd(a1, a2, … , an). Then d is a divisor of

each ai and so must be a divisor of gcd(an−1, an). Hence, d is

a common divisor of a1, a2, … , an−2, and gcd(an−1, an). To

show that it is the greatest common divisor of these numbers,

suppose that c is a common divisor of them. Then c is a divi-

sor of ai for i = 1, 2,… , n − 2 and a divisor of gcd(an−1, an),

so it is a divisor of an−1 and an. Hence, c is a common divi-

sor of a1, a2,… , an−1, and an. Hence, it is a divisor of d, the

greatest common divisor of a1, a2,… , an. It follows that d is

the greatest common divisor, as claimed. b) If n = 2, ap-

ply the Euclidean algorithm. Otherwise, apply the Euclidean

algorithm to an−1 and an, obtaining d = gcd(an−1, an), and

then apply the algorithm recursively to a1, a2, … , an−2, d.

55. f (n) = n2. Let P(n) be “f (n) = n2.” Basis step: P(1)
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is true because f (1) = 1 = 12, which follows from the

definition of f . Inductive step: Assume f (n) = n2. Then

f (n + 1) = f ((n + 1) − 1) + 2(n + 1) − 1 = f (n) +
2n + 1 = n2 + 2n + 1 = (n + 1)2. 57. a) 𝜆, 0, 1, 00, 01,

11, 000, 001, 011, 111, 0000, 0001, 0011, 0111, 1111, 00000,

00001, 00011, 00111, 01111, 11111 b) S = {𝛼𝛽 ∣ 𝛼 is a string

of m 0s and 𝛽 is a string of n 1s, m ≥ 0, n ≥ 0} 59. Apply

the first recursive step to 𝜆 to get () ∈ B. Apply the second

recursive step to this string to get ()() ∈ B. Apply the first

recursive step to this string to get (()()) ∈ B. By Exercise 62,

(())) is not in B because the number of left parentheses does

not equal the number of right parentheses. 61. 𝜆, (), (()), ()()

63. a) 0 b) −2 c) 2 d) 0

65.
procedure generate(n: nonnegative integer)

if n is odd then
S := S(n − 1) {the S constructed by generate(n − 1)}
T := T(n − 1) {the T constructed by generate(n − 1)}

else if n = 0 then
S := ∅
T := {𝜆}

else
S′ := S(n − 2) {the S constructed by generate(n − 2)}
T ′ := T(n − 2) {the T constructed by generate(n − 2)}
T := T ′ ∪ {(x)|x ∈ T ′ ∪ S′ ∧ length(x) = n − 2}
S := S′ ∪ {xy|x ∈ T ′ ∧ y ∈ T ′ ∪ S′ ∧ length(xy) = n}

{T ∪ S is the set of balanced strings of length at most n}
67. If x ≤ y initially, then x := y is not executed, so x ≤ y is a

true final assertion. If x > y initially, then x := y is executed,

so x ≤ y is again a true final assertion.

69. procedure zerocount(a1, a2,… , an: list of integers)

if n = 1 then
if a1 = 0 then return 1

else return 0

else
if an = 0 then return zerocount (a1, a2,… , an−1) + 1

else return zerocount (a1, a2,… , an−1)

71. We will prove that a(n) is a natural number and a(n) ≤ n.

This is true for the base case n = 0 because a(0) = 0. Now

assume that a(n−1) is a natural number and a(n−1) ≤ n−1.

Then a(a(n − 1)) is a applied to a natural number less than

or equal to n − 1. Hence, a(a(n − 1)) is also a natural num-

ber less than or equal to n − 1. Therefore, n − a(a(n − 1))

is n minus some natural number less than or equal to n − 1,

which is a natural number less than or equal to n. 73. From

Exercise 72, a(n) = ⌊(n + 1)𝜇⌋ and a(n − 1) = ⌊n𝜇⌋. Be-

cause 𝜇 < 1, these two values are equal or they differ by 1.

First suppose that 𝜇n − ⌊𝜇n⌋ < 1 − 𝜇. This is equivalent to

𝜇(n+1) < 1+⌊𝜇n⌋. If this is true, then ⌊𝜇(n+1)⌋ = ⌊𝜇n⌋. On

the other hand, if 𝜇n−⌊𝜇n⌋ ≥ 1−𝜇, then 𝜇(n+1) ≥ 1+⌊𝜇n⌋,

so ⌊𝜇(n+1)⌋ = ⌊𝜇n⌋+1, as desired. 75. f (0) = 1, m(0) = 0;

f (1) = 1, m(1) = 0; f (2) = 2, m(2) = 1; f (3) = 2, m(3) = 2;

f (4) = 3, m(4) = 2; f (5) = 3, m(5) = 3; f (6) = 4,

m(6) = 4; f (7) = 5, m(7) = 4; f (8) = 5, m(8) = 5; f (9) = 6,

m(9) = 6 77. The last occurrence of n is in the position

for which the total number of 1s, 2s, … , ns all together is that

position number. But because ak is the number of occurrences

of k, this is just
∑n

k=1
ak, as desired. Because f (n) is the sum

of the first n terms of the sequence, f (f (n)) is the sum of the

first f (n) terms of the sequence. But because f (n) is the last

term whose value is n, this means that the sum is the sum of

all terms of the sequence whose value is at most n. Because

there are ak terms of the sequence whose value is k, this sum

is
∑n

k=1
k ⋅ ak, as desired.

CHAPTER 6

Section 6.1

1. a) 5850 b) 343 3. a) 410 b) 510 5. 42 7. 263

9. 676 11. 28 13. n + 1 (counting the empty string)

15. 475,255 (counting the empty string) 17. 1,321,368,961

19. a) 729 b) 256 c) 1024 d) 64 21. a) Seven: 56, 63,

70, 77, 84, 91, 98 b) Five: 55, 66, 77, 88, 99 c) One:

77 23. a) 128 b) 450 c) 9 d) 675 e) 450 f) 450

g) 225 h) 75 25. a) 990 b) 500 c) 27 27. 350

29. 52,457,600 31. 20,077,200 33. a) 37,822,859,361

b) 8,204,716,800 c) 40,159,050,880 d) 12,113,640,000

e) 171,004,205,215 f) 72,043,541,640 g) 6,230,721,635

h) 223,149,655 35. a) 0 b) 120 c) 720 d) 2520 37. a) 2

if n = 1, 2 if n = 2, 0 if n ≥ 3 b) 2n−2 for n > 1;

1 if n = 1 c) 2(n − 1) 39. (n + 1)m 41. If n is even,

2n∕2; if n is odd, 2(n+1)∕2 43. a) 175 b) 248 c) 232 d) 84

45. 40 47. 60 49. a) 240 b) 480 c) 360 51. 352

53. 147 55. 33 57. a) 9,920,671,339,261,325,541,376 ≈
9.9 × 1021 b) 6,641,514,961,387,068,437,760 ≈ 6.6 ×
1021 c) About 314,000 years 59. 54(6465536 − 1)∕63

61. 7,104,000,000,000 63. 1610+1626+1658 65. 666,667

67. 18 69. 17 71. 22 73. 2n−2, 2n−1 75. Let P(m)

be the sum rule for m tasks. For the basis case take m = 2.

This is just the sum rule for two tasks. Now assume that P(m)

is true. Consider m + 1 tasks, T1, T2,… ,Tm, Tm+1, which can

be done in n1, n2, … , nm, nm+1 ways, respectively, such that

no two of these tasks can be done at the same time. To do one

of these tasks, we can either do one of the first m of these or

do task Tm+1. By the sum rule for two tasks, the number of

ways to do this is the sum of the number of ways to do one

of the first m tasks, plus nm+1. By the inductive hypothesis,

this is n1 + n2 +⋯ + nm + nm+1, as desired. 77. n(n− 3)∕2

Section 6.2

1. Because there are six classes, but only five weekdays, the

pigeonhole principle shows that at least two classes must be

held on the same day. 3. a) 3 b) 14 5. 85 7. Because

there are four possible remainders when an integer is divided

by 4, the pigeonhole principle implies that given five integers,

at least two have the same remainder. 9. Let a, a + 1, … ,
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a + n − 1 be the integers in the sequence. The integers

(a + i) mod n, i = 0, 1, 2, … , n − 1, are distinct, because

0 < (a + j) − (a + k) < n whenever 0 ≤ k < j ≤ n − 1.

Because there are n possible values for (a + i) mod n and

there are n different integers in the set, each of these val-

ues is taken on exactly once. It follows that there is exactly

one integer in the sequence that is divisible by n. 11. 4951

13. The midpoint of the segment joining the points (a, b, c)

and (d, e, f ) is ((a + d)∕2, (b + e)∕2, (c + f )∕2). It has

integer coefficients if and only if a and d have the same

parity, b and e have the same parity, and c and f have the

same parity. Because there are eight possible triples of par-

ity [such as (even, odd, even)], by the pigeonhole principle

at least two of the nine points have the same triple of par-

ities. The midpoint of the segment joining two such points

has integer coefficients. 15. a) Group the first eight posi-

tive integers into four subsets of two integers each so that the

integers of each subset add up to 9: {1, 8}, {2, 7}, {3, 6},

and {4, 5}. If five integers are selected from the first eight

positive integers, by the pigeonhole principle at least two of

them come from the same subset. Two such integers have a

sum of 9, as desired. b) No. Take {1, 2, 3, 4}, for example.

17. 4 19. 21,251 21. a) If there were fewer than 9 fresh-

men, fewer than 9 sophomores, and fewer than 9 juniors in the

class, there would be no more than 8 with each of these three

class standings, for a total of at most 24 students, contradict-

ing the fact that there are 25 students in the class. b) If there

were fewer than 3 freshmen, fewer than 19 sophomores, and

fewer than 5 juniors, then there would be at most 2 freshmen,
at most 18 sophomores, and at most 4 juniors, for a total of

at most 24 students. This contradicts the fact that there are 25

students in the class. 23. 4, 3, 2, 1, 8, 7, 6, 5, 12, 11, 10, 9,

16, 15, 14, 13 25. Number the seats around the table from 1

to 50, and think of seat 50 as being adjacent to seat 1. There are

25 seats with odd numbers and 25 seats with even numbers.

If no more than 12 boys occupied the odd-numbered seats,

then at least 13 boys would occupy the even-numbered seats,

and vice versa. Without loss of generality, assume that at least

13 boys occupy the 25 odd-numbered seats. Then at least two

of those boys must be in consecutive odd-numbered seats, and

the person sitting between them will have boys as both of his

or her neighbors.

27. procedure long(a1,… , an: positive integers)

{first find longest increasing subsequence}
max := 0; set := 00… 00 {n bits}
for i := 1 to 2n

last := 0; count := 0, OK := true
for j := 1 to n

if set(j) = 1 then
if aj > last then last := aj
count := count + 1

else OK := false
if count > max then

max := count
best := set

set := set + 1 (binary addition)

{max is length and best indicates the sequence}
{repeat for decreasing subsequence with only

changes being aj < last instead of aj > last
and last := ∞ instead of last := 0}

29. By symmetry we need prove only the first statement. Let

A be one of the people. Either A has at least four friends, or

A has at least six enemies among the other nine people (be-

cause 3 + 5 < 9). Suppose, in the first case, that B, C, D,

and E are all A’s friends. If any two of these are friends with

each other, then we have found three mutual friends. Oth-

erwise {B, C, D, E} is a set of four mutual enemies. In the

second case, let {B, C, D, E, F, G} be a set of enemies of A.

By Example 13, among B, C, D, E, F, and G there are either

three mutual friends or three mutual enemies, who form, with

A, a set of four mutual enemies. 31. We need to show two
things: that if we have a group of n people, then among them

we must find either a pair of friends or a subset of n of them
all of whom are mutual enemies; and that there exists a group

of n − 1 people for which this is not possible. For the first

statement, if there is any pair of friends, then the condition is
satisfied, and if not, then every pair of people are enemies, so

the second condition is satisfied. For the second statement, if
we have a group of n − 1 people all of whom are enemies of
each other, then there is neither a pair of friends nor a sub-

set of n of them all of whom are mutual enemies. 33. There

are 6,432,816 possibilities for the three initials and a birthday.

So, by the generalized pigeonhole principle, there are at least⌈39,000,000∕6,432,816⌉ = 7 people who share the same ini-

tials and birthday. 35. Because 800,001 > 200,000, the

pigeonhole principle guarantees that there are at least two

Parisians with the same number of hairs on their heads. The

generalized pigeonhole principle guarantees that there are at

least ⌈800,001∕200,000⌉ = 5 Parisians with the same number

of hairs on their heads. 37. 18 39. Because there are six

computers, the number of other computers a computer is con-

nected to is an integer between 0 and 5, inclusive. However,

0 and 5 cannot both occur. To see this, note that if some com-

puter is connected to no others, then no computer is connected

to all five others, and if some computer is connected to all five

others, then no computer is connected to no others. Hence, by

the pigeonhole principle, because there are at most five possi-

bilities for the number of computers a computer is connected

to, there are at least two computers in the set of six connected

to the same number of others. 41. Label the computers C1

through C100, and label the printers P1 through P20. If we con-

nect Ck to Pk for k = 1, 2, … , 20 and connect each of the

computers C21 through C100 to all the printers, then we have

used a total of 20 + 80 ⋅ 20 = 1620 cables. This is sufficient,

because if computers C1 through C20 need printers, then they

can use the printers with the same subscripts, and if any com-

puters with higher subscripts need a printer instead of one or

more of these, then they can use the printers that are not being

used, because they are connected to all the printers. Now we

must show that 1619 cables is not enough. Because there are

1619 cables and 20 printers, the average number of comput-

ers per printer is 1619∕20, which is less than 81. Therefore,
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some printer must be connected to fewer than 81 computers.

That means it is connected to 80 or fewer computers, so there

are 20 computers that are not connected to it. If those 20 com-

puters all needed a printer simultaneously, then they would be

out of luck, because they are connected to at most the 19 other

printers. 43. Let ai be the number of matches completed by

hour i. Then 1 ≤ a1 < a2 < ⋯ < a75 ≤ 125. Also

25 ≤ a1 + 24 < a2 + 24 < ⋯ < a75 + 24 ≤ 149.

There are 150 numbers a1,… , a75, a1 + 24,… , a75 + 24. By

the pigeonhole principle, at least two are equal. Because all

the ais are distinct and all the (ai + 24)s are distinct, it fol-

lows that ai = aj + 24 for some i > j. Thus, in the period

from the (j+1)st to the ith hour, there are exactly 24 matches.

45. Use the generalized pigeonhole principle, placing the |S|
objects f (s) for s ∈ S in |T| boxes, one for each element of T .

47. Let dj be jx−N(jx), where N( jx) is the integer closest to jx
for 1 ≤ j ≤ n. Each dj is an irrational number between −1∕2

and 1∕2. We will assume that n is even; the case where n is odd

is messier. Consider the n intervals {x ∣ j∕n < x < ( j+ 1)∕n},

{x ∣ −(j + 1)∕n < x < −j∕n} for j = 0, 1, … , (n∕2) − 1. If

dj belongs to the interval {x ∣ 0 < x < 1∕n} or to the interval

{x ∣ −1∕n < x < 0} for some j, we are done. If not, because

there are n−2 intervals and n numbers dj, the pigeonhole prin-

ciple tells us that there is an interval {x ∣ (k−1)∕n < x < k∕n}
containing dr and ds with r < s. The proof can be finished

by showing that (s − r)x is within 1∕n of its nearest integer.

49. a) Assume that ik ≤ n for all k. Then by the generalized

pigeonhole principle, at least ⌈(n2 + 1)∕n⌉ = n + 1 of the

numbers i1, i2, … , in2+1 are equal. b) If akj
< akj+1

, then

the subsequence consisting of akj
followed by the increasing

subsequence of length ikj+1
starting at akj+1

contradicts the fact

that ikj
= ikj+1

. Hence, akj
> akj+1

. c) If there is no increasing

subsequence of length greater than n, then parts (a) and (b)

apply. Therefore, we have akn+1
> akn

> ⋯ > ak2
> ak1

, a

decreasing sequence of length n + 1.

Section 6.3

1. abc, acb, bac, bca, cab, cba 3. 720 5. a) 120 b) 720

c) 8 d) 6720 e) 40,320 f) 3,628,800 7. 15,120 9. 1320

11. a) 210 b) 386 c) 848 d) 252 13. 2(n!)2 15. 65,780

17. 2100−5051 19. a) 1024b) 45c) 176 d) 252 21. a) 120

b) 24c) 120d) 24e) 6 f) 0 23. 609,638,400 25. a) 17,280

b) 14,400 27. a) 94,109,400 b) 941,094 c) 3,764,376

d) 90,345,024 e) 114,072 f) 2328 g) 24 h) 79,727,040

i) 3,764,376 j) 109,440 29. a) 12,650 b) 303,600

31. a) 37,927 b) 18,915 33. a) 122,523,030 b) 72,930,375

c) 223,149,655 d) 100,626,625 35. 54,600 37. 45

39. 912 41. 11,232,000 43. n!
r(n−r)!

45. 13 47. 873

Section 6.4

1. x4 + 4x3y + 6x2y2 + 4xy3 + y4 3. x6 + 6x5y + 15x4y2 +
20x3y3+15x2y4+6xy5+y6 5. 101 7. −210

(19

9

)
=−94,595,072

9. −2101399
(200

99

)
11.

∑5

j=0

(5

j

)
(3x4)5−j(−2y3)j = 243x20 −

810x16y3 + 1080x12y6 − 720x8y9 + 240x4y12 − 32y15

13. a) 71,680 b) 0 c) −16,384 d) −35,840 e) −1,792

15. (−1)(200−k)∕3
( 100

(200−k)∕3

)
if k ≡ 2 (mod 3) and −100 ≤ k ≤

200; 0 otherwise 17. 1 9 36 84 126 126 84 36

9 1 19. The sum of all the positive numbers
(n

k

)
, as k runs

from 0 to n, is 2n, so each one of them is no bigger than this

sum. 21.
(n

k

)
= n(n−1)(n−2)⋯(n−k+1)

k(k−1)(k−2)⋯2
≤ n⋅n⋅⋯⋅n

2⋅2⋅⋯⋅2
= nk∕2k−1

23.
( n

k−1

)
+

(n
k

)
= n!

(k−1)!(n−k+ 1)!
+ n!

k!(n−k)!
= n!

k!(n−k+1)!
⋅ [k +

(n − k + 1)] = (n+1)!
k!(n+1−k)!

=
(n+1

k

)
25. a) We show that each

side counts the number of ways to choose from a set with n ele-

ments a subset with k elements and a distinguished element of

that set. For the left-hand side, first choose the k-set (this can

be done in
(n

k

)
ways) and then choose one of the k elements in

this subset to be the distinguished element (this can be done in

k ways). For the right-hand side, first choose the distinguished

element out of the entire n-set (this can be done in n ways),

and then choose the remaining k − 1 elements of the subset

from the remaining n−1 elements of the set (this can be done

in
(n−1

k−1

)
ways). b) k

(n
k

)
= k ⋅ n!

k!(n−k)!
= n⋅(n−1)!

(k−1)!(n−k)!
= n

(n−1

k−1

)
27.

(n+1

k

)
= (n+1)!

k!(n+1−k)!
= (n+1)

k
n!

(k−1)![n−(k−1)]!
= (n + 1)( n

k−1

)
∕k. This identity together with

(n
0

)
= 1 gives a recursive

definition. 29.
( 2n

n+1

)
+

(2n
n

)
=

(2n+1

n+1

)
= 1

2

[(2n+1

n+1

)
+(2n+1

n+1

)]
= 1

2

[(2n+1

n+1

)
+
(2n+1

n

)]
= 1

2

(2n+2

n+1

)
31. a)

(n+r+1

r

)
counts the number of ways to choose a sequence of r 0s and

n+ 1 1s by choosing the positions of the 0s. Alternately, sup-

pose that the (j + 1)st term is the last term equal to 1, so that

n ≤ j ≤ n + r. Once we have determined where the last

1 is, we decide where the 0s are to be placed in the j spaces

before the last 1. There are n 1s and j − n 0s in this range. By

the sum rule it follows that there are
∑n+r

j=n
( j

j−n

)
=

∑r
k=0

(n+k
k

)
ways to do this. b) Let P(r) be the statement to be proved. The

basis step is the equation
(n

0

)
=

(n+1

0

)
, which is just 1 = 1.

Assume that P(r) is true. Then
∑r+1

k=0

(n+k
k

)
=

∑r
k=0

(n+k
k

)
+(n+r+1

r+1

)
=

(n+r+1

r

)
+

(n+r+1

r+1

)
=

(n+r+2

r+1

)
, using the induc-

tive hypothesis and Pascal’s identity. 33. We can choose the

leader first in n different ways. We can then choose the rest of

the committee in 2n−1 ways. Hence, there are n2n−1 ways to

choose the committee and its leader. Meanwhile, the number

of ways to select a committee with k people is
(n

k

)
. Once we

have chosen a committee with k people, there are k ways to

choose its leader. Hence, there are
∑n

k=1
k
(n

k

)
ways to choose

the committee and its leader. Hence,
∑n

k=1
k
(n

k

)
= n2n−1.

35. Let the set have n elements. From Corollary 2 we have(n
0

)
−

(n
1

)
+

(n
2

)
− ⋯ + (−1)n(n

n

)
= 0. It follows that(n

0

)
+

(n
2

)
+

(n
4

)
+⋯ =

(n
1

)
+

(n
3

)
+

(n
5

)
+⋯ . The left-hand side

gives the number of subsets with an even number of elements,

and the right-hand side gives the number of subsets with an

odd number of elements. 37. a) A path of the desired type

consists of m moves to the right and n moves up. Each such

path can be represented by a bit string of length m + n with

m 0s and n 1s, where a 0 represents a move to the right and a

1 a move up. b) The number of bit strings of length m + n
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containing exactly n 1s equals
(m+n

n

)
=

(m+n
m

)
because such

a string is determined by specifying the positions of the n 1s

or by specifying the positions of the m 0s. 39. By Exercise

37 the number of paths of length n of the type described in

that exercise equals 2n, the number of bit strings of length n.

On the other hand, a path of length n of the type described in

Exercise 37 must end at a point that has n as the sum of its co-

ordinates, say (n−k, k) for some k between 0 and n, inclusive.

By Exercise 37, the number of such paths ending at (n − k, k)

equals
(n−k+k

k

)
=

(n
k

)
. Hence,

∑n
k=0

(n
k

)
= 2n. 41. By Ex-

ercise 37 the number of paths from (0, 0) to (n + 1, r) of the

type described in that exercise equals
(n+r+1

r

)
. But such a path

starts by going j steps vertically for some j with 0 ≤ j ≤ r. The

number of these paths beginning with j vertical steps equals

the number of paths of the type described in Exercise 37 that

go from (1, j) to (n + 1, r). This is the same as the number

of such paths that go from (0, 0) to (n, r − j), which by Ex-

ercise 37 equals
(n+r−j

r−j

)
. Because

∑r
j=0

(n+r−j
r−j

)
=

∑r
k=0

(n+k
k

)
,

it follows that
∑r

k=1

(n+k
k

)
=

(n+r−1

r

)
. 43. a)

(n+1

2

)
b)

(n+2

3

)
c)

(2n−2

n−1

)
d)

( n−1⌊(n−1)∕2⌋)

)
e) Largest odd entry in nth row of

Pascal’s triangle f)
(3n−3

n−1

)

Section 6.5

1. 243 3. 266 5. 125 7. 35 9. a) 1716 b) 50,388

c) 2,629,575 d) 330 11. 9 13. 4,504,501 15. a) 10,626

b) 1,365 c) 11,649 d) 106 17. 2,520 19. 302,702,400

21. a) 169 b) 156 c) 78 d) 91 23. 3003 25. 7,484,400

27. 30,492 29. C(59, 50) 31. 35 33. 83,160 35. 63

37. 19,635 39. 210 41. 27,720 43. 52!∕(7!517!)
45. Approximately 6.5 × 1032 47. a) C(k + n − 1, n)

b) (k + n − 1)!∕(k − 1)! 49. There are C(n, n1) ways to

choose n1 objects for the first box. Once these objects are

chosen, there are C(n − n1, n2) ways to choose objects for the

second box. Similarly, there are C(n − n1 − n2, n3) ways to

choose objects for the third box. Continue in this way until

there is C(n − n1 − n2 − ⋯ − nk−1, nk) = C(nk, nk) =
1 way to choose the objects for the last box (because

n1 + n2 + ⋯ + nk = n). By the product rule, the num-

ber of ways to make the entire assignment is C(n, n1)C(n −
n1, n2)C(n − n1 − n2, n3) ⋯ C(n − n1 − n2 − ⋯ − nk−1, nk),

which equals n!∕(n1!n2! ⋯ nk!), as straightforward simpli-

fication shows. 51. a) Because x1 ≤ x2 ≤ ⋯ ≤ xr, it fol-

lows that x1 + 0 < x2 + 1 < ⋯ < xr + r − 1.

The inequalities are strict because xj + j − 1 < xj+1 + j
as long as xj ≤ xj+1. Because 1 ≤ xj ≤ n + r − 1, this se-

quence is made up of r distinct elements from T . b) Suppose

that 1 ≤ x1 < x2 < ⋯ < xr ≤ n + r − 1. Let

yk = xk − (k − 1). Then it is not hard to see that yk ≤ yk+1 for

k = 1, 2, … , r − 1 and that 1 ≤ yk ≤ n for k = 1, 2, … r.

It follows that {y1, y2, … , yr} is an r-combination with rep-

etitions allowed of S. c) From parts (a) and (b) it follows

that there is a one-to-one correspondence of r-combinations

with repetitions allowed of S and r-combinations of T , a

set with n + r − 1 elements. We conclude that there are

C(n + r − 1, r) r-combinations with repetitions allowed of S.

53. 65 55. 65 57. 2 59. 3 61. a) 150 b) 25 c) 6 d) 2

63. 90,720 65. The terms in the expansion are of the form

xn1

1
xn2

2
⋯ xnm

m , where n1 + n2 +⋯ + nm = n. Such a term arises

from choosing the x1 in n1 factors, the x2 in n2 factors,… , and

the xm in nm factors. This can be done in C(n; n1, n2, … , nm)

ways, because a choice is a permutation of n1 labels “1,” n2

labels “2,” … , and nm labels “m.” 67. 2520

Section 6.6

1. 14532, 15432, 21345, 23451, 23514, 31452, 31542, 43521,

45213, 45321 3. AAA1, AAA2, AAB1, AAB2, AAC1,

AAC2, ABA1, ABA2, ABB1, ABB2, ABC1, ABC2, ACA1,

ACA2, ACB1, ACB2, ACC1, ACC2, BAA1, BAA2, BAB1,

BAB2, BAC1, BAC2, BBA1, BBA2, BBB1, BBB2, BBC1,

BBC2, BCA1, BCA2, BCB1, BCB2, BCC1, BCC2, CAA1,

CAA2, CAB1, CAB2, CAC1, CAC2, CBA1, CBA2, CBB1,

CBB2, CBC1, CBC2, CCA1, CCA2, CCB1, CCB2, CCC1,

CCC2 5. a) 2134 b) 54132 c) 12534 d) 45312 7. 1234,

1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2413,

2431, 3124, 3142, 3214, 3241, 3412, 3421, 4123, 4132, 4213,

4231, 4312, 4321 9. {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4},

{1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}
11. The bit string representing the next larger r-combination

must differ from the bit string representing the original one in

position i because positions i + 1, … , r are occupied by the

largest possible numbers. Also ai + 1 is the smallest possi-

ble number we can put in position i if we want a combination

greater than the original one. Then ai +2,… , ai + r− i+1 are

the smallest allowable numbers for positions i + 1 to r. Thus,

we have produced the next r-combination. 13. 123, 132,

213, 231, 312, 321, 124, 142, 214, 241, 412, 421, 125, 152,

215, 251, 512, 521, 134, 143, 314, 341, 413, 431, 135, 153,

315, 351, 513, 531, 145, 154, 415, 451, 514, 541, 234, 243,

324, 342, 423, 432, 235, 253, 325, 352, 523, 532, 245, 254,

425, 452, 524, 542, 345, 354, 435, 453, 534, 543 15. We

will show that it is a bijection by showing that it has an in-

verse. Given a positive integer less than n!, let a1, a2,… , an−1

be its Cantor digits. Put n in position n−an−1; then an−1 is the

number of integers less than n that follow n in the permuta-

tion. Then put n − 1 in free position (n − 1) − an−2, where we

have numbered the free positions 1, 2, … , n − 1 (excluding

the position that n is already in). Continue until 1 is placed

in the only free position left. Because we have constructed an

inverse, the correspondence is a bijection.

17. procedure Cantor permutation(n, i: integers with

n ≥ 1 and 0 ≤ i < n!)
x := n
for j := 1 to n

pj := 0

for k := 1 to n − 1

c := ⌊x∕(n − k)!⌋; x := x − c(n − k)!; h := n
while ph ≠ 0
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h := h − 1

for j := 1 to c
h := h − 1

while ph ≠ 0

h := h − 1

ph := n − k + 1

h := 1

while ph ≠ 0

h := h + 1

ph := 1

{p1p2 … pn is the permutation corresponding to i}

Supplementary Exercises

1. a) 151,200 b) 1,000,000 c) 210 d) 5005 3. 3100

5. 24,600 7. a) 4060 b) 2688 c) 25,009,600 9. a) 192

b) 301 c) 300 d) 300 11. 639 13. The maximum pos-

sible sum is 240, and the minimum possible sum is 15. So the

number of possible sums is 226. Because there are 252 subsets

with five elements of a set with 10 elements, by the pigeon-

hole principle it follows that at least two have the same sum.

15. a) 50 b) 50 c) 14 d) 17 17. Let a1, a2,… , am be the in-

tegers, and let di =
∑i

j=1
aj. If di ≡ 0 (mod m) for some i, we

are done. Otherwise d1 𝐦𝐨𝐝 m, d2 𝐦𝐨𝐝 m, … , dm 𝐦𝐨𝐝 m
are m integers with values in {1, 2, … , m − 1}. By the pi-

geonhole principle dk = dl for some 1 ≤ k < l ≤ m.

Then
∑l

j=k+1
aj = dl − dk ≡ 0 (mod m). 19. The

decimal expansion of the rational number a∕b can be ob-

tained by division of b into a, where a is written with a

decimal point and an arbitrarily long string of 0s following

it. The basic step is finding the next digit of the quotient,

namely, ⌊r∕b⌋, where r is the remainder with the next digit

of the dividend brought down. The current remainder is ob-

tained from the previous remainder by subtracting b times the

previous digit of the quotient. Eventually the dividend has

nothing but 0s to bring down. Furthermore, there are only

b possible remainders. Thus, at some point, by the pigeon-

hole principle, we will have the same situation as had pre-

viously arisen. From that point onward, the calculation must

follow the same pattern. In particular, the quotient will re-

peat. 21. a) 125,970 b) 20 c) 141,120,525 d) 141,120,505

e) 177,100 f) 141,078,021 23. a) 10 b) 8 c) 7 25. 3n

27. C(n + 2, r + 1) = C(n + 1, r + 1) + C(n + 1, r) =
2C(n + 1, r + 1) − C(n + 1, r + 1) + C(n + 1, r) =
2C(n + 1, r + 1) − (C(n, r + 1) + C(n, r)) + (C(n, r) +
C(n, r − 1)) = 2C(n + 1, r + 1) − C(n, r + 1) + C(n, r − 1)

29. Substitute x = 1 and y = 3 into the binomial theo-

rem. 31. Both sides count the number of ways to choose a

subset of three distinct numbers {i, j, k} with i < j < k from

{1, 2,… , n}. 33. C(n + 1, 5) 35. 3,491,888,400 37. 524

39. a) 45 b) 57 c) 12 41. a) 386 b) 56 43. 0 if n < m;

C(n − 1, n − m) if n ≥ m 45. a) 15,625 b) 202 c) 210

d) 10 47. a) 3 b) 11 c) 6 d) 10 49. There are two pos-

sibilities: three people seated at one table with everyone else

sitting alone, which can be done in 2C(n, 3) ways (choose the

three people and seat them in one of two arrangements), or

two groups of two people seated together with everyone else

sitting alone, which can be done in 3C(n, 4) ways (choose four

people and then choose one of the three ways to pair them

up). Both 2C(n, 3) + 3C(n, 4) and (3n − 1)C(n, 3)∕4 equal

n4∕8 − 5n3∕12 + 3n2∕8 − n∕12. 51. The number of per-

mutations of 2n objects of n different types, two of each type,

is (2n)!∕2n. Because this must be an integer, the denominator

must divide the numerator. 53. CCGGUCCGAAAG

55. procedure next permutation(n: positive integer,

a1, a2,… , ar: positive integers not exceeding

n with a1a2 … ar ≠ nn… n)

i := r
while ai = n

ai := 1

i := i − 1

ai := ai + 1

{a1a2 … ar is the next permutation in lexicographic

order}
57. We must show that if there are R(m, n − 1) + R(m − 1, n)

people at a party, then there must be at least m mutual friends

or n mutual enemies. Consider one person; let’s call him Jerry.

Then there are R(m−1, n)+R(m, n−1)−1 other people at the

party, and by the pigeonhole principle there must be at least

R(m − 1, n) friends of Jerry or R(m, n − 1) enemies of Jerry

among these people. First let’s suppose there are R(m − 1, n)

friends of Jerry. By the definition of R, among these people

we are guaranteed to find either m−1 mutual friends or n mu-

tual enemies. In the former case, these m − 1 mutual friends

together with Jerry are a set of m mutual friends; and in the

latter case, we have the desired set of n mutual enemies. The

other situation is similar: Suppose there are R(m, n − 1) ene-

mies of Jerry; we are guaranteed to find among them either m
mutual friends or n − 1 mutual enemies. In the former case,

we have the desired set of m mutual friends, and in the latter

case, these n− 1 mutual enemies together with Jerry are a set

of n mutual enemies.

CHAPTER 7

Section 7.1

1. 1∕13 3. 1∕2 5. 1∕2 7. 1∕64 9. 47∕52 11. 1∕C(52, 5)

13. 1 − [C(48, 5)∕C(52, 5)] 15. C(13, 2)C(4, 2)C(4, 2)

C(44, 1)∕C(52, 5) 17. 10,240∕C(52, 5) 19. 1,302,540∕
C(52, 5) 21. 1∕64 23. 8∕25 25. a) 1∕C(50, 6) =
1∕15,890,700 b) 1∕C(52, 6) = 1∕20,358,520

c) 1∕C(56, 6) = 1∕32,468,436 d) 1∕C(60, 6) = 1∕50,063,860

27. a) 139,128∕319,865 b) 212,667∕511,313

c) 151,340∕386,529 d) 163,647∕446,276 29. 1∕C(100, 8)

31. 3∕100 33. a) 1∕7,880,400 b) 1∕8,000,000 35. a) 9∕19

b) 81∕361 c) 1∕19 d) 1,889,568∕2,476,099 e) 48∕361

37. Three dice 39. a) 4∕756,438,375 b) 13∕30,257,535
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c) 4888∕2,750,685 d) 90,272∕9,823,875 41. a) 25∕
292,201,338 b) 25∕292,201,338 c) 1280∕571,120,797

d) 7564∕661,089 43. The door the contestant chooses is

chosen at random without knowing where the prize is, but the

door chosen by the host is not chosen at random, because he

always avoids opening the door with the prize. This makes

any argument based on symmetry invalid. 45. a) 671∕1296

b) 1 − 3524∕3624; no c) The former

Section 7.2

1. p(T) = 1∕4, p(H) = 3∕4 3. p(1) = p(3) = p(5) =
p(6) = 1∕16; p(2) = p(4) = 3∕8 5. 9∕49 7. a) 1∕2

b) 1∕2 c) 1∕3 d) 1∕4 e) 1∕4 9. a) 1∕26! b) 1∕26 c) 1∕2

d) 1∕26 e) 1∕650 f) 1∕15,600 11. Clearly, p(E ∪ F) ≥
p(E) = 0.7. Also, p(E ∪ F) ≤ 1. If we apply Theorem 2 from

Section 7.1, we can rewrite this as p(E)+p(F)−p(E∩F) ≤ 1,

or 0.7 + 0.5 − p(E ∩ F) ≤ 1. Solving for p(E ∩ F) gives

p(E∩F) ≥ 0.2. 13. Because p(E∪F) = p(E)+p(F)−p(E∩F)

and p(E ∪ F) ≤ 1, it follows that 1 ≥ p(E) + p(F) − p(E ∩ F).

From this inequality we conclude that p(E) + p(F) ≤ 1 +
p(E ∩ F). 15. We will use mathematical induction to prove

that the inequality holds for n ≥ 2. Let P(n) be the state-

ment that p(
⋃n

j=1
Ej) ≤

∑n
j=1

p(Ej). Basis step: P(2) is true

because p(E1 ∪ E2) = p(E1) + p(E2) − p(E1 ∩ E2) ≤
p(E1) + p(E2). Inductive step: Assume that P(k) is true. Us-

ing the basis case and the inductive hypothesis, it follows that

p(
⋃k+1

j=1
Ej) ≤ p(

⋃k
j=1

Ej) + p(Ek+1) ≤
∑k+1

j=1
p(Ej). This

shows that P(k + 1) is true, completing the proof by math-

ematical induction. 17. Because E ∪ E is the entire sam-

ple space S, the event F can be split into two disjoint events:

F = S∩F = (E∪E)∩F = (E∩F)∪(E∩F), using the distributive

law. Therefore, p(F) = p((E∩F)∪(E∩F)) = p(E∩F)+p(E∩F),

because these two events are disjoint. Subtracting p(E ∩ F)

from both sides, using the fact that p(E ∩ F) = p(E) ⋅ p(F)

(the hypothesis that E and F are independent), and factoring,

we have p(F)[1− p(E)] = p(E∩F). Because 1− p(E) = p(E),

this says that p(E∩F) = p(E) ⋅p(F), as desired. 19. a) 1∕12

b) 1 − 11

12
⋅ 10

12
⋅ ⋯ ⋅ 13−n

12
c) 5 21. 614 23. 1∕4 25. 3∕8

27. a) Not independent b) Not independent c) Not inde-

pendent 29. 3∕16 31. a) 1∕32 = 0.03125 b) 0.495 ≈
0.02825 c) 0.03795012 33. a) 5∕8 b) 0.627649 c) 0.6431

35. a) pn b) 1 − pn c) pn + n ⋅ pn−1 ⋅ (1 − p)

d) 1 − [pn + n ⋅ pn−1 ⋅ (1 − p)] 37. p(
⋃∞

i=1
Ei) is the sum of

p(s) for each outcome s in
⋃∞

i=1
Ei. Because the Eis are pair-

wise disjoint, this is the sum of the probabilities of all the out-

comes in any of the Eis, which is what
∑∞

i=1
p(Ei) is. (We can

rearrange the summands and still get the same answer because

this series converges absolutely.) 39. a) E =
⋃(m

k)
j=1

Fj, so the

given inequality now follows from Boole’s inequality (Exer-

cise 15). b) The probability that a particular player not in the

jth set beats all k of the players in the jth set is (1∕2)k = 2−k.

Therefore, the probability that this player does not do so is

1−2−k, so the probability that all m−k of the players not in the

jth set are unable to boast of a perfect record against everyone

in the jth set is (1−2−k)m−k. That is precisely p(Fj). c) The first

inequality follows immediately, because all the summands are

the same and there are
(m

k

)
of them. If this probability is less

than 1, then it must be possible that E fails, i.e., that E hap-

pens. So there is a tournament that meets the conditions of the

problem as long as the second inequality holds. d) m ≥ 21

for k = 2, and m ≥ 91 for k = 3

41. procedure probabilistic prime(n, k)

composite := false
i := 0

while composite = false and i < k
i := i + 1

choose b uniformly at random with 1 < b < n
apply Miller’s test to base b
if n fails the test then composite := true

if composite = true then print (“composite”)

else print (“probably prime”)

Section 7.3

NOTE: In the answers for Section 7.3, all probabili-

ties given in decimal form are rounded to three decimal

places. 1. 3∕5 3. 3∕4 5. 0.481 7. a) 0.999 b) 0.324

9. a) 0.740 b) 0.260 c) 0.002 d) 0.998 11. 0.724

13. 3∕17 15. a) 1∕3 b) p(M = j ∣ W = k) = 1 if i, j,
and k are distinct; p(M = j ∣ W = k) = 0 if j = k or j = i;
p(M = j ∣ W = k) = 1∕2 if i = k and j ≠ i c) 2∕3 d) You

should change doors, because you now have a 2∕3 chance to

win by switching. 17. The definition of conditional proba-

bility tells us that p(Fj ∣ E) = p(E ∩ Fj)∕p(E). For the numer-

ator, again using the definition of conditional probability, we

have p(E ∩ Fj) = p(E ∣ Fj)p(Fj), as desired. For the denom-

inator, we show that p(E) =
∑n

i=1
p(E ∣ Fi)p(Fi). The events

E ∩ Fi partition the event E; that is, (E ∩ Fi1 ) ∩ (E ∩ Fi2 ) = ∅
when ii ≠ i2 (because the Fi’s are mutually exclusive), and⋃n

i=1
(E ∩ Fi1 ) = E (because the

⋃n
i=1

Fi = S). Therefore,

p(E) =
∑n

i=1
p(E ∩ Fi) =

∑n
i=1

p(E ∣ Fi)p(Fi). 19. No

21. Yes 23. By Bayes’ theorem, p(S ∣ E1∩E2) = p(E1∩E2 ∣
S)p(S)∕[p(E1 ∩ E2 ∣ S)p(S)+ p(E1 ∩ E2 ∣ S)p(S)]. Because we

are assuming no prior knowledge about whether a message is

or is not spam, we set p(S) = p(S) = 0.5, and so the equation

above simplifies to p(S ∣ E1∩E2) = p(E1∩E2 ∣ S)∕[p(E1∩E2 ∣
S)+p(E1 ∩E2 ∣ S)]. Because of the assumed independence of

E1, E2, and S, we have p(E1 ∩ E2 ∣ S) = p(E1 ∣ S) ⋅ p(E2 ∣ S),

and similarly for S.

Section 7.4

1. 2.5 3. 5∕3 5. 336∕49 7. 170 9. (4n + 6)∕3

11. 50,700,551∕10,077,696 ≈ 5.03 13. 6 15. p(X ≥ j) =∑∞
k=j p(X = k) =

∑∞
k=j(1−p)k−1p = p(1−p) j−1

∑∞
k=0

(1−p)k =
p(1 − p) j−1∕(1 − (1 − p)) = (1 − p) j−1 17. 2302

19. (7∕2) ⋅ 7 ≠ 329∕12 21. 10 23. 1472 pounds

25. p + (n − 1)p(1 − p) 27. 5∕2 29. a) 0 b) n 31. This

is not true. For example, let X be the number of heads in
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one flip of a fair coin, and let Y be the number of heads in

one flip of a second fair coin. Then A(X) + A(Y) = 1 but

A(X + Y) = 0.5. 33. a) We are told that X1 and X2 are

independent. To see that X1 and X3 are independent, we enu-

merate the eight possibilities for (X1, X2, X3) and find that

(0, 0, 0), (1, 0, 1), (0, 1, 1), (1, 1, 0) each have probability 1∕4

and the others have probability 0 (because of the definition

of X3). Thus, p(X1 = 0 ∧ X3 = 0) = 1∕4, p(X1 = 0) = 1∕2,

and p(X3 = 0) = 1∕2, so it is true that p(X1 = 0 ∧ X3 =
0) = p(X1 = 0)p(X3 = 0). Essentially the same calculation

shows that p(X1 = 0 ∧ X3 = 1) = p(X1 = 0)p(X3 = 1),

p(X1 = 1 ∧ X3 = 0) = p(X1 = 1)p(X3 = 0), and

p(X1 = 1∧X3 = 1) = p(X1 = 1)p(X3 = 1). Therefore, by defi-

nition, X1 and X3 are independent. The same reasoning shows

that X2 and X3 are independent. To see that X3 and X1+X2 are

not independent, we observe that p(X3 = 1∧X1+X2 = 2) = 0.

But p(X3 = 1)p(X1 + X2 = 2) = (1∕2)(1∕4) = 1∕8. b) We

see from the calculation in part (a) that X1, X2, and X3 are

all Bernoulli random variables, so the variance of each is

(1∕2)(1∕2) = 1∕4. Therefore, V(X1) + V(X2) + V(X3) = 3∕4.

We use the calculations in part (a) to see that E(X1+X2+X3) =
3∕2, and then V(X1+X2+X3) = 3∕4. c) In order to use the first

part of Theorem 7 to show that V((X1+X2+⋯+Xk)+Xk+1) =
V(X1 + X2 + ⋯ + Xk) + V(Xk+1) in the inductive step of a

proof by mathematical induction, we would have to know

that X1 + X2 + ⋯ + Xk and Xk+1 are independent, but we

see from part (a) that this is not necessarily true. 35. 1∕100

37. E(X)∕a =
∑

r(r∕a) ⋅ p(X = r) ≥
∑

r≥a 1 ⋅ p(X =
r) = p(X ≥ a) 39. a) 10∕11 b) 0.9999 41. a) Each of

the n! permutations occurs with probability 1∕n!, so E(X) is

the number of comparisons, averaged over all these permu-

tations. b) Even if the algorithm continues n − 1 rounds, X
will be at most n(n− 1)∕2. It follows from the formula for ex-

pectation that E(X) ≤ n(n− 1)∕2. c) The algorithm proceeds

by comparing adjacent elements and then swapping them if

necessary. Thus, the only way that inverted elements can be-

come uninverted is for them to be compared and swapped.

d) Because X(P) ≥ I(P) for all P, it follows from the defi-

nition of expectation that E(X) ≥ E(I). e) This summation

counts 1 for every instance of an inversion. f) This follows

from Theorem 3. g) By Theorem 2 with n = 1, the ex-

pectation of Ij,k is the probability that ak precedes aj in the

permutation. This is clearly 1∕2 by symmetry. h) The sum-

mation in part (f) consists of C(n, 2) = n(n − 1)∕2 terms,

each equal to 1∕2, so the sum is n(n − 1)∕4. i) From part

(a) and part (b) we know that E(X), the object of interest,

is at most n(n − 1)∕2, and from part (d) and part (h) we

know that E(X) is at least n(n − 1)∕4, both of which are

Θ(n2). 43. 1 45. V(X + Y) = E((X + Y)2) − E(X + Y)2 =
E(X2+2XY+Y2)−[E(X)+E(Y)]2 = E(X2)+2E(XY)+E(Y2)−
E(X)2 − 2E(X)E(Y) − E(Y)2 = E(X2) − E(X)2 + 2[E(XY) −
E(X)E(Y)] + E(Y2) − E(Y)2 = V(X) + 2 Cov(X, Y) + V(Y)

47. [(n − 1)∕n]m 49. (n − 1)m∕nm−1

Supplementary Exercises

1. 1∕109,668 3. a) 1∕195,249,054 b) 1∕5,138,133

c) 45∕357,599 d) 18,285∕18,821 5. a) 1∕C(52, 13)

b) 4∕C(52, 13) c) 2,944,656∕C(52, 13) d) 35,335,872∕
C(52, 13) 7. a) 9∕2 b) 21∕4 9. a) 9 b) 21∕2 11. a) 8

b) 49∕6 13. a) n∕2n−1 b) p(1 − p)k−1, where p = n∕2n−1

c) 2n−1∕n 15. (m−1)(n−1)+gcd(m,n)−1

mn−1
17. a) 2∕3 b) 2∕3

19. 1∕32 21. a) The probability that one wins 2n dollars

is 1∕2n, because that happens precisely when the player gets

n− 1 tails followed by a head. The expected value of the win-

nings is therefore the sum of 2n times 1∕2n as n goes from 1 to

infinity. Because each of these terms is 1, the sum is infinite.

In other words, one should be willing to wager any amount of

money and expect to come out ahead in the long run. b) $9,

$9 23. a) 1∕3 when S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},

A = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and B = {1, 2, 3, 4};

1∕12 when S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},

A = {4, 5, 6, 7, 8, 9, 10, 11, 12}, and B = {1, 2, 3, 4}
b) 1 when S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},

A = {4, 5, 6, 7, 8, 9, 10, 11, 12}, and B = {1, 2, 3, 4};

3∕4 when S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},

A = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and B = {1, 2, 3, 4}
25. a) p(E1 ∩ E2) = p(E1)p(E2), p(E1 ∩ E3) =
p(E1)p(E3), p(E2 ∩E3) = p(E2)p(E3), p(E1 ∩E2 ∩E3) = p(E1)

p(E2)p(E3) b) Yes c) Yes; yes d) Yes; no e) 2n − n − 1

27. a) 1∕2 under first interpretation; 1∕3 under second in-

terpretation b) Let M be the event that both of Mr. Smith’s

children are boys and let B be the event that Mr. Smith chose

a boy for today’s walk. Then p(M) = 1∕4, p(B ∣ M) = 1,

and p(B ∣ M) = 1∕3. Apply Bayes’ theorem to compute

p(M ∣ B) = 1∕2. c) This variation is equivalent to the

second interpretation discussed in part (a), so the answer is

unambiguously 1∕3. 29. V(aX + b) = E((aX + b)2) −
E(aX + b)2 = E(a2X2 + 2abX + b2) − [aE(X) + b]2 =
E(a2X2) + E(2abX) + E(b2) − [a2E(X)2 + 2abE(X) + b2] =
a2E(X2) + 2abE(X) + b2 − a2E(X)2 − 2abE(X) − b2 =
a2[E(X2) − E(X)2] = a2V(X) 31. To count every el-

ement in the sample space exactly once, we must include

every element in each of the sets and then take away the

double counting of the elements in the intersections. Thus,

p(E1∪E2∪⋯∪Em) = p(E1)+p(E2)+⋯+p(Em)−p(E1∩E2)−
p(E1∩E3)−⋯−p(E1∩Em)−p(E2∩E3)−p(E2∩E4)−⋯−p(E2∩
Em)−⋯−p(Em−1∩Em) = qm−(m(m−1)∕2)r, because C(m, 2)

terms are being subtracted. But p(E1 ∪ E2 ∪⋯ ∪ Em) = 1, so

we have qm−[m(m−1)∕2]r = 1. Because r ≥ 0, this equation

tells us that qm ≥ 1, so q ≥ 1∕m. Because q ≤ 1, this equation

also implies that [m(m−1)∕2]r = qm−1 ≤ m−1, from which

it follows that r ≤ 2∕m. 33. a) We purchase the cards until

we have gotten one of each type. That means we have pur-

chased X cards in all. On the other hand, that also means that

we purchased X0 cards until we got the first type we got, and

then purchased X1 more cards until we got the second type we

got, and so on. Thus, X is the sum of the Xjs. b) Once j distinct

types have been obtained, there are n − j new types available

out of a total of n types available. Because it is equally likely
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that we get each type, the probability of success on the next

purchase (getting a new type) is (n − j)∕n. c) This follows

immediately from the definition of geometric distribution,

the definition of Xj, and part (b). d) From part (c) it follows

that E(Xj) = n∕(n − j). Thus, by the linearity of expectation

and part (a), we have E(X) = E(X0) + E(X1) +⋯ + E(Xn−1)

= n
n
+ n

n−1
+⋯ + n

1
= n

(
1

n
+ 1

n−1
+⋯ + 1

1

)
. e) About

224.46 35. 24 ⋅ 134∕(52 ⋅ 51 ⋅ 50 ⋅ 49)

CHAPTER 8

Section 8.1

1. Let P(n) be “Hn = 2n − 1.” Basis step: P(1) is true because

H1 = 1. Inductive step: Assume that Hn = 2n − 1. Then be-

cause Hn+1 = 2Hn + 1, it follows that Hn+1 = 2(2n − 1)+ 1 =
2n+1 − 1. 3. a) an = 2an−1 + an−5 for n ≥ 5 b) a0 = 1,

a1 = 2, a2 = 4, a3 = 8, a4 = 16 c) 1217 5. 9494

7. a) an = an−1+an−2+2n−2 for n ≥ 2 b) a0 = 0, a1 = 0 c) 94

9. a) an = an−1+an−2+an−3 for n ≥ 3 b) a0 = 1, a1 = 2, a2 = 4

c) 81 11. a) an = an−1 + an−2 for n ≥ 2 b) a0 = 1, a1 = 1

c) 34 13. a) an = 2an−1 +2an−2 for n ≥ 2 b) a0 = 1, a1 = 3

c) 448 15. a) an = 2an−1 +an−2 for n ≥ 2 b) a0 = 1, a1 = 3

c) 239 17. a) an = 2an−1 for n ≥ 2 b) a1 = 3 c) 96

19. a) an = an−1 + an−2 for n ≥ 2 b) a0 = 1, a1 = 1

c) 89 21. a) Rn = n+Rn−1, R0 = 1 b) Rn = n(n+ 1)∕2+ 1

23. a) Sn = Sn−1+(n2−n+2)∕2, S0 = 1 b) Sn = (n3+5n+6)∕6

25. 64 27. a) an = 2an−1 +2an−2 b) a0 = 1, a1 = 3 c) 1224

29. Clearly, S(m, 1) = 1 for m ≥ 1. If m ≥ n, then a function

that is not onto from the set with m elements to the set with

n elements can be specified by picking the size of the range,

which is an integer between 1 and n− 1 inclusive, picking the

elements of the range, which can be done in C(n, k) ways, and

picking an onto function onto the range, which can be done

in S(m, k) ways. Hence, there are
∑n−1

k=1
C(n, k)S(m, k) func-

tions that are not onto. But there are nm functions altogether,
so S(m, n) = nm −

∑n−1

k=1
C(n, k)S(m, k). 31. a) C5 = C0C4 +

C1C3+C2C2+C3C1+C4C0 = 1⋅14+1⋅5+2⋅2+5⋅1+14⋅1 = 42

b) C(10, 5)∕6 = 42 33. J(1) = 1, J(2) = 1, J(3) = 3,

J(4) = 1, J(5) = 3, J(6) = 5, J(7) = 7, J(8) = 1, J(9) = 3,

J(10) = 5, J(11) = 7, J(12) = 9, J(13) = 11, J(14) = 13,

J(15) = 15, J(16) = 1 35. First, suppose that the num-
ber of people is even, say 2n. After going around the circle

once and returning to the first person, because the people at

locations with even numbers have been eliminated, there are

exactly n people left and the person currently at location i is

the person who was originally at location 2i − 1. Therefore,

the survivor [originally in location J(2n)] is now in location

J(n); this was the person who was at location 2J(n)−1. Hence,

J(2n) = 2J(n) − 1. Similarly, when there are an odd number

of people, say 2n + 1, then after going around the circle once

and then eliminating person 1, there are n people left and the

person currently at location i is the person who was at location

2i+ 1. Therefore, the survivor will be the player currently oc-

cupying location J(n), namely, the person who was originally

at location 2J(n) + 1. Hence, J(2n + 1) = 2J(n) + 1. The

basis step is J(1) = 1. 37. 73, 977, 3617 39. These nine

moves solve the puzzle: Move disk 1 from peg 1 to peg 2;

move disk 2 from peg 1 to peg 3; move disk 1 from peg 2 to

peg 3; move disk 3 from peg 1 to peg 2; move disk 4 from

peg 1 to peg 4; move disk 3 from peg 2 to peg 4; move disk 1

from peg 3 to peg 2; move disk 2 from peg 3 to peg 4; move

disk 1 from peg 2 to peg 4. To see that at least nine moves

are required, first note that at least seven moves are required

no matter how many pegs are present: three to unstack the

disks, one to move the largest disk 4, and three more moves

to restack them. At least two other moves are needed, because

to move disk 4 from peg 1 to peg 4 the other three disks must

be on pegs 2 and 3, so at least one move is needed to restack

them and one move to unstack them. 41. The base cases are

obvious. If n > 1, the algorithm consists of three stages. In

the first stage, by the inductive hypothesis, R(n − k) moves

are used to transfer the smallest n − k disks to peg 2. Then

using the usual three-peg Tower of Hanoi algorithm, it takes

2k − 1 moves to transfer the rest of the disks (the largest

k disks) to peg 4, avoiding peg 2. Then again by the in-

ductive hypothesis, it takes R(n − k) moves to transfer

the smallest n − k disks to peg 4; all the pegs are available

for this, because the largest disks, now on peg 4, do not inter-

fere. This establishes the recurrence relation. 43. First note

that R(n) =
∑n

j=1
[R( j)−R( j− 1)] [which follows because the

sum is telescoping and R(0) = 0]. By Exercise 42, this is the

sum of 2k′−1 for this range of values of j. Therefore, the sum

is
∑k

i=1
i2i−1, except that if n is not a triangular number, then

the last few values when i = k are missing, and that is what

the final term in the given expression accounts for. 45. By

Exercise 43, R(n) is no larger than
∑k

i=1
i2i−1. It can be shown

that this sum equals (k + 1)2k − 2k+1 + 1, so it is no greater

than (k+ 1)2k. Because n > k(k− 1)∕2, the quadratic formula

can be used to show that k < 1+
√

2n for all n > 1. Therefore,

R(n) is bounded above by (1 +
√

2n + 1)21+
√

2n < 8
√

n2
√

2n

for all n > 2. Hence, R(n) is O(
√

n2
√

2n). 47. a) 0 b) 0

c) 2 d) 2n−1 − 2n−2 49. an − 2∇an + ∇2an = an − 2(an −
an−1) + (∇an − ∇an−1) = −an + 2an−1 + [(an − an−1) −
(an−1 − an−2)] = −an + 2an−1 + (an − 2an−1 + an−2) = an−2

51. an = an−1 + an−2 = (an − ∇an) + (an − 2∇an + ∇2an) =
2an − 3∇an + ∇2an, or an = 3∇an − ∇2an 53. Insert

S(0) := ∅ after T(0) := 0 (where S( j) will record the optimal

set of talks among the first j talks), and replace the statement

T( j) := max(wj + T(p( j)), T( j − 1)) with the following code:

if wj + T(p( j)) > T( j − 1) then
T( j) := wj + T(p( j))
S( j) := S(p( j)) ∪ {j}

else
T( j) := T( j − 1)

S( j) := S( j − 1)

55. a) Talks 1, 3, and 7 b) Talks 1 and 6, or talks 1, 3,

and 7 c) Talks 1, 3, and 7 d) Talks 1 and 6 57. a) This
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follows immediately from Example 5 and Exercise 43c in

Section 8.4. b) The last step in computing Aij is to mul-

tiply Aik by Ak+1,j for some k between i and j − 1 in-

clusive, which will require mimk+1mj+1 integer multiplica-

tions, independent of the manner in which Aik and Ak+1,j
are computed. Therefore, to minimize the total number of

integer multiplications, each of those two factors must be

computed in the most efficient manner. c) This follows

immediately from part (b) and the definition of M(i, j).
d) procedure matrix order(m1,… , mn+1:

positive integers)

for i := 1 to n
M(i, i) := 0

for d := 1 to n − 1

for i := 1 to n − d
min := 0

for k := i to i + d
new := M(i, k) + M(k + 1, i + d) + mimk+1mi+d+1

if new < min then
min := new
where(i, i + d) := k

M(i, i + d) := min

e) The algorithm has three nested loops, each of which is in-

dexed over at most n values.

Section 8.2

1. a) Degree 3 b) No c) Degree 4 d) No e) No f) Degree 2

g) No 3. a) an = 3 ⋅ 2n b) an = 2 c) an =
3 ⋅ 2n − 2 ⋅ 3n d) an = 6 ⋅ 2n − 2 ⋅ n2n e) an = n(−2)n−1

f) an = 2n − (−2)n g) an = (1∕2)n+1 − (−1∕2)n+1

5. an = 1√
5

(
1+

√
5

2

)n+1

− 1√
5

(
1−

√
5

2

)n+1

7. [2n+1 + (−1)n]∕3

9. a) Pn = 1.2Pn−1 + 0.45Pn−2, P0 = 100,000, P1 =
120,000 b) Pn = (250,000∕3)(3∕2)n + (50,000∕3)(−3∕10)n

11. a) Basis step: For n = 1 we have 1 = 0+ 1, and for n = 2

we have 3 = 1 + 2. Inductive step: Assume true for k ≤ n.

Then Ln+1 = Ln + Ln−1 = fn−1 + fn+1 + fn−2 + fn = ( fn−1 +

fn−2) + ( fn+1 + fn) = fn + fn+2. b) Ln =
(

1+
√

5

2

)n
+

(
1−

√
5

2

)n

13. an = 8(−1)n − 3(−2)n + 4 ⋅ 3n 15. an = 5+ 3(−2)n − 3n

17. Let an = C(n, 0) + C(n − 1, 1) + ⋯ + C(n − k, k)

where k = ⌊n∕2⌋. First, assume that n is even, so that

k = n∕2, and the last term is C(k, k). By Pascal’s identity we

have an = 1 + C(n − 2, 0) + C(n − 2, 1) + C(n − 3, 1) +
C(n − 3, 2) + ⋯ + C(n − k, k − 2) + C(n − k, k − 1) + 1 =
1+C(n−2, 1)+C(n−3, 2)+⋯+C(n−k, k−1)+C(n−2, 0)+
C(n − 3, 1) +⋯ + C(n − k, k − 2) + 1 = an−1 + an−2 because⌊(n − 1)∕2⌋ = k − 1 = ⌊(n − 2)∕2⌋. A similar calculation

works when n is odd. Hence, {an} satisfies the recurrence re-

lation an = an−1 +an−2 for all positive integers n, n ≥ 2. Also,

a1 = C(1, 0) = 1 and a2 = C(2, 0) + C(1, 1) = 2, which are

f2 and f3. It follows that an = fn+1 for all positive integers n.

19. an = (n2 + 3n + 5)(−1)n 21. (a1,0 + a1,1n + a1,2n2 +

a1,3n3)+(a2,0+a2,1n+a2,2n2)(−2)n+(a3,0+a3,1n)3n+a4,0(−4)n

23. a) 3an−1 + 2n = 3(−2)n + 2n = 2n(−3 + 1) = −2n+1 = an
b) an = 𝛼3n − 2n+1 c) an = 3n+1 − 2n+1 25. a) A =
−1, B = −7 b) an = 𝛼2n − n − 7 c) an = 11 ⋅ 2n − n − 7

27. a) p3n3 +p2n2 +p1n+p0 b) n2p0(−2)n c) n2(p1n+p0)2n

d) (p2n2 + p1n + p0)4n e) n2(p2n2 + p1n + p0)(−2)n

f) n2(p4n4 + p3n3 + p2n2 + p1n + p0)2n g) p0 29. a) an =
𝛼2n + 3n+1 b) an = −2 ⋅ 2n + 3n+1 31. an =
𝛼2n+𝛽3n−n⋅2n+1+3n∕2+21∕4 33. an = (𝛼+𝛽n+n2+n3∕6)2n

35. an = −4 ⋅ 2n − n2∕4 − 5n∕2 + 1∕8 + (39∕8)3n 37. an =
n(n + 1)(n + 2)∕6 39. a) 1,−1, i, −i b) an = 1

4
− 1

4
(−1)n +

2+i
4

in + 2−i
4

(−i)n 41. a) Using the formula for fn, we see that||||fn − 1√
5

(
1+

√
5

2

)n|||| =|||| 1√
5

(
1−

√
5

2

)n|||| < 1∕
√

5 < 1∕2. This

means that fn is the integer closest to
1√
5

(
1+

√
5

2

)n
. b) Less

when n is even; greater when n is odd 43. an = fn−1+2fn−1

45. a) an = 3an−1 + 4an−2, a0 = 2, a1 = 6 b) an =
[4n+1 + (−1)n]∕5 47. a) an = 2an+1 + (n − 1)10,000

b) an = 70,000 ⋅ 2n−1 − 10,000n − 10,000 49. an =
5n2∕12 + 13n∕12 + 1 51. See Chapter 11, Section 5 in

[Ma93]. 53. 6n ⋅ 4n−1∕n

Section 8.3

1. 14 3. The first step is (1110)2(1010)2 = (24 +
22)(11)2 (10)2 + 22[(11)2 − (10)2][(10)2 − (10)2] +
(22 + 1)(10)2 ⋅ (10)2. The product is (10001100)2.

5. C = 50, 665C + 729 = 33,979 7. a) 2 b) 4

c) 7 9. a) 79 b) 48,829 c) 30,517,579 11. O(log n)

13. O(nlog3 2) 15. 5 17. a) Basis step: If the sequence has

just one element, then the one person on the list is the winner.

Recursive step: Divide the list into two parts—the first half

and the second half—as equally as possible. Apply the algo-

rithm recursively to each half to come up with at most two

names. Then run through the entire list to count the number

of occurrences of each of those names to decide which, if ei-

ther, is the winner. b) O(n log n) 19. a) f (n) = f (n∕2) + 2

b) O(log n) 21. a) 7 b) O(log n)

23. a) procedure largest sum(a1,… , an)

best := 0 {empty subsequence has sum 0}
for i := 1 to n

sum := 0

for j := i + 1 to n
sum := sum + aj
if sum > best then best := sum

{best is the maximum possible sum of numbers

in the list}
b) O(n2) c) We divide the list into a first half and a second

half and apply the algorithm recursively to find the largest

sum of consecutive terms for each half. The largest sum of

consecutive terms in the entire sequence is either one of these

two numbers or the sum of a sequence of consecutive terms

that crosses the middle of the list. To find the largest possi-

ble sum of a sequence of consecutive terms that crosses the

middle of the list, we start at the middle and move forward

to find the largest possible sum in the second half of the list,
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and move backward to find the largest possible sum in the

first half of the list; the desired sum is the sum of these two

quantities. The final answer is then the largest of this sum

and the two answers obtained recursively. The base case is

that the largest sum of a sequence of one term is the larger

of that number and 0. d) 11, 9, 14 e) S(n) = 2S(n∕2) + n,

C(n) = 2C(n∕2)+n+2, S(1) = 0, C(1) = 1 f) O(n log n), bet-

ter than O(n2) 25. (1, 6) and (3, 6) at distance 2 27. The

algorithm is essentially the same as the algorithm given in

Example 12. The central strip still has width 2d but we need

to consider just two boxes of size d × d rather than eight

boxes of size (d∕2) × (d∕2). The recurrence relation is the

same as the recurrence relation in Example 12, except that

the coefficient 7 is replaced by 1. 29. With k = logb n, it

follows that f (n) = akf (1) +
∑k−1

j=0
ajc(n∕bj)d = akf (1) +∑k−1

j=0
cnd = akf (1) + kcnd = alogb nf (1) + c(logb n)nd =

nlogb af (1) + cnd logb n = ndf (1) + cnd logb n. 31. Let

k = logb n where n is a power of b. Basis step: If n = 1

and k = 0, then c1nd + c2nlogb a = c1 + c2 = bdc∕
(bd − a) + f (1) + bdc∕(a − bd) = f (1). Inductive step:
Assume true for k, where n = bk. Then for n = bk+1, f (n) =
af (n∕b) + cnd = a{[bdc∕(bd − a)](n∕b)d + [f (1) + bdc∕
(a − bd)] ⋅ (n∕b)logb a)} + cnd = bdc∕(bd − a)nda∕bd +
[f (1) + bdc∕(a − bd)]nlogb a + cnd = nd[ac∕(bd − a) +
c(bd − a)∕(bd − a)] + [ f (1) + bdc∕(a − bdc)]nlogb a =
[bdc∕(bd − a)]nd + [f (1) + bdc∕(a − bd)]nlogb a. 33. If

a > bd, then logb a > d, so the second term dominates,

giving O(nlogb a). 35. O(nlog4 5) 37. O(n3)

Section 8.4

1. f (x) = 2(x6 − 1)∕(x − 1) 3. a) f (x) = 2x(1 − x6)∕(1 −
x) b) x3∕(1 − x) c) x∕(1 − x3) d) 2∕(1 − 2x) e) (1 + x)7

f) 2∕(1+x) g) [1∕(1−x)]−x2 h) x3∕(1−x)2 5. a) 5∕(1−x)

b) 1∕(1− 3x) c) 2x3∕(1− x) d) (3− x)∕ (1− x)2 e) (1+ x)8

7. a) a0 = −64, a1 = 144, a2 = −108, a3 = 27, and an = 0

for all n ≥ 4 b) The only nonzero coefficients are a0 = 1,

a3 = 3, a6 = 3, a9 = 1. c) an = 5n d) an = (−3)n−3 for

n ≥ 3, and a0 = a1 = a2 = 0 e) a0 = 8, a1 = 3, a2 = 2,

an = 0 for odd n greater than 2 and an = 1 for even n greater

than 2 f) an = 1 if n is a positive multiple 4, an = −1 if

n < 4, and an = 0 otherwise g) an = n − 1 for n ≥ 2

and a0 = a1 = 0 h) an = 2n+1∕n! 9. a) 6 b) 3 c) 9

d) 0 e) 5 11. a) 1024 b) 11 c) 66 d) 292,864 e) 20,412

13. 10 15. 50 17. 20 19. f (x) = 1∕[(1 − x)(1 − x2)

(1 − x5)(1 − x10)] 21. 15 23. a) x4(1 + x + x2 + x3)2∕
(1−x) b) 6 25. a) The coefficient of xr in the power series

expansion of 1∕[(1−x3)(1−x4)(1−x20)] b) 1∕(1−x3−x4−x20)

c) 7 d) 3224 27. a) The generating function is (1+x+x2 +
x3+x4)(1+x+x2)(1+x2+x4+x6+⋯)(x3+x4+x5+x6+⋯)(1+
x5 + x10 + x15 +⋯) = x3(1+ x+ x2 + x3 + x4)(1+ x+ x2)∕[(1−
x2)(1−x)(1−x5)] = x3+3x4+7x5+12x6+19x7+27x8+37x9+
48x10 +61x11 +75x12 +⋯. The coefficient of xn is the answer.

b) 75 29. a) 3 b) 29 c) 29 d) 242 31. a) 10 b) 49 c) 2

d) 4 33. a) G(x) − a0 − a1x − a2x2 b) G(x2) c) x4G(x)

d) G(2x) e) ∫
x

0
G(t)dt f) G(x)∕(1 − x) 35. ak = 2 ⋅ 3k − 1

37. ak = 18 ⋅ 3k − 12 ⋅ 2k 39. ak = k2 + 8k+ 20+ (6k− 18)2k

41. Let G(x) =
∑∞

k=0
fkxk. After shifting indices of summa-

tion and adding series, we see that G(x) − xG(x) − x2G(x) =
f0 + (f1 − f0)x +

∑∞
k=2

(fk − fk−1 − fk−2)xk = 0 + x +
∑∞

k=2
0xk.

Hence, G(x) − xG(x) − x2G(x) = x. Solving for G(x) gives

G(x) = x∕(1−x−x2). By the method of partial fractions, it can

be shown that x∕(1−x−x2) = (1∕
√

5)[1∕(1−𝛼x)−1∕(1−𝛽x)],

where 𝛼 = (1 +
√

5)∕2 and 𝛽 = (1 −
√

5)∕2. Us-

ing the fact that 1∕(1 − 𝛼x) =
∑∞

k=0
𝛼kxk, it follows that

G(x) = (1∕
√

5) ⋅
∑∞

k=0
(𝛼k − 𝛽k)xk. Hence, fk = (1∕

√
5) ⋅

(𝛼k − 𝛽k). 43. a) Let G(x) =
∑∞

n=0
Cnxn be the generat-

ing function for {Cn}. Then G(x)2=
∑∞

n=0
(
∑n

k=0
CkCn−k) xn=∑∞

n=1
(
∑n−1

k=0
Ck Cn−1−k)xn−1 =

∑∞
n=1

Cnxn−1. Hence, xG(x)2 =∑∞
n=1

Cnxn, which implies that xG(x)2 − G(x) + 1 = 0. Ap-

plying the quadratic formula shows that G(x) = 1±
√

1−4x
2x

.

We choose the minus sign in this formula because the choice

of the plus sign leads to a division by zero. b) By Exer-

cise 42, (1 − 4x)−1∕2 =
∑∞

n=0

(2n
n

)
xn. Integrating term by

term (which is valid by a theorem from calculus) shows that

∫ x
0

(1 − 4t)−1∕2dt =
∑∞

n=0

1

n+1

(2n
n

)
xn+1 = x

∑∞
n=0

1

n+1

(2n
n

)
xn.

Because ∫ x
0

(1 − 4t)−1∕2dt = 1−
√

1−4x
2

= xG(x), equating

coefficients shows that Cn = 1

n+1

(2n
n

)
. c) Verify the basis

step for n = 1, 2, 3, 4, 5. Assume the inductive hypothe-

sis that Cj ≥ 2j−1 for 1 ≤ j < n, where n ≥ 6. Then

Cn =
∑n−1

k=0
CkCn−k−1 ≥

∑n−2

k=1
CkCn−k−1 ≥ (n−2)2k−12n−k−2 =

(n − 2)2n−1∕4 ≥ 2n−1. 45. Applying the binomial theo-

rem to the equality (1 + x)m+n = (1 + x)m(1 + x)n, shows

that
∑m+n

r=0
C(m + n, r)xr=

∑m
r=0

C(m, r)xr⋅
∑

r=0 C(n, r) xr =∑m+n
r=0

[∑r
k=0

C (m, r − k) C (n, k)
]

xr. Comparing coeffi-

cients gives the desired identity. 47. a) 2ex b) e−x c) e3x

d) xex+ex 49. a) an = (−1)n b) an = 3⋅2n c) an = 3n−3⋅2n

d) an = (−2)n for n ≥ 2, a1 = −3, a0 = 2 e) an = (−2)n + n!
f) an = (−3)n+n!⋅2n for n ≥ 2, a0 = 1, a1 = −2 g) an = 0 if n is

odd and an = n!∕(n∕2)! if n is even 51. a) an = 6an−1+8n−1

for n ≥ 1, a0 = 1 b) The general solution of the associ-

ated linear homogeneous recurrence relation is a(h)
n = 𝛼6n.

A particular solution is a(p)
n = 1

2
⋅ 8n. Hence, the general

solution is an = 𝛼6n + 1

2
⋅ 8n. Using the initial condition,

it follows that 𝛼 = 1

2
. Hence, an = (6n + 8n)∕2. c) Let

G(x) =
∑∞

k=0
akxk. Using the recurrence relation for {ak}, it

can be shown that G(x)− 6xG(x) = (1− 7x)∕(1− 8x). Hence,

G(x) = (1 − 7x)∕[(1 − 6x)(1 − 8x)]. Using partial fractions,

it follows that G(x) = (1∕2)∕(1 − 6x) + (1∕2)∕(1 − 8x).

With the help of Table 1, it follows that an = (6n + 8n)∕2.

53. 1

1−x
⋅ 1

1−x2
⋅ 1

1−x3
⋯ 55. (1+x)(1+x)2(1+x)3 ⋯ 57. The

generating functions obtained in Exercises 54 and 55 are equal

because (1 + x)(1 + x2)(1 + x3) ⋯ = 1−x2

1−x
⋅ 1−x4

1−x2
⋅ 1−x6

1−x3
⋯ =

1

1−x
⋅ 1

1−x3
⋅ 1

1−x5
⋯. 59. a) GX(1) =

∑∞
k=0

p(X = k) ⋅ 1k =∑∞
k=0

P(X = k) = 1 b) G′
X(1) = d

dx

∑∞
k=0

p(X = k) ⋅ xk|x=1 =∑∞
k=0

p(X = k) ⋅ k ⋅ xk−1|x=1 =
∑∞

k=0
p(X = k) ⋅ k = E(X)
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c) G′′
X (1) = d2

dx2

∑∞
k=0

p(X = k) ⋅ xk|x=1 =
∑∞

k=0
p(X =

k) ⋅ k(k − 1) ⋅ xk−2|x=1 =
∑∞

k=0
p(X = k) ⋅ (k2 − k) = V(X) +

E(X)2 − E(X). Combining this with part (b) gives the desired

results. 61. a) G(x) = pm∕(1 − qx)m b) V(x) = mq∕p2

Section 8.5

1. a) 30 b) 29 c) 24 d) 18 3. 1% 5. a) 300 b) 150

c) 175 d) 100 7. 492 9. 974 11. 610 13. 55 15. 248

17. 50,138 19. 234 21. |A1 ∪ A2 ∪ A3 ∪ A4 ∪ A5| =|A1|+ |A2|+ |A3|+ |A4|+ |A5|− |A1 ∩A2|− |A1 ∩A3|− |A1 ∩
A4|− |A1∩A5|− |A2∩A3|− |A2∩A4|− |A2∩A5|− |A3∩A4|−|A3 ∩A5|− |A4 ∩A5|+ |A1 ∩A2 ∩A3|+ |A1 ∩A2 ∩A4|+ |A1 ∩
A2∩A5|+|A1∩A3∩A4|+|A1∩A3∩A5|+|A1∩A4∩A5|+|A2∩
A3∩A4|+|A2∩A3∩A5|+|A2∩A4∩A5|+|A3∩A4∩A5|−|A1∩
A2∩A3∩A4|− |A1∩A2∩A3∩A5|− |A1∩A2∩A4∩A5|− |A1∩
A3 ∩A4 ∩A5|− |A2 ∩A3 ∩A4 ∩A5|+ |A1 ∩A2 ∩A3 ∩A4 ∩A5|
23. |A1 ∪A2 ∪A3 ∪A4 ∪A5 ∪A6| = |A1|+ |A2|+ |A3|+ |A4|+|A5|+ |A6|− |A1 ∩ A2|− |A1 ∩ A3|− |A1 ∩ A4|− |A1 ∩ A5|−|A1 ∩A6|− |A2 ∩A3|− |A2 ∩A4|− |A2 ∩A5|− |A2 ∩A6|− |A3 ∩
A4|− |A3 ∩A5|− |A3 ∩A6|− |A4 ∩A5|− |A4 ∩A6|− |A5 ∩A6|
25. p(E1 ∪ E2 ∪ E3) = p(E1) + p(E2) + p(E3) − p(E1 ∩ E2) −
p(E1 ∩E3)− p(E2 ∩E3)+ p(E1 ∩E2 ∩E3) 27. 4972∕71,295

29. p(E1∪E2∪E3∪E4∪E5) = p(E1)+p(E2)+p(E3)+p(E4)+
p(E5) − p(E1 ∩ E2) − p(E1 ∩ E3) − p(E1 ∩ E4) − p(E1 ∩ E5) −
p(E2∩E3)−p(E2∩E4)−p(E2∩E5)−p(E3∩E4)−p(E3∩E5)−
p(E4 ∩E5)+ p(E1 ∩E2 ∩E3)+ p(E1 ∩E2 ∩E4)+ p(E1 ∩E2 ∩
E5)+p(E1∩E3∩E4)+p(E1∩E3∩E5)+p(E1∩E4∩E5)+p(E2∩
E3 ∩E4)+P(E2 ∩E3 ∩E5)+p(E2 ∩E4 ∩E5)+p(E3 ∩E4 ∩E5)

31. p
(⋃n

i=1
Ei

)
=

∑
1≤i≤np(Ei) −

∑
1≤i<j≤np(Ei ∩ Ej) +∑

1≤i<j<k≤n p(Ei ∩ Ej ∩ Ek) −⋯ + (−1)n+1p
(⋂n

i=1
Ei

)
Section 8.6

1. 75 3. 6 5. 46 7. 9875 9. 540 11. 2100 13. 1854

15. a) D100∕100! b) 100D99∕100! c) C(100,2)∕100!
d) 0 e) 1∕100! 17. 2,170,680 19. By Exercise 18 we

have Dn − nDn−1 = −[Dn−1 − (n − 1)Dn−2]. Iterating, we

have Dn − nDn−1 = −[Dn−1−(n−1)Dn−2] = −[−(Dn−2 − (n −
2)Dn−3)] = Dn−2 − (n − 2)Dn−3 = ⋯ = (−1)n(D2 − 2D1) =
(−1)n because D2 = 1 and D1 = 0. 21. When n is odd

23. 𝜙(n) = n −
∑m

i=1

n
pi

+
∑

1≤i<j≤m
n

pipj
− ⋯ ± n

p1p2⋯pm
=

n
∏m

i=1

(
a − 1

pi

)
25. 4 27. There are nm functions from a

set with m elements to a set with n elements, C(n, 1)(n − 1)m

functions from a set with m elements to a set with n elements

that miss exactly one element, C(n, 2)(n− 2)m functions from

a set with m elements to a set with n elements that miss ex-

actly two elements, and so on, with C(n, n − 1) ⋅ 1m functions

from a set with m elements to a set with n elements that miss

exactly n − 1 elements. Hence, by the principle of inclusion–

exclusion, there are nm − C(n, 1)(n − 1)m + C(n, 2)(n − 2)m −
⋯ + (−1)n−1C(n, n − 1) ⋅ 1m onto functions.

Supplementary Exercises

1. a) An = 4An−1 b) A1 = 40 c) An = 10 ⋅ 4n

3. a) Mn = Mn−1 + 160,000 b) M1 = 186,000 c) Mn =
160,000n + 26,000 d) Tn = Tn−1 + 160,000n + 26,000

e) Tn = 80,000n2 + 106,000n 5. a) an = an−2 + an−3

b) a1 = 0, a2 = 1, a3 = 1 c) a12 = 12 7. a) 2 b) 5

c) 8 d) 16 9. an = 2n 11. an = 2 + 4n∕3 + n2∕2 + n3∕6

13. an = an−2+an−3 15. a) Under the given conditions, one

longest common subsequence ends at the last term in each

sequence, so am = bn = cp. Furthermore, a longest com-

mon subsequence of what is left of the a-sequence and the

b-sequence after those last terms are deleted has to form the

beginning of a longest common subsequence of the original

sequences. b) If cp ≠ am, then the longest common subse-

quence’s appearance in the a-sequence must terminate before

the end; therefore, the c-sequence must be a longest common

subsequence of a1, a2, … , am−1 and b1, b2, … , bn. The other

half is similar.

17. procedure howlong(a1,… , am, b1,… , bn: sequences)

for i := 1 to m
L(i, 0) := 0

for j := 1 to n
L(0, j) := 0

for i := 1 to m
for j := 1 to n

if ai = bj then L(i, j) := L(i − 1, j − 1) + 1

else L(i, j) := max(L(i, j − 1), L(i − 1, j))
return L(m, n)

19. f (n) = (4n2 − 1)∕3 21. O(n4) 23. O(n) 25. Using

just two comparisons, the algorithm is able to narrow the

search for m down to the first half or the second half of the

original sequence. Since the length of the sequence is cut in

half each time, only about 2 log2 n comparisons are needed

in all. 27. a) 18n + 18 b) 18 c) 0 29. Δ(anbn) =
an+1bn+1− anbn = an+1(bn+1 − bn) + bn(an+1 − an) =
an+1Δbn + bnΔan 31. a) Let G(x) =

∑∞
n=0

anxn. Then

G′(x) =
∑∞

n=1
nanxn−1 =

∑∞
n=0

(n + 1)an+1xn. Therefore,

G′(x)−G(x) =
∑∞

n=0
[(n+ 1)an+1 − an]xn =

∑
n=0 xn∕n! = ex,

as desired. That G(0) = a0 = 1 is given. b) We have

[e−xG(x)]′ = e−xG′(x) − e−xG(x) = e−x[G′(x) − G(x)] =
e−x⋅ ex = 1. Hence, e−xG(x) = x + c, where c is a con-

stant. Consequently, G(x) = xex + cex. Because G(0) = 1,

it follows that c = 1. c) We have G(x) =
∑∞

n=0
xn+1∕n!+∑∞

n=0
xn∕n! =

∑∞
n=1

xn∕(n − 1)! +
∑∞

n=0
xn∕n!. Therefore,

an = 1∕(n − 1)! + 1∕n! for all n ≥ 1, and a0 = 1. 33. 7

35. 110 37. 0 39. a) 19 b) 65 c) 122 d) 167 e) 168

41. Dn−1∕(n − 1)! 43. 11∕32
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CHAPTER 9

Section 9.1

1. a) {(0, 0), (1, 1), (2, 2), (3, 3)} b) {(1, 3), (2, 2),
(3, 1), (4, 0)} c) {(1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2),
(4, 0), (4, 1), (4, 2), (4, 3)} d) {(1, 0), (1, 1), (1, 2), (1, 3),
(2, 0), (2, 2), (3, 0), (3, 3), (4, 0)} e) {(0, 1), (1, 0), (1, 1),
(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2), (4, 1), (4, 3)}
f) {(1, 2), (2, 1), (2, 2)} 3. a) Transitive b) Reflexive,

symmetric, transitive c) Symmetric d) Antisymmetric

e) Reflexive, symmetric, antisymmetric, transitive

f) None of these properties 5. a) Reflexive, transi-

tive b) Symmetric c) Symmetric d) Symmetric

7. a) Symmetric b) Symmetric, transitive c) Symmetric

d) Reflexive, symmetric, transitive e) Reflexive, transi-

tive f) Reflexive, symmetric, transitive g) Antisymmetric

h) Antisymmetric, transitive 9. Each of the three properties

is vacuously satisfied. 11. (c), (d), (f) 13. a) Not irreflex-

ive b) Not irreflexive c) Not irreflexive d) Not irreflex-

ive 15. Yes, for instance {(1, 1)} on {1, 2} 17. (a, b) ∈
R if and only if a is taller than b 19. (a) 21. None

23. ∀a∀b [(a, b) ∈ R → (b, a) ∉ R] 25. 2mn

27. a) {(a, b) ∣ b divides a} b) {(a, b) ∣ a does not di-

vide b} 29. The graph of f −1 31. a) {(a, b) ∣ a is required

to read or has read b} b) {(a, b) ∣ a is required to read and

has read b} c) {(a, b) ∣ either a is required to read b but has

not read it or a has read b but is not required to} d) {(a, b) ∣ a
is required to read b but has not read it} e) {(a, b) ∣ a has

read b but is not required to} 33. S◦R = {(a, b) ∣ a is a

parent of b and b has a sibling}, R◦S = {(a, b) ∣ a is an

aunt or uncle of b} 35. a) R2 b) R6 c) R3 d) R3 e) ∅
f) R1 g) R4 h) R4 37. a) R1 b) R2 c) R3 d) R2 e) R3

f) R2 g) R2 h) R2 39. S2
1
= {(a, b) ∈ Z2 ∣ a > b + 1},

S2
2

= S2, S2
3

= {(a, b) ∈ Z2 ∣ a < b − 1}, S2
4

= S4,

S2
5

= S5, S2
6

= Z2 41. b got his or her doctorate under

someone who got his or her doctorate under a; there is a

sequence of n + 1 people, starting with a and ending with

b, such that each is the advisor of the next person in the se-

quence 43. a) {(a, b) ∣ a − b ≡ 0, 3, 4, 6, 8, or 9 (mod 12)}
b) {(a, b) ∣ a ≡ b (mod 12)} c) {(a, b) ∣ a − b ≡ 3, 6,
or 9 (mod 12)} d) {(a, b) ∣ a − b ≡ 4 or 8 (mod 12)}
e) {(a, b) ∣ a − b ≡ 3, 4, 6, 8, or 9 (mod 12)} 45. 8

47. a) 65,536 b) 32,768 49. a) 2n(n+1)∕2 b) 2n3n(n−1)∕2

c) 3n(n−1)∕2 d) 2n(n−1) e) 2n(n−1)∕2 f) 2n2−2⋅2n(n−1) 51. There

may be no such b. 53. If R is symmetric and (a, b) ∈ R,

then (b, a) ∈ R, so (a, b) ∈ R−1. Hence, R ⊆ R−1. Similarly,

R−1 ⊆ R. So R = R−1. Conversely, if R = R−1 and (a, b) ∈ R,

then (a, b) ∈ R−1, so (b, a) ∈ R. Thus, R is symmetric.

55. R is reflexive if and only if (a, a) ∈ R for all a ∈ A if

and only if (a, a) ∈ R−1 [because (a, a) ∈ R if and only if

(a, a) ∈ R−1] if and only if R−1 is reflexive. 57. Use mathe-

matical induction. The result is trivial for n = 1. Assume Rn is

reflexive and transitive. By Theorem 1, Rn+1 ⊆ R. To see that

R ⊆ Rn+1 = Rn◦R, let (a, b) ∈ R. By the inductive hypothesis,

Rn = R and hence, is reflexive. Thus, (b, b) ∈ Rn. Therefore,

(a, b) ∈ Rn+1. 59. Use mathematical induction. The result

is trivial for n = 1. Assume Rn is reflexive. Then (a, a) ∈ Rn

for all a ∈ A and (a, a) ∈ R. Thus, (a, a) ∈ Rn◦R = Rn+1 for

all a ∈ A. 61. No, for instance, take R = {(1, 2), (2, 1)}.

Section 9.2

1. {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)} 3. (Nadir, 122, 34,

Detroit, 08:10), (Acme, 221, 22, Denver, 08:17), (Acme, 122,

33, Anchorage, 08:22), (Acme, 323, 34, Honolulu 08:30),

(Nadir, 199, 13, Detroit, 08:47), (Acme, 222, 22, Denver,

09:10), (Nadir, 322, 34, Detroit, 09:44) 5. Airline and flight

number, airline and departure time 7. a) Yes b) No c) No

9. a) Social Security number b) There are no two people with

the same name who happen to have the same street address.

c) There are no two people with the same name living to-

gether. 11. (Nadir, 122, 34, Detroit, 08:10), (Nadir, 199, 13,

Detroit, 08:47), (Nadir, 322, 34, Detroit, 09:44) 13. (Nadir,

122, 34, Detroit, 08:10), (Nadir, 199, 13, Detroit, 08:47),

(Nadir, 322, 34, Detroit, 09:44), (Acme, 221, 22, Denver,

08:17), (Acme, 222, 22, Denver, 09:10) 15. P3.5.6

17. Airline Destination
Nadir Detroit
Acme Denver
Acme Anchorage
Acme Honolulu

19. Part Color
Supplier number Project Quantity code

23 1092 1 2 2
23 1101 3 1 1
23 9048 4 12 2
31 4975 3 6 2
31 3477 2 25 2
32 6984 4 10 1
32 9191 2 80 4
33 1001 1 14 8

21. Both sides of this equation pick out the subset of R con-

sisting of those n-tuples satisfying both conditions C1 and C2.

23. Both sides of this equation pick out the set of n-tuples

that are in R, are in S, and satisfy condition C. 25. Both

sides of this equation pick out the m-tuples consisting of

i1th, i2th, … , imth components of n-tuples in either R or S.

27. Let R = {(a, b)} and S = {(a, c)}, n = 2, m = 1, and i1 = 1;

P1(R − S) = {(a)}, but P1(R) − P1(S) = ∅. 29. a) J2 fol-

lowed by P1,3 b) (23, 1), (23, 3), (31, 3), (32, 4) 31. There is

no primary key. 33. a) count 5, support 5∕6 b) {diapers},

{milk}, and {diapers, milk} 35. support 1∕3, confidence

2∕3 37. 1 39. a) P(I) = 𝜎(I)∕|T|, P(J) = 𝜎(J)∕|T|,
P(I and J) = 𝜎(I∪J)∕|T|, so P(I and J) = P(I)⋅P(J) if and only

if 𝜎(I ∪ J)∕|T| = (𝜎(I)∕|T|) ⋅ (𝜎(J)∕|T|), which means that

the numerator and denominator of the lift are equal. b) 4∕5

c) 16∕15 41. For each of the n items, there are 3 choices:

the item can be in I or in J or in neither. By the product rule,

there are 3n ways to make these decisions.
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Section 9.3

1. a) ⎡⎢⎢⎣
1 1 1
0 0 0
0 0 0

⎤⎥⎥⎦
b) ⎡⎢⎢⎣

0 1 0
1 1 0
0 0 1

⎤⎥⎥⎦
c) ⎡⎢⎢⎣

1 1 1
0 1 1
0 0 1

⎤⎥⎥⎦
d) ⎡⎢⎢⎣

0 0 1
0 0 0
1 0 0

⎤⎥⎥⎦
3. a) (1, 1), (1, 3), (2, 2), (3, 1), (3, 3) b) (1, 2), (2, 2),

(3, 2) c) (1, 1), (1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2), (3, 3)

5. The relation is irreflexive if and only if the main diago-

nal of the matrix contains only 0s. 7. a) Reflexive, sym-

metric, transitive b) Antisymmetric, transitive c) Symmetric

9. a) 4950 b) 9900 c) 99 d) 100 e) 1 11. Change each 0

to a 1 and each 1 to a 0.

13. a) ⎡⎢⎢⎣
0 1 1
1 1 0
1 0 1

⎤⎥⎥⎦
b) ⎡⎢⎢⎣

1 0 0
0 0 1
0 1 0

⎤⎥⎥⎦
c) ⎡⎢⎢⎣

1 1 1
1 1 1
1 1 1

⎤⎥⎥⎦
15. a) ⎡⎢⎢⎣

0 0 1
1 1 0
0 1 1

⎤⎥⎥⎦
b) ⎡⎢⎢⎣

1 1 0
0 1 1
1 1 1

⎤⎥⎥⎦
c) ⎡⎢⎢⎣

0 1 1
1 1 1
1 1 1

⎤⎥⎥⎦
17. n2 − k
19. a)

3

41

2

b)

32

1 4

c) 1 4

32

d) 1 4

32

21. For simplicity we have indicated pairs of edges between

the same two vertices in opposite directions by using a double

arrowhead, rather than drawing two separate lines.

a)
1 2

43

b)
1 2

43

c)1 2

43

23. {(a, b), (a, c), (b, c), (c, b)} 25. (a, c), (b, a), (c, d),

(d, b) 27. {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a),

(c, b), (d, d)} 29. The relation is asymmetric if and only

if the directed graph has no loops and no closed paths of

length 2. 31. Exercise 23: irreflexive. Exercise 24: reflex-

ive, antisymmetric, transitive. Exercise 25: irreflexive, anti-

symmetric. 33. Reverse the direction on every edge in the

digraph for R. 35. Proof by mathematical induction. Basis
step: Trivial for n = 1. Inductive step: Assume true for k. Be-

cause Rk+1 = Rk ◦R, its matrix is MR⊙MRk . By the inductive

hypothesis this is MR ⊙ M[k]

R = M[k+1]

R .

Section 9.4

1. a) {(0, 0), (0, 1), (1, 1), (1, 2), (2, 0), (2, 2), (3, 0), (3, 3)}
b) {(0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2),

(3, 0)} 3. {(a, b) ∣ a divides b or b divides a}

5. a b

c d

7. a b

c d

9. a) a b

c d

b) a b

c d

c) a b

c d

11. a) a b

c d

b) a b

c d

c) a b

c d

13. The symmetric closure of R is R ∪ R−1. MR∪R−1 =
MR ∨ MR−1 = MR ∨ Mt

R. 15. Only when R is irreflex-

ive, in which case it is its own closure. 17. a, a, a, a; a, b,
e, a; a, d, e, a; b, c, c, b; b, e, a, b; c, b, c, c; c, c, b, c; c,
c, c, c; d, e, a, d; d, e, e, d; e, a, b, e; e, a, d, e; e, d, e, e; e,
e, d, e; e, e, e, e 19. a) {(1, 1), (1, 5), (2, 3), (3, 1), (3, 2),

(3, 3), (3, 4), (4, 1), (4, 5), (5, 3), (5, 4)} b) {(1, 1), (1, 2),

(1, 3), (1, 4), (2, 1), (2, 5), (3, 1), (3, 3), (3, 4), (3, 5), (4, 1),

(4, 2), (4, 3), (4, 4), (5, 1), (5, 3), (5, 5)} c) {(1, 1), (1, 3),

(1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3),

(3, 4), (3, 5), (4, 1), (4, 3), (4, 4), (4, 5), (5, 1), (5, 2), (5, 3),

(5, 4), (5, 5)} d) {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1),

(2, 3), (2, 4), (2, 5), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (4, 1),

(4, 2), (4, 3), (4, 4), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5)}
e) {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4),

(2, 5), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (4, 1), (4, 2), (4, 3),

(4, 4), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5)} f) {(1, 1),

(1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5),

(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (4, 1), (4, 2), (4, 3), (4, 4),

(4, 5), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5)} 21. a) If there is a

student c who shares a class with a and a class with b b) If

there are two students c and d such that a and c share a class,

c and d share a class, and d and b share a class c) If there is a

sequence s0, … , sn of students with n ≥ 1 such that s0 = a,

sn = b, and for each i = 1, 2, … , n, si and si−1 share a
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class 23. The result follows from (R∗)−1 =
(⋃∞

n=1
Rn)−1 =⋃∞

n=1
(Rn)−1 =

⋃∞
n=1

Rn = R∗.

25. a) ⎡⎢⎢⎢⎣
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤⎥⎥⎥⎦
b) ⎡⎢⎢⎢⎣

0 0 0 0
1 0 1 1
1 0 1 1
1 0 1 1

⎤⎥⎥⎥⎦
c) ⎡⎢⎢⎢⎣

0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

⎤⎥⎥⎥⎦
d) ⎡⎢⎢⎢⎣

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤⎥⎥⎥⎦
27. Answers same as for Exercise 25. 29. a) {(1, 1), (1, 2),

(1, 4), (2, 2), (3, 3), (4, 1), (4, 2), (4, 4)} b) {(1, 1), (1, 2), (1, 4),

(2, 1), (2, 2), (2, 4), (3, 3), (4, 1), (4, 2), (4, 4)} c) {(1, 1),

(1, 2), (1, 4), (2, 1), (2, 2), (2, 4), (3, 3), (4, 1), (4, 2), (4, 4)}
31. Algorithm 1: O(n3.8); Algorithm 2: O(n3) 33. Initialize

with A := MR ∨ In and loop only for i := 2 to n − 1.

35. a) Because R is reflexive, every relation containing it must

also be reflexive. b) Both {(0, 0), (0, 1), (0, 2), (1, 1), (2, 2)}
and {(0, 0), (0, 1), (1, 0), (1, 1), (2, 2)} contain R and have an

odd number of elements, but neither is a subset of the other.

Section 9.5

1. a) Equivalence relation b) Not reflexive, not transitive

c) Equivalence relation d) Not transitive e) Not symmetric,

not transitive 3. a) Equivalence relation b) Not transitive

c) Not reflexive, not symmetric, not transitive d) Equivalence

relation e) Not reflexive, not transitive 5. Many answers are

possible. (1) Two buildings are equivalent if they were opened

during the same year; an equivalence class consists of the set

of buildings opened in a given year (as long as there was at

least one building opened that year). (2) Two buildings are

equivalent if they have the same number of stories; the equiv-

alence classes are the set of 1-story buildings, the set of 2-

story buildings, and so on (one class for each n for which there

is at least one n-story building). (3) Every building in which

you have a class is equivalent to every building in which you

have a class (including itself), and every building in which you

don’t have a class is equivalent to every building in which you

don’t have a class (including itself); there are two equivalence

classes—the set of buildings in which you have a class and

the set of buildings in which you don’t have a class (assuming

these are nonempty). 7. The statement “p is equivalent to q”

means that p and q have the same entries in their truth tables.

R is reflexive, because p has the same truth table as p. R is

symmetric, for if p and q have the same truth table, then q and

p have the same truth table. If p and q have the same entries

in their truth tables and q and r have the same entries in their

truth tables, then p and r also do, so R is transitive. The equiv-

alence class of T is the set of all tautologies; the equivalence

class of F is the set of all contradictions. 9. a) (x, x) ∈ R
because f (x) = f (x). Hence, R is reflexive. (x, y) ∈ R if and

only if f (x) = f (y), which holds if and only if f (y) = f (x) if

and only if (y, x) ∈ R. Hence, R is symmetric. If (x, y) ∈ R
and (y, z) ∈ R, then f (x) = f (y) and f (y) = f (z). Hence,

f (x) = f (z). Thus, (x, z) ∈ R. It follows that R is transitive.

b) The sets f −1(b) for b in the range of f 11. Let x be a bit

string of length 3 or more. Because x agrees with itself in the

first three bits, (x, x) ∈ R. Hence, R is reflexive. Suppose that

(x, y) ∈ R. Then x and y agree in the first three bits. Hence,

y and x agree in the first three bits. Thus, (y, x) ∈ R. If (x, y)

and (y, z) are in R, then x and y agree in the first three bits, as

do y and z. Hence, x and z agree in the first three bits. Hence,

(x, z) ∈ R. It follows that R is transitive. 13. This follows

from Exercise 9, where f is the function that takes a bit string

of length 3 or more to the ordered pair with its first bit as

the first component and the third bit as its second component.

15. For reflexivity, ((a, b), (a, b)) ∈ R because a + b = b + a.
For symmetry, if ((a, b), (c, d)) ∈ R, then a + d = b + c,

so c + b = d + a, so ((c, d), (a, b)) ∈ R. For transitivity, if

((a, b), (c, d)) ∈ R and ((c, d), (e, f )) ∈ R, then a+d = b+c and

c+ e = d+ f , so a+d+ c+ e = b+ c+d+ f , so a+ e = b+ f ,
so ((a, b), (e, f )) ∈ R. An easier solution is to note that by

algebra, the given condition is the same as the condition that

f ((a, b)) = f ((c, d)), where f ((x, y)) = x − y; therefore, by

Exercise 9 this is an equivalence relation. 17. a) This fol-

lows from Exercise 9, where the function f from the set of

differentiable functions (from R to R) to the set of functions

(from R to R) is the differentiation operator. b) The set of

all functions of the form g(x) = x2 + C for some constant C
19. This follows from Exercise 9, where the function f from

the set of all URLs to the set of all Web pages is the func-

tion that assigns to each URL the Web page for that URL.

21. No 23. No 25. R is reflexive because a bit string s has

the same number of 1s as itself. R is symmetric because s and

t having the same number of 1s implies that t and s do. R is

transitive because s and t having the same number of 1s, and

t and u having the same number of 1s implies that s and u
have the same number of 1s. 27. a) The sets of people of

the same age b) The sets of people with the same two parents

29. The set of all bit strings with exactly two 1s 31. a) The

set of all bit strings of length 3 b) The set of all bit strings

of length 4 that end with a 1 c) The set of all bit strings of

length 5 that end 11 d) The set of all bit strings of length 8

that end 10101 33. Each of the 15 bit strings of length less

than four is in an equivalence class by itself: [𝜆]R4
= {𝜆},

[0]R4
= {0}, [1]R4

= {1}, [00]R4
= {00}, [01]R4

= {01},

. . . , [111]R4
= {111}. The remaining 16 equivalence classes

are determined by the bit strings of length 4: [0000]R4
=

{0000, 00000, 00001, 000000, 000001, 000010, 000011,
0000000, …}, [0001]R4

= {0001, 00010, 00011, 000100,
000101, 000110, 000111, 0001000, …}, . . . , [1111]R4

=
{1111, 11110, 11111, 111100, 111101, 111110, 111111,
1111000, …} 35. a) [2]5 = {i ∣ i ≡ 2 (mod 5)} =
{… , −8, −3, 2, 7, 12, …} b) [3]5 = {i ∣ i ≡ 3

(mod 5)} = {… , −7, −2, 3, 8, 13, …} c) [6]5 = {i ∣ i ≡ 6

(mod 5)} = {… ,−9,−4, 1, 6, 11,…} d) [−3]5 = {i ∣ i ≡ −3

(mod 5)} = {… ,−8,−3, 2, 7, 12,…} 37. {6n + k ∣ n ∈ Z}
for k ∈ {0, 1, 2, 3, 4, 5} 39. a) [(1, 2)] = {(a, b) ∣ a − b =
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−1} = {(1, 2), (3, 4), (4, 5), (5, 6), …} b) Each equiva-

lence class can be interpreted as an integer (negative, posi-

tive, or zero); specifically, [(a, b)] can be interpreted as a− b.

41. a) No b) Yes c) Yes d) No 43. (a), (c), (e) 45. (b),

(d), (e) 47. a) {(0, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4),
(3, 5), (4, 3), (4, 4), (4, 5), (5, 3), (5, 4), (5, 5)} b) {(0, 0),
(0, 1), (1, 0), (1, 1), (2, 2), (2, 3), (3, 2), (3, 3), (4, 4),
(4, 5), (5, 4), (5, 5)} c) {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1),
(1, 2), (2, 0), (2, 1), (2, 2), (3, 3), (3, 4), (3, 5), (4, 3),

(4, 4), (4, 5), (5, 3), (5, 4), (5, 5)} d) {(0, 0), (1, 1), (2, 2),
(3, 3), (4, 4), (5, 5)} 49. [0]6 ⊆ [0]3, [1]6 ⊆ [1]3, [2]6 ⊆ [2]3,

[3]6 ⊆ [0]3, [4]6 ⊆ [1]3, [5]6 ⊆ [2]3 51. Let A be a set

in the first partition. Pick a particular element x of A. The set

of all bit strings of length 16 that agree with x on the last four

bits is one of the sets in the second partition, and clearly every

string in A is in that set. 53. We claim that each equivalence

class [x]R31
is a subset of the equivalence class [x]R8

. To show

this, choose an arbitrary element y ∈ [x]R31
. Then y is equiv-

alent to x under R31, so either y = x or y and x are each at

least 31 characters long and agree on their first 31 characters.

Because strings that are at least 31 characters long and agree

on their first 31 characters perforce are at least 8 characters

long and agree on their first 8 characters, we know that either

y = x or y and x are each at least 8 characters long and agree

on their first 8 characters. This means that y is equivalent to x
under R8, so y ∈ [x]R8

. 55. {(a, a), (a, b), (a, c), (b, a), (b, b),

(b, c), (c, a), (c, b), (c, c), (d, d), (d, e), (e, d), (e, e)} 57. a) Z
b) {n+ 1

2
∣ n ∈ Z} 59. a) R is reflexive because any coloring

can be obtained from itself via a 360-degree rotation. To see

that R is symmetric and transitive, use the fact that each rota-

tion is the composition of two reflections and conversely the

composition of two reflections is a rotation. Hence, (C1, C2)

belongs to R if and only if C2 can be obtained from C1 by a

composition of reflections. So if (C1, C2) belongs to R, so does

(C2, C1) because the inverse of the composition of reflections

is also a composition of reflections (in the opposite order).

Hence, R is symmetric. To see that R is transitive, suppose

(C1, C2) and (C2, C3) belong to R. Taking the composition of

the reflections in each case yields a composition of reflections,

showing that (C1, C3) belongs to R. b) We express colorings

with sequences of length four, with r and b denoting red and

blue, respectively. We list letters denoting the colors of the up-

per left square, upper right square, lower left square, and lower

right square, in that order. The equivalence classes are: {rrrr},

{bbbb}, {rrrb, rrbr, rbrr, brrr}, {bbbr, bbrb, brbb, rbbb},

{rbbr, brrb}, {rrbb, brbr, bbrr, rbrb}. 61. 5 63. Yes

65. R 67. First form the reflexive closure of R, then form the

symmetric closure of the reflexive closure, and finally form

the transitive closure of the symmetric closure of the reflex-

ive closure. 69. p(0) = 1, p(1) = 1, p(2) = 2, p(3) = 5,

p(4) = 15, p(5) = 52, p(6) = 203, p(7) = 877, p(8) = 4140,

p(9) = 21147, p(10) = 115975

Section 9.6

1. a) Is a partial ordering b) Not antisymmetric, not transitive

c) Is a partial ordering d) Is a partial ordering e) Not antisym-

metric, not transitive 3. a) No b) No c) Yes 5. a) Yes

b) No c) Yes d) No 7. a) No b) Yes c) No 9. No

11. Yes 13. a) {(0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (2, 2)}
b) (Z,≤) c) (P(Z),⊆) d) (Z+, “is a multiple of”) 15. a) {0}
and {1}, for instance b) 4 and 6, for instance 17. a) (1, 1, 2) <

(1, 2, 1) b) (0, 1, 2, 3) < (0, 1, 3, 2) c) (0, 1, 1, 1, 0) <

(1, 0, 1, 0, 1) 19. 0 < 0001 < 001 < 01 < 010 < 0101 <

011 < 11

21. 15

11

10

5

2

0

23. a) 8

4

2

6

3 5 7

1

b) 2 3 5 7 11 13

1

c) 48

24

12

6

32

1

36

d) 64

32

16

8

4

2

1

25. (a, b), (a, c), (a, d), (b, c), (b, d), (a, a), (b, b), (c, c),

(d, d) 27. (a, a), (a, g), (a, d), (a, e), (a, f ), (b, b), (b, g),

(b, d), (b, e), (b, f ), (c, c), (c, g), (c, d), (c, e), (c, f ), (g, d),

(g, e), (g, f ), (g, g), (d, d), (e, e), (f, f ) 29. (∅, {a}),

(∅, {b}), (∅, {c}), ({a}, {a, b}), ({a}, {a, c}), ({b}, {a, b}),

({b}, {b, c}), ({c}, {a, c}), ({c}, {b, c}), ({a, b}, {a, b, c}),

({a, c}, {a, b, c})({b, c}, {a, b, c}) 31. Let (S, � ) be a finite

poset. We will show that this poset is the reflexive transi-

tive closure of its covering relation. Suppose that (a, b) is in

the reflexive transitive closure of the covering relation. Then

a = b or a ≺ b, so a � b, or else there is a sequence

a1, a2, … , an such that a ≺ a1 ≺ a2 ≺ ⋯ ≺ an ≺ b,

in which case again a � b by the transitivity of � . Con-

versely, suppose that a ≺ b. If a = b then (a, b) is in the
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reflexive transitive closure of the covering relation. If a ≺ b
and there is no z such that a ≺ z ≺ b, then (a, b) is in

the covering relation and therefore in its reflexive transitive

closure. Otherwise, let a ≺ a1 ≺ a2 ≺ ⋯ ≺ an ≺ b
be a longest possible sequence of this form (which exists be-

cause the poset is finite). Then no intermediate elements can

be inserted, so each pair (a, a1), (a1, a2), … , (an, b) is in the

covering relation, so again (a, b) is in its reflexive transitive

closure. 33. a) 24, 45 b) 3, 5 c) No d) No e) 15, 45
f) 15 g) 15, 5, 3 h) 15 35. a) {1, 2}, {1, 3, 4}, {2, 3, 4}
b) {1}, {2}, {4} c) No d) No e) {2, 4}, {2, 3, 4} f) {2, 4}
g) {3, 4}, {4} h) {3, 4} 37. Because (a, b) � (a, b), � is

reflexive. If (a1, a2) � (b1, b2) and (a1, a2) ≠ (b1, b2), either

a1 ≺ b1, or a1 = b1 and a2 ≺ b2. In either case, (b1, b2)

is not less than or equal to (a1, a2). Hence, � is antisym-

metric. Suppose that (a1, a2) ≺ (b1, b2) ≺ (c1, c2). Then if
a1 ≺ b1 or b1 ≺ c1, we have a1 ≺ c1, so (a1, a2) ≺ (c1, c2),

but if a1 = b1 = c1, then a2 ≺ b2 ≺ c2, which implies

that (a1, a2) ≺ (c1, c2). Hence, � is transitive. 39. Because

(s, t) � (s, t), � is reflexive. If (s, t) � (u, v) and (u, v) � (s, t),
then s � u � s and t � v � t; hence, s = u and t = v. Hence,

� is antisymmetric. Suppose that (s, t) � (u, v) � (w, x).

Then s � u, t � v, u � w, and v � x. It follows that s � w
and t � x. Hence, (s, t) � (w, x). Hence, � is transitive.

41. a) Suppose that x is maximal and that y is the largest el-

ement. Then x � y. Because x is not less than y, it follows

that x = y. By Exercise 40(a) y is unique. Hence, x is unique.

b) Suppose that x is minimal and that y is the smallest ele-

ment. Then x � y. Because x is not greater than y, it follows

that x = y. By Exercise 40(b) y is unique. Hence, x is unique.

43. a) Yes b) No c) Yes 45. Use mathematical induction.

Let P(n) be “Every subset with n elements from a lattice has

a least upper bound and a greatest lower bound.” Basis step:
P(1) is true because the least upper bound and greatest lower

bound of {x} are both x. Inductive step: Assume that P(k)

is true. Let S be a set with k + 1 elements. Let x ∈ S and

S′ = S − {x}. Because S′ has k elements, by the inductive

hypothesis, it has a least upper bound y and a greatest lower

bound a. Now because we are in a lattice, there are elements

z = lub(x, y) and b = glb(x, a). We are done if we can show

that z is the least upper bound of S and b is the greatest lower

bound of S. To show that z is the least upper bound of S, first

note that if w ∈ S, then w = x or w ∈ S′. If w = x then w � z
because z is the least upper bound of x and y. If w ∈ S′, then
w � z because w � y, which is true because y is the least up-

per bound of S′, and y � z, which is true because z = lub(x, y).

To see that z is the least upper bound of S, suppose that u is

an upper bound of S. Note that such an element u must be an

upper bound of x and y, but because z = lub(x, y), it follows

that z � u. We omit the similar argument that b is the great-

est lower bound of S. 47. a) No b) Yes c) (Proprietary,
{Cheetah, Puma}), (Restricted, {Cheetah, Puma}), (Reg-
istered, {Cheetah, Puma}), (Proprietary, {Cheetah, Puma,
Impala}), (Restricted, {Cheetah, Puma, Impala}), (Reg-
istered, {Cheetah, Puma, Impala}) d) (Nonproprietary,
{Impala, Puma}), (Proprietary, {Impala, Puma}),

(Restricted, {Impala, Puma}), (Nonproprietary, {Impala}),

(Proprietary, {Impala}), (Restricted, {Impala}), (Nonpro-
prietary, {Puma}), (Proprietary, {Puma}), (Restricted,
{Puma}), (Nonproprietary, ∅), (Proprietary, ∅), (Restricted,
∅) 49. Let Π be the set of all partitions of a set S with

P1 � P2 if P1 is a refinement of P2, that is, if every set in P1

is a subset of a set in P2. First, we show that (Π, � ) is a poset.
Because P � P for every partition P, � is reflexive. Now

suppose that P1 � P2 and P2 � P1. Let T ∈ P1. Because

P1 � P2, there is a set T ′ ∈ P2 such that T ⊆ T ′. Because

P2 � P1 there is a set T ′′ ∈ P1 such that T ′ ⊆ T ′′. It follows

that T ⊆ T ′′. But because P1 is a partition, T = T ′′, which

implies that T = T ′ because T ⊆ T ′ ⊆ T ′′. Thus, T ∈ P2.

By reversing the roles of P1 and P2 it follows that every set

in P2 is also in P1. Hence, P1 = P2 and � is antisymmet-

ric. Next, suppose that P1 � P2 and P2 � P3. Let T ∈ P1.

Then there is a set T ′ ∈ P2 such that T ⊆ T ′. Because

P2 � P3 there is a set T ′′ ∈ P3 such that T ′ ⊆ T ′′. This

means that T ⊆ T ′′. Hence, P1 � P3. It follows that � is

transitive. The greatest lower bound of the partitions P1 and

P2 is the partition P whose subsets are the nonempty sets of

the form T1 ∩ T2 where T1 ∈ P1 and T2 ∈ P2. We omit the

justification of this statement here. The least upper bound of

the partitions P1 and P2 is the partition that corresponds to

the equivalence relation in which x ∈ S is related to y ∈ S
if there is a sequence x = x0, x1, x2, … , xn = y for some

nonnegative integer n such that for each i from 1 to n, xi−1

and xi are in the same element of P1 or of P2. We omit the de-

tails that this is an equivalence relation and the details of the

proof that this is the least upper bound of the two partitions.

51. By Exercise 45 there is a least upper bound and a greatest

lower bound for the entire finite lattice. By definition these

elements are the greatest and least elements, respectively.

53. The least element of a subset of Z+ × Z+ is that pair that

has the smallest possible first coordinate, and, if there is more

than one such pair, that pair among those that has the small-

est second coordinate. 55. If x is an integer in a decreasing

sequence of elements of this poset, then at most |x| elements

can follow x in the sequence, namely, integers whose absolute

values are |x|− 1, |x|− 2, . . . , 1, 0. Therefore, there can be no

infinite decreasing sequence. This is not a totally ordered set,

because 5 and −5, for example, are incomparable. 57. To

find which of two rational numbers is larger, write them with

a positive common denominator and compare numerators. To

show that this set is dense, suppose that x < y are two rational

numbers. Then their average, i.e., (x+y)∕2, is a rational num-

ber between them. 59. Let (S, �) be a partially ordered set.

It is enough to show that every nonempty subset of S contains

a least element if and only if there is no infinite decreasing

sequence of elements a1, a2, a3,… in S (i.e., where ai+1 ≺ ai
for all i). An infinite decreasing sequence of elements clearly

has no least element. Conversely, let A be any nonempty sub-

set of S that has no least element. Because A is nonempty,

choose a1 ∈ A. Because a1 is not the least element of A,

choose a2 ∈ A with a2 ≺ a1. Because a2 is not the least

element of A, choose a3 ∈ A with a3 ≺ a2. Continue in
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this manner, producing an infinite decreasing sequence in S.

61. a ≺t b ≺t c ≺t d ≺t e ≺t f ≺t g ≺t h ≺t i ≺t j ≺t k ≺t l ≺t m
63. 1 ≺ 5 ≺ 2 ≺ 4 ≺ 12 ≺ 20, 1 ≺ 2 ≺ 5 ≺ 4 ≺ 12 ≺ 20,

1 ≺ 2 ≺ 4 ≺ 5 ≺ 12 ≺ 20, 1 ≺ 2 ≺ 4 ≺ 12 ≺ 5 ≺ 20,

1 ≺ 5 ≺ 2 ≺ 4 ≺ 20 ≺ 12, 1 ≺ 2 ≺ 5 ≺ 4 ≺ 20 ≺ 12,

1 ≺ 2 ≺ 4 ≺ 5 ≺ 20 ≺ 12 65. A ≺ C ≺ E ≺ B ≺ D ≺ F ≺ G,

A ≺ E ≺ C ≺ B ≺ D ≺ F ≺ G, C ≺ A ≺ E ≺ B ≺ D ≺ F ≺ G,

C ≺ E ≺ A ≺ B ≺ D ≺ F ≺ G, E ≺ A ≺ C ≺ B ≺ D ≺ F ≺ G,

E ≺ C ≺ A ≺ B ≺ D ≺ F ≺ G, A ≺ C ≺ B ≺ E ≺ D ≺ F ≺ G,

C ≺ A ≺ B ≺ E ≺ D ≺ F ≺ G, A ≺ C ≺ B ≺ D ≺ E ≺ F ≺ G,

C ≺ A ≺ B ≺ D ≺ E ≺ F ≺ G, A ≺ C ≺ E ≺ B ≺ F ≺ D ≺ G,

A ≺ E ≺ C ≺ B ≺ F ≺ D ≺ G, C ≺ A ≺ E ≺ B ≺ F ≺ D ≺ G,

C ≺ E ≺ A ≺ B ≺ F ≺ D ≺ G, E ≺ A ≺ C ≺ B ≺ F ≺ D ≺ G,

E ≺ C ≺ A ≺ B ≺ F ≺ D ≺ G, A ≺ C ≺ B ≺ E ≺ F ≺ D ≺ G,

C ≺ A ≺ B ≺ E ≺ F ≺ D ≺ G 67. Determine user

needs ≺ Write functional requirements ≺ Set up test sites ≺

Develop system requirements ≺ Write documentation ≺ De-

velop module A ≺ Develop module B ≺ Develop module C ≺

Integrate modules ≺ 𝛼 test ≺ 𝛽 test ≺ Completion

Supplementary Exercises

1. a) Irreflexive (we do not include the empty string), symmet-

ric b) Irreflexive, symmetric c) Irreflexive, antisymmetric,

transitive 3. ((a, b), (a, b)) ∈ R because a+b = a+b. Hence,

R is reflexive. If ((a, b), (c, d)) ∈ R then a + d = b + c, so that

c + b = d + a. It follows that ((c, d), (a, b)) ∈ R. Hence, R is

symmetric. Suppose that ((a, b), (c, d)) and ((c, d), (e, f )) be-

long to R. Then a+d = b+c and c+f = d+e. Adding these two

equations and subtracting c+ d from both sides gives a+ f =
b+e. Hence, ((a, b), (e, f )) belongs to R. Hence, R is transitive.

5. Suppose that (a, b) ∈ R. Because (b, b) ∈ R it follows that

(a, b) ∈ R2. 7. Yes, yes 9. Yes, yes 11. Two records

with identical keys in the projection would have identical keys

in the original. 13. (Δ ∪ R)−1 = Δ−1 ∪ R−1 = Δ ∪ R−1

15. a) R = {(a, b), (a, c)}. The transitive closure of

the symmetric closure of R is {(a, a), (a, b), (a, c), (b, a),

(b, b), (b, c), (c, a), (c, b), (c, c)} and is different from the

symmetric closure of the transitive closure of R, which is

{(a, b), (a, c), (b, a), (c, a)}. b) Suppose that (a, b) is in the

symmetric closure of the transitive closure of R. We must

show that (a, b) is in the transitive closure of the symmetric

closure of R. We know that at least one of (a, b) and (b, a)

is in the transitive closure of R. Hence, there is either a path

from a to b in R or a path from b to a in R (or both). In the

former case, there is a path from a to b in the symmetric clo-

sure of R. In the latter case, we can form a path from a to b
in the symmetric closure of R by reversing the directions of

all the edges in a path from b to a, going backward. Hence,

(a, b) is in the transitive closure of the symmetric closure of

R. 17. The closure of S with respect to property P is a rela-

tion with property P that contains R because R ⊆ S. Hence,

the closure of S with respect to property P contains the clo-

sure of R with respect to property P. 19. Use the basic idea

of Warshall’s algorithm, except let w[k]

ij equal the length of

the longest path from vi to vj using interior vertices with sub-

scripts not exceeding k, and equal to −1 if there is no such

path. To find w[k]

ij from the entries of Wk−1, determine for each

pair (i, j) whether there are paths from vi to vk and from vk to

vj using no vertices labeled greater than k. If either w[k−1]

ik or

w[k−1]

kj is −1, then such a pair of paths does not exist, so set

w[k]

ij = w[k−1]

ij . If such a pair of paths exists, then there are

two possibilities. If w[k−1]

kk > 0, there are paths of arbitrary

long length from vi to vj, so set w[k]

ij = ∞. If w[k−1]

kk = 0,

set w[k−1]

ij = max(w[k−1]

ij , w[k−1]

ik + w[k−1]

kj ). (Initially take

W0 = MR.) 21. 25 23. Because Ai ∩ Bj is a subset of

Ai and of Bj, the collection of subsets is a refinement of each

of the given partitions. We must show that it is a partition. By

construction, each of these sets is nonempty. To see that their

union is S, suppose that s ∈ S. Because P1 and P2 are parti-

tions of S, there are sets Ai and Bj such that s ∈ Ai and s ∈ Bj.

Therefore, s ∈ Ai ∩ Bj. Hence, the union of these sets is S. To

see that they are pairwise disjoint, note that unless i = i′ and

j = j′, (Ai ∩ Bj) ∩ (Ai′ ∩ Bj′ ) = (Ai ∩ Ai′ ) ∩ (Bj ∩ Bj′ ) = ∅.
25. The subset relation is a partial ordering on any collection

of sets, because it is reflexive, antisymmetric, and transitive.

Here the collection of sets is R(S). 27. Find recipe ≺ Buy

seafood ≺ Buy groceries ≺ Wash shellfish ≺ Cut ginger and

garlic≺Clean fish≺ Steam rice≺Cut fish≺Wash vegetables

≺ Chop water chestnuts ≺ Make garnishes ≺ Cook in wok ≺

Arrange on platter ≺ Serve 29. a) The only antichain with

more than one element is {c, d}. b) The only antichains with

more than one element are {b, c}, {c, e}, and {d, e}. c) The

only antichains with more than one element are {a, b}, {a, c},

{b, c}, {a, b, c}, {d, e}, {d, f }, {e, f }, and {d, e, f }. 31. Let

(S, � ) be a finite poset, and let A be a maximal chain. Be-

cause (A, � ) is also a poset it must have a minimal element

m. Suppose that m is not minimal in S. Then there would be

an element a of S with a ≺ m. However, this would make the

set A∪{a} a larger chain than A. To show this, we must show

that a is comparable with every element of A. Because m is

comparable with every element of A and m is minimal, it fol-

lows that m ≺ x when x is in A and x ≠ m. Because a ≺ m and

m ≺ x, the transitive law shows that a ≺ x for every element of

A. 33. Let aRb denote that a is a descendant of b. By Exer-

cise 32, if no set of n+1 people none of whom is a descendant

of any other (an antichain) exists, then k ≤ n, so the set can

be partitioned into k ≤ n chains. By the pigeonhole princi-

ple, at least one of these chains contains at least m+1 people.

35. We prove by contradiction that if S has no infinite decreas-

ing sequence and ∀x
(
{∀y[y ≺ x → P(y)]} → P(x)

)
, then P(x)

is true for all x ∈ S. If it does not hold that P(x) is true for

all x ∈ S, let x1 be an element of S such that P(x1) is not

true. Then by the conditional statement already given, it must

be the case that ∀y[y ≺ x1 → P(y)] is not true. This means

that there is some x2 with x2 ≺ x1 such that P(x2) is not true.

Again invoking the conditional statement, we get an x3 ≺ x2

such that P(x3) is not true, and so on forever. This contradicts

the well-foundedness of our poset. Therefore, P(x) is true for

all x ∈ S. 37. Suppose that R is a quasi-ordering. Because

R is reflexive, if a ∈ A, then (a, a) ∈ R. This implies that
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(a, a) ∈ R−1. Hence, a ∈ R ∩ R−1. It follows that R ∩ R−1 is

reflexive. R ∩ R−1 is symmetric for any relation R because,

for any relation R, if (a, b) ∈ R then (b, a) ∈ R−1 and

vice versa. To show that R ∩ R−1 is transitive, suppose that

(a, b) ∈ R∩ R−1 and (b, c) ∈ R∩ R−1. Because (a, b) ∈ R and

(b, c) ∈ R, (a, c) ∈ R, because R is transitive. Similarly, be-

cause (a, b) ∈ R−1 and (b, c) ∈ R−1, (b, a) ∈ R and (c, b) ∈ R,

so (c, a) ∈ R and (a, c) ∈ R−1. Hence, (a, c) ∈ R ∩ R−1. It fol-

lows that R∩R−1 is an equivalence relation. 39. a) Because

glb(x, y) = glb(y, x) and lub(x, y) = lub(y, x), it follows that

x∧y = y∧x and x∨y = y∨x. b) Using the definition, (x∧y)∧z
is a lower bound of x, y, and z that is greater than every other

lower bound. Because x, y, and z play interchangeable roles,

x∧ (y∧z) is the same element. Similarly, (x∨y)∨z is an upper

bound of x, y, and z that is less than every other upper bound.

Because x, y, and z play interchangeable roles, x∨ (y∨z) is the

same element. c) To show that x ∧ (x ∨ y) = x it is sufficient

to show that x is the greatest lower bound of x, and x∨ y. Note

that x is a lower bound of x, and because x∨ y is by definition

greater than x, x is a lower bound for it as well. Therefore, x is

a lower bound. But any lower bound of x has to be less than

x, so x is the greatest lower bound. The second statement is

the dual of the first; we omit its proof. d) x is a lower, and an

upper, bound for itself and itself, and the greatest, and least,

such bound. 41. a) Because 1 is the only element greater

than or equal to 1, it is the only upper bound for 1 and there-

fore the only possible value of the least upper bound of x and

1. b) Because x � 1, x is a lower bound for both x and 1 and

no other lower bound can be greater than x, so x ∧ 1 = x.

c) Because 0 � x, x is an upper bound for both x and 0 and

no other bound can be less than x, so x∨ 0 = x. d) Because 0

is the only element less than or equal to 0, it is the only lower

bound for 0 and therefore the only possible value of the great-

est lower bound of x and 0. 43. L = (S, ⊆) where S = {∅,

{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}} 45. Yes 47. The

complement of a subset X ⊆ S is its complement S − X. To

prove this, note that X ∨ (S − X) = 1 and X ∧ (S − X) = 0

because X ∪ (S − X) = S and X ∩ (S − X) = ∅. 49. Think

of the rectangular grid as representing elements in a matrix.

Thus, we number from top to bottom and within that from left

to right. The partial order is that (a, b) ⪯ (c, d) iff a ≤ c and

b ≤ d. Note that (1, 1) is the least element under this relation.

The rules for Chomp as explained in Chapter 1 coincide with

the rules stated in the preamble here. But now we can identify

the point (a, b) with the natural number pa−1qb−1 for all a and

b with 1 ≤ a ≤ m and 1 ≤ b ≤ n. This identifies the points

in the rectangular grid with the set S in this exercise, and the

partial order ⪯ just described is the same as the divides rela-

tion, because pa−1qb−1 ∣ pc−1qd−1 if and only if the exponent

of p on the left does not exceed the exponent of p on the right,

and similarly for q.

CHAPTER 10

Section 10.1

1. a)

Detroit

Boston

Newark

Miami

Washington

b)
Detroit

Boston

Newark

Miami

Washington

c)
Detroit

Boston

Newark

Miami

Washington

d)
Detroit

Boston

Newark

Miami

Washington

e)
Detroit

Boston

Newark

Miami

Washington

3. Simple graph 5. Pseudograph 7. Directed graph

9. Directed multigraph 11. If uRv, then there is an edge

associated with {u, v}. But {u, v} = {v, u}, so this edge is

associated with {v, u} and therefore vRu. Thus, by definition,

R is a symmetric relation. A simple graph does not allow

loops; therefore, uRu never holds, and so by definition R is

irreflexive.
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13. a) A1

A5 A3

A4

A2

b) A1

A5 A3

A4

A2

c)

A3A6

A4A5

A1 A2

15.
Hermit thrush Robin

Hairy
woodpecker

NuthatchMockingbird Blue jay

17.

Lame

Gauss

Stirling

Dodgson

Boole

Lovelace

De Morgan

Fermat

Mersenne

Descartes

Goldbach

Bezout

Aristotle Euclid Eratosthenes

Fibonacci Maurolico

al-Khowarizmi

ˊ
ˊ

19. President

Chief financial

officer

Director,

operations

Director,

R and D
Director,

marketing

21.

Slate

Granite Boulder
Jazz

Tango

Klezmer

ClassicalRap

PebblesSand

Pumice Gravel

Shale

Limestone

Marble

Rock

Bachata
Folk

23. Tigers Blue jays

Orioles Cardinals

25. We find the telephone numbers in the call graph for Febru-

ary that are not present in the call graph for January and vice

versa. For each number we find, we make a list of the num-

bers they called or were called by using the edges in the call

graph. We examine these lists to find new telephone numbers

in February that had similar calling patterns to defunct tele-

phone numbers in January. 27. We use the graph model that

has e-mail addresses as vertices and for each message sent, an

edge from the e-mail address of the sender to the e-mail ad-

dress of the recipient. For each e-mail address, we can make

a list of other addresses they sent messages to and a list of

other addresses from which they received messages. If two

e-mail addresses had almost the same pattern, we conclude

that these addresses might have belonged to the same person

who had recently changed his or her e-mail address. 29. Let

V be the set of people at the party. Let E be the set of or-

dered pairs (u, v) in V × V such that u knows v’s name. The

edges are directed, but multiple edges are not allowed. Lit-

erally, there is a loop at each vertex, but for simplicity, the

model could omit the loops. 31. Vertices are the courses;

edges are directed; edge uv means that course u is prerequisite

for course v; courses without prerequisites are vertices with

in-degree 0; courses that are not prerequisite for any other

courses are vertices with out-degree 0. 33. Let the set of

vertices be a set of people, and two vertices are joined by an

edge if the two people were ever married. Ignoring complica-

tions, this graph has the property that there are two types of

vertices (men and women), and every edge joins vertices of

opposite types.
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35.

S5

S2

S1 S7S3

S6

S4

37. Represent people in the group by vertices. Put a directed

edge into the graph for every pair of vertices. Label the edge

from the vertex representing A to the vertex representing B
with a + (plus) if A likes B, a − (minus) if A dislikes B, and a

0 if A is neutral about B.

Section 10.2

1. v = 6; e = 6; deg(a) = 2, deg(b) = 4, deg(c) = 1,

deg(d) = 0, deg(e) = 2, deg(f ) = 3; c is pendant; d is isolated.

3. v = 9; e = 12; deg(a) = 3, deg(b) = 2, deg(c) = 4,

deg(d) = 0, deg(e) = 6, deg(f ) = 0; deg(g) = 4; deg(h) = 2;

deg(i) = 3; d and f are isolated. 5. No 7. v = 4; e = 7;

deg−(a) = 3, deg−(b) = 1, deg−(c) = 2, deg−(d) = 1,

deg+(a) = 1, deg+(b) = 2, deg+(c) = 1, deg+(d) = 3 9. 5

vertices, 13 edges; deg−(a) = 6, deg+(a) = 1, deg−(b) = 1,

deg+(b) = 5, deg−(c) = 2, deg+(c) = 5, deg−(d) = 4,

deg+(d) = 2, deg−(e) = 0, deg+(e) = 0

11.
a b c

fde

13. The number of coauthors that person has; that person’s

coauthors; a person who has no coauthors; a person who has

only one coauthor 15. In the directed graph deg−(v) =
number of calls v received, deg+(v) = number of calls

v made; in the undirected graph, deg(v) is the number of

calls either made or received by v. 17. (deg+(v), deg−(v))

is the win–loss record of v. 19. In the undirected graph

model in which the vertices are people in the group and

two vertices are adjacent if those two people are friends,

the degree of a vertex is the number of friends in the

group that person has. By Exercise 18, there are two ver-

tices with the same degree, which means that there are two

people in the group with the same number of friends in

the group. 21. Bipartite 23. Not bipartite 25. Not bi-

partite 27. a) Parts {h, s, n, w} and {P, Q, R, S}, E =
{{P, n}, {P, w}, {Q, s}, {Q, n}, {R, n}, {R, w}, {S, h}, {S, s}}
b) There is. c) {Pw, Qs, Rn, Sh} among others 29. Only

Barry is willing to marry Uma and Xia. 31. Model this

with an undirected bipartite graph, with an edge between a

man and a woman if they are willing to marry each other. By

Hall’s theorem, it is enough to show that for every set S of

women, the set N(S) of men willing to marry them has car-

dinality at least |S|. Let m be the number of edges between

S and N(S). Since every vertex in S has degree k, it follows

that m = k|S|. Because these edges are incident to N(S), it

follows that m ≤ k|N(S)|. Therefore, k|S| ≤ k|N(S)|, so|N(S)| ≥ |S|. 33. Model this with the bipartite graph where

V1 = {(p, i) ∣ p is a winner and i = 1, 2} is the set in which

each prize winner is represented twice, V2 is the set of prizes,

and an edge represents a player wanting a prize. For any sub-

set A of V1, N(A) = V2, since every winner wants all of the

2m prizes. So |N(A)| = 2m = |V1| ≥ |A| and Hall’s theorem

applies. 35. a) ({a, b, c, f }, {{a, b}, {a, f }, {b, c}, {b, f }})

b) ({a, x, c, f }, {{a, x}, {c, x}, {e, x}}) 37. a) n vertices,

n(n− 1)∕2 edges b) n vertices, n edges c) n+ 1 vertices, 2n
edges d) m+n vertices, mn edges e) 2n vertices, n2n−1 edges

39. a) 3, 3, 3, 3 b) 2, 2, 2, 2 c) 4, 3, 3, 3, 3 d) 3, 3, 2, 2, 2

e) 3, 3, 3, 3, 3, 3, 3, 3 41. Each of the n vertices is adjacent

to each of the other n − 1 vertices, so the degree sequence is

n − 1, n − 1,… , n − 1 (n terms).

43. 7

45. a) Yes

b) No c) No d) No

e) Yes

f) No 47. First, suppose that d1, d2, … , dn is graphic. We

must show that the sequence whose terms are d2−1, d3−1,. . . ,

dd1+1 −1, dd1+2, dd1+3,. . . , dn is graphic once it is put into non-

increasing order. In Exercise 46 it is proved that if the original

sequence is graphic, then in fact there is a graph having this

degree sequence in which the vertex of degree d1 is adjacent

to the vertices of degrees d2, d3,. . . , dd1+1. Remove from this

graph the vertex of highest degree (d1). The resulting graph

has the desired degree sequence. Conversely, suppose that d1,

d2,. . . , dn is a nonincreasing sequence such that the sequence

d2 − 1, d3 − 1,. . . , dd1+1 − 1, dd1+2, dd1+3,. . . , dn is graphic

once it is put into nonincreasing order. Take a graph with this

latter degree sequence, where vertex vi has degree di − 1 for

2 ≤ i ≤ d1 + 1 and vertex vi has degree di for d1 + 2 ≤ i ≤ n.

Adjoin one new vertex (call it v1), and put in an edge from

v1 to each of the vertices v2, v3,. . . , vd1+1. The resulting graph

has degree sequence d1, d2,. . . , dn. 49. Let d1, d2,. . . , dn be a

nonincreasing sequence of nonnegative integers with an even

sum. Construct a graph as follows: Take vertices v1, v2,. . . ,

vn and put ⌊di∕2⌋ loops at vertex vi, for i = 1, 2, … , n. For

each i, vertex vi now has degree either di or di − 1. Because
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the original sum was even, the number of vertices for which

deg(vi) = di − 1 is even. Pair them up arbitrarily, and put in

an edge joining the vertices in each pair. 51. 17

53. a

c d

b a

c d

b a

c d

b a

c d

b

a

c d

ba

c d

ba

c d

ba

c d

b

a

c

b a

c

b a

c

b

a

d

ba

d

ba

d

ba

d

b

a

c d

a

c d

a

c d

a

c d

a

c

a ba b

c d

b

a

c

a

d

a

d c

b

ba

c dd

b

c d

a

c

b

55. a) For all n ≥ 1 b) For all n ≥ 3 c) For n = 3 d) For

all n ≥ 0 57. 5

59. a f b

c g d

e

61. a) The graph with n vertices and no edges b) The disjoint

union of Km and Kn c) The graph with vertices {v1, … , vn}
with an edge between vi and vj unless i ≡ j ± 1 (mod n)

d) The graph whose vertices are represented by bit strings of

length n with an edge between two vertices if the associated

bit strings differ in more than one bit 63. v(v − 1)∕2 − e
65. n−1−dn, n−1−dn−1,. . . , n−1−d2, n−1−d1 67. The

union of G and G contains an edge between each pair of the

n vertices. Hence, this union is Kn.

69. Exercise 7: b

c

d

e

a

Exercise 8:

a e

d

cb

Exercise 9:

b

c

d
e

f

a

71. A directed graph G = (V, E) is its own converse if and only

if it satisfies the condition (u, v) ∈ E if and only if (v, u) ∈ E.

But this is precisely the condition that the associated relation

must satisfy to be symmetric.

73. P(0, 0) P(0, 1) P(0, 2)

P(1, 0) P(1, 1) P(1, 2)

P(2, 0) P(2, 1) P(2, 2)

75. We can connect P(i, j) and P(k, l) by using |i − k| hops to

connect P(i, j) and P(k, j) and |j−l| hops to connect P(k, j) and

P(k, l). Hence, the total number of hops required to connect

P(i, j) and P(k, l) does not exceed |i − k| + |j − l|. This is less

than or equal to m + m = 2m, which is O(m).

Section 10.3

1. Adjacent
Vertex Vertices
a b, c, d
b a, d
c a, d
d a, b, c

3. Terminal
Vertex Vertices
a a, b, c, d
b d
c a, b
d b, c, d

5. ⎡⎢⎢⎢⎣
0 1 1 1
1 0 0 1
1 0 0 1
1 1 1 0

⎤⎥⎥⎥⎦
7. ⎡⎢⎢⎢⎣

1 1 1 1
0 0 0 1
1 1 0 0
0 1 1 1

⎤⎥⎥⎥⎦
9. a) ⎡⎢⎢⎢⎣

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎤⎥⎥⎥⎦
b) ⎡⎢⎢⎢⎢⎣

0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

⎤⎥⎥⎥⎥⎦

c) ⎡⎢⎢⎢⎢⎣

0 0 1 1 1
0 0 1 1 1
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0

⎤⎥⎥⎥⎥⎦
d) ⎡⎢⎢⎢⎣

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎤⎥⎥⎥⎦
e) ⎡⎢⎢⎢⎢⎣

0 1 0 1 1
1 0 1 0 1
0 1 0 1 1
1 0 1 0 1
1 1 1 1 0

⎤⎥⎥⎥⎥⎦
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f) ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 1 0 0 1 0
0 1 1 0 0 0 0 1
1 0 0 0 0 1 1 0
0 1 0 0 1 0 0 1
0 0 1 0 1 0 0 1
0 0 0 1 0 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
11. d b

a c

13. ⎡⎢⎢⎢⎣
0 0 1 0
0 0 1 2
1 1 0 1
0 2 1 0

⎤⎥⎥⎥⎦
15. ⎡⎢⎢⎢⎣

1 0 2 1
0 1 1 2
2 1 1 0
1 2 0 1

⎤⎥⎥⎥⎦
17. a b

d c

19. ⎡⎢⎢⎢⎢⎣
0 1 0 0
0 1 1 0
0 1 1 1
1 0 0 0

⎤⎥⎥⎥⎥⎦

21. ⎡⎢⎢⎢⎣
1 1 2 1
1 0 0 2
1 0 1 1
0 2 1 0

⎤⎥⎥⎥⎦
23.

a

c
b

25. a) 3∕7 b) 5∕24 c) 19∕36 27. a) dense b) sparse

c) dense d) sparse e) sparse f) sparse 29. Yes

31. Exercise 13: ⎡⎢⎢⎢⎣
1 0 0 0 0
0 1 1 1 0
1 1 0 0 1
0 0 1 1 1

⎤⎥⎥⎥⎦
Exercise 14: ⎡⎢⎢⎢⎣

1 1 1 1 0 0 0 0
1 1 1 0 1 0 0 0
0 0 0 0 1 1 1 1
0 0 0 1 0 1 1 1

⎤⎥⎥⎥⎦
Exercise 15: ⎡⎢⎢⎢⎣

1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0
0 1 1 0 0 1 0 0 1 0
0 0 0 1 0 0 1 1 0 1

⎤⎥⎥⎥⎦
33. deg(v) − number of loops at v; deg−(v) 35. 2 if e is not

a loop, 1 if e is a loop

37. a) ⎡⎢⎢⎢⎢⎢⎢⎣

1 1 ⋯ 1 0 ⋯ 0
1 0 ⋯ 0 1 ⋯ 0
0 1 ⋯ 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0 0 ⋯ 1
0 0 ⋯ 1 0 ⋯ 1

⎤⎥⎥⎥⎥⎥⎥⎦

b) ⎡⎢⎢⎢⎢⎢⎢⎣

1 0 ⋯ 0 1
1 1 ⋯ 0 0
0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋮
0 0 ⋯ 1 0
0 0 ⋯ 1 1

⎤⎥⎥⎥⎥⎥⎥⎦
c) ⎡⎢⎢⎢⎢⎢⎣

0 0 ⋯ 0 1 1 ⋯ 1
1 0 ⋯ 0

B 0 1 ⋯ 0
⋮ ⋮ ⋮
0 0 ⋯ 1

⎤⎥⎥⎥⎥⎥⎦
where B is the answer to (b)

d) ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 ⋯ 1 0 ⋯ 0
0 0 ⋯ 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0 0 ⋯ 1
1 0 ⋯ 0 1 ⋯ 0
0 1 ⋯ 0 0 ⋯ 1
⋮ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 1 0 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
39. Isomorphic 41. Isomorphic 43. Isomorphic 45. Not

isomorphic 47. Isomorphic 49. G is isomorphic to itself

by the identity function, so isomorphism is reflexive. Suppose

that G is isomorphic to H. Then there exists a one-to-one cor-

respondence f from G to H that preserves adjacency and non-

adjacency. It follows that f −1 is a one-to-one correspondence

from H to G that preserves adjacency and nonadjacency.

Hence, isomorphism is symmetric. If G is isomorphic to H
and H is isomorphic to K, then there are one-to-one corre-

spondences f and g from G to H and from H to K that pre-

serve adjacency and nonadjacency. It follows that g ◦ f is a

one-to-one correspondence from G to K that preserves adja-

cency and nonadjacency. Hence, isomorphism is transitive.

51. All zeros 53. Label the vertices in order so that all of

the vertices in the first set of the partition of the vertex set

come first. Because no edges join vertices in the same set

of the partition, the matrix has the desired form. 55. C5

57. n = 5 only 59. 4 61. 2 63. a) Yes b) No c) No

65. G = (V1, E1) is isomorphic to H = (V2, E2) if and only

if there exist functions f from V1 to V2 and g from E1 to E2

such that each is a one-to-one correspondence and for every

edge e in E1 the endpoints of g(e) are f (v) and f (w) where v
and w are the endpoints of e. 67. Yes 69. Yes 71. If f
is an isomorphism from a directed graph G to a directed graph

H, then f is also an isomorphism from Gconv to Hconv. To see

this note that (u, v) is an edge of Gconv if and only if (v, u) is

an edge of G if and only if (f (v), f (u)) is an edge of H if and

only if (f (u), f (v)) is an edge of Hconv. 73. Many answers

are possible; for example, C6 and C3 ∪C3. 75. The product

is [aij] where aij is the number of edges from vi to vj when

i ≠ j and aii is the number of edges incident to vi. 77. The

graphs in Exercise 45 are a devil’s pair.
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Section 10.4

1. a) Path of length 4; not a circuit; not simple b) Not a path

c) Not a path d) Simple circuit of length 5 3. No 5. No

7. Maximal sets of people with the property that for any two of

them, we can find a string of acquaintances that takes us from

one to the other 9. If a person has Erdős number n, then

there is a path of length n from that person to Erdős in the col-

laboration graph, so by definition, that means that that person

is in the same component as Erdős. If a person is in the same

component as Erdős, then there is a path from that person to

Erdős, and the length of the shortest such path is that person’s

Erdős number. 11. a) Weakly connected b) Weakly con-

nected c) Not strongly or weakly connected 13. The max-

imal sets of phone numbers for which it is possible to find

directed paths between every two different numbers in the

set 15. a) {a, b, f }, {c, d, e} b) {a, b, c, d, e, h}, {f }, {g}
c) {a, b, d, e, f, g, h, i}, {c} 17. Suppose the strong compo-

nents of u and v are not disjoint, say with vertex w in both.

Suppose x is a vertex in the strong component of u. Then x
is also in the strong component of v, because there is a path

from x to v (namely the path from x to u followed by the path

from u to w followed by the path from w to v) and vice versa.

Thus, x is in the strong component of v. This shows that the

strong component of u is a subgraph of the strong component

of v, and equality follows by symmetry. 19. a) 2 b) 7 c) 20

d) 61 21. Not isomorphic (G has a triangle; H does not)

23. Isomorphic (the path u1, u2, u7, u6, u5, u4, u3, u8, u1 cor-

responds to the path v1, v2, v3, v4, v5, v8, v7, v6, v1) 25. a) 3

b) 0 c) 27 d) 0 27. a) 1 b) 0 c) 2 d) 1 e) 5 f) 3 29. R
is reflexive by definition. Assume that (u, v) ∈ R; then there

is a path from u to v. Then (v, u) ∈ R because there is a path

from v to u, namely, the path from u to v traversed backward.

Assume that (u, v) ∈ R and (v, w) ∈ R; then there are paths

from u to v and from v to w. Putting these two paths together

gives a path from u to w. Hence, (u, w) ∈ R. It follows that

R is transitive. 31. c 33. b, c, e, i 35. If a vertex is pen-

dant it is clearly not a cut vertex. So an endpoint of a cut edge

that is a cut vertex is not pendant. Removal of a cut edge pro-

duces a graph with more connected components than in the

original graph. If an endpoint of a cut edge is not pendant, the

connected component it is in after the removal of the cut edge

contains more than just this vertex. Consequently, removal of

that vertex and all edges incident to it, including the original

cut edge, produces a graph with more connected components

than were in the original graph. Hence, an endpoint of a cut

edge that is not pendant is a cut vertex. 37. Assume there

exists a connected graph G with at most one vertex that is

not a cut vertex. Define the distance between the vertices u
and v, denoted by d(u, v), to be the length of the shortest path

between u and v in G. Let s and t be vertices in G such that

d(s, t) is a maximum. Either s or t (or both) is a cut vertex,

so without loss of generality suppose that s is a cut vertex.

Let w belong to the connected component that does not con-

tain t of the graph obtained by deleting s and all edges inci-

dent to s from G. Because every path from w to t contains s,

d(w, t) > d(s, t), which is a contradiction. 39. a) Denver–

Chicago, Boston–New York b) Seattle–Portland, Portland–

San Francisco, Salt Lake City–Denver, New York–Boston,

Boston–Burlington, Boston–Bangor 41. A minimal set of

people who collectively influence everyone (directly or in-

directly); {Deborah} 43. An edge cannot connect two ver-

tices in different connected components. Because there are at

most C(ni, 2) edges in the connected component with ni ver-

tices, it follows that there are at most
∑k

i=1
C(ni, 2) edges in

the graph. 45. Suppose that G is not connected. Then it has

a component of k vertices for some k, 1 ≤ k ≤ n − 1.

The most edges G could have is C(k, 2) + C(n − k, 2) =
[k(k − 1) + (n − k)(n − k − 1)]∕2 = k2 − nk + (n2 − n)∕2.

This quadratic function of f is minimized at k = n∕2 and

maximized at k = 1 or k = n − 1. Hence, if G is not

connected, the number of edges does not exceed the value of

this function at 1 and at n − 1, namely, (n − 1)(n − 2)∕2.

47. a) 1 b) 2 c) 6 d) 21 49. a) Removing an edge from

a cycle leaves a path, which is still connected. b) Removing

an edge from the cycle portion of the wheel leaves that por-

tion still connected and the central vertex still connected to

it as well. Removing a spoke leaves the cycle intact and the

central vertex still connected to it as well. c) Any four ver-

tices, two from each part of the bipartition, are connected

by a 4-cycle; removing one edge does not disconnect them.

d) Deleting the edge joining (b1, b2, … , bi−1, 0, bi+1, … , bn)

and (b1, b2, … , bi−1, 1, bi+1, … , bn) does not dis-

connect the graph because these two vertices are still

joined via the path (b1, b2, … , bi−1, 0, bi+1, … , 0),

(b1, b2, … , bi−1, 0, bi+1, … , 1), (b1, b2, … , bi−1, 1,
bi+1, … , 1), (b1, b2, … , bi−1, 1, bi+1, … , 0) if n < 2 and

bn = 0, and similarly in the other three cases. 51. If G
is complete, then removing vertices one by one leaves a com-

plete graph at each step, so we never get a disconnected graph.

Conversely, if edge uv is missing from G, then removing

all the vertices except u and v creates a disconnected graph.

53. Both equal min(m, n). 55. Let G be a graph with n ver-

tices; then 𝜅(G) ≤ n−1. Let C be a smallest edge cut, leaving

a nonempty proper subset S of the vertices of G disconnected

from the complementary set S′ = V − S. If xy is an edge of G
for every x ∈ S and y ∈ S′, then the size of C is |S||S′|, which

is at least n − 1, so 𝜅(G) ≤ 𝜆(G). Otherwise, let x ∈ S and

y ∈ S′ be nonadjacent vertices. Let T consist of all neighbors

of x in S′ together with all vertices of S − {x} with neigh-

bors in S′. Then T is a vertex cut, because it separates x and y.

Now look at the edges from x to T ∩ S′ and one edge from

each vertex of T ∩ S to S′; this gives us |T| distinct edges that

lie in C, so 𝜆(G) = |C| ≥ |T| ≥ 𝜅(G). 57. 2 59. Let

the simple paths P1 and P2 be u = x0, x1, … , xn = v and

u = y0, y1,… , ym = v, respectively. The paths thus start out at

the same vertex. Since the paths do not contain the same set

of edges, they must diverge eventually. If they diverge only

after one of them has ended, then the rest of the other path is

a simple circuit from v to v. Otherwise we can suppose that

x0 = y0, x1 = y1, . . . , xi = yi, but xi+1 ≠ yi+1. To form

our simple circuit, we follow the path yi, yi+1, yi+2, and so on,
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until it once again first encounters a vertex on P1 (possibly as

early as yi+1, no later than ym). Once we are back on P1, we

follow it along—forwards or backwards, as necessary—to re-

turn to xi. Since xi = yi, this certainly forms a circuit. It must

be a simple circuit, since no edge among the xks or the yls

can be repeated (P1 and P2 are simple by hypothesis) and no

edge among the xks can equal one of the edges yl that we used,

since we abandoned P2 for P1 as soon as we hit P1. 61. The

graph G is connected if and only if every off-diagonal entry of

A+A2 +A3 +⋯+An−1 is positive, where A is the adjacency

matrix of G. 63. If the graph is bipartite, say with parts A
and B, then the vertices in every path must alternately lie in

A and B. Therefore, a path that starts in A, say, will end in B
after an odd number of steps and in A after an even number

of steps. Because a circuit ends at the same vertex where it

starts, the length must be even. Conversely, suppose that all

circuits have even length; we must show that the graph is bi-

partite. We can assume that the graph is connected, because

if it is not, then we can just work on one component at a time.

Let v be a vertex of the graph, and let A be the set of all ver-

tices to which there is a path of odd length starting at v, and

let B be the set of all vertices to which there is a path of even

length starting at v. Because the component is connected, ev-

ery vertex lies in A or B. No vertex can lie in both A and B,

because if one did, then following the odd-length path from v
to that vertex and then back along the even-length path from

that vertex to v would produce an odd circuit, contrary to the

hypothesis. Thus, the set of vertices has been partitioned into

two sets. To show that every edge has endpoints in different

parts, suppose that xy is an edge, where x ∈ A. Then the

odd-length path from v to x followed by xy produces an even-

length path from v to y, so y ∈ B. (Similarly, if x ∈ B.)

65. (H1W1H2W2⟨boat⟩, ∅) → (H2W2, H1W1⟨boat⟩) →
(H1H2W2⟨boat⟩, W1) → (W2, H1W1H2⟨boat⟩) →
(H2W2⟨boat⟩, H1W1) → (∅, H1W1H2W2⟨boat⟩)
Section 10.5

1. Neither 3. No Euler circuit; a, e, c, e, b, e, d, b, a, c, d
5. a, b, c, d, c, e, d, b, e, a, e, a 7. a, i, h, g, d, e, f, g, c, e, h, d,
c, a, b, i, c, b, h, a 9. No, A still has odd degree. 11. When

the graph in which vertices represent intersections and edges

streets has an Euler path 13. Yes 15. No 17. If there is

an Euler path, then as we follow it each vertex except the

starting and ending vertices must have equal in-degree and

out-degree, because whenever we come to a vertex along an

edge, we leave it along another edge. The starting vertex must

have out-degree 1 larger than its in-degree, because we use

one edge leading out of this vertex and whenever we visit

it again we use one edge leading into it and one leaving it.

Similarly, the ending vertex must have in-degree 1 greater

than its out-degree. Because the Euler path with directions

erased produces a path between any two vertices, in the under-

lying undirected graph, the graph is weakly connected. Con-

versely, suppose the graph meets the degree conditions stated.

If we add one more edge from the vertex of deficient out-

degree to the vertex of deficient in-degree, then the graph

has every vertex with equal in-degree and out-degree. Be-

cause the graph is still weakly connected, by Exercise 16 this

new graph has an Euler circuit. Now delete the added edge to

obtain the Euler path. 19. Neither 21. No Euler circuit;

a, d, e, d, b, a, e, c, e, b, c, b, e 23. Neither 25. Follow the

same procedure as Algorithm 1, taking care to follow the

directions of edges. 27. a) n = 2 b) None c) None

d) n = 1 29. Exercise 1:1 time; Exercises 2–7: 0 times

31. a, b, c, d, e, a is a Hamilton circuit. 33. No Hamilton

circuit exists, because once a purported circuit has reached e
it would have nowhere to go. 35. No Hamilton circuit ex-

ists, because every edge in the graph is incident to a vertex

of degree 2 and therefore must be in the circuit. 37. a, b,
c, f, d, e is a Hamilton path. 39. f, e, d, a, b, c is a Hamil-

ton path. 41. No Hamilton path exists. There are eight ver-

tices of degree 2, and only two of them can be end vertices

of a path. For each of the other six, their two incident edges

must be in the path. It is not hard to see that if there is to be a

Hamilton path, exactly one of the inside corner vertices must

be an end, and that this is impossible. 43. a, b, c, f, i, h,
g, d, e is a Hamilton path. 45. m = n ≥ 2 47. a) (i) No,

(ii) No, (iii) Yes b) (i) No, (ii) No, (iii) Yes c) (i) Yes, (ii) Yes,

(iii) Yes d) (i) Yes, (ii) Yes, (iii) Yes 49. The result is triv-

ial for n = 1: code is 0, 1. Assume we have a Gray code

of order n. Let c1, … , ck, k = 2n be such a code. Then

0c1,… , 0ck, 1ck,… , 1c1 is a Gray code of order n + 1.

51. procedure Fleury(G = (V, E): connected multigraph

with the degrees of all vertices even, V = {v1,… , vn})

v := v1

circuit := v
H := G
while H has edges

e := first edge with endpoint v in H (with respect to

listing of V) such that e is not a cut edge of H, if

one exists, and simply the first edge in H with

endpoint v otherwise

w := other endpoint of e
circuit := circuit with e, w added

v := w
H := H − e

return circuit {circuit is an Euler circuit}
53. If G has an Euler circuit, then it also has an Euler path.

If not, add an edge between the two vertices of odd degree

and apply the algorithm to get an Euler circuit. Then delete

the new edge. 55. Suppose G = (V, E) is a bipartite graph

with V = V1 ∪ V2, where V1 ∩ V2 = ∅ and no edge

connects a vertex in V1 and a vertex in V2. Suppose that G
has a Hamilton circuit. Such a circuit must be of the form

a1, b1, a2, b2, … , ak, bk, a1, where ai ∈ V1 and bi ∈ V2 for

i = 1, 2,… , k. Because the Hamilton circuit visits each vertex

exactly once, except for v1, where it begins and ends, the num-

ber of vertices in the graph equals 2k, an even number. Hence,

a bipartite graph with an odd number of vertices cannot have

a Hamilton circuit.
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57. 1 2 3 4

5 6 7

9 10 11

8

12

59. We represent the squares of a 3×4 chessboard as follows:

1 2 3 4

5 6 7 8

9 10 11 12

A knight’s tour can be made by following the moves 8, 10, 1,

7, 9, 2, 11, 5, 3, 12, 6, 4. 61. We represent the squares of a

4 × 4 chessboard as follows:

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

There are only two moves from each of the four corner

squares. If we include all the edges 1–10, 1–7, 16–10, and 16–

7, a circuit is completed too soon, so at least one of these edges

must be missing. Without loss of generality, assume the path

starts 1–10, 10–16, 16–7. Now the only moves from square

3 are to squares 5, 10, and 12, and square 10 already has two

incident edges. Therefore, 3–5 and 3–12 must be in the Hamil-

ton circuit. Similarly, edges 8–2 and 8–15 must be in the cir-

cuit. Now the only moves from square 9 are to squares 2, 7,

and 15. If there were edges from square 9 to both squares 2 and

15, a circuit would be completed too soon. Therefore, the edge

9–7 must be in the circuit giving square 7 its full complement

of edges. But now square 14 is forced to be joined to squares

5 and 12, completing a circuit too soon (5–14–12–3–5). This

contradiction shows that there is no knight’s tour on the 4× 4

board. 63. Because there are mn squares on an m×n board,

if both m and n are odd, there are an odd number of squares.

Because by Exercise 62 the corresponding graph is bipartite,

by Exercise 55 it has no Hamilton circuit. Hence, there is no

reentrant knight’s tour. 65. a) If G does not have a Hamil-

ton circuit, continue as long as possible adding missing edges

one at a time in such a way that we do not obtain a graph

with a Hamilton circuit. This cannot go on forever, because

once we’ve formed the complete graph by adding all miss-

ing edges, there is a Hamilton circuit. Whenever the process

stops, we have obtained a (necessarily noncomplete) graph H

with the desired property. b) Add one more edge to H. This

produces a Hamilton circuit, which uses the added edge. The

path consisting of this circuit with the added edge omitted

is a Hamilton path in H. c) Clearly v1 and vn are not adja-

cent in H, because H has no Hamilton circuit. Therefore, they

are not adjacent in G. But the hypothesis was that the sum of

the degrees of vertices not adjacent in G was at least n. This

inequality can be rewritten as n − deg(vn) ≤ deg(v1). But

n − deg(vn) is just the number of vertices not adjacent to vn.

d) Because there is no vertex following vn in the Hamilton

path, vn is not in S. Each one of the deg(v1) vertices adjacent

to v1 gives rise to an element of S, so S contains deg(v1) ver-

tices. e) By part (c) there are at most deg(v1)−1 vertices other

than vn not adjacent to vn, and by part (d) there are deg(v1) ver-

tices in S, none of which is vn. Therefore, at least one vertex

of S is adjacent to vn. By definition, if vk is this vertex, then

H contains edges vkvn and v1vk+1, where 1 < k < n − 1.

f) Now v1, v2, … , vk−1, vk, vn, vn−1, … , vk+1, v1 is a Hamil-

ton circuit in H, contradicting the construction of H. There-

fore, our assumption that G did not originally have a Hamilton

circuit is wrong, and our proof by contradiction is complete.

67. Assume that there is a Hamilton circuit H. First assume

that edge aj ∉ H. Then ab, ai, jk, and jl are forced to be in

H, which means that kl ∉ H, and then gk and dl are in H. If

ch were not in H, then bc, cd, gh, and hi would all have to be

in H, completing a circuit without all the vertices. It follows

that ch ∈ H. A circuit would be completed too soon if either

both bc and cd were in H, or both gh and hi were in H, so by

symmetry WOLOG assume that cd ∈ H and hi ∈ H and the

other two edges are not. This then forces bf ∈ H and fg ∈ H,

and we have completed a circuit without vertex e. Going back

to the beginning, we now know that aj ∈ H. Because of the

120◦ rotational symmetry of the figure, it then follows that dl
and gk are in H as well. It is clearly now impossible to include

all three of the vertices i, j, and k in the Hamilton circuit, and

our proof by contradiction is complete.

Section 10.6

1. a) Vertices are the stops, edges join adjacent stops, weights

are the times required to travel between adjacent stops.

b) Same as part (a), except weights are distances between ad-

jacent stops. c) Same as part (a), except weights are fares be-

tween stops. 3. 16 5. Exercise 2: a, b, e, d, z; Exercise 3: a, c,
d, e, g, z; Exercise 4: a, b, e, h, l, m, p, s, z 7. a) a, c, d b) a, c,
d, f c) c, d, f e) b, d, e, g, z 9. a) Direct b) Via New York

c) Via Atlanta and Chicago d) Via New York 11. a) Via

Chicago b) Via Chicago c) Via Los Angeles d) Via

Chicago 13. a) Via Chicago b) Via Chicago c) Via Los

Angeles d) Via Chicago 15. Do not stop the algorithm

when z is added to the set S. 17. a) Via Woodbridge, via

Woodbridge and Camden b) Via Woodbridge, via Wood-

bridge and Camden 19. For instance, sightseeing tours,

street cleaning
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21. a b c d e z
a 4 3 2 8 10 13
b 3 2 1 5 7 10
c 2 1 2 6 8 11
d 8 5 6 4 2 5
e 10 7 8 2 4 3
z 13 10 11 5 3 6

23. O(n3) 25. a–c–b–d–a (or the same circuit starting at

some other point and/or traversing the vertices in reverse

order) 27. San Francisco–Denver–Detroit–New York–Los

Angeles–San Francisco (or the same circuit starting at some

other point and/or traversing the vertices in reverse order)

29. Consider this graph:

a

b c
100

1 2

The circuit a-b-a-c-a visits each vertex at least once (and the

vertex a twice) and has total weight 6. Every Hamilton cir-

cuit has total weight 103. 31. Let v1, v2, … , vn be a topo-

logical ordering of the vertices of the given directed acyclic

graph. Let w(i, j) be the weight of edge vivj. Iteratively define

P(i) with the intent that it will be the weight of a longest path

ending at vi and C(i) with the intent that it will be the vertex

preceding vi in some longest path: For i from 1 to n, let P(i)
be the maximum of P( j) + w( j, i) over all j < i such that vjvi
is an edge in the directed graph (and if such a j exists let C(i)
be a value of j for which this maximum is achieved) and let

P(i) = 0 if there are no such values of j. At the conclusion

of this loop, a longest path can be found by choosing i that

maximizes P(i) and following the C links back to the start of

the path.

Section 10.7

1. Yes 3. b

a d

c

e

5. No

7. Yes a d

e

c f

b

9. No 11. A triangle is formed by the planar representation

of the subgraph of K5 consisting of the edges connecting v1,

v2, and v3. The vertex v4 must be placed either within the tri-

angle or outside of it. We will consider only the case when

v4 is inside the triangle; the other case is similar. Drawing the

three edges from v1, v2, and v3 to v4 forms four regions. No

matter which of these four regions v5 is in, it is possible to join

it to only three, and not all four, of the other vertices. 13. 8

15. Because there are no loops or multiple edges and no sim-

ple circuits of length 3, and the degree of the unbounded re-

gion is at least 4, each region has degree at least 4. Thus,

2e ≥ 4r, or r ≤ e∕2. But r = e − v + 2, so we have

e − v + 2 ≤ e∕2, which implies that e ≤ 2v − 4. 17. As in

the argument in the proof of Corollary 1, we have 2e ≥ 5r
and r = e − v + 2. Thus, e − v + 2 ≤ 2e/5, which

implies that e ≤ (5∕3)v − (10∕3). 19. Only (a) and (c)

21. Not homeomorphic to K3,3 23. Planar 25. Nonplanar

27. a) 1 b) 3 c) 9 d) 2 e) 4 f) 16 29. Draw Km,n as described

in the hint. The number of crossings is four times the number

in the first quadrant. The vertices on the x-axis to the right

of the origin are (1, 0), (2, 0), … , (m∕2, 0) and the vertices

on the y-axis above the origin are (0, 1), (0, 2), … , (0, n∕2).

We obtain all crossings by choosing any two numbers a and

b with 1 ≤ a < b ≤ m∕2 and two numbers r and s
with 1 ≤ r < s ≤ n∕2; we get exactly one crossing in

the graph between the edge connecting (a, 0) and (0, s) and

the edge connecting (b, 0) and (0, r). Hence, the number of

crossings in the first quadrant is C
(

m
2

, 2
)

⋅ C
(

n
2
, 2

)
=

(m∕2)(m∕2−1)

2
⋅ (n∕2)(n∕2−1)

2
. Hence, the total number of cross-

ings is 4 ⋅ mn(m − 2)(n − 2)∕64 = mn(m − 2)(n − 2)∕16.

31. a) 2 b) 2 c) 2 d) 2 e) 2 f) 2 33. The formula is valid

for n ≤ 4. If n > 4, by Exercise 32 the thickness of Kn is at

least C(n, 2)∕(3n − 6) = (n + 1 + 2

n−2
)∕6 rounded up. Be-

cause this quantity is never an integer, it equals ⌊(n + 7)∕6⌋.

35. This follows from Exercise 34 because Km,n has mn edges

and m+ n vertices and has no triangles because it is bipartite.

37.

Section 10.8

1. Four colors

A

B

D

C
E

3. Three colors

A

F
B

C

D

E

5. 3 7. 3 9. 2 11. 3 13. Graphs with no edges

15. 3 if n is even, 4 if n is odd 17. Period 1: Math 115, Math

185; period 2: Math 116, CS 473; period 3: Math 195, CS 101;

period 4: CS 102; period 5: CS 273 19. 5 21. Exercise 5:

3 Exercise 6: 6 Exercise 7: 3 Exercise 8: 4 Exercise 9: 3

Exercise 10: 6 Exercise 11: 4 23. a) 2 if n is even, 3 if n is

odd b) n 25. Two edges that have the same color share no
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endpoints. Therefore, if more than n∕2 edges were colored the

same, the graph would have more than 2(n∕2) = n vertices.

27. 5 29. Color 1: e, f, d; color 2: c, a, i, g; color 3: h, b, j
31. Color C6 33. Four colors are needed to color Wn when

n is an odd integer greater than 1, because three colors are

needed for the rim (see Example 4), and the center vertex, be-

ing adjacent to all the rim vertices, will require a fourth color.

To see that the graph obtained from Wn by deleting one edge

can be colored with three colors, consider two cases. If we

remove a rim edge, then we can color the rim with two colors,

by starting at an endpoint of the removed edge and using the

colors alternately around the portion of the rim that remains.

The third color is then assigned to the center vertex. If we

remove a spoke edge, then we can color the rim by assigning

color #1 to the rim endpoint of the removed edge and colors

#2 and #3 alternately to the remaining vertices on the rim,

and then assign color #1 to the center. 35. Suppose that G
is chromatically k-critical but has a vertex v of degree k − 2

or less. Remove from G one of the edges incident to v. By

definition of “k-critical,” the resulting graph can be colored

with k − 1 colors. Now restore the missing edge and use this

coloring for all vertices except v. Because we had a proper

coloring of the smaller graph, no two adjacent vertices have

the same color. Furthermore, v has at most k−2 neighbors, so

we can color v with an unused color to obtain a proper (k−1)-

coloring of G. This contradicts the fact that G has chromatic

number k. Therefore, our assumption was wrong, and every

vertex of G must have degree at least k − 1. 37. a) 6 b) 7

c) 9 d) 11 39. Represent frequencies by colors and zones

by vertices. Join two vertices with an edge if the zones these

vertices represent interfere with one another. Then a k-tuple

coloring is precisely an assignment of frequencies that avoids

interference. 41. We use induction on the number of ver-

tices of the graph. Every graph with five or fewer vertices can

be colored with five or fewer colors, because each vertex can

get a different color. That takes care of the basis case(s). So

we assume that all graphs with k vertices can be 5-colored

and consider a graph G with k + 1 vertices. By Corollary 2 in

Section 10.7, G has a vertex v with degree at most 5. Remove

v to form the graph G′. Because G′ has only k vertices, we

5-color it by the inductive hypothesis. If the neighbors of v
do not use all five colors, then we can 5-color G by assigning

to v a color not used by any of its neighbors. The difficulty

arises if v has five neighbors, and each has a different color in

the 5-coloring of G′. Suppose that the neighbors of v, when

considered in clockwise order around v, are a, b, c, m, and p.

(This order is determined by the clockwise order of the curves

representing the edges incident to v.) Suppose that the colors

of the neighbors are azure, blue, chartreuse, magenta, and

purple, respectively. Consider the azure-chartreuse subgraph

(i.e., the vertices in G colored azure or chartreuse and all the

edges between them). If a and c are not in the same compo-

nent of this graph, then in the component containing a we

can interchange these two colors (make the azure vertices

chartreuse and vice versa), and G′ will still be properly col-

ored. That makes a chartreuse, so we can now color v azure,

and G has been properly colored. If a and c are in the same

component, then there is a path of vertices alternately colored

azure and chartreuse joining a and c. This path together with

edges av and vc divides the plane into two regions, with b in

one of them and m in the other. If we now interchange blue

and magenta on all the vertices in the same region as b, we

will still have a proper coloring of G′, but now blue is avail-

able for v. In this case, too, we have found a proper coloring

of G. This completes the inductive step, and the theorem is

proved. 43. We follow the hint. Because the measures of

the interior angles of a pentagon total 540◦, there cannot be

as many as three interior angles of measure more than 180◦

(reflex angles). If there are no reflex angles, then the pen-

tagon is convex, and a guard placed at any vertex can see all

points. If there is one reflex angle, then the pentagon must

look essentially like figure (a) below, and a guard at vertex v
can see all points. If there are two reflex angles, then they

can be adjacent or nonadjacent (figures (b) and (c)); in either

case, a guard at vertex v can see all points. [In figure (c),

choose the reflex vertex closer to the bottom side.] Thus, for

all pentagons, one guard suffices, so g(5) = 1.

(a)

v

(b)
v

(c)

v

45. The figure suggested in the hint (generalized to have k
prongs for any k ≥ 1) has 3k vertices. The sets of locations

from which the tips of different prongs are visible are dis-

joint. Therefore, a separate guard is needed for each of the

k prongs, so at least k guards are needed. This shows that

g(3k) ≥ k = ⌊3k∕3⌋. If n = 3k + i, where 0 ≤ i ≤ 2,

then g(n) ≥ g(3k) ≥ k = ⌊n∕3⌋.

Supplementary Exercises

1. 2500 3. Yes 5. Yes 7.
∑m

i=1
ni vertices,

∑
t<j ninj

edges 9. a) If x ∈ N(A ∪ B), then x is adjacent to some

vertex v ∈ A∪B. WOLOG suppose v ∈ A; then x ∈ N(A) and

therefore also in N(A)∪N(B). Conversely, if x ∈ N(A)∪N(B),

then WOLOG suppose x ∈ N(A). Thus, x is adjacent to

some vertex v ∈ A ⊆ A ∪ B, so x ∈ N(A ∪ B). b) If

x ∈ N(A ∩ B), then x is adjacent to some vertex v ∈ A ∩ B.

Since both v ∈ A and v ∈ B, it follows that x ∈ N(A) and

x ∈ N(B), whence x ∈ N(A) ∩ N(B). For the counterexample,

let G = ({u, v, w}, {{u, v}, {v, w}}), A = {u}, and B = {w}.

11. (c, a, p, x, n, m) and many others 13. (c, d, a, b) and

many others 15. 6 times the number of triangles divided by

the number of paths of length 2 17. a) The probability that
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two actors each of whom has appeared in a film with a ran-

domly chosen actor have appeared in a film together b) The

probability that two of a randomly chosen person’s Facebook

friends are themselves Facebook friends c) The probability

that two of a randomly chosen person’s coauthors are them-

selves coauthors d) The probability that two proteins that

each interact with a randomly chosen protein interact with

each other e) The probability that two routers each of which

has a communications link to a randomly chosen router are

themselves linked 19. Complete subgraphs containing the

following sets of vertices: {b, c, e, f }, {a, b, g}, {a, d, g},

{d, e, g}, {b, e, g} 21. Complete subgraphs containing the

following sets of vertices: {b, c, d, j, k}, {a, b, j, k}, {e, f, g, i},

{a, b, i}, {a, i, j}, {b, d, e}, {b, e, i}, {b, i, j}, {g, h, i}, {h, i, j}
23. {c, d} is a minimum dominating set.

25. a)

b)

27. a) 1 b) 2 c) 3 29. a) A path from u to v in a graph G
induces a path from f (u) to f (v) in an isomorphic graph H.

b) Suppose f is an isomorphism from G to H. If v0, v1, … ,
vn, v0 is a Hamilton circuit in G, then f (v0), f (v1), … , f (vn),
f (v0) must be a Hamilton circuit in H because it is still a cir-

cuit and f (vi) ≠ f (vj) for 0 ≤ i < j ≤ n. c) Suppose f is

an isomorphism from G to H. If v0, v1, … , vn, v0 is an Euler

circuit in G, then f (v0), f (v1), … , f (vn), f (v0) must be an Eu-

ler circuit in H because it is a circuit that contains each edge

exactly once. d) Two isomorphic graphs must have the same

crossing number because they can be drawn exactly the same

way in the plane. e) Suppose f is an isomorphism from G
to H. Then v is isolated in G if and only if f (v) is isolated in

H. Hence, the graphs must have the same number of isolated

vertices. f) Suppose f is an isomorphism from G to H. If G
is bipartite, then the vertex set of G can be partitioned into

V1 and V2 with no edge connecting vertices within V1 or ver-

tices within V2. Then the vertex set of H can be partitioned

into f (V1) and f (V2) with no edge connecting vertices within

f (V1) or vertices within f (V2). 31. 3 33. a) Yes b) No

35. No 37. Yes 39. If e is a cut edge with endpoints u and

v, then if we direct e from u to v, there will be no path in the

directed graph from v to u, or else e would not have been a

cut edge. Similar reasoning works if we direct e from v to u.

41. n − 1 43. Let the vertices represent the chickens. We

include the edge (u, v) in the graph if and only if chicken u
dominates chicken v. 45. By the handshaking theorem, the

average vertex degree is 2m∕n, which equals the minimum de-

gree; it follows that all the vertex degrees are equal. 47. K3,3
and the skeleton of a triangular prism 49. a) A Hamilton

circuit in the graph exactly corresponds to a seating of the

knights at the Round Table such that adjacent knights are

friends. b) The degree of each vertex in this graph is at least

2n−1−(n−1) = n ≥ (2n∕2), so by Dirac’s theorem, this graph

has a Hamilton circuit. c) a, b, d, f, g, z 51. a) 4 b) 2 c) 3

d) 4 e) 4 f) 2 53. a) Suppose that G = (V, E). Let a, b ∈ V .

We must show that the distance between a and b in G is at

most 2. If {a, b} ∉ E this distance is 1, so assume {a, b} ∈ E.

Because the diameter of G is greater than 3, there are vertices

u and v such that the distance in G between u and v is greater

than 3. Either u or v, or both, is not in the set {a, b}. Assume

that u is different from both a and b. Either {a, u} or {b, u}
belongs to E; otherwise a, u, b would be a path in G of length

2. So, without loss of generality, assume {a, u} ∈ E. Thus, v
cannot be a or b, and by the same reasoning either {a, v} ∈ E
or {b, v} ∈ E. In either case, this gives a path of length less

than or equal to 3 from u to v in G, a contradiction. b) Suppose

G = (V, E). Let a, b ∈ V . We must show that the distance be-

tween a and b in G does not exceed 3. If {a, b} ∉ E, the result

follows, so assume that {a, b} ∈ E. Because the diameter of G
is greater than or equal to 3, there exist vertices u and v such

that the distance in G between u and v is greater than or equal

to 3. Either u or v, or both, is not in the set {a, b}. Assume u is

different from both a and b. Either {a, u} ∈ E or {b, u} ∈ E;

otherwise a, u, b is a path of length 2 in G. So, without loss

of generality, assume {a, u} ∈ E. Thus, v is different from a
and from b. If {a, v} ∈ E, then u, a, v is a path of length 2

in G, so {a, v} ∉ E and thus {b, v} ∈ E (or else there would

be a path a, v, b of length 2 in G). Hence, {u, b} ∉ E; other-

wise u, b, v is a path of length 2 in G. Thus, a, v, u, b is a path

of length 3 in G, as desired. 55. a, b, e, z 57. a, c, d, f, g, z
59. If G is planar, then because e ≤ 3v − 6, G has at most 27

edges. (If G is not connected it has even fewer edges.) Simi-

larly, G has at most 27 edges. But the union of G and G is K11,

which has 55 edges, and 55 > 27 + 27. 61. Suppose that G
is colored with k colors and has independence number i. Be-

cause each color class must be an independent set, each color

class has no more than i elements. Thus, there are at most ki
vertices. 63. a) C(n, m)pm(1− p)n−m b) np c) To generate

a labeled graph G, as we apply the process to pairs of ver-

tices, the random number x chosen must be less than or equal

to 1∕2 when G has an edge between that pair of vertices and
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greater than 1∕2 when G has no edge there. Hence, the prob-

ability of making the correct choice is 1∕2 for each edge and

1∕2C(n,2) overall. Hence, all labeled graphs are equally likely.

65. Suppose P is monotone increasing. If the property of not

having P were not retained whenever edges are removed from

a simple graph, there would be a simple graph G not having P
and another simple graph G′ with the same vertices but with

some of the edges of G missing that has P. But P is monotone

increasing, so because G′ has P, so does G obtained by adding

edges to G′. This is a contradiction. The proof of the converse

is similar.

CHAPTER 11

Section 11.1

1. (a), (c), (e) 3. a) a b) a, b, c, d, f , h, j, q, t c) e, g, i, k, l,
m, n, o, p, r, s, u d) q, r e) c f) p g) f , b, a h) e, f , l, m, n
5. No 7. Level 0: a; level 1: b, c, d; level 2: e through k (in

alphabetical order); level 3: l through r; level 4: s, t; level 5: u
9. a) The entire tree b) c, g, h, o, p and the four edges cg, ch,

ho, hp c) e alone 11. a) 1 b) 2 13. a) 3 b) 9 15. a) The

“only if” part is Theorem 2 and the definition of a tree. Sup-

pose G is a connected simple graph with n vertices and n − 1

edges. If G is not a tree, it contains, by Exercise 14, an edge

whose removal produces a graph G′, which is still connected.

If G′ is not a tree, remove an edge to produce a connected

graph G′′. Repeat this procedure until the result is a tree. This

requires at most n−1 steps because there are only n−1 edges.

By Theorem 2, the resulting graph has n − 1 edges because

it has n vertices. It follows that no edges were deleted, so G
was already a tree. b) Suppose that G is a tree. By part (a),

G has n − 1 edges, and by definition, G has no simple cir-

cuits. Conversely, suppose that G has no simple circuits and

has n − 1 edges. Let c equal the number of components of G,

each of which is necessarily a tree, say with ni vertices, where∑c
i=1

ni = n. By part (a), the total number of edges in G is∑c
i=1

(ni −1) = n−c. Since we are given that this equals n−1,

it follows that c = 1, i.e., G is connected and therefore satis-

fies the definition of a tree. 17. 9999 19. 2000 21. 999

23. 1,000,000 dollars 25. No such tree exists by Theorem 4

because it is impossible for m = 2 or m = 84.

27. Complete binary tree of height 4:

Complete 3-ary tree of height 3:

29. a) By Theorem 3 it follows that n = mi + 1. Because

i+l = n, we have l = n−i, so l = (mi+1)−i = (m−1)i+1. b) We

have n = mi+ 1 and i+ l = n. Hence, i = n− l. It follows that

n = m(n−l)+1. Solving for n gives n = (ml−1)∕(m−1). From

i = n− l we obtain i = [(ml−1)∕(m−1)]− l = (l−1)∕(m−1).

31. n − t 33. a) 1 b) 3 c) 5 35. a) The parent directory

b) A subdirectory or contained file c) A subdirectory or con-

tained file in the same parent directory d) All directories in

the path name e) All subdirectories and files continued in the

directory or a subdirectory of this directory, and so on f) The

length of the path to this directory or file g) The depth of the

system, i.e., the length of the longest path 37. Let n = 2k,

where k is a positive integer. If k = 1, there is nothing to

prove because we can add two numbers with n − 1 = 1 pro-

cessor in log 2 = 1 step. Assume we can add n = 2k numbers

in log n steps using a tree-connected network of n − 1 pro-

cessors. Let x1, x2, … , x2n be 2n = 2k+1 numbers that we

wish to add. The tree-connected network of 2n−1 processors

consists of the tree-connected network of n − 1 processors

together with two new processors as children of each leaf. In

one step we can use the leaves of the larger network to find

x1 + x2, x3 + x4,… , x2n−1 + x2n, giving us n numbers, which,

by the inductive hypothesis, we can add in log n steps using

the rest of the network. Because we have used log n + 1 steps

and log(2n) = log 2 + log n = 1 + log n, this completes the

proof. 39. c only 41. c and h 43. Suppose a tree T has

at least two centers. Let u and v be distinct centers, both with

eccentricity e, with u and v not adjacent. Because T is con-

nected, there is a simple path P from u to v. Let c be any other

vertex on this path. Because the eccentricity of c is at least e,

there is a vertex w such that the unique simple path from c to

w has length at least e. Clearly, this path cannot contain both u
and v or else there would be a simple circuit. In fact, this path

from c to w leaves P and does not return to P once it, possibly,

follows part of P toward either u or v. Without loss of gener-

ality, assume this path does not follow P toward u. Then the

path from u to c to w is simple and of length more than e, a

contradiction. Hence, u and v are adjacent. Now because any

two centers are adjacent, if there were more than two centers,

T would contain K3, a simple circuit, as a subgraph, which is

a contradiction.
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45. T1 T2 T3 T4

T5
T6

T7

47. The statement is that every tree with n vertices has a path

of length n − 1, and it was shown only that there exists a tree

with n vertices having a path of length n − 1.

Section 11.2

1. banana

apple

coconut

peach

pear

mango

papaya

3. a) 3 b) 1 c) 4 d) 5

5. the

quick

brown

fox

dog
jumps

over

lazy

7. At least ⌈log3 4⌉ = 2 weighings are needed, because there

are only four outcomes (because it is not required to determine

whether the coin is lighter or heavier). In fact, two weighings

suffice. Begin by weighing coin 1 against coin 2. If they bal-

ance, weigh coin 1 against coin 3. If coin 1 and coin 3 are the

same weight, coin 4 is the counterfeit coin, and if they are not

the same weight, then coin 3 is the counterfeit coin. If coin 1

and coin 2 are not the same weight, again weigh coin 1 against

coin 3. If they balance, coin 2 is the counterfeit coin; if they

do not balance, coin 1 is the counterfeit coin. 9. At least

⌈log3 13⌉ = 3 weighings are needed. In fact, three weighings

suffice. Start by putting coins 1, 2, and 3 on the left-hand side

of the balance and coins 4, 5, and 6 on the right-hand side.

If equal, apply Example 3 to coins 1, 2, 7, 8, 9, 10, 11, and

12. If unequal, apply Example 3 to 1, 2, 3, 4, 5, 6, 7, and 8.

11. The least number is five. Call the elements a, b, c, and d.

First compare a and b; then compare c and d. Without loss

of generality, assume that a < b and c < d. Next compare

a and c. Whichever is smaller is the smallest element of the

set. Again without loss of generality, suppose a < c. Finally,

compare b with both c and d to completely determine the or-

dering. 13. The first two steps are shown in the text. After

22 has been identified as the second largest element, we re-

place the leaf 22 by −∞ in the tree and recalculate the winner

in the path from the leaf where 22 used to be up to the root.

Next, we see that 17 is the third largest element, so we re-

peat the process: replace the leaf 17 by −∞ and recalculate.

Next, we see that 14 is the fourth largest element, so we re-

peat the process: replace the leaf 14 by −∞ and recalculate.

Next, we see that 11 is the fifth largest element, so we repeat

the process: replace the leaf 11 by −∞ and recalculate. The

process continues in this manner. We determine that 9 is the

sixth largest element, 8 is the seventh largest element, and 3

is the eighth largest element. The trees produced in all steps,

except the second to last, are shown here.

–∞–∞

17

17 11

17 1198

17 1198 314

–∞–∞–∞

14

14 11

14 1198

1198 314

–∞–∞

11

8 11

1198

1198 3–∞ –∞

–∞
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–∞–∞

9

8 9

98

98 3–∞ –∞

–∞

–∞

–∞

–∞–∞

3

3

–∞ –∞

–∞

–∞

–∞–∞–∞

–∞–∞ 3

3

15. The value of a vertex is the list element currently there,

and the label is the name (i.e., location) of the leaf responsible

for that value.

procedure tournament sort(a1,… , an)

k := ⌈log n⌉
build a binary tree of height k
for i := 1 to n

set the value of the ith leaf to be ai and its label to

be itself

for i := n + 1 to 2k

set the value of the ith leaf to be −∞ and its label to

be itself

for i := k − 1 downto 0

for each vertex v at level i
set the value of v to the larger of the values of its

children and its label to be the label of the child

with the larger value

for i := 1 to n
ci := value at the root

let v be the label of the root

set the value of v to be −∞
while the label at the root is still v

v := parent(v)

set the value of v to the larger of the values of its

children and its label to be the label of the child

with the larger value

{c1,… , cn is the list in nonincreasing order}
17. k − 1, where n = 2k 19. a) Yes b) No c) Yes d) Yes

21. a: 000, e: 001, i: 01, k: 1100, o: 1101, p: 11110, u: 11111

23. a: 11; b: 101; c: 100; d: 01; e: 00; 2.25 bits (Note: This

coding depends on how ties are broken, but the average num-

ber of bits is always the same.) 25. There are four possible

answers in all, the one shown here and three more obtained

from this one by swapping t and v and/or swapping u and w.

0

0 1

0 1

t v

u

w

1

27. A:0001; B:101001; C:11001; D:00000; E:100;

F:001100; G:001101; H:0101; I:0100; J:110100101;

K:1101000; L:00001; M:10101; N:0110; O:0010; P:101000;

Q:1101001000; R:1011; S:0111; T:111; U:00111; V:110101;

W:11000; X:11010011; Y:11011; Z:1101001001 29. A:2;

E:1; N:010; R:011; T:02; Z:00 31. n 33. Because the tree

is rather large, we have indicated in some places to “see text.”

Refer to Figure 9; the subtree rooted at these square or circle

vertices is exactly the same as the corresponding subtree in

Figure 9. First player wins.

32

+1

–1

–1

–1

–1

+1

–1 –1 +1

+1

–1 –1see

text

+1

see

text

–1

see

text

+1

see

text

+1

21 11 131

1

1 2

31 322122

21 1

max

max

min

min

35. a) $1 b) $3 c) −$3 37. See the figures shown next.

a) 0 b) 0 c) 1 d) This position cannot have occurred in a

game; this picture is impossible.

a)

X
X X

XX
X

XX

XX

X
X

XX
X

X

XX

X
X

XX

O
O

O
OO

O
O

O

O
O

O
OO

O
O

O

O
O

O

00

draw

0

draw

0

0

b)

0+1

draw

0

X wins

+1

0

X
X

X
X

X
X

X

X
X
X

O
OO

O
O

OO

O

X
X

X
X

X
X

X
X

O
OO

O
O

OO

O

X
X

X
X

O
O

O
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c)

O O
X X

XX

O

O O O
X X

XX

O
O O

O

X X

XX

O
O O
X

X
X

X

OO

O O
O

X X

X
X

X

O
O O
X

XX
X

X

OO
O O

O

X X

X
X

X

O

O O
O

X

X
X

X

O

O O
X

XX
X
O

O O
X

XX

O

O O
X

XXX

O

0+10–1

draw draw

X wins

0

X wins

O wins
+10

+10

+1

–1

39. Proof by strong induction: Basis step: When there are

n = 2 stones in each pile, if first player takes two stones from

a pile, then second player takes one stone from the remain-

ing pile and wins. If first player takes one stone from a pile,

then second player takes two stones from the other pile and

wins. Inductive step: Assume inductive hypothesis that sec-

ond player can always win if the game starts with two piles

of j stones for all 2 ≤ j ≤ k, where k ≥ 2, and con-

sider a game with two piles containing k + 1 stones each.

If first player takes all the stones from one of the piles, then

second player takes all but one stone from the remaining pile

and wins. If first player takes all but one stone from one of the

piles, then second player takes all the stones from the other

pile and wins. Otherwise first player leaves j stones in one pile,

where 2 ≤ j ≤ k, and k + 1 stones in the other pile. Second

player takes the same number of stones from the larger pile,

also leaving j stones there. At this point the game consists of

two piles of j stones each. By the inductive hypothesis, the

second player in that game, who is also the second player in

our actual game, can win, and the proof by strong induction is

complete. 41. 7; 49 43. Value of tree is 1. Note: The sec-

ond and third trees are the subtrees of the two children of the

root in the first tree whose subtrees are not shown because of

space limitations. They should be thought of as spliced into

the first picture.

X

5 – 4 = 1 6 – 4 = 2

6 – 5 = 1 5 – 5 = 0 4 – 5 = –1 6 – 5 = 1 5 – 5 = 0

+1

–2+1–1

–1

X

O O
X X

X X

O

X
O

X
O

OXOX

X

O

X
O

OX

X

X

O

X
O

X

4 – 6 = –2 6 – 6 = 0 5 – 6 = –1 6 – 6 = 0 5 – 6 = –1

–2

Section 11.3

1. 0

1
2 3

1.1 1.2

0 < 1 < 1.1 < 1.2 < 2 < 3

3. 0

1 2

1.2 2.1
1.1

1.2.1
1.2.2

1.2.3

1.2.1.1
1.2.1.2 1.2.3.1 1.2.3.2

1.2.3.3

1.2.3.2.1 1.2.3.2.2

0 < 1 < 1.1 < 1.2 < 1.2.1 < 1.2.1.1 <
1.2.1.2 < 1.2.2 < 1.2.3 < 1.2.3.1 <
1.2.3.2 < 1.2.3.2.1 < 1.2.3.2.2 <
1.2.3.3 < 2 < 2.1
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5. No 7. a, b, d, e, f, g, c 9. a, b, e, k, l, m, f, g, n, r,
s, c, d, h, o, i, j, p, q 11. d, b, i, e, m, j, n, o, a, f, c, g, k,
h, p, l 13. d, f, g, e, b, c, a 15. k, l, m, e, f, r, s, n, g, b,
c, o, h, i, p, q, j, d, a

17. a) +

+

*x

x/

yx

yx

+

+

* x

/

y

yx

b) ++x ∗ xy∕xy, +x∕+ ∗ xyxy c) xxy ∗ +xy∕+, xxy ∗ x+y∕+
d) ((x + (x ∗ y)) + (x∕y)), (x + (((x ∗ y) + x)∕y))

19. a) –

∩

BA A –

∪

AB

b) − ∩ A B ∪ A − B A c) A B ∩ A B A − ∪−
d) ((A ∩ B) − (A ∪ (B − A))) 21. 14 23. a) 1 b) 1 c) 4

d) 2205

25. a

b c d e

f g h i

k l

j

27. Use mathematical induction. The result is trivial for a list

with one element. Assume the result is true for a list with n
elements. For the inductive step, start at the end. Find the se-

quence of vertices at the end of the list starting with the last

leaf, ending with the root, each vertex being the last child of

the one following it. Remove this leaf and apply the inductive

hypothesis. 29. c, d, b, f, g, h, e, a in each case 31. Proof

by mathematical induction. Let S(X) and O(X) represent the

number of symbols and number of operators in the well-

formed formula X, respectively. The statement is true for well-

formed formulae of length 1, because they have 1 symbol

and 0 operators. Assume the statement is true for all well-

formed formulae of length less than n. A well-formed for-

mula of length n must be of the form ∗XY , where ∗ is an

operator and X and Y are well-formed formulae of length

less than n. Then by the inductive hypothesis S(∗XY) =
S(X) + S(Y) = [O(X) + 1] + [O(Y) + 1] = O(X) + O(Y) + 2.

Because O(∗XY) = 1 + O(X) + O(Y), it follows that

S(∗XY) = O(∗XY) + 1. 33. x y+ z x ◦+ x ◦, xyz + + yx++,

xyxy◦◦xy◦◦z◦+, xz×, zz+◦, yyyy◦◦◦, zx+yz+◦, for instance

Section 11.4

1. m − n + 1

3. a b c

g f e

d

5. ba

c
d e

h

l

j
g

f

i k

7. a) b)

c)

d) e) f)
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9. a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

a b f g

c d e h

11. a) 3 b) 16 c) 4 d) 5

13. a e h i

b f g j

c d

15.
a

b

c

d

e

f

g h i

j

k

l

mn

o
p

q

r

s

t

17. a) A path of length 6 b) A path of length 5 c) A path

of length 6 d) Depends on order chosen to visit the vertices;

may be a path of length 7 19. With breadth-first search, the

initial vertex is the middle vertex, and the n spokes are added

to the tree as this vertex is processed. Thus, the resulting tree

is K1,n. With depth-first search, we start at the vertex in the

middle of the wheel and visit a neighbor—one of the vertices

on the rim. From there we move to an adjacent vertex on the

rim, and so on all the way around until we have reached every

vertex. Thus, the resulting spanning tree is a path of length n.

21. With breadth-first search, we fan out from a vertex of de-

gree m to all the vertices of degree n as the first step. Next,

a vertex of degree n is processed, and the edges from it to

all the remaining vertices of degree m are added. The result

is a K1,n−1 and a K1,m−1 with their centers joined by an edge.

With depth-first search, we travel back and forth from one par-

tite set to the other until we can go no further. If m = n or

m = n− 1, then we get a path of length m+ n− 1. Otherwise,

the path ends while some vertices in the larger partite set have

not been visited, so we back up one link in the path to a vertex

v and then successively visit the remaining vertices in that set

from v. The result is a path with extra pendant edges coming

out of one end of the path. 23. A possible set of flights

to discontinue are: Boston–New York, Detroit–Boston,

Boston–Washington, New York–Washington, New York–

Chicago, Atlanta–Washington, Atlanta–Dallas, Atlanta–Los

Angeles, Atlanta–St. Louis, St. Louis–Dallas, St. Louis–

Detroit, St. Louis–Denver, Dallas–San Diego, Dallas–Los

Angeles, Dallas–San Francisco, San Diego–Los Angeles, Los

Angeles–San Francisco, San Francisco–Seattle. 25. Proof

by induction on the length of the path: If the path has length 0,

then the result is trivial. If the length is 1, then u is adjacent to

v, so u is at level 1 in the breadth-first spanning tree. Assume

that the result is true for paths of length l. If the length of a

path is l+ 1, let u′ be the next-to-last vertex in a shortest path

from v to u. By the inductive hypothesis, u′ is at level l in the

breadth-first spanning tree. If u were at a level not exceeding

l, then clearly the length of the shortest path from v to u would

also not exceed l. So u has not been added to the breadth-first

spanning tree yet after the vertices of level l have been added.

Because u is adjacent to u′, it will be added at level l + 1 (al-

though the edge connecting u′ and u is not necessarily added).

27. a) No solution

b) c)

29. Start at a vertex and proceed along a path without repeat-

ing vertices as long as possible, allowing the return to the start

after all vertices have been visited. When it is impossible to
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continue along a path, backtrack and try another extension of

the current path. 31. Take the union of the spanning trees

of the connected components of G. They are disjoint, so the

result is a forest. 33. m− n+ c 35. Assume that we wish

to find the length of a shortest path from v1 to every other ver-

tex of G using Algorithm 2. In line 2 of that algorithm, add

L(v1) := 0, and add the following as a third step in the then
clause at the end: L(w) := 1 + L(v). 37. Add an instruction

to the BFS algorithm to mark each vertex as it is encoun-

tered. When BFS terminates we have found (all the vertices

of) one component of the graph. Repeat, starting at an un-

marked vertex, and continue in this way until all vertices

have been marked. 39. Trees 41. Use depth-first search

on each component. 43. If an edge uv is not followed while

we are processing vertex u during the depth-first search pro-

cess, then it must be the case that the vertex v had already

been visited. There are two cases. If vertex v was visited af-

ter we started processing u, then, because we are not finished

processing u yet, v must appear in the subtree rooted at u (and

hence, must be a descendant of u). On the other hand, if the

processing of v had already begun before we started process-

ing u, then why wasn’t this edge followed at that time? It must

be that we had not finished processing v, in other words, that

we are still forming the subtree rooted at v, so u is a descen-

dant of v, and hence, v is an ancestor of u. 45. Certainly

these two procedures produce the identical spanning trees if

the graph we are working with is a tree itself, because in this

case there is only one spanning tree (the whole graph). This

is the only case in which that happens, however. If the origi-

nal graph has any other edges, then by Exercise 43 they must

be back edges and hence, join a vertex to an ancestor or de-

scendant, whereas by Exercise 34, they must connect vertices

at the same level or at levels that differ by 1. Clearly these

two possibilities are mutually exclusive. Therefore, there can

be no edges other than tree edges if the two spanning trees

are to be the same. 47. Because the edges not in the span-

ning tree are not followed in the process, we can ignore them.

Thus, we can assume that the graph was a rooted tree to begin

with. The basis step is trivial (there is only one vertex), so we

assume the inductive hypothesis that breadth-first search ap-

plied to trees with n vertices have their vertices visited in order

of their level in the tree and consider a tree T with n + 1 ver-

tices. The last vertex to be visited during breadth-first search

of this tree, say v, is the one that was added last to the list of

vertices waiting to be processed. It was added when its par-

ent, say u, was being processed. We must show that v is at

the lowest (bottom-most, i.e., numerically greatest) level of

the tree. Suppose not; say vertex x, whose parent is vertex w,

is at a lower level. Then w is at a lower level than u. Clearly

v must be a leaf, because any child of v could not have been

seen before v is seen. Consider the tree T ′ obtained from T by

deleting v. By the inductive hypothesis, the vertices in T ′ must

be processed in order of their level in T ′ (which is the same as

their level in T , and the absence of v in T ′ has no effect on the

rest of the algorithm). Therefore, u must have been processed

before w, and therefore v would have joined the waiting list

before x did, a contradiction. Therefore, v is at the bottom-

most level of the tree, and the proof is complete. 49. We

modify the pseudocode given in Algorithm 2 by initializing

m to be 0 at the beginning of the algorithm, and adding the

statements “m := m + 1” and “assign m to vertex v” after the

statement that removes vertex v from L. 51. If a directed

edge uv is not followed while we are processing its tail u dur-

ing the depth-first search process, then it must be the case that

its head v had already been visited. There are three cases. If

vertex v was visited after we started processing u, then, be-

cause we are not finished processing u yet, v must appear in the

subtree rooted at u (and hence, must be a descendant of u), so

we have a forward edge. Otherwise, the processing of v must

have already begun before we started processing u. If it had

not yet finished (i.e., we are still forming the subtree rooted

at v), then u is a descendant of v, and hence, v is an ances-

tor of u (we have a back edge). Finally, if the processing of v
had already finished, then by definition we have a cross edge.

53. Let T be the spanning tree constructed in Figure 3 and

T1, T2, T3, and T4 the spanning trees in Figure 4. Denote by

d(T ′, T ′′) the distance between T ′ and T ′′. Then d(T, T1) = 6,

d(T, T2) = 4, d(T, T3) = 4, d(T, T4) = 2, d(T1, T2) = 4,

d(T1, T3) = 4, d(T1, T4) = 6, d(T2, T3) = 4, d(T2, T4) = 2,

and d(T3, T4) = 4. 55. Suppose e1 = {u, v} is as speci-

fied. Then T2 ∪ {e1} contains a simple circuit C containing

e1. The graph T1 − {e1} has two connected components; the

endpoints of e1 are in different components. Travel C from

u in the direction opposite to e1 until you come to the first

vertex in the same component as v. The edge just crossed is

e2. Clearly, T2 ∪ {e1} − {e2} is a tree, because e2 was on C.

Also T1 − {e1} ∪ {e2} is a tree, because e2 reunited the two

components.

57. Exercise 18:

c

a

d

b

Exercise 19:

b

c

a

d

Exercise 20:

ba

d e

c

Exercise 21:

a b c

d e

Exercise 22:

a cb

f de

Exercise 23:

d

c if l

a g

e kb h

j

59. First construct an Euler circuit in the directed graph. Then

delete from this circuit every edge that goes to a vertex pre-

viously visited. 61. According to Exercise 60, a directed

graph contains a circuit if and only if there are any back edges.

We can detect back edges as follows. Add a marker on each

vertex v to indicate what its status is: not yet seen (the ini-

tial situation), seen (i.e., put into T) but not yet finished (i.e.,

visit(v) has not yet terminated), or finished (i.e., visit(v) has

terminated). A few extra lines in Algorithm 1 will accomplish

this bookkeeping. Then to determine whether a directed graph
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has a circuit, we just have to check when looking at edge uv
whether the status of v is “seen.” If that ever happens, then we

know there is a circuit; if not, then there is no circuit.

Section 11.5

1. Deep Springs–Oasis, Oasis–Dyer, Oasis–Silver Peak, Sil-

ver Peak–Goldfield, Lida–Gold Point, Gold Point–Beatty,

Lida–Goldfield, Goldfield–Tonopah, Tonopah–Manhattan,

Tonopah–Warm Springs 3. {e, f }, {c, f }, {e, h}, {h, i},

{b, c}, {b, d}, {a, d}, {g, h}

5.
San Francisco

Denver

Chicago

Atlanta

New York
$1200

$900

$700 $8
00

7. {e, f }, {a, d}, {h, i}, {b, d}, {c, f }, {e, h}, {b, c}, {g, h}
9.

1

a

1

1b c

11. Instead of choosing minimum-weight edges at each stage,

choose maximum-weight edges at each stage with the same

properties.

13. a b

c d

e
4 3

3
3

15.
a b c d

e

f
g

h

i j k

l

m n o p

2

2 3

2

33

4 3
343

3
343

17. First find a minimum spanning tree T of the graph G with

n edges. Then for i = 1 to n − 1, delete only the ith edge of

T from G and find a minimum spanning tree of the remaining

graph. Pick the one of these n−1 trees with the shortest length.

19. If all edges have different weights, then a contradiction is

obtained in the proof that Prim’s algorithm works when an

edge ek+1 is added to T and an edge e is deleted, instead of

possibly producing another spanning tree.

21. a b c d

e f g h

i j k l

13 2

24 4

3

1

3 12

23. Same as Kruskal’s algorithm, except start with T := this

set of edges and iterate from i = 1 to i = n − 1 − s, where s is

the number of edges you start with.

25. a)
San Francisco

Denver

Chicago

Atlanta

New York
$1200

$900

$700 $8
00

b) 1a b c d

e 
f 

g 
h 

i j k l

2

1

2 3

33

3

3 1 2

27. By Exercise 24, at each stage of Sollin’s algorithm a forest

results. Hence, after n − 1 edges are chosen, a tree results. It

remains to show that this tree is a minimum spanning tree. Let

T be a minimum spanning tree with as many edges in com-

mon with Sollin’s tree S as possible. If T ≠ S, then there is an

edge e ∈ S − T added at some stage in the algorithm, where

prior to that stage all edges in S are also in T . T ∪{e} contains

a unique simple circuit. Find an edge e′ ∈ S − T and an edge

e′′ ∈ T − S on this circuit and “adjacent” when viewing the

trees of this stage as “supervertices.” Then by the algorithm,

w(e′) ≤ w(e′′). So replace T by T − {e′′} ∪ {e′} to produce

a minimum spanning tree closer to S than T was. 29. Each

of the r trees is joined to at least one other tree by a new edge.

Hence, there are at most r∕2 trees in the result (each new tree

contains two or more old trees). To accomplish this, we need

to add r − (r∕2) = r∕2 edges. Because the number of edges

added is integral, it is at least ⌈r∕2⌉. 31. If k ≥ log n, then

n∕2k ≤ 1, so ⌈n∕2k⌉ = 1, so by Exercise 30 the algorithm

is finished after at most log n iterations. 33. Suppose that a

minimum spanning tree T contains edge e = uv that is the

maximum weight edge in simple circuit C. Delete e from T .

This creates a forest with two components, one containing u
and the other containing v. Follow the edges of the path C−e,

starting at u. At some point this path must jump from the com-

ponent of T−e containing u to the component of T−e contain-

ing v, say using edge f . This edge cannot be in T , because e can

be the only edge of T joining the two components (otherwise

there would be a simple circuit in T). Because e is the edge

of greatest weight in C, the weight of f is smaller. The tree

formed by replacing e by f in T therefore has smaller weight,

a contradiction. 35. The reverse-delete algorithm must ter-

minate and produce a spanning tree, because the algorithm

never disconnects the graph and upon termination there can

be no more simple circuits. The edge deleted at each stage of

the algorithm must have been the edge of maximum weight in

whatever circuits it was a part of. Therefore, by Exercise 33

it cannot be in any minimum spanning tree. Since only edges

that could not have been in any minimum spanning tree have

been deleted, the result must be a minimum spanning tree.

Supplementary Exercises

1. Suppose T is a tree. Then clearly T has no simple circuits.

If we add an edge e connecting two nonadjacent vertices u and
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v, then obviously a simple circuit is formed, because when e
is added to T the resulting graph has too many edges to be a

tree. The only simple circuit formed is made up of the edge e
together with the unique path in T from v to u. Suppose T sat-

isfies the given conditions. All that is needed is to show that T
is connected, because there are no simple circuits in the graph.

Assume that T is not connected. Then let u and v be in sepa-

rate connected components. Adding e = {u, v} does not sat-

isfy the conditions. 3. Suppose that a tree T has n vertices

of degrees d1, d2,… , dn, respectively. Because 2e =
∑n

i=1
di

and e = n − 1, we have 2(n − 1) =
∑n

i=1
di. Because each

di ≥ 1, it follows that 2(n − 1) = n +
∑n

i=1
(di − 1), or that

n − 2 =
∑n

i=1
(di − 1). Hence, at most n − 2 of the terms of

this sum can be 1 or more. Hence, at least two of them are 0.

It follows that di = 1 for at least two values of i. 5. 2n − 2

7. A tree has no circuits, so it cannot have a subgraph homeo-

morphic to K3,3 or K5. 9. Color each connected component

separately. For each of these connected components, first root

the tree, then color all vertices at even levels red and all ver-

tices at odd levels blue. 11. Upper bound: kh; lower bound:

2 ⌈k ∕ 2 ⌉ h−1

13.
B0 B1 B2 B3 B4

15. Because Bk+1 is formed from two copies of Bk, one shifted

down one level, the height increases by 1 as k increases by 1.

Because B0 had height 0, it follows by induction that Bk has

height k. 17. Because the root of Bk+1 is the root of Bk with

one additional child (namely the root of the other Bk), the de-

gree of the root increases by 1 as k increases by 1. Because B0

had a root with degree 0, it follows by induction that Bk has a

root with degree k.

19.
S0 S1 S2 S3

S4

21. Use mathematical induction. The result is trivial for k = 0.

Suppose it is true for k−1. Tk−1 is the parent tree for T . By in-

duction, the child tree for T can be obtained from T0,… , Tk−2

in the manner stated. The final connection of rk−2 to rk−1 is as

stated in the definition of Sk-tree.

23. procedure level(T: ordered rooted tree with root r)

queue := sequence consisting of just the root r
while queue contains at least one term

v := first vertex in queue

list v
remove v from queue and put children of v onto

the end of queue

25. Build the tree by inserting a root for the address 0, and

then inserting a subtree for each vertex labeled i, for i a posi-

tive integer, built up from subtrees for each vertex labeled i.j
for j a positive integer, and so on. 27. a) Yes b) No c) Yes

29. The resulting graph has no edge that is in more than one

simple circuit of the type described. Hence, it is a cactus.

31. a b c

d e f

33. a b c

d e
f

i h g

35. a) 1 4 2 3 b) 1 5 3 4

2

c) 1 6 3 5

2 4

d) 3 1 7 2 6

5

4

37. 6 39. a) 0 for 00, 11 for 01, 100 for 10, 101 for 11 (exact

coding depends on how ties were broken, but all versions are

equivalent); 0.645n for string of length n b) 0 for 000, 100 for

001, 101 for 010, 110 for 100, 11100 for 011, 11101 for 101,

11110 for 110, 11111 for 111 (exact coding depends on how

ties were broken, but all versions are equivalent); 0.5326n
for string of length n 41. Let G′ be the graph obtained by

deleting from G the vertex v and all edges incident to v. A

minimum spanning tree of G can be obtained by taking an

edge of minimal weight incident to v together with a mini-

mum spanning tree of G′. 43. Suppose that edge e is the

edge of least weight incident to vertex v, and suppose that T is

a spanning tree that does not include e. Add e to T , and delete

from the simple circuit formed thereby the other edge of the

circuit that contains v. The result will be a spanning tree of

strictly smaller weight (because the deleted edge has weight

greater than the weight of e). This is a contradiction, so T
must include e. 45. Because paths in trees are unique, an

arborescence T of a directed graph G is just a subgraph of G
that is a tree rooted at r, containing all the vertices of G, with

all the edges directed away from the root. Thus, the in-degree

of each vertex other than r is 1. For the converse, it is enough

to show that for each v ∈ V there is a unique directed path

from r to v. Because the in-degree of each vertex other than

r is 1, we can follow the edges of T backwards from v. This

path can never return to a previously visited vertex, because

that would create a simple circuit. Therefore, the path must
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eventually stop, and it can stop only at r, whose in-degree

is not necessarily 1. Following this path forward gives the

path from r to v required by the definition of arborescence.

47. a) Run the breadth-first search algorithm, starting from v
and respecting the directions of the edges, marking each ver-

tex encountered as reachable. b) Running breadth-first search

on Gconv, again starting at v, respecting the directions of the

edges, and marking each vertex encountered, will identify all

the vertices from which v is reachable. c) Choose a vertex

v1 and using parts (a) and (b) find the strong component con-

taining v1, namely all vertices w such that w is reachable from

v1 and v1 is reachable from w. Then choose another vertex

v2 not yet in a strong component and find the strong compo-

nent of v2. Repeat until all vertices have been included. The

correctness of this algorithm follows from the definition of

strong component and Exercise 17 in Section 10.4.

CHAPTER 12

Section 12.1

1. a) 1 b) 1 c) 0 d) 0 3. a) (1 ⋅ 1) + (0 ⋅ 1 + 0) =
1 + (0 + 0) = 1 + (1 + 0) = 1 + 1 = 1 b) (T ∧ T) ∨
(¬(F ∧ T) ∨ F) ≡ T

5. a) x y z xy
1 1 1 0
1 1 0 0
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 1
0 0 1 0
0 0 0 0

b) x y z x + yz
1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 1
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 0

c) x y z xy + xyz
1 1 1 0
1 1 0 1
1 0 1 1
1 0 0 1
0 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

d) x y z x( yz + y z)
1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0

7. a) 110 111

011

101

010

100

000 001

b) 110 111

011

101

010

100

000 001

c) 110 111

011

101

010

100

000 001

d) 110 111

011

101

010

100

000 001

9. (0, 0) and (1, 1) 11. x + xy = x ⋅ 1 + xy = x(1 + y) =
x( y + 1) = x ⋅ 1 = x

13. xy + yz xy + yz
x y z xy yz xz + xz xy yz xz + xz

1 1 1 0 0 0 0 0 0 0 0

1 1 0 0 1 0 1 0 0 1 1

1 0 1 1 0 0 1 0 1 0 1

1 0 0 1 0 0 1 0 0 1 1

0 1 1 0 0 1 1 1 0 0 1

0 1 0 0 1 0 1 1 0 0 1

0 0 1 0 0 1 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0

15. x x + x x ⋅ x
0 0 0
1 1 1

17. x x + 1 x ⋅ 0
0 1 0
1 1 0

19. x + (x + y)
x y z y + z ( y + z) x + y + z yz x( yz) xy (xy)z

1 1 1 1 1 1 1 1 1 1 1

1 1 0 1 1 1 1 0 0 1 0

1 0 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 0 0 0 0

0 1 1 1 1 1 1 1 0 0 0

0 1 0 1 1 1 1 0 0 0 0

0 0 1 1 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

21. x y xy (xy) x y x + y x + y (x + y) x y

1 1 1 0 0 0 0 1 0 0

1 0 0 1 0 1 1 1 0 0

0 1 0 1 1 0 1 1 0 0

0 0 0 1 1 1 1 0 1 1

23. 0 ⋅ 0 = 0 ⋅ 1 = 0; 1 ⋅ 1 = 1 ⋅ 0 = 0

25. x y x ⊕ y x + y xy (xy) (x + y)(xy) xy xy xy + xy

1 1 0 1 1 0 0 0 0 0

1 0 1 1 0 1 1 1 0 1

0 1 1 1 0 1 1 0 1 1

0 0 0 0 0 1 0 0 0 0

27. a) True, as a table of values can show b) False; take x = 1,

y = 1, z = 1, for instance c) False; take x = 1, y = 1,

z = 0, for instance 29. By De Morgan’s laws, the comple-

ment of an expression is like the dual except that the comple-

ment of each variable has been taken. 31. 16 33. If we
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replace each 0 by F, 1 by T, Boolean sum by ∨, Boolean

product by ∧, and by ¬ (and x by p and y by q so that the

variables look like they represent propositions, and the equals

sign by the logical equivalence symbol), then xy = x + y
becomes ¬(p ∧ q) ≡ ¬p ∨ ¬q and x + y = x y becomes

¬(p ∨ q) ≡ ¬p ∧ ¬q. 35. By the domination, distributive,

and identity laws, x ∨ x = (x ∨ x) ∧ 1 = (x ∨ x) ∧ (x ∨ x) = x∨
(x ∧ x) = x ∨ 0 = x. Similarly, x ∧ x = (x ∧ x) ∨ 0 = (x ∧
x) ∨ (x ∧ x) = x ∧ (x ∨ x) = x ∧ 1 = x. 37. Because

0 ∨ 1 = 1 and 0 ∧ 1 = 0 by the identity and commutative

laws, it follows that 0 = 1. Similarly, because 1 ∨ 0 = 1 and

1∧0 = 1, it follows that 1 = 0. 39. First, note that x∧0 = 0

and x ∨ 1 = 1 for all x, as can easily be proved. To prove the

first identity, it is sufficient to show that (x ∨ y) ∨ (x ∧ y) = 1

and (x ∨ y) ∧ (x ∧ y) = 0. By the associative, commutative,

distributive, domination, and identity laws, (x∨ y) ∨ (x ∧ y) =
y ∨ [x ∨ (x ∧ y)] = y ∨ [(x ∨ x) ∧ (x ∨ y)] = y ∨ [1 ∧
(x ∨ y)] = y ∨ (x ∨ y) = ( y ∨ y) ∨ x = 1 ∨ x = 1 and

(x ∨ y)∧ (x ∧ y) = y ∧ [x∧ (x∨y)]=y∧ [(x ∧ x)∨ (x ∧ y)] = y ∧
[0 ∨ (x ∧ y)] = y ∧ (x ∧ y) = x ∧ ( y ∧ y) = x ∧ 0 = 0. The

second identity is proved in a similar way. 41. Using the hy-

potheses, Exercise 35, and the distributive law it follows that

x = x ∨ 0 = x ∨ (x ∨ y) = (x ∨ x) ∨ y = x ∨ y = 0.

Similarly, y = 0. To prove the second statement, note that

x = x ∧ 1 = x ∧ (x ∧ y) = (x ∧ x) ∧ y = x ∧ y = 1. Similarly,

y = 1. 43. Use Exercises 39 and 41 in the Supplementary

Exercises in Chapter 9 and the definition of a complemented,

distributed lattice to establish the five pairs of laws in the def-

inition.

Section 12.2

1. a) x yz b) xyz c) xyz d) x y z 3. a) xyz + xyz +
xyz + xy z + xyz + xyz + x yz b) xyz + xyz + xyz
c) xyz + xyz + xyz + xy z d) xyz + xy z 5. wxyz +
wxyz + wxyz + wxyz + wxy z + w x yz + w xyz + wx y z
7. a) x+y+z b) x+y+z c) x+y+z 9. y1 + y2 + ⋯ + yn = 0

if and only if yi = 0 for i = 1, 2,… , n. This holds if and only

if xi = 0 when yi = xi and xi = 1 when yi = xi. 11. a) x+y+z
b) (x+ y+ z) (x+ y+ z)(x+ y+ z)(x + y+ z)(x+ y+ z) c) (x+
y + z)(x + y + z)(x+ y+ z)(x+ y+ z) d) (x+ y+ z) (x+ y+
z) (x + y+ z) (x+y + z) (x+y+ z) (x+y + z) 13. a) x+y+ z
b) x + [y + (x + z)] c) (x + y) d) [x + (x + y + z)]

15. a) x x x ↓ x
1 0 0
0 1 1

b) x y xy x ↓ x y ↓ y (x ↓ x) ↓ ( y ↓ y)
1 1 1 0 0 1
1 0 0 0 1 0
0 1 0 1 0 0
0 0 0 1 1 0

c) x y x + y (x ↓ y) (x ↓ y) ↓ (x ↓ y)
1 1 1 0 1
1 0 1 0 1
0 1 1 0 1
0 0 0 1 0

17. a) {[(x ∣ x) ∣ ( y ∣ y)] ∣ [(x ∣ x) ∣ ( y ∣ y)]} ∣ (z ∣
z) b) {[(x ∣ x) ∣ (z ∣ z)] ∣ y} ∣ {[(x ∣ x) ∣ (z ∣ z)] ∣ y} c) x
d) [x ∣ ( y ∣ y)] ∣ [x ∣ ( y ∣ y)] 19. It is impossible to represent

x using + and ⋅ because there is no way to get the value 0 if

the input is 1.

Section 12.3

1. (x+y)y 3. (xy)+(z+x) 5. (x+y+z)+ (x+y+z)+(x+y+z)

7. vwx

vwy

vwz

vxy

vxz

wxy

wxz

wyz

xyz

vwx + vwy + vwz + vxy + vxz +
vyz + wxy + wxz + wyz + xyz

v
w
x

v
w
y

v
w
z

v
x
y

v
x
z

w
x
y

w
x
z

w
y
z

x
y
z

v
y
z

vyz

9. x0

y0

x1

y1

x2

y2

x3

y3

x4

y4

Half

adder

Full

adder

Full

adder

Full

adder

Full

adder

s0

s1

s2

s3

s4

s5

c0

c1

c2

c3

c4
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11.
x
y

bi

x
y

bi

x
y

bi

x
y

bi

d

x
y

bi

x
y

bi

x
y

bi

x
y

bi

bi+1

13.
x1

y1

x1

y1

x1

y1

x0
y0

x1y1 + x0 y0(x1y1 + x1y1)

15. a) x

x
x

b) x

x

x + y
y

y

c) x

y

xy

x

y

d)
x

x

y

y

x     y

y

x

17.

Sum = x     y

x

y

Carry = xy

Circuit

from

15 (d)

Circuit

from

15 (c)

19. c0
c1
x3

c0
c1
x2

c0
c1
x1

c0
c1
x0

Section 12.4

1. a)   y y

x 1

x

b) xy and x y

3. a)

x

x

 y y

1

b)

x

x

 y y

1

1

c)

x

x

 y y

1

11

1

5. a) yz yz

x 1

yz yz

x

b) xyz, x y z, xyz
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7. a) yz yz yz yz

x

x

1

b) yz yz yz yz

x

x 11

c) yz yz yz yz

x

x 11

11

9. Implicants: xyz, xyz, x y z, xyz, xy, xz, yz; prime implicants:

xy, xz, yz; essential prime implicants: xy, xz, yz

yz yz yz yz

x

x 1

111

11. The 3-cube on the right corresponds to w; the 3-cube given

by the top surface of the whole figure represents x; the 3-cube

given by the back surface of the whole figure represents y; the

3-cube given by the right surfaces of both the left and the right

3-cube represents z. In each case, the opposite 3-face repre-

sents the complemented literal. The 2-cube that represents wz
is the right face of the 3-cube on the right; the 2-cube that

represents xy is bottom rear; the 2-cube that represents y z is

front left.

wxyz

wxyz

wxyz

wxyz

wxyz

wxyz

wxyz

wxyz

wxyz

wxyz

wxyz

wxyz

wxyz

wxyz

wxyz

wxyz

13. a) yz yz

wx

yz yz

wx

wx 1

wx

b) wxyz, w xyz, wxy z, wxy z

15. a)

x1x2

x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5

x1x2

x1x2

x1x2

1 1

b)

x1x2

x1x2

x1x2

x1x2 1

1

1

1

x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5

c)

x1x2

x1x2

x1x2

x1x2 1 1

1 1

1 1

1 1

x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5
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d)

x1x2

x1x2

x1x2

x1x2 1 1

1 1

1 1

1 1

x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5

e)

x1x2

x1x2

x1x2

x1x2 1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5

f)

x1x2

x1x2

x1x2

x1x2 1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5 x3x4x5

17. a) 64 b) 6 19. Rows 1 and 4 are considered adjacent.

The pairs of columns considered adjacent are: columns 1 and

4, 1 and 12, 1 and 16, 2 and 11, 2 and 15, 3 and 6, 3 and 10, 4

and 9, 5 and 8, 5 and 16, 6 and 15, 7 and 10, 7 and 14, 8 and

13, 9 and 12, 11 and 14, 13 and 16.

21. Smith
Jones

Adams

Smith
Jones

Burton

Marcus
Adams
Burton

23. a) xz b) y c) xz+ xz+ yz d) xz+ xy+ y z 25. a) wxz+
wxy + wyz + wxyz b) xyz + w yz + wxyz + wxyz + w xyz
c) yz + wxy + wx y + w xyz d) wy + yz + xy + wxz + w xz
27. x( y + z)

29.
z
y
x  

z
y
x

z
y
x

z
w

w  

31. x z + xz 33. We use induction on n. If n = 1, then we

are looking at a line segment, labeled 0 at one end and 1 at

the other end. The only possible value of k is also 1, and if the

literal is x1, then the subcube we have is the 0-dimensional

subcube consisting of the endpoint labeled 1, and if the lit-

eral is x1, then the subcube we have is the 0-dimensional sub-

cube consisting of the endpoint labeled 0. Now assume that

the statement is true for n; we must show that it is true for

n + 1. If the literal xn+1 (or its complement) is not part of

the product, then by the inductive hypothesis, the product

when viewed in the setting of n variables corresponds to an

(n − k)-dimensional subcube of the n-dimensional cube, and

the Cartesian product of that subcube with the line segment

[0, 1] gives us a subcube one dimension higher in our given

(n+1)-dimensional cube, namely having dimension (n+1)−k,

as desired. On the other hand, if the literal xn+1 (or its com-

plement) is part of the product, then the product of the re-

maining k − 1 literals corresponds to a subcube of dimension

n − (k − 1) = (n + 1) − k in the n-dimensional cube, and

that slice, at either the 1-end or the 0-end in the last variable,

is the desired subcube.

Supplementary Exercises

1. a) x = 0, y = 0, z = 0; x = 1, y = 1, z = 1 b) x = 0,

y = 0, z = 0; x = 0, y = 0, z = 1; x = 0, y = 1, z = 0;

x = 1, y = 0, z = 1; x = 1, y = 1, z = 0; x = 1, y = 1,

z = 1 c) No values 3. a) Yes b) No c) No d) Yes 5. 22n−1

7. a) If F(x1, … , xn) = 1, then (F + G)(x1, … , xn) =
F(x1, … , xn) + G(x1, … , xn) = 1 by the dominance law.

Hence, F ≤ F + G. b) If (FG)(x1, … , xn) = 1, then

F(x1, … , xn) ⋅ G(x1, … , xn) = 1. Hence, F(x1, … , xn) = 1. It

follows that FG ≤ F. 9. Because F(x1,… , xn) = 1 implies

that F(x1,… , xn) = 1, ≤ is reflexive. Suppose that F ≤ G and

G ≤ F. Then F(x1,… , xn) = 1 if and only if G(x1,… , xn) = 1.

This implies that F = G. Hence, ≤ is antisymmetric. Suppose

that F ≤ G ≤ H. Then if F(x1, … , xn) = 1, it follows that

G(x1, … , xn) = 1, which implies that H(x1, … , xn) = 1.

Hence, F ≤ H, so ≤ is transitive. 11. a) x = 1, y = 0, z = 0

b) x = 1, y = 0, z = 0 c) x = 1, y = 0, z = 0
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13. x y x ⊙ y x ⊕ y (x ⊕ y)
1 1 1 0 1
1 0 0 1 0
0 1 0 1 0
0 0 1 0 1

15. Yes, as a truth table shows 17. a) 6 b) 5 c) 5 d) 6

19. x

y
Sum = x ⊕ y

Carry = xy

21. x3 + x2x1 23. Suppose it were with weights a and b.

Then there would be a real number T such that xa + yb ≥ T
for (1,0) and (0,1), but with xa + yb < T for (0,0) and (1,1).

Hence, a ≥ T, b ≥ T, 0 < T , and a + b < T . Thus, a and b are

positive, which implies that a + b > a ≥ T , a contradiction.

CHAPTER 13

Section 13.1

1. a) sentence ⇒ noun phrase intransitive verb phrase
⇒ article adjective noun intransitive verb phrase ⇒
article adjective noun intransitive verb ⇒…
(after 3 steps) …⇒ the happy hare runs.

b) sentence ⇒ noun phrase intransitive verb phrase
⇒ article adjective noun intransitive verb phrase
⇒ article adjective noun intransitive verb
adverb. . . (after 4 steps). . .⇒ the sleepy tortoise runs
quickly
c) sentence ⇒ noun phrase transitive verb phrase
noun phrase ⇒ article noun transitive verb phrase
noun phrase ⇒ article noun transitive verb noun
phrase ⇒ article noun transitive verb article
noun ⇒… (after 4 steps). . .⇒ the tortoise passes the hare
d) sentence ⇒ noun phrase transitive verb phrase
noun phrase ⇒ article adjective noun transitive
verb phrase noun phrase ⇒ article adjective noun
transitive verb noun phrase ⇒ article adjective
noun transitive verb article adjective noun
⇒… (after 6 steps). . .⇒ the sleepy hare passes the happy
tortoise

3. The only way to get a noun, such as tortoise, at the end is to

have a noun phrase at the end, which can be achieved only via

the production sentence → noun phrase transitive verb
phrase noun phrase. However, transitive verb phrase →
transitive verb → passes, and this sentence does not contain

passes.

5. a) S ⇒ 1A ⇒ 10B ⇒ 101A ⇒ 1010B ⇒ 10101 b) Because

of the productions in this grammar, every 1 must be followed

by a 0 unless it occurs at the end of the string. c) All strings

consisting of a 0 or a 1 followed by one or more repetitions of

01

7. S ⇒ 0S1 ⇒ 00S11 ⇒ 000S111 ⇒ 000111

9. a) S ⇒ 0S ⇒ 00S ⇒ 00S1 ⇒ 00S11 ⇒
00S111⇒ 00S1111⇒ 001111 b) S ⇒ 0S ⇒ 00S ⇒
001A ⇒ 0011A ⇒ 00111A ⇒ 001111 11. S ⇒ 0SAB ⇒
00SABAB ⇒ 00ABAB ⇒ 00 AABB ⇒ 001ABB ⇒
0011BB ⇒ 00112B ⇒ 001122 13. a) S → 0, S → 1,

S → 11 b) S → 1S, S → 𝜆 c) S → 0A1, A → 1A, A → 0A,

A → 𝜆 d) S → 0A, A → 11A, A → 𝜆 15. a) S → 00S,

S → 𝜆 b) S → 10A, A → 00A, A → 𝜆 c) S → AAS,

S → BBS, AB → BA, BA → AB, S → 𝜆, A → 0, B → 1

d) S → 0000000000A, A → 0A, A → 𝜆 e) S → AS, S → ABS,

S → A, AB → BA, BA → AB, A → 0, B → 1 f) S → ABS,

S → 𝜆, AB → BA, BA → AB, A → 0, B → 1 g) S → ABS,

S → T , S → U, T → AT , T → A, U → BU, U → B, AB → BA,

BA → AB, A → 0, B → 1 17. a) S → 0S, S → 𝜆 b) S → A0,

A → 1A, A → 𝜆 c) S → 000S, S → 𝜆 19. a) Type 2,

not type 3 b) Type 3 c) Type 0, not type 1 d) Type 2, not

type 3 e) Type 2, not type 3 f) Type 0, not type 1 g) Type

3 h) Type 0, not type 1 i) Type 2, not type 3 j) Type 2,

not type 3 21. Let S1 and S2 be the start symbols of G1 and

G2, respectively. Let S be a new start symbol. a) Add S and

productions S → S1 and S → S2. b) Add S and production

S → S1S2. c) Add S and production S → 𝜆 and S → S1S.

23. a) sentence

noun phrase intransitive verb phrase

article intransitive verb

the happy hare runs

adjective noun
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b) c)sentence

noun phrase intransitive verb phrase

article 
intransitive

verb

the tortoise runs

adjective noun

sleepy

adverb

quickly

sentence

noun phrase transitive verb phrase

article 

the tortoise the

noun

hare

noun phrase

article noun

passes

transitive verb

d) sentence

noun phrase transitive verb phrase

article 

the hare

noun

noun phrase

passes

transitive verbadjective 

sleepy

article 

the tortoise

nounadjective 

happy

25. a) Yes b) No c) Yes d) No

27. signed integer

sign 

0 digit

integer

integer

digit

9

integer1

digit–
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29. a) S → ⟨sign⟩⟨integer⟩
S → ⟨sign⟩⟨integer⟩ . ⟨positive integer⟩⟨sign⟩ → +⟨sign⟩ → −⟨integer⟩ → ⟨digit⟩⟨integer⟩ → ⟨integer⟩⟨digit⟩⟨digit⟩ → i, i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 0⟨positive integer⟩ → ⟨integer⟩⟨nonzero digit⟩⟨positive integer⟩ → ⟨nonzero digit⟩⟨integer⟩⟨positive integer⟩ → ⟨integer⟩⟨nonzero digit⟩⟨integer⟩⟨positive integer⟩ → ⟨nonzero digit⟩⟨nonzero digit⟩ → i, i = 1, 2, 3, 4, 5, 6, 7, 8, 9

b) ⟨signed decimal number⟩ ::= ⟨sign⟩⟨integer⟩ ∣⟨sign⟩⟨integer⟩ . ⟨positive integer⟩⟨sign⟩ ::= +|−⟨integer⟩ ::= ⟨digit⟩ ∣ ⟨integer⟩⟨digit⟩⟨digit⟩ ::= 0 ∣ 1 ∣ 2 ∣ 3 ∣ 4 ∣ 5 ∣ 6 ∣ 7 ∣ 8 ∣ 9⟨nonzero digit⟩ ::= 1 ∣ 2 ∣ 3 ∣ 4 ∣ 5 ∣ 6 ∣ 7 ∣ 8 ∣ 9⟨positive integer⟩ ::= ⟨integer⟩⟨nonzero digit⟩ ∣⟨nonzero digit⟩⟨integer⟩ ∣ ⟨integer⟩⟨nonzero integer⟩⟨integer⟩ ∣ ⟨nonzero digit⟩
c) signed decimal number

sign 

–

digit 1

integer

integer

3

digit nonzero digit

positive integer

4

31. a) ⟨identifier⟩ ::= ⟨lcletter⟩ ∣ ⟨identifier⟩⟨lcletter⟩⟨lcletter⟩ ::= a ∣ b ∣ c ∣ ⋯ ∣ z
b) ⟨identifier⟩ ::= ⟨lcletter⟩⟨lcletter⟩⟨lcletter⟩ ∣ ⟨lcletter⟩⟨lcletter⟩⟨lcletter⟩⟨lcletter⟩ ∣⟨lcletter⟩⟨lcletter⟩⟨lcletter⟩⟨lcletter⟩⟨lcletter⟩ ∣⟨lcletter⟩⟨lcletter⟩⟨lcletter⟩⟨lcletter⟩⟨lcletter⟩⟨lcletter⟩⟨lcletter⟩ ::= a ∣ b ∣ c ∣ ⋯ ∣ z
c) ⟨identifier⟩ ::= ⟨ucletter⟩ ∣ ⟨ucletter⟩⟨letter⟩ ∣ ⟨ucletter⟩⟨letter⟩⟨letter⟩ ∣⟨ucletter⟩⟨letter⟩⟨letter⟩⟨letter⟩ ∣ ⟨ucletter⟩⟨letter⟩⟨letter⟩⟨letter⟩⟨letter⟩ ∣⟨ucletter⟩⟨letter⟩⟨letter⟩⟨letter⟩⟨letter⟩⟨letter⟩⟨letter⟩ ::= ⟨lcletter⟩ ∣ ⟨ucletter⟩⟨lcletter⟩ ::= a ∣ b ∣ c ∣ ⋯ ∣ z⟨ucletter⟩ ::= A ∣ B ∣ C ∣ ⋯ ∣ Z
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d) ⟨identifier⟩ ::= ⟨lcletter⟩⟨digitorus⟩⟨alphanumeric⟩⟨alphanumeric⟩⟨alphanumeric⟩ ∣⟨lcletter⟩⟨digitorus⟩⟨alphanumeric⟩⟨alphanumeric⟩⟨alphanumeric⟩⟨alphanumeric⟩⟨digitorus⟩ ::= ⟨digit⟩ ∣⟨alphanumeric⟩ ::= ⟨letter⟩ ∣ ⟨digit⟩⟨letter⟩ ::= ⟨lcletter⟩ ∣ ⟨ucletter⟩⟨lcletter⟩ ::= a ∣ b ∣ c ∣ ⋯ ∣ z⟨ucletter⟩ ::= A ∣ B ∣ C ∣ ⋯ ∣ Z⟨digit⟩ ::= 0 ∣ 1 ∣ 2 ∣ ⋯ ∣ 9

33. ⟨identifier⟩ ::= ⟨letterorus⟩ ∣ ⟨identifier⟩⟨symbol⟩⟨letterorus⟩ ::= ⟨letter⟩ ∣⟨symbol⟩ ::= ⟨letterorus⟩ ∣ ⟨digit⟩⟨letter⟩ ::= ⟨lcletter⟩ ∣ ⟨ucletter⟩⟨lcletter⟩ ::= a ∣ b ∣ c ∣ ⋯ ∣ z⟨ucletter⟩ ::= A ∣ B ∣ C ∣ ⋯ ∣ Z⟨digit⟩ ::= 0 ∣ 1 ∣ 2 ∣ ⋯ ∣ 9

35. numeral ::= sign? nonzerodigit digit∗ decimal? ∣ sign? 0 decimal?
sign ::= + ∣ −
nonzerodigit ::= 1 ∣ 2 ∣ ⋯ ∣ 9

digit ::= 0 ∣ nonzerodigit
decimal ::= .digit∗

37. identifier ::= letterorus symbol ∗
letterorus ::= letter ∣
symbol ::= letterorus ∣ digit
letter ::= lcletter ∣ ucletter
lcletter ::= a ∣ b ∣ c ∣ ⋯ ∣ z
ucletter ::= A ∣ B ∣ C ∣ ⋯ ∣ Z
digit ::= 0 ∣ 1 ∣ 2 ∣ ⋯ ∣ 9

39. a) ⟨expression⟩⟨term⟩⟨term⟩⟨addOperator⟩⟨factor⟩⟨factor⟩⟨factor⟩⟨mulOperator⟩⟨addOperator⟩⟨identifier⟩⟨identifier⟩⟨identifier⟩⟨mulOperator⟩⟨addOperator⟩
a b c ∗+

b) Not generated

c) ⟨expression⟩⟨term⟩⟨factor⟩⟨factor⟩⟨mulOperator⟩⟨expression⟩⟨factor⟩⟨mulOperator⟩⟨term⟩⟨term⟩⟨addOperator⟩⟨factor⟩⟨mulOperator⟩⟨factor⟩⟨factor⟩⟨addOperator⟩⟨factor⟩⟨mulOperator⟩⟨identifier⟩⟨identifier⟩⟨addOperator⟩⟨identifier⟩⟨mulOperator⟩
x y− z ∗

d) ⟨expression⟩⟨term⟩⟨factor⟩⟨factor⟩⟨mulOperator⟩⟨factor⟩⟨expression⟩⟨mulOperator⟩⟨factor⟩⟨term⟩⟨mulOperator⟩⟨factor⟩⟨factor⟩⟨factor⟩⟨mulOperator⟩⟨mulOperator⟩⟨factor⟩⟨factor⟩⟨expression⟩⟨mulOperator⟩⟨mulOperator⟩⟨factor⟩⟨factor⟩⟨term⟩⟨term⟩⟨addOperator⟩⟨mulOperator⟩⟨mulOperator⟩⟨factor⟩⟨factor⟩⟨factor⟩⟨factor⟩⟨addOperator⟩⟨mulOperator⟩⟨mulOperator⟩⟨identifier⟩⟨identifier⟩⟨identifier⟩⟨identifier⟩⟨addOperator⟩⟨mulOperator⟩⟨mulOperator⟩
w x y z−∗∕
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e) ⟨expression⟩⟨term⟩⟨factor⟩⟨factor⟩⟨mulOperator⟩⟨factor⟩⟨expression⟩⟨mulOperator⟩⟨factor⟩⟨term⟩⟨term⟩⟨addOperator⟩⟨mulOperator⟩⟨factor⟩⟨factor⟩⟨factor⟩⟨addOperator⟩⟨mulOperator⟩⟨identifier⟩⟨identifier⟩⟨identifier⟩⟨addOperator⟩⟨mulOperator⟩
a d e−∗

41. a) Not generated

b) ⟨expression⟩⟨term⟩⟨addOperator⟩⟨term⟩⟨factor⟩⟨mulOperator⟩⟨factor⟩⟨addOperator⟩⟨factor⟩⟨mulOperator⟩⟨factor⟩⟨identifier⟩⟨mulOperator⟩⟨identifier⟩⟨addOperator⟩⟨identifier⟩⟨mulOperator⟩⟨identifier⟩
a∕b + c∕d

c) ⟨expression⟩⟨term⟩⟨factor⟩⟨mulOperator⟩⟨factor⟩⟨factor⟩⟨mulOperator⟩(⟨expression⟩)⟨factor⟩⟨mulOperator⟩(⟨term⟩⟨addOperator⟩⟨term⟩)⟨factor⟩⟨mulOperator⟩(⟨factor⟩⟨addOperator⟩⟨factor⟩)⟨identifier⟩⟨mulOperator⟩(⟨identifier⟩⟨addOperator⟩⟨identifier⟩)
m ∗ (n + p)

d) Not generated

e) ⟨expression⟩⟨term⟩⟨factor⟩⟨mulOperator⟩⟨factor⟩
(⟨expression⟩)⟨mulOperator⟩(⟨expression⟩)
(⟨term⟩⟨addOperator⟩⟨term⟩)⟨mulOperator⟩(⟨term⟩⟨addOperator⟩⟨term⟩)
(⟨factor⟩⟨addOperator⟩⟨factor⟩)⟨mulOperator⟩(⟨factor⟩⟨addOperator⟩⟨factor⟩)
(⟨identifier⟩⟨addOperator⟩⟨identifier⟩)⟨mulOperator⟩(⟨identifier⟩⟨addOperator⟩⟨identifier⟩)
(m + n) ∗ (p − q)
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Section 13.2

1. a)

s2

s0

s11, 1

0, 0

0, 0
1, 0 1, 1Start 0, 0

b)

s0

1, 0

s1

s3 s2

1, 1

0, 0

1, 0

1, 1

0, 1

0,
 1

0, 0

Start

c)

s4

s0

s10, 1

s3

s2

1, 0

0, 0

1, 0

1, 1
0, 1

0, 0 1, 1

1, 1

0, 1

Start

3. a) 01010 b) 01000 c) 11011 5. a) 1100 b) 00110110 c) 11111111111

7.

s0 s1 s2 s3 s4 s5 s6
5, 0 5, 0 5, 0 5, 0 5, 0 5, 0

10,0 10, 0 10, 0 10, 0 10, 0

25, 0 25, 0 25, 5 25, 20

10, 5

25, 25

x, 0 x, 0 x, 0 x, 0 x, 0 x, 0

x, soda pop

Start

x, 0

5, 0

10,0

25, 0

s7 5, 5

10, 10

x ∈{           }

= cola
= root beer
= ginger ale

25, 10 25, 15

, ,

9.

Start

0, 1

0, 1

1, 0

1, 0
0,

 0

0, 0

0, 0

1, 0

1, 1

1,
 1

s0

s2

s1 s3

s4

11.

s0

s1

s3

s2

v, 
b

q,
 a p, c

Start

x, a

i, b
x, c

v = Valid ID

i = Invalid ID

p = Valid password

q = Invalid  password

a = "Enter user ID"

b = "Enter password"

c = Prompt

x = Any input
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13.

s0 s1 s2 s3 s4

{5, 10, 25}, open

Start

25, open

5, nothing

10, nothing

5, nothing

10, nothing

5, nothing

10, nothing

5, nothing

25, open

10, open

25, open

25, open

15. Let s0 be the start state and let s1 be the state representing

a successful call. From s0, inputs of 2, 3, 4, 5, 6, 7, or 8 send

the machine back to s0 with output of an error message for the

user. From s0 an input of 0 sends the machine to state s1, with

the output being that the 0 is sent to the network. From s0 an

input of 9 sends the machine to state s2 with no output; from

there an input of 1 sends the machine to state s3 with no out-

put; from there an input of 1 sends the machine to state s1 with

the output being that the 911 is sent to the network. All other

inputs while in states s2 or s3 send the machine back to s0 with

output of an error message for the user. From s0 an input of 1

sends the machine to state s4 with no output; from s4 an input

of 2 sends the machine to state s5 with no output; and this path

continues in a similar manner to the 911 path, looking next

for 1, then 2, then any seven digits, at which point the machine

goes to state s1 with the output being that the ten-digit input

is sent to the network. Any “incorrect” input while in states s5

or s6 (that is, anything except a 1 while in s5 or a 2 while in

s6) sends the machine back to s0 with output of an error mes-

sage for the user. Similarly, from s4 an input of 8 followed by

appropriate successors drives us eventually to s1, but inappro-

priate outputs drive us back to s0 with an error message. Also,

inputs while in state s4 other than 2 or 8 send the machine back

to state s0 with output of an error message for the user.

17.

s0

s1

Start

s2

s3

s4

0, 0

0, 0

0, 0

1, 0

1, 0

s5

s6

1, 1

1, 10,
 0

1,
 0

1, 0

0, 0 0, 0

1, 0

0,0
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19.

s0 s1 s2 s3 s4 s5 s6
Start s7

C, 0 O, 0 M, 0 P, 0 U, 0 T, 0 E, 0

R, 1
 – {C}, 0Σ

Σ

 – {M}, 0Σ

 – {P}, 0Σ

 – {U}, 0Σ

 – {T}, 0Σ

 – {E}, 0Σ

 – {R}, 0Σ

 – {O}, 0

21. f
Input

State 0 1 g
s0 s1 s2 1
s1 s1 s0 1
s2 s1 s2 0

23. a) 11111
b) 1000000
c) 100011001100

25.

s0
Start s3

1

1

0

1

0

1

1
0

s1

1 0

s2

00

Section 13.3

1. a) {000,001,1100,1101} b) {000,0011,010,0111}
c) {00, 011, 110, 1111} d) {000000, 000001, 000100,

000101, 010000, 010001, 010100, 010101} 3. A={1, 101},
B = {0,11,000}; A = {10,111,1010,1000,10111,101000},

B = {𝜆}; A = {𝜆, 10}, B = {10, 111, 1000} or A = {𝜆},

B = {10, 111, 1010, 1000, 10111, 101000} 5. a) The set

of strings consisting of zero or more consecutive bit pairs 10

b) The set of strings consisting of all 1s such that the num-

ber of 1s is divisible by 3, including the null string c) The

set of strings in which every 1 is immediately preceded by

a 0 d) The set of strings that begin and end with a 1 and

have at least two 1s between every pair of 0s 7. A string

is in A∗ if and only if it is a concatenation of an arbitrary

number of strings in A. Because each string in A is also in

B, it follows that a string in A∗ is also a concatenation of

strings in B. Hence, A∗ ⊆ B∗. 9. a) Yes b) Yes c) No

d) No e) Yes f) Yes 11. a) Yes b) No c) Yes d) No

13. a) Yes b) Yes c) No d) No e) No f) No 15. We

use structural induction on the input string y. The basis step

considers y = 𝜆, and for the inductive step we write y = wa,

where w ∈ I∗ and a ∈ I. For the basis step, we have

xy = x, so we must show that f (s, x) = f (f (s, x), 𝜆). But

part (i) of the definition of the extended transition func-

tion says that this is true. We then assume the inductive

hypothesis that the equation holds for w and prove that

f (s, xwa) = f (f (s, x), wa). By part (ii) of the defini-

tion, the left-hand side of this equation equals f (f (s, xw), a).

By the inductive hypothesis, f (s, xw) = f (f (s, x), w),

so f (f (s, xw), a) = f (f (f (s, x), w), a). The right-

hand side of our desired equality is, by part (ii) of the

definition, also equal to f (f (f (s, x), w), a), as desired.

17. {0, 10, 11}{0, 1}∗ 19. {0m1n ∣ m ≥ 0 and n ≥
1} 21. {𝜆} ∪ {0}{1}∗ {0} ∪ {10,11}{0, 1}∗ ∪ {0}{1}∗ {01}
{0, 1}∗ ∪ {0}{1}∗{00}{0}∗{1}{0, 1}∗ 23. Let s2 be the

only final state, and put transitions from s2 to itself on either

input. Put a transition from the start state s0 to s1 on input 0,

and a transition from s1 to s2 on input 1. Create state s3, and

have the other transitions from s0 and s1 (as well as both tran-

sitions from s3) lead to s3. 25. Start state s0, only final state

s3; transitions from s0 to s0 on 0, from s0 to s1 on 1, from s1

to s2 on 0, from s1 to s1 on 1, from s2 to s0 on 0, from s2 to

s3 on 1, from s3 to s3 on 0, from s3 to s3 on 1 27. Have five

states, with only s3 final. For i = 0, 1, 2, 3, transition from si to

itself on input 1 and to si+1 on input 0. Both transitions from

s4 are to itself. 29. Have four states, with only s3 final. For

i = 0, 1, 2, transition from si to si+1 on input 1 but back to s0

on input 0. Both transitions from s3 are to itself.
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31.
Start

0 0

1 1
1

0

11 0
0

1

0, 1

0

s0

s3

s1

s4

s5 s6

s2

33. Start state s0, only final state s1; transitions from s0 to s0

on 1, from s0 to s1 on 0, from s1 to s1 on 1; from s1 to s0 on 0

35.
Start

1

0

0 0

1

1

0, 1

s0

s3

s1 s2

37. Suppose that such a machine exists, with start state s0

and other state s1. Because the empty string is not in the

language but some strings are accepted, we must have s1

as the only final state, with at least one transition from s0

to s1. Because the string 0 is not in the language, the tran-

sition from s0 on input 0 must be to itself, so the transi-

tion from s0 on input 1 must be to s1. But this contradicts

the fact that 1 is not in the language. 39. Change each fi-

nal state to a nonfinal state and vice versa. 41. Same ma-

chine as in Exercise 25, but with s0, s1, and s2 as the final

states 43. {0,01,11} 45. {𝜆,0} ∪ {0m1n ∣ m ≥ 1, n ≥ 1}
47. {10n ∣ n ≥ 0} ∪ {10n10m ∣ n, m ≥ 0} 49. The union of

the set of all strings that start with a 0 and the set of all strings

that have no 0s

51.
s0

s2

s3 s4

s5

Start 0

0

1

1

0

1
0, 1

0, 1

0, 1

s1

53. Add a nonfinal state s3 with transitions to s3 from s0 on

input 0, from s1 on input 1, and from s3 on input 0 or 1.

55. a) s0
Start

0, 1

s1

s2

0

1 0, 1

b)
s0 s1

s4s2

s3

Start 1

1

0

0

0, 1

0, 1

0, 1

c)

s0 s1 s2

s3

1 1

0
00

0,1

1

Start

57. Suppose that M is a finite-state automaton that accepts

the set of bit strings containing an equal number of 0s and

1s. Suppose M has n states. Consider the string 0n+11n+1. By

the pigeonhole principle, as M processes this string, it must

encounter the same state more than once as it reads the first

n + 1 0s; so let s be a state it hits at least twice. Then k 0s in

the input takes M from state s back to itself for some positive

integer k. But then M ends up exactly at the same place after

reading 0n+1+k1n+1 as it will after reading 0n+11n+1. Therefore,

because M accepts 0n+11n+1 it also accepts 0n+k+11n+1, which

is a contradiction. 59. We know from Exercise 58d that the

equivalence classes of Rk are a refinement of the equivalence

classes of Rk−1 for each positive integer k. The equivalence

classes are finite sets, and finite sets cannot be refined indef-

initely (the most refined they can be is for each equivalence

class to contain just one state). Therefore, this sequence of re-

finements must remain unchanged from some point onward.

It remains to show that as soon as we have Rn = Rn+1, then

Rn = Rm for all m > n, from which it follows that Rn = R∗,

and so the equivalence classes for these two relations will be

the same. By induction, it suffices to show that if Rn = Rn+1,

then Rn+1 = Rn+2. Suppose that Rn+1 ≠ Rn+2. This means

that there are states s and t that are (n + 1)-equivalent but not
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(n+2)-equivalent. Thus, there is a string x of length n+2 such

that, say, f (s, x) is final but f (t, x) is nonfinal. Write x = aw,

where a ∈ I. Then f (s, a) and f (t, a) are not (n+1)-equivalent,

because w drives the first to a final state and the second to a

nonfinal state. But f (s, a) and f (t, a) are n-equivalent, because

s and t are (n + 1)-equivalent. This contradicts the fact that

Rn = Rn+1. 61. a) By the way the machine M was con-

structed, a string will drive M from the start state to a final

state if and only if that string drives M from the start state to a

final state. b) For a proof of this theorem, see a source such as

Introduction to Automata Theory, Languages, and Computa-
tion (2nd Edition) by John E. Hopcroft, Rajeev Motwani, and

Jeffrey D. Ullman (Addison-Wesley, 2000).

Section 13.4

1. a) Any number of 1s followed by a 0 b) Any number of

1s followed by one or more 0s c) 111 or 001 d) A string

of any number of 1s or 00s or some of each in a row e) 𝜆
or a string that ends with a 1 and has one or more 0s be-

fore each 1 f) A string of length at least 3 that ends with 00

3. a) No b) No c) Yes d) Yes e) Yes f) No g) No h) Yes

5. a) 0 ∪ 11 ∪ 010 b) 000000∗ c) (0 ∪ 1)((0 ∪ 1)(0 ∪ 1))∗

d) 0∗10∗ e) (1∪01∪001)∗ 7. a) 00∗1 b) (0∪1)(0∪1)(0∪
1)∗0000∗ c) 0∗1∗ ∪ 1∗0∗ d) 11(111)∗(00)∗ 9. a) Have the

start state s0, nonfinal, with no transitions. b) Have the start

state s0, final, with no transitions. c) Have the nonfinal start

state s0 and a final state s1 and the transition from s0 to s1

on input a. 11. Use an inductive proof. If the regular ex-

pression for A is ∅, 𝜆, or x, the result is trivial. Otherwise,

suppose the regular expression for A is BC. Then A = BC
where B is the set generated by B and C is the set generated

by C. By the inductive hypothesis there are regular expres-

sions B′ and C′ that generate BR and CR, respectively. Be-

cause AR = (BC)R = CRBR, C′B′ is a regular expression for

AR. If the regular expression for A is B ∪ C, then the regular

expression for AR is B′ ∪ C′ because (B ∪ C)R = (BR) ∪ (CR).

Finally, if the regular expression for A is B∗, then it is easy to

see that (B′)∗ is a regular expression for AR.

13. a)

s0 s1 s2 s3 s4 s5
Start

0 1

0
0

0
1

0 0 1
1
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b)

Start s0 s1

s2 s3

s5s4 s6 s7

0

0

0

1

1

1

1

1

1

1
1 0

1

1

1

0

c)

s0

s1 s2 s3 s4 s5

s10s9s8s7s6

s11 s12

0 1

0

0

0

1

1

0

0

0

0 0
0

00

1

00

Start

15. S → 0A, S → 1B, S → 0, A → 0B, A → 1B, B →
0B, B → 1B 17. S → 0C, S → 1A, S → 1, A → 1A,

A → 0C, A → 1, B → 0B, B → 1B, B → 0, B → 1,

C → 0C, C → 1B, C → 1. 19. This follows because

input that leads to a final state in the automaton corresponds

uniquely to a derivation in the grammar. 21. The “only if”

part is clear because I is finite. For the “if” part let the states

be si0 , si1 , si2 , … , sin , where n = l(x). Because n ≥ |S|,
some state is repeated by the pigeonhole principle. Let y be

the part of x that causes the loop, so that x = uyv and y sends

sj to sj, for some j. Then uykv ∈ L(M) for all k. Hence, L(M)

is infinite. 23. Suppose that L = {02n1n, n = 0, 1, 2 …}
were regular. Let S be the set of states of a finite-state ma-

chine recognizing this set. Let z = 02n1n where 3n ≥ |S|.
Then by the pumping lemma, z = 02n1n = uvw, l(v) ≥ 1,

and uviw ∈ {02n1n ∣ n ≥ 0}. Obviously v cannot contain

both 0 and 1, because v2 would then contain 10. So v is all 0s

or all 1s, and hence, uv2w contains too many 0s or too many

1s, so it is not in L. This contradiction shows that L is not

regular. 25. Suppose that the set of palindromes over {0, 1}

were regular. Let S be the set of states of a finite-state machine

recognizing this set. Let z = 0n10n, where n > |S|. Apply the

pumping lemma to get uviw ∈ L for all nonnegative integers i
where l(v) ≥ 1, and l(uv) ≤ |S|, and z = 0n10n = uvw. Then v
must be a string of 0s (because n > |S|), so uv2w is not a palin-

drome. Hence, the set of palindromes is not regular. 27. Let

z = 1; then 111 ∉ L but 101 ∈ L, so 11 and 10 are distinguish-

able. For the second question, the only way for 1z to be in L
is for z to end with 01, and that is also the only way for 11z to

be in L, so 1 and 11 are indistinguishable. 29. This follows

immediately from Exercise 28, because the n distinguishable

strings must drive the machine from the start state to n differ-

ent states. 31. Any two distinct strings of the same length

are distinguishable with respect to the language P of all palin-

dromes, because if x and y are distinct strings of length n, then

xxR ∈ P but yxR ∉ P. Because there are 2n different strings of

length n, Exercise 29 tells us that any deterministic finite-state

automaton for recognizing palindromes must have at least 2n

states. Because n is arbitrary, this is impossible.
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Section 13.5

1. a) The nonblank portion of the tape contains the string 1111

when the machine halts. b) The nonblank portion of the tape

contains the string 011 when the machine halts. c) The non-

blank portion of the tape contains the string 00001 when the

machine halts. d) The nonblank portion of the tape contains

the string 00 when the machine halts. 3. a) The machine

halts (and accepts) at the blank following the input, having

changed the tape from 11 to 01. b) The machine changes ev-

ery other occurrence of a 1, if any, starting with the first, to

a 0, and otherwise leaves the string unchanged; it halts (and

accepts) when it comes to the end of the string. 5. a) Halts

with 01 on the tape, and does not accept b) The first 1 (if any)

is changed to a 0 and the others are left alone. The input is not

accepted.

7. (s0, 0, s1, 1, R), (s0, 1, s0, 1, R) 9. (s0, 0, s0, 0, R),

(s0, 1, s1, 1, R), (s1, s1, 0, R), (s1, 1, s1, 0, R) 11. (s0, 0,

s1, 0, R), (s0, 1, s0, 0, R), (s1, 0, s1, 0, R), (s1, 1, s0, 0, R),

(s1, B, s2, B, R) 13. (s0, 0, s0, 0, R), (s0, 1, s1, 1, R),

(s1, 0, s1, 0, R), (s1, 1, s0, 1, R), (s0, B, s2, B, R) 15. If the

input string is blank or starts with a 1 the machine halts in

nonfinal state s0. Otherwise, the initial 0 is changed to an M
and the machine skips past all the intervening 0s and 1s until

it either comes to the end of the input string or else comes to

an M. At this point, it backs up one square and enters state s2.

Because the acceptable strings must have a 1 at the right for

each 0 at the left, there must be a 1 here if the string is accept-

able. Therefore, the only transition out of s2 occurs when this

square contains a 1. If it does, the machine replaces it with

an M and makes its way back to the left; if it does not, the

machine halts in nonfinal state s2. On its way back, it stays in

s3 as long as it sees 1s, then stays in s4 as long as it sees 0s.

Eventually either it encouters a 1 while in s4 at which point

it halts without accepting or else it reaches the rightmost M
that had been written over a 0 at the start of the string. If it

is in s3 when this happens, then there are no more 0s in the

string, so it had better be the case that there are no more 1s

either; this is accomplished by the transitions (s3, M, s5, M, R)

and (s5, M, s6, M, R), and s6 is a final state. Otherwise the ma-

chine halts in nonfinal state s5. If it is in s4 when this M is

encountered, things start all over again, except now the string

will have had its leftmost remaining 0 and its rightmost re-

maining 1 replaced by Ms. So the machine moves, staying in

state s4, to the leftmost remaining 0 and goes back into state

s0 to repeat the process.

17. (s0, B, s9, B, L), (s0, 0, s1, 0, L), (s1, B, s2, E, R),

(s2, M, s2, M, R), (s2, 0, s3, M, R), (s3, 0, s3, 0, R),

(s3, M, s3, M, R), (s3, 1, s4, M, R), (s4, 1, s4, 1, R),

(s4, M, s4, M, R), (s4, 2, s5, M, R), (s5, 2, s5, 2, R),

(s5, B, s6, B, L), (s6, M, s8, M, L), (s6, 2, s7, 2, L),(s7, 0, s7, 0, L),

(s7, 1, s7, 1, L), (s7, 2, s7, 2, L),(s7, M, s7, M, L), (s7, E, s2, E, R),

(s8, M, s8, M, L), (s8, E, s9, E, L) where M and E are markers,

with E marking the left end of the input

19. (s0, 1, s1, B, R), (s1, 1, s2, B, R), (s2, 1, s3, B, R),

(s3, 1, s4, 1, R), (s1, B, s4, 1, R), (s2, B, s4, 1, R), (s3, B, s4, 1, R)

21. (s0, 1, s1, B, R), (s1, 1, s2, B, R), (s1, B, s6, B, R),

(s2, 1, s3, B, R), (s2, B, s6, B, R), (s3, 1, s4, B, R),(s3, B, s6, B, R),

(s4, 1, s5, B, R), (s4, B, s6, B, R), (s6, B, s10, 1, R),

(s5, 1, s5, B, R), (s5, B, s7, 1, R), (s7, B, s8, 1, R), (s8, B, s9, 1, R),

(s9, B, s10, 1, R)

23. (s0, 1, s0, 1, R), (s0, B, s1, B, L), (s1, 1, s2, 0, L),

(s2, 0, s2, 0, L), (s2, 1, s3, 0, R), (s2, B, s6, B, R), (s3, 0, s3, 0, R),

(s3, 1, s3, 1, R), (s3, B, s4, 1, R), (s4, B, s5, 1, L), (s5, 1, s5, 1, L),

(s5, 0, s2, 0, L), (s6, 0, s6, 1, R), (s6, 1, s7, 1, R), (s6, B, s7, B, R)

25. (s0, 0, s0, 0, R), (s0, ∗, s5, B, R), (s3, ∗, s3, ∗, L),

(s3, 0, s3, 0, L), (s3, 1, s3, 1, L), (s3, B, s0, B, R), (s5, 1, s5, B, R),

(s5, 0, s5, B, R), (s5, B, s6, B, L), (s6, B, s6, B, L), (s6, 0, s7, 1, L),

(s7, 0, s7, 1, L), (s0, 1, s1, 0, R), (s1, 1, s1, 1, R), (s1, ∗, s2, ∗, R),

(s2, 0, s2, 0, R), (s2, 1, s3, 0, L), (s2, B, s4, B, L), (s4, 0, s4, 1, L),

(s4, ∗, s8, B, L), (s8, 0, s8, B, L), (s8, 1, s8, B, L)

27. Suppose that sm is the only halt state for the Turing ma-

chine in Exercise 22, where m is the largest state number, and

suppose that we have designed that machine so that when

the machine halts the tape head is reading the leftmost 1 of

the answer. Renumber each state in the machine for Exer-

cise 18 by adding m to each subscript, and take the union of

the two sets of five-tuples. 29. a) No b) Yes c) Yes d) Yes

31. (s0, B, s1, 1, L), (s0, 1, s1, 1, R), (s1, B, s0, 1, R)

Supplementary Exercises

1. a) S → 00S111, S → 𝜆 b) S → AABS, AB → BA,
BA → AB, A → 0, B → 1, S → 𝜆 c) S → ET, T → 0TA,

T → 1TB, T → 𝜆, 0A → A0, 1A → A1, 0B → B0, 1B → B1,

EA → E0, EB → E1, E → 𝜆

3. S S

A

B

A

B

A

B

A

A

B

B

( (

( (

( (

( (

( (

S

A

B

A

B

A

( (

( (

BA

B

( (

( (

5.

0

S

S

S 0

0

S

S 0

0

0S
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7. No, take A = {1, 10} and B = {0, 00}. 9. No, take A =
{00, 000, 00000} and B = {00, 000}. 11. a) 1 b) 1 c) 2

d) 3 e) 2 f) 4

13.

Start 1, 0 1, 0 1, 0 1, 1

1, 1

0, 0 0, 0 0, 0 0, 0 0, 1

s0 s1 s2 s3 s4

Start 1 1 1 1

1

0 0 0 0 0

s0 s1 s2 s3 s4

15.
Start 1, 0 1, 0 1, 0 1, 1

0, 0

s0 s1 s2 s3 s4

1, 1
0, 0

0, 0

0, 0

0, 0

Start 1 1 1 1

0

s0 s1 s2 s3 s4 1

0
0

0
0

17. a) nnk+1mnk b) nnk+1mn

19.

{s0, s1, s2, s3}

{s0, s1, s2,} {s0, s1, s3,} {s0, s2, s3,} {s1, s2, s3,}

{s0, s1} {s0, s2} {s0, s3} {s1, s2} {s1, s3} {s2, s3}

{s0} {s1} {s2} {s3}

0

0,1

0 0 0

0
1

1 1 1

0
0

0

0

0 0

1

1 1 1 1
1

1
0 0 0

1 1 1

1

0, 1

Start

21. a)
Start s0 s1 s2

1 0

0

1

b)
s0 s4 s5

s1 s2 s3

Start 1 0, 1

0

1

11
0

1

c)

Start 0 0

1

1

s0 s1 s2

23. Construct the deterministic finite automaton for A with

states S and final states F. For A use the same automaton but

with final states S − F.

25. a) Start

0, 1

s0 s1 s2 s3

s6s4

s5

0 0 0

11 1 1

0

1

1

0

b)
s1 s2 s3

s4 s5 s6 s7

s0

0 1

1 0 1

1
11

00
0

Start

0
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c)
Start s0 s1 s2

s3 s4 s5

s6 s7 s8

s9 s10 s11

s12 s13 s14

s15 s16 s17

s18 s19 s20

00

1 0 1 0 1

1 1 1

0

0

00

1 0 1 0 1

1 1 1

0

0

00

1 0 1 0 1

1 1 1

0

0

1 1 0, 1

00

27. Suppose that L = {1p ∣ p is prime} is regular, and let S be

the set of states in a finite-state automaton recognizing L. Let

z = 1p where p is a prime with p > |S| (such a prime exists

because there are infinitely many primes). By the pumping

lemma it must be possible to write z = uvw with l(uv) ≤ |S|,
l(v) ≥ 1, and for all nonnegative integers i, uviw ∈ L. Be-

cause z is a string of all 1s, u = 1a, v = 1b, and w = 1c,

where a + b + c = p, a + b ≤ n, and b ≥ 1. This means

that uviw = 1a1bi1c = 1(a+b+c)+b(i−1) = 1p+b(i−1). Now take

i = p+ 1. Then uviw = 1p(1+b). Because p(1+ b) is not prime,

uviw ∉ L, which is a contradiction. 29. (s0, ∗, s5, B, L),

(s0, 0, s0, 0, R), (s0, 1, s1, 0, R), (s1, ∗, s2, ∗, R),

(s1, 1, s1, 1, R), (s2, 0, s2, 0, R), (s2, 1, s3, 0, L), (s2, B, s4,
B, L), (s3, ∗, s3, ∗, L), (s3, 0, s3, 0, L), (s3, 1, s3, 1, L),

(s3, B, s0, B, R), (s4, ∗, s8, B, L), (s4, 0, s4, B, L), (s5, 0,
s5, B, L), (s5, B, s6, B, R), (s6, 0, s7, 1, R), (s6, B, s6, B, R),

(s7, 0, s7, 1, R), (s7,1,s7, 1, R), (s8, 0, s8, 1, L), (s8, 1, s8,1,L)

APPENDIXES

Appendix 1

1. Suppose that 1′ is also a multiplicative identity for the real

numbers. Then, by definition, we have both 1 ⋅ 1′ = 1 and

1 ⋅1′ = 1′, so 1′ = 1. 3. For the first part, it suffices to show

that [(−x) ⋅ y] + (x ⋅ y) = 0, because Theorem 2 guarantees

that additive inverses are unique. Thus, [(−x) ⋅ y] + (x ⋅ y) =
(−x + x) ⋅ y (by the distributive law) = 0 ⋅ y (by the inverse

law) = y ⋅ 0 (by the commutative law) = 0 (by Theorem 5).

The second part is almost identical. 5. It suffices to show

that [(−x) ⋅ (−y)] + [−(x ⋅ y)] = 0, because Theorem 2

guarantees that additive inverses are unique: [(−x) ⋅ (−y)] +
[−(x ⋅ y)] = [(−x) ⋅ (−y)] + [(−x) ⋅ y] (by Exercise 3)

= (−x) ⋅ [(−y) + y] (by the distributive law) = (−x) ⋅ 0

(by the inverse law) = 0 (by Theorem 5). 7. By defini-

tion, −(−x) is the additive inverse of −x. But −x is the ad-

ditive inverse of x, so x is the additive inverse of −x. There-

fore, −(−x) = x by Theorem 2. 9. It suffices to show that

(−x − y) + (x + y) = 0, because Theorem 2 guarantees

that additive inverses are unique: (−x − y) + (x + y) =
[(−x) + (−y)] + (x + y) (by definition of subtraction) =
[(−y) + (−x)] + (x + y) (by the commutative law) =
(−y) + [(−x) + (x + y)] (by the associative law) = (−y) +
[(−x + x) + y] (by the associative law) = (−y) + (0 + y)

(by the inverse law) = (−y) + y (by the identity law) =
0 (by the inverse law). 11. By definition of division and

uniqueness of multiplicative inverses (Theorem 4) it suffices

to prove that [(w∕x) + (y∕z)] ⋅ (x ⋅ z) = w ⋅ z + x ⋅ y. But

this follows after several steps, using the distributive law, the

associative and commutative laws for multiplication, and the

definition that division is the same as multiplication by the

inverse. 13. We must show that if x > 0 and y > 0, then

x ⋅ y > 0. By the multiplicative compatibility law, the com-

mutative law, and Theorem 5, we have x ⋅ y > 0 ⋅ y = 0.

15. First note that if z < 0, then −z > 0 (add −z to both sides

of the hypothesis). Now given x > y and −z > 0, we have

x ⋅ (−z) > y ⋅ (−z) by the multiplicative compatibility law.

But by Exercise 3 this is equivalent to −(x ⋅ z) > −(y ⋅ z).

Then add x ⋅ z and y ⋅ z to both sides and apply the various

laws in the obvious ways to yield x ⋅ z < y ⋅ z. 17. The

additive compatibility law tells us that w + y < x + y and

(together with the commutative law) that x+ y < x+ z. By the

transitivity law, this gives the desired conclusion. 19. By

Theorem 8, applied to 1∕x in place of x, there is an inte-

ger n (necessarily positive, because 1∕x is positive) such that

n > 1∕x. By the multiplicative compatibility law, this means

that n ⋅ x > 1. 21. We must show that if (w, x) ∼ (w′, x′) and

(y, z) ∼ (y′, z′), then (w + y, x + z) ∼ (w′ + y′, x′ + z′) and that

(w ⋅y+x ⋅ z, x ⋅y+w ⋅ z) ∼ (w′ ⋅ y′ +x′ ⋅ z′, x′ ⋅y′ +w′⋅ z′). Thus,

we are given that w+ x′ = x+w′ and that y+ z′ = z+ y′, and

we want to show that w+ y+ x′ + z′ = x+ z+w′ + y′ and that

w ⋅y+x ⋅ z+x′ ⋅y′ +w′ ⋅ z′ = x ⋅y+w ⋅ z+w′ ⋅y′ +x′ ⋅ z′. For the

first of the desired conclusions, add the two given equations.

For the second, rewrite the given equations as w− x = w′ − x′

and y − z = y′ − z′, multiply them, and do the algebra.
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Appendix 2

1. a) 23 b) 26 c) 24 3. a) 2y b) 2y∕3 c) y∕2

5.

2

4

6

8

10

(a)

−1 2−2

2

4

6

8

10

(b)

−1 2−2

2

4

6

8

10

(c)

−1 2−2

Appendix 3

1. After the first block is executed, a has been assigned the

original value of b and b has been assigned the original value

of c, whereas after the second block is executed, b is assigned

the original value of c and a the original value of c as well.

3. The following construction does the same thing.

i := initial value
while i ≤ final value

statement

i := i + 1
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