
Rosen, Discrete Mathematics and Its Applications, 8th edition
Extra Examples
Section l.l—Propositional Logic

— Page references correspond to locations of Extra Examples icons in the textbook.

p.2, icon at Example 1
#1. Is the following sentence a proposition? If it is a proposition, determine whether it is true or false.

“Portland is the capital of Maine.”

Solution:
This makes a declarative statement, and hence is a proposition. The proposition is false because Augusta, not Portland,
is the capital of Maine.

p.2, icon at Example 1
#2. Is the following sentence a proposition? If it is a proposition, determine whether it is true or false.

“Can Allen come with you?”

Solution:
This is a question, and hence not a proposition.

p.2, icon at Example 1
#3. Is the following sentence a proposition? If it is a proposition, determine whether it is true or false.

1 + 2 = 3 or 2 + 3 = 5.

Solution:
This is a proposition, and it is true because 1 + 2 = 3 is true and 2 + 3 = 5 is true.
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p.2, icon at Example 1
#4. Is the following sentence a proposition? If it is a proposition, determine whether it is true or false.

“Take two aspirin.”

Solution:
This is an imperative sentence. It is not a proposition.

p.2, icon at Example 1
#5. Is the following sentence a proposition? If it is a proposition, determine whether it is true or false.

“x + 4 > 9.”

Solution:
Because this is true for certain values of x (such as x = 6) and false for other values of x (such as x = 5), it is not a
proposition.

p.3, icon at Example 3
#1. Write the negation of “George Washington was the first president of the United States.”

Solution:
The negation is “It is not the case that George Washington was the first president of the U.S.” In more straightforward
language we say “George Washington was not the first president of the U.S.”

p.3, icon at Example 3
#2. Write the negation of “1 + 5 = 7.”

Solution:
The negation states that 1 + 5 is not equal to 7: “1 + 5 ≠ 7.”

2



p.3, icon at Example 3
#3. Write the negation of “1 + 5 ≠ 7.”

Solution:
The negation states that 1 + 5 is equal to 7: “1 + 5 = 7.”

p.3, icon at Example 3
#4. Write the negation of “It is hot today.”

Solution:
The negation is “It is not the case that it is hot today”, or “It is not hot today.” Note that the negation is not “It is cold
today,” because the temperature could be neither hot nor cold, making both statements false. But a statement and its
negation must have opposite truth values.

p.3, icon at Example 3
#5. Write the negation of “6 is negative.”

Solution:
The negation states that “It is not the case that 6 is negative.” This means that 6 is greater than or equal to 0; we say
“6 is nonnegative.” Note that “6 is positive” is not the negation of the given statement. Saying that a number is not
negative means that the number can be either 0 or positive.

p.5, icon at Example 7
#1. The following proposition uses the English connective “or.” Determine from the context whether “or” is intended
to be used in the inclusive or exclusive sense.

“Tonight I will stay home or go out to a movie.”

Solution:
Because the one alternative (staying home) precludes the other (going out), “or” is used in the exclusive sense.
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p.5, icon at Example 7
#2. The following proposition uses the English connective “or.” Determine from the context whether “or” is intended
to be used in the inclusive or exclusive sense.

“If you fail to make a payment on time or fail to pay the amount due, you will incur a penalty.”

Solution:
You might both fail to make a payment on time and your late payment might be for an incorrect amount. Hence the
inclusive “or” is used here.

p.5, icon at Example 7
#3. The following proposition uses the English connective “or.” Determine from the context whether “or” is intended
to be used in the inclusive or exclusive sense.

“If I can’t schedule the airline flight or if I can’t get a hotel room, then I can’t go on the trip.”

Solution:
If both events happen, you won’t go on the trip. Hence the inclusive “or” is used here.

p.5, icon at Example 7
#4. The following proposition uses the English connective “or.” Determine from the context whether “or” is intended
to be used in the inclusive or exclusive sense.

“She has one or two brothers.”

Solution:
The person cannot have both one and two brothers. Therefore, “or” is used in the exclusive sense.

p.5, icon at Example 7
#5. The following proposition uses the English connective “or.” Determine from the context whether “or” is intended
to be used in the inclusive or exclusive sense.

“If you do not wear a shirt or do not wear shoes, then you will be denied service in the restaurant.”

Solution:
It is implied that you won’t be served if you fail to wear a shirt and also fail to wear shoes. Therefore, the inclusive
“or” is used here.
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p.5, icon at Example 7
#6. The following proposition uses the English connective “or.” Determine from the context whether “or” is intended
to be used in the inclusive or exclusive sense.

“I will pass or fail the course.”

Solution:
One alternative excludes the other; both cannot be true together. Here “or” must be exclusive.

p.5, icon at Example 7
#7. The following proposition uses the English connective “or.” Determine from the context whether “or” is intended
to be used in the inclusive or exclusive sense.

“To register for ENL499 you must have passed the qualifying exam or be listed as an English major.”

Solution:
Presumably, if you have passed the qualifying exam and are also listed as an English major, you can still register for
ENL 499. Therefore, “or” is inclusive.

p.8, icon at Example 10
#1. The following statement is a conditional proposition in one of its many alternate forms. Write it in English in the
form “If . . . then . . . .”

“If it rains, I’ll stay here.”

Solution:
The word “then” is often omitted in English, as it is here. Therefore the statement is “If it rains, then I’ll stay home.”

p.8, icon at Example 10
#2. The following statement is a conditional proposition in one of its many alternate forms. Write it in English in the
form “If . . . then . . . .”

“I go walking whenever it rains.”

Solution:
The word “whenever” is equivalent to “if”. Therefore we have “If it rains, then I go walking.”
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p.8, icon at Example 10
#3. The following statement is a conditional proposition in one of its many alternate forms. Write it in English in the
form “If . . . then . . . .”

“To pass the course it is sufficient that you get a high grade on the final exam.”

Solution:
Getting a high grade on the final exam is a sufficient condition for passing the course. That is, getting a high grade on
the final exam will guarantee that you pass the course. Hence we have “If you get a high grade on the final exam, then
you will pass the course.”

p.8, icon at Example 10
#4. The following statement is a conditional proposition in one of its many alternate forms. Write it in English in the
form “If . . . then . . . .”

“To pass the course it is necessary that you get a high grade on the final exam.”

Solution:
We first rephrase the statement as “Getting a high grade on the final exam is a necessary condition for passing the
course.”

The word “necessary” and the word “sufficient” give rise to converse implications: “p is sufficient for q” is p → q, while
“p is necessary for q” is q → p (or, equivalently, ¬p → ¬q). If the given statement had the word “sufficient” instead
of “necessary”, the statement would be “If you get a high grade on the final exam, then you will pass the course.” The
word “necessary” yields the converse of this statement; that is, “If you will pass the course, then you get a high grade
on the final exam.” The equivalent contrapositive sounds better in English: “If you do not get a high grade on the final
exam, then you will not pass the course.”

p.8, icon at Example 10
#5. The following statement is a conditional proposition in one of its many alternate forms. Write it in English in the
form “If . . . then . . . .”

“I will buy the tickets only if you call.”

Solution:
“p if q” and “p only if q” are converses; “only” has the effect of reversing the implication arrow. The proposition “p if
q” is equivalent to q → p; thus “p only if q” is equivalent to p → q. In English we have “If I buy the tickets, then you
call.” Using the equivalent contrapositive, this is “If you do not call, then I won’t buy the tickets.”
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p.8, icon at Example 10
#6. The following statement is a conditional proposition in one of its many alternate forms. Write it in English in the
form “If . . . then . . . .”

“To be able to go on the trip, it is necessary that you get written permission.”

Solution:
Getting written permission is a necessary condition for going on the trip. If you fail to meet the necessary condition, you
can’t go on the trip. Thus, “If you don’t get written permission, then you’re not able to go on the trip.” (Equivalently:
“If you go on the trip, then you get written permission.”)

p.8, icon at Example 10
#7. The following sign is at the entrance of a restaurant: “No shoes, no shirt, no service.” Write this sentence as a
conditional proposition.

Solution:
The implication is “If you do not wear shoes and a shirt, then you cannot enter the restaurant.”

p.8, icon at Example 10
#8. Write the compound proposition s → v in English, using the variables:

v: “I take a vacation”
s: “it is summer”

Solution:
The statement is “If it is summer, then I take a vacation,” or “I take a vacation in the summer.”

p.8, icon at Example 10
#9. Write the compound proposition s → ¬w in English, using the variables:

s: “it is summer”
w: “I work

Solution:
The statement says that “If it is summer, then I do not work,” which we can rephrase as “I don’t work in the summer.”
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p.8, icon at Example 10
#10. Write the compound proposition ¬v → w in English, using the variables:

v: “I take a vacation”
w: “I work”

Solution:
The statement says that “If I don’t take a vacation, then I work.”

p.8, icon at Example 10
#11. “Tell me what you eat and I will tell you what you are” is a quote by Jean-Anthelme Brillat-Savarin (French
gastronomist, 1755–1829). Express this as a compound proposition.

Solution:
The statement is not a conjunction. There is a conditional “if” understood. The word “and” functions like the word
“then”. Therefore, “If you tell me what you eat, then I will tell you what you are.”

p.8, icon at Example 10
#12. Write the negation of “If it rains, I stay home.”

Solution:
The statement has the form p → q, with an implied “then”. In order for a statement of the form p → q to be false, p
must be true and q must be false. Therefore, the negation is “It rains and I do not stay home.”

p.8, icon at Example 10
#13. Find the negation of the statement “If you pay your membership dues, then if you come to the club, you can enter
free.”

Solution:
The statement has the form p → (c → e) where p stands for “you pay your membership dues”, c stands for “you come
to the club”, and e stands for “you can enter free”.
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We first rewrite the statement in the equivalent form ¬p ∨ (c → e)). To more easily analyze the statement, we use
De Morgan’s laws and other properties of predicates to rewrite it:

¬(¬p ∨ (c → e)) ≡ ¬¬p ∧ ¬(c → e)
≡ p ∧ ¬(¬c ∨ e)
≡ p ∧ (¬¬c ∧ ¬e)
≡ p ∧ c ∧ ¬e.

In English the negation says that “You pay your membership dues and you come to the club, but you cannot enter free.”

p.9, icon at Example 12
#1. Write the contrapositive, converse, and inverse of the following proposition:

“If the number is positive, then its square is positive.”

Solution:
The contrapositive of p → q is ≠ q → ¬p. Therefore the contrapositive of “If the number is positive, then its square is
positive” is the equivalent statement “If the square of a number is not positive, then the number is not positive.”

The converse of p → q is q → p. Thus the converse is “If the square of a number is positive, then the number is
positive.”

The inverse of p → q is ¬p →≠ q. Therefore we have the inverse “If the number is not positive, then the square is not
positive.”

p.9, icon at Example 12
#2. Write the contrapositive, converse, and inverse of the following proposition:

“I stay home whenever it is stormy.”

Solution:
Remember that the word “whenever” is equivalent to “if”, so the original proposition is “I stay home if it is stormy,”
or, equivalently “If it is stormy, then I stay home.” Therefore:

Contrapositive: “If I do not stay home, then it is not stormy.”

Converse: “If I stay home, then it is stormy.”

Inverse: “If it is not stormy, then I do not stay home.”
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p.10, icon at Example 13
#1. Write the following proposition in the form “. . . if and only if . . . .”

“It rains exactly when I plan a picnic.”

Solution:
The word “exactly” takes the place of “if and only if.” The statement says that “If it rains, then I plan a picnic” and “If
I plan a picnic, then it rains.” Putting these two together we have “It rains if and only if I plan a picnic.”

p.10, icon at Example 13
#2. Write the following proposition in the form “. . . if and only if . . . .”

“I attend class when I have a quiz and I have a quiz when I attend class.”

Solution:
Using “if” in place of “when,” we have “I attend class if I have a quiz” and “If I attend class, then I have a quiz.”
Therefore we have “I attend class if and only if I have a quiz.”

p.10, icon at Example 13
#3. Write the following proposition in the form “. . . if and only if . . . .”

“I visit the library whenever I have a paper to write, and conversely.”

Solution:
Using v for “I visit the library” and p for “I have a paper to write,” we have both p → v and its converse v → p.
Together, these two statements give p ↔ v, or “I visit the library if and only if I have a paper to write.”

p.10, icon at Example 13
#4. The following English statement can be written in the form “if . . . , then . . . ”. Yet in some cases there is an implied
“only if”; that is, the converse is implied. Do you think that the following statement has an implied converse?

“If you study hard, then you will pass the course.”

Solution:
Possibly you knew the material prior to the course, so you might pass the course without studying hard. Therefore, this
proposition does not have an implied converse.
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p.10, icon at Example 13
#5. The following English statement can be written in the form “if . . . , then . . . ”. Yet in some cases there is an implied
“only if”; that is, the converse is implied. Do you think that the following statement has an implied converse?

“If you have a red ink cartridge in your printer, then you can use the printer to print the report in red.”

Solution:
If you are able to print in red, you presumably have a red cartridge in the printer. Therefore, this proposition has an
implied converse.

p.10, icon at Example 13
#6. The following English statement can be written in the form “if . . . , then . . . ”. Yet in some cases there is an implied
“only if”; that is, the converse is implied. Do you think that the following statement has an implied converse?

“If you pay the electric bill, then the electric company will turn on your power.”

Solution:
It is possible that the electric company might still turn on your power, even if you do not pay your bill. For example,
someone else might pay the bill for you. Therefore, this proposition does not have an implied converse.

p.10, icon at Example 13
#7. The following English statement can be written in the form “if . . . , then . . . ”. Yet in some cases there is an implied
“only if”; that is, the converse is implied. Do you think that the following statement has an implied converse?

“You must be a resident in order to vote.”

Solution:
The original proposition has the form “If you are not a resident, then you cannot vote.” The converse, “If you cannot
vote, then you are not a resident”, does not necessarily follow, because you might not meet an age requirement, for
example. This proposition does not have an implied converse.

p.10, icon at Example 13
#8. The following English statement can be written in the form “if . . . , then . . . ”. Yet in some cases there is an implied
“only if”; that is, the converse is implied. Do you think that the following statement has an implied converse?

“If you have a dollar, then you can buy coffee from the vending machine.”
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Solution:
If you don’t have a dollar, then you probably can’t buy coffee from the vending machine (unless the machine accepts a
larger bill you might have). This proposition probably has an implied converse.

p.10, icon at Example 13
#9. The following English statement can be written in the form “if . . . , then . . . ”. Yet in some cases there is an implied
“only if”; that is, the converse is implied. Do you think that the following statement has an implied converse?

“You need a ticket in order to enter the theater.”

Solution:
The statement says that “If you don’t have a ticket, then you can’t enter the theater.” The converse is “If you do have
a ticket, then you can enter the theater,” which is also probably true. Therefore the statement is “You can enter the
theater if and only if you have a ticket,” so there is an implied converse.
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Rosen, Discrete Mathematics and Its Applications, 8th edition
Extra Examples
Section 1.2—Applications of Propositional Logic

— Page references correspond to locations of Extra Examples icons in the textbook.

p.18, icon at Example 1

#1. Suppose u represents “you understand the material”, s represents “you study the theory”, and w represents “you
work on exercises”. Write the following compound proposition using u, s, w, and appropriate connectives.

“You study the theory and work on exercises, but you don’t understand the material.”

Solution:
This compound statement makes three assertions: you study the theory, you work on exercises, you don’t understand
the material. The word “but” acts like “and”. Thus, the proposition is s ∧w ∧ ¬u.

p.18, icon at Example 1
#2. Suppose u represents “you understand the material” and s represents “you study the theory”. Write the following
compound proposition using u, s, and appropriate connectives.

“Studying the theory is sufficient for understanding the material.”

Solution:
We can rewrite the statement as “If you study the theory, then you understand the material,” or in symbols s → u.

p.18, icon at Example 1
#3. Suppose s represents “you study the theory” and w represents “you work on exercises”. Write the following
compound proposition using s, w, and appropriate connectives.

“In order to work on exercises, you need to study the theory.”
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Solution:
The statement is “If you do not study the theory, then you cannot work on the exercises,” or ¬s → ¬w. We can also
rewrite this as w → s.

p.18, icon at Example 1
#4. Suppose u represents “you understand the material”, s represents “you study the theory”, and w represents “you
work on exercises”. Write the following compound proposition using u, s, w, and appropriate connectives.

“When you study the theory and work on exercises, you understand the material.”

Solution:
Using “if” for “when”, we have s ∧w → u.

p.18, icon at Example 1
#5. Suppose u represents “you understand the material”, s represents “you study the theory”, and w represents “you
work on exercises”. Write the following compound proposition using u, s, w, and appropriate connectives.

“You don’t understand the material unless you study the theory and work on exercises.”

Solution:
The word “unless” conveys the meaning “if not”. We can rewrite the proposition as “If you do not study the theory and
work on exercises, then you don’t understand the material,” which is ¬(s ∧w) → ¬u, or, equivalently, u → (s ∧w).

p.18, icon at Example 3
#1. Translate this system specification into symbols:

“The online user is sent a notification of a link error if the network link is down.”

Solution:
The statement is equivalent to “If the network link is down, then the online user is sent a notification of a link error.”
Using d for “the network link is down” and s for “the online user is sent a notification of a link error,” the statement
becomes d → s.
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p.18 icon at Example 3

#2. Translate this system specification into symbols:

“Whenever the file is locked or the system is in executive clearance mode, the user cannot make changes in the
data.”

Solution:
The statement is equivalent to “If the file is locked or the system is in executive clearance mode, the user cannot make
changes in the data.” Using l for “the file is locked,” e for “the system is in executive clearance mode,” and u for “the
user can make changes in the data,” the statement is (l ∨ e) → ¬u. Note that the parentheses are not necessary because
the order of precedence of operations requires that the disjunction be performed before the implication; thus we can
also write l ∨ e → ¬u.

p.18, icon at Example 3
#3. Write these system specifications in symbols using the propositions

v: “The user enters a valid password,”
a: “Access is granted to the user,”
c: “The user has contacted the network administrator,”

and logical connectives. Then determine if the system specifications are consistent.

(i) “The user has contacted the network administrator, but does not enter a valid password.”
(ii) “Access is granted whenever the user has contacted the network administrator or enters a valid password.”

(iii) “Access is denied if the user has not entered a valid password or has not contacted the network administrator.”

Solution:

(i) The word “but” means “and”, so we have c ∧ ¬v.
(ii) The statement says that if either of two conditions is satisfied, then access is granted. Therefore we have

(c ∨ v) → a.
(iii) In this case, if either of two negations happens, then access is not granted to the user. Therefore we have

(¬v ∨ ¬c) → ¬a.

In symbols, the three propositions are:

c ∧ ¬v
(c ∨ v) → a
(¬v ∨ ¬c) → ¬a.

In order for the first proposition to be true, c must be true and v must be false. Because c is true, c∨v is true. Therefore,
from the second proposition, a must be true.

But because v is false, ¬v is true. Therefore ¬v ∨ ¬c is true. Therefore, the implication in the third proposition forces
¬a to be true. Thus, a is false. But this contradicts that fact that a must be true. Therefore the three propositions are
not consistent.
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p.19, icon at Example 6

#1. How would you do a Boolean search for the appropriate Web pages for each of these:

(a) hotels in New England.
(b) hotels in England.
(c) hotels in England or New England.

Solution:

(a) We need to examine “hotels” and both “New” and “England”; that is, HOTELS AND (NEW AND ENGLAND).
(b) To avoid getting hotels in New England, we use ENGLAND NOT NEW. Therefore we have HOTELS AND

(ENGLAND NOT NEW).
(c) The two key words here are “hotels” and “England” (which will include both the country and the part of the

United States). Therefore we can search for HOTELS AND ENGLAND.

p.20, icon at Example 8

#1. Suppose you have three cards: one red on both sides (red/red), one green on both sides (green/green), and one red
on one side and green on the other side (red/green). The three cards are placed in a row on a table. Explain how to
determine the identity of all three cards by selecting one card and turning it over.

Solution:
When the three cards are put in a row, exactly two of the three must have the same color showing — say red. Pick one
of these two red cards and turn it over.

If the other side is also red, then you have found the red/red card. The other card with red showing must be the red/green
card, and the card with green showing must be the green/green card.

If the card you turn over has green on the other side, you have located the red/green card. The other card with red
showing must be the red/red card, and the card with green showing must be the green/green card.

(A similar procedure will determine the identity of the three cards, if two cards have green showing.)

p.20 icon at Example 8

#2. Another of Smullyan’s puzzles poses this problem. You meet two people, A and B. Each person either always
tells the truth (i.e., the person is a knight) or always lies (i.e., the person is a knave). Person A tells you, “We are not
both truthtellers.”
Determine, if possible, which type of person each one is.
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Solution:
One way to solve the problem is by considering each of the four possible cases: both lie, both tell the truth, A lies and
B tells the truth, A tells the truth and B lies. We examine each of the four cases separately.

Both lie: That would mean that neither one is a truthteller. The statement “We are not both truthtellers” is true because
they are not both truthtellers. Thus A is telling the truth, which contradicts the assumption that both are liars. Therefore,
this case cannot happen.

Both tell the truth: Therefore the statement “We are not both truthtellers” is a lie. Thus A is a liar, contradicting the
assumption that both are truthtellers. Therefore, this case cannot happen.

A lies and B tells the truth: If A is a liar, A’s statement “We are not both truthtellers” must be a lie. Therefore A and B
must both be truthtellers. But this contradicts the assumption that A is a liar. Therefore, this case cannot happen.

A tells the truth and B lies: In this case A’s statement “We are not both truthtellers” is true and no contradiction is
obtained. Therefore, this case is not ruled out.

Therefore, the only possibility is that A is a truthteller and B is a liar.

Another way to solve the problem is to see where the assumption “A is a liar” leads us. If we assume that A always lies,
then A’s statement “We are not both truthtellers” must be false. Therefore both A and B must be truthtellers. Therefore
A’s statement “We are not both truthtellers” must be true, a contradiction of the fact that the statement is false.

This says that A is not a liar. Therefore A is a truthteller. Therefore A’s statement “We are not both truthtellers” must
be true. Because A is a truthteller, A’s statement forces B to be a liar.
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Rosen, Discrete Mathematics and Its Applications, 8th edition
Extra Examples
Section l.3—Propositional Equivalences

— Page references correspond to locations of Extra Examples icons in the textbook.

p.27, icon below Table 2
#1. Prove that ¬[r ∨ (q ∧ (¬r → ¬p))] ≡ ¬r ∧ (p ∨ ¬q) by using a truth table.

Solution:
We construct the truth tables for ¬[r ∨ (q ∧ (¬r → ¬p))] and for ¬r ∧ (p ∨ ¬q), and show that they are identical.
We insert “intermediate” columns as we build each of the propositions.

p q r ¬p ¬r ¬r → ¬p q ∧ (¬r → ¬p) r ∨ (q ∧ (¬r → ¬p)) ¬(r ∨ (q ∧ (¬r → ¬p))) p ∨ ¬q ¬r ∧ (p ∨ ¬q)
T T T F F T T T F T F
T T F F T F F F T T T
T F T F F T F T F T F
T F F F T F F F T T T
F T T T F T T T F F F
F T F T T T T T F F F
F F T T F T F T F T F
F F F T T T F F T T T

Note that the ninth and eleventh columns are identical. Therefore the two propositions are equivalent.

p.27, icon below Table 2
#2. Show that ¬(p ∨ q) ≢ ¬p ∨ ¬q.

Solution:
To show that these two propositions are not equivalent, we need to find values for p and q such that ¬(p∨q) and ¬p∨¬q
have different truth values. One way to do this is to construct the truth table for each proposition and show that their
truth values are different in at least one case. In this case we obtain

p q ¬p ¬q p ∨ q ¬(p ∨ q) ¬p ∨ ¬q
T T F F T F F
T F F T T F T
F T T F T F T
F F T T F T T
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In the second row of the truth table (the case where p is true and q is false), the proposition ¬(p ∨ q) is false, but the
proposition ¬p ∨ ¬q is true. Therefore, the two propositions are not equivalent. (Note that the truth values for the two
propositions also differ in the third row.)

p.31, icon at Example 6
#1. Prove that ¬[r ∨ (q ∧ (¬r → ¬p))] ≡ ¬r ∧ (p ∨ ¬q) by using a series of logical equivalences.

Solution:
We will begin with ¬[r ∨ (q ∧ (¬r → ¬p))] and use rules of logic to show that this is equivalent to ¬r ∧ (p ∨ ¬q).
Here is one possible proof:

¬[r ∨ (q ∧ (¬r → ¬p))] ≡ ¬r ∧ ¬(q ∧ (¬r → ¬p)) De Morgan’s law
≡ ¬r ∧ ¬(q ∧ (¬¬r ∨ ¬p)) conditional rewritten as disjunction
≡ ¬r ∧ ¬(q ∧ (r ∨ ¬p)) double negation law
≡ ¬r ∧ (¬q ∨ ¬(r ∨ ¬p)) De Morgan’s law
≡ ¬r ∧ (¬q ∨ (¬r ∧ p)) De Morgan’s law and double negation
≡ (¬r ∧ ¬q) ∨ (¬r ∧ (¬r ∧ p)) distributive law
≡ (¬r ∧ ¬q) ∨ ((¬r ∧ ¬r) ∧ p) associative law
≡ (¬r ∧ ¬q) ∨ (¬r ∧ p) idempotent law
≡ ¬r ∧ (¬q ∨ p) distributive law
≡ ¬r ∧ (p ∨ ¬q) commutative law

p.31, icon at Example 6
#2. Here is a newspaper headline:

“Legislature Fails to Override Governor’s Veto of Bill to Cancel Sales Tax Reform.”

Did the legislature vote in favor of or against sales tax reform?

Solution:
The issue is sales tax reform, so we let s stand for “sales tax reform is supported”. We unravel the negatives one at
a time. The bill to cancel sales tax reform is ¬s, and the governor’s veto of this bill is ¬¬s. Overriding this would
be ¬¬¬s, and failing to override is ¬¬¬¬s. Therefore, using the double negation law twice, the headline ¬¬¬¬s is
equivalent to s, and hence the Legislature supports sales tax reform.
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p.31, icon at Example 6
#3. Suppose you want to prove a theorem of the form p → (q ∨ r). Prove that this is equivalent to showing that
(p ∧ ¬q) → r.

Solution:
We will give a proof by replacing the first statement by equivalent statements until finally the second statement is
obtained. (We will use the equivalence a → b ≡ ¬a ∨ b twice.)

p → (q ∨ r) ≡ ¬p ∨ (q ∨ r)
≡ (¬p ∨ q) ∨ r
≡ ¬(p ∧ ¬q) ∨ r
≡ (p ∧ ¬q) → r.

We could also give a proof by constructing the truth table for each statement and showing that the two statements have
the same truth values.

p.31, icon at Example 6
#4. Write the statement p → (¬q ∧ r) using only the connectives ¬ and ∧.

Solution:
We need to remove the implication sign. Note that an implication A → B is equivalent to ¬A ∨ B. Therefore, we can
rewrite p → (¬q ∧ r) as

¬p ∨ (¬q ∧ r).

De Morgan’s law will allow us to change this to an equivalent form without using ∨. Take De Morgan’s law ¬(A∨B) ≡
¬A ∧ ¬B and negate both sides to obtain

A ∨ B ≡ ¬(¬A ∧ ¬B).

Using ¬p in place of A and ¬q ∧ r in place of B, we have

p → (¬q ∧ r) ≡ ¬p ∨ (¬q ∧ r) ≡ ¬(p ∧ ¬(¬q ∧ r)).
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Rosen, Discrete Mathematics and Its Applications, 8th edition
Extra Examples
Section l.4—Predicates and Quantifiers

— Page references correspond to locations of Extra Examples icons in the textbook.

p.41, icon at Example 3
#1. Let P (x) be the statement

x2 < x

where the universe for x is all real numbers.

(a) Determine the truth value of P (0).
(b) Determine the truth value of P (1∕3).
(c) Determine the truth value of P (2).
(d) Determine the set of all real numbers for which P (x) is true.

Solution:

(a) The proposition P (0) states that 02 < 0, which is false.
(b) The proposition P (1∕3) states that (1∕3)2 < 1∕3, which is true.
(c) The proposition P (2) states that 4 < 2, which is false.
(d) If x ≥ 1, then x2 ≥ x, so P (x) is false. If x ≤ 0, then x2 ≥ 0 and hence x2 ≥ x, so P (x) is false. If 0 < x < 1,

then x2 < x is true (because this inequality can be rewritten as x2−x < 0, or x(x−1) < 0, which is true because
the product is negative—it is the product of a positive and a negative number). Therefore, P (x) is true if and
only if 0 < x < 1.

p.41, icon at Example 3
#2. Let Q(x, y) be the statement

x + y = x − y

where the universe for x and y is the set of all real numbers. Determine the truth value of:

(a) Q(5,−2).
(b) Q(4.7, 0).
(c) Determine the set of all pairs of numbers, x and y, such that Q(x, y) is true.

Solution:

(a) Q(5,−2) says that 5 + (−2) = 5 − (−2), or 3 = 7, which is false.
(b) Q(4.7, 0) says that 4.7 + 0 = 4.7 − 0, which is true.
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(c) x + y = x − y if and only if x + 2y = x, which is true if and only if y = 0. Therefore, x can be any real number
and y must be zero.

p.41, icon at Example 3
#3. Find all real numbers x and y such that R(x, y) is true, where R(x, y) is the predicate “xy = y.”

Solution:
The given predicate can be rewritten as xy−y = 0, or y(x−1) = 0. This is true if and only if either y = 0 or x−1 = 0.
That is, R(x, y) is true if and only if y = 0 or x = 1.

p.44, icon at Example 8
#1. Suppose P (x) is the predicate “x < |x|.” Determine the truth value of ∀xP (x), where the universe for x is:

(a) the three numbers −3, −2, −1.
(b) all real numbers.

Solution:

(a) P (−3), P (−2), and P (−1) are all true because the numbers −3, −2, −1 are negative but their absolute values are
positive. Therefore, ∀xP (x) is true.

(b) The predicate x < |x| is false for every nonnegative number. For example, P (1) is false because 1 = |1|. Having
one value of x that makes the predicate false is enough to guarantee that ∀xP (x) is false.

p.44, icon at Example 8
#2. Find a universe for x such that ∀x (x2 < x) is true.

Solution:
We need to select numbers such that the square of the number is less than the number. We could take the universe for
x to consist of any numbers greater that 0 but less than 1. For example, one such universe would consist of the single
number 1/2. Another universe is {1/5, 2/3, 9/11}. The largest universe we could choose is the entire interval (0, 1).

p.46, icon at Example 13
#1. Suppose P (x) is the predicate “x < |x|.” Determine the truth value of ∃xP (x) where the universe for x is:

(a) the three numbers 1, 2, 3.
(b) the six numbers −2, −1, 0, 1, 2, 3.
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Solution:

(a) P (1), P (2), and P (3) are all false because in each case x = |x|. Therefore, ∃xP (x) is false for this universe.
(b) If we begin checking the six values of x, we find P (−2) is true — it states that −2 < |− 2|, or −2 < 2. We need

to check no further; having one case that makes the predicate true is enough to guarantee that ∃xP (x) is true.

p.46, icon at Example 13
#2. Determine whether ∃t (t2 + 12 = 7t) is true, where the universe for t consists of all real numbers.

Solution:
The equation t2 + 12 = 7t can be rewritten as t2 − 7t + 12 = 0, which factors as (t − 3)(t − 4) = 0. This is true for the
numbers 3 and 4. Hence the given proposition is true.

p.46, icon at Example 13
#3. Write the following statement in English, using the predicates

F (x): “x is a Freshman”
T (x, y): “x is taking y”

where x represents students and y represents courses:

∃x (F (x) ∧ T (x,Calculus 3)).

Solution:
The statement ∃x (F (x) ∧ T (x,Calculus 3)) says that there is a student x with two properties: x is a freshman and x is
taking Calculus 3. In English, “Some Freshman is taking Calculus 3.”

p.51, icon at Example 20
#1. Negate “There is a person who walked on the moon.”

Solution:
We can always obtain the negation of a statement by placing the phrase “it is not the case that” in front of the statement.
Thus, the negation is “It is not the case that there is a person who walked on the moon.” That is, “No person walked on
the moon.” (Incidentally, the original statement is true because 12 astronauts walked on the moon between 1969 and
1972.)

We can also work with symbols. Let W (x) be the statement “x walked on the moon” where the universe for x consists
of all people. The statement claims that there is an x such that x walked on the moon; that is, ∃xW (x). The negation
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is ¬∃xW (x), which is equivalent to ∀x¬W (x). Therefore, the negative states that for every x that can be chosen, x
did not walk on the moon. That is, “No person walked on the moon.”

Note: The negation is not “There is a person who did not walk on the moon.” You cannot have a statement and its
negation both true, which would be the case if we took this statement as the negation of the original statement.

p.51, icon at Example 20
#2. Negate “Everyone in the class has a laptop computer.”

Solution:
If we take L(x) to be “x has a laptop computer” where the universe for x consists of all people in this class, then the
given statement is ∀xL(x). The negation is ¬∀xL(x), which is equivalent to ∃x¬L(x). In words, “There is someone
in this class who does not have a laptop computer.”

Note: The negation is not “No one in this class has a laptop computer.” You cannot have a statement and its negation
both false, which would be the case in a class where at least one person has a laptop computer and at least one person
does not have a laptop computer.

p.51, icon at Example 20
#3. Negate “Some integer x is positive and all integers y are negative.”

Solution:
Using all integers as the universe for x and y, the statement is ∃x (x > 0) ∧ ∀y (y < 0). The negation is

¬[∃x (x > 0) ∧ ∀y (y < 0)] ≡ ¬∃x (x > 0) ∨ ¬∀y (y < 0) De Morgan’s law
≡ ∀x¬(x > 0) ∨ ∃y¬(y < 0) properties of negation
≡ ∀x (x ≤ 0) ∨ ∃y (y = 0).

Therefore, the negation is “Every integer x is nonpositive or there is an integer y that is nonnegative.”

p.51, icon at Example 20
#4. Negate “There is a student who came late to class and there is a student who is absent from class.”

Solution:
In symbols, if L(x) means “x came late to class” and A(x) means “x is absent from class,” this statement can be
written as

∃xL(x) ∧ ∃yA(y).

Note that we must use a second variable y. By one of De Morgan’s laws the negation can be written as

¬∃xL(x) ∨ ¬∃yA(x),
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which is equivalent to

∀x¬L(x) ∨ ∀y¬A(x).

In English this is “No student came late to class or no student is absent from class.”

p.52, icon at Example 23
#1. Write in symbols using predicates and quantifiers: “Everyone who visited France stayed in Paris.”

Solution:
The solution depends on the universe for the variable. If we take as the universe all people who visited France, we can
write the proposition as ∀xP (x), where P (x) is the predicate “x stayed in Paris.”

However, if we take all people as the universe, then we need to introduce a second predicate F (x) for “x visited France.”
In this case, the proposition can be written as ∀x (F (x) → P (x)).

p.52, icon at Example 23
#2. Express this statement in symbols, using predicates and any needed quantifiers:

“Every freshman at the College is taking CS 101.”

Solution:
There are various ways to answer this question, depending on the universe.

If we take as our universe all freshmen at the College and use the predicate T (x) to mean “x is taking CS 101”, then
the statement can be written as ∀x T (x).

However, we may wish to use the universe of all students at the College, not only freshmen. In this case we introduce
a second predicate, F (x), to mean “x is at the freshman level”.

We are making a conditional statement: “If the student is a freshman, then the student is taking CS 101;” that is,

∀x (F (x) → T (x)).

Note that we cannot say ∀x (F (x) ∧ T (x)), because this says that every student is a freshman, which is not something
we can assume here.

We can enlarge the realm of discussion still further, by considering the universe of all people. In this case we introduce
another predicate to restrict our attention to students at the College, C(x), to mean “x is enrolled at the College”.
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Now we are saying that “If the person is enrolled at the College and is a freshman, then the person is taking CS 101,”
or

∀x (C(x) ∧ F (x) → T (x)).

Now suppose that we also need to discuss other courses at the College. We need another variable, y, to denote courses
and we need to change the predicate T (x) to reflect the fact that we can be talking about other courses. We introduce
T (x, y) to mean “x is taking course y”. If we take as the universe all freshmen at the College, we have

∀x T (x,CS 101).

However, if we take as universe all students at the College, the original statement becomes

∀x (F (x) → T (x,CS 101)).

Finally, if we take as universe all people, the original statement becomes

∀x (C(x) ∧ F (x) → T (x,CS 101)).

p.52, icon at Example 23
#3. Express this statement in symbols, using predicates and any needed quantifiers:

“Every freshman at the College is taking some Computer Science course.”

Solution:
There are many solutions, depending on the universes chosen for people and for courses.

If we take as our universe for people all freshmen at the College and our universe for courses all Computer Science
courses, then we can use the predicate

T (x, y) ∶ “x is taking y”

and hence the statement can be written as ∀x∃y T (x, y).

However, suppose we enlarge the universe of people to include all students at the College, not only freshmen. Also,
suppose we enlarge the range of courses to include all courses offered at the College. In this case we need to introduce
a predicate to restrict the students and a predicate to restrict the courses:

F (x) ∶ “x is a freshman” C(y) ∶ “y is a Computer Science course”.

We are making a conditional statement: “If the student is a freshman, then the student is taking some Computer Science
course;” that is

∀x (F (x) → ∃y (C(y) ∧ T (x, y))),

which we can rewrite as

∀x∃y (F (x) → C(y) ∧ T (x, y)),
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p.52, icon at Example 23
#4. Consider this sentence, which is the final sentence of 12th Amendment of U. S. Constitution: “No person consti-
tutionally ineligible to the office of President shall be eligible to the office of Vice President of the United States.”

(a) Rewrite the sentence in English in the form “If . . . , then . . . .”
(b) Using the predicates P (x): “x is constitutionally eligible to the office of President” and V (x): “x is constitution-

ally eligible to the office of Vice President of the United States,” where the universe for x consists of all people,
write the sentence using quantifiers and these predicates.

Solution:

(a) “If a person is constitutionally ineligible to the office of the President, then the person is ineligible to the office
of Vice President of the United States.”

(b) ∀x (¬P (x) → ¬V (x)), or, equivalently, ¬∃x (¬P (x) ∧ V (x)). (You should check to see that the first statement
can be rewritten as the second statement.)

p.52, icon at Example 23
#5. Consider this sentence, which is Section 2 of Article I of the U. S. Constitution: “No person shall be a Represen-
tative who shall not have attained the age of twenty-five years, and been seven years a citizen of the United States, and
who shall not, when elected, be an inhabitant of that state in which he shall be chosen.”

(a) Rewrite the sentence in English in the form “If . . . , then . . . ”.
(b) Using the predicates A(x): “x is at least twenty-five years old,” C(x): “x has been a citizen of the United States

for at least seven years,” I(x): “x, when elected, is an inhabitant of the state in which he is chosen,” and R(x):
“x can be a Representative,” where the universe for x in all four predicates consists of all people, rewrite the
sentence using quantifiers and these predicates. [Note: At the time at which the U. S. Constitution was ratified,
the universe for x consisted of landowning males.]

Solution:

(a) The sentence from the Constitution has the form “If the person has not attained . . . , then the person shall not be a
Representative.” That is, “If a person shall not have attained the age of twenty-five years or shall not be a citizen
of the U.S. for seven years or shall not, when elected, be an inhabitant of that state in which he shall be chosen,
then the person shall not be a Representative.”

(b) The sentence states that if the person fails to meet one or more of the conditions A(x), C(x), or I(x), then the
person fails to meet R(x). That is,

∀x ((¬A(x) ∨ ¬C(x) ∨ ¬I(x)) → ¬R(x)).

p.53, icon at Example 25
#1. Express the specification “Whenever at least one network link is operating, a 10 megabyte file can be transmitted”
using predicates and quantifiers.

7



Solution:
We begin by determining predicates and variables that can be used to express this specification. We begin by translating
“at least one network link is operating.” Suppose we are concerned with all network links and the possible states in
which they can be. We can use the predicate S(x, y) to mean “network link x is in state y”. The statement “at least one
network link is operating” can be expressed using the existential quantifier as

∃xS(x, operating).

Note that if we used a predicate with a single variable, such as O(x), to mean “link x is operating,” we would need
other predicates to describe other possible states that the links could be in. However, if we did not care about this, “at
least one network link is operating” could be expressed as ∃xO(x).

Because we are also concerned with the size of a file that can be transmitted, we let

T (y) mean “a file of y megabytes can be transmitted,”

where the universe for y is the set of all nonnegative numbers.

It follows that T (10) denotes that a file of 10 megabytes can be transmitted. Because “whenever p, q” is a way of
expressing the conditional statement p → q, it follows that the specification can be expressed as

∃xS(x, operating) → T (10).
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Rosen, Discrete Mathematics and Its Applications, 8th edition
Extra Examples
Section 1.5—Nested Quantifiers

— Page references correspond to locations of Extra Examples icons in the textbook.

p.61, icon at Example 1
#1. Write the following statements in English, using the predicate S(x, y): “x shops in y”, where x represents people
and y represents stores:

(a) ∀yS(Margaret, y).
(b) ∃x∀yS(x, y).

Solution:

(a) The predicate states that if y is a store, then Margaret shops there. That is, “Margaret shops in every store.”
(b) The predicate states that there is a person x with the property that x shops in every store y. That is, “There is

a person who shops in every store.” [Note that part (a) is obtained from part (b) by taking a particular value,
Margaret, for the variable x. If we do this, we do not need to quantify x.]

p.61, icon at Example 1
#2. Write in symbols using predicates and quantifiers: “Every Junior in this class scored above 90 on the first exam.”

Solution:
The solution depends on what we take for the universe for the variable. If we take all Juniors in this class as the universe,
we can write the proposition as

∀xS(x)

where S(x) is the predicate “x scored above 90 on the first exam.”

However, if we take all students in this class as the universe, then we can write the proposition as

∀x (J (x) → S(x))

where J (x) is the predicate “x is a Junior.”

We can extend the universe still further. Suppose we take all students as the universe. Then we need to introduce a
third predicate C(x) to mean “x is in this class.” In this case, the proposition becomes

∀x ((C(x) ∧ J (x)) → S(x)).
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If we also wish to distinguish among possible scores on the first exam, we can use “nested quantifiers”, discussed later
in this section of the book. We can replace S(x) by S(x, y) where S(x, y) means “x received a score of y on the first
exam” and the universe for y is the set of all possible exam scores. In this case the proposition becomes

∀x∃y(C(x) ∧ J (x) → (y > 90) ∧ S(x, y)).

Note that we used a predicate, y > 90, without giving it a name.

p.61, icon at Example 1
#3. Write the following statement in English, using the predicates

S(x, y): “x shops in y”
T (x): “x is a student”

where x represents people and y represents stores:

∃y∀x (T (x) → ¬S(x, y)).

Solution:
The statement ∃y∀x (T (x) → ¬S(x, y)) says that “there is a store y with a certain property, namely, if x is any student
whatever, then x does not shop in y.” We have “There is a store in which no student shops.”

p.61, icon at Example 1
#4. Write the following statement in English, using the predicates

S(x, y): “x shops in y”
T (x): “x is a student”

where x represents people and y represents stores:

∀y∃x (T (x) ∧ S(x, y)).

Solution:
The statement ∀y∃x (T (x) ∧ S(x, y)) asserts that for every store y that can be chosen, there is a person x who is a
student and who shops in y. Therefore: “Every store has at least one student who shops in it.”

p.61, icon at Example 1
#5. Write the following statement in English, using the predicate S(x, y) for “x shops in y”, where x represents people
and y represents stores:

∃x1 ∃y∀x2 [S(x1, y) ∧ (x1 ≠ x2 → ¬S(x2, y))].

2



Solution:
The statement S(x1, y) ∧ (x1 ≠ x2 → ¬S(x2, y)) tells us two things: person x1 shops in store y, and if x2 is any other
person then x2 does not shop in y. Therefore, we have “There is a store in which exactly one person shops.”

p.61, icon at Example 1
#6. Write the following statement in English, using the predicates

C(x): “x is a Computer Science major”
M(y): “y is a math course”

T (x, y): “x is taking y”

where x represents students and y represents courses:

∀x∃y (C(x) → M(y) ∧ T (x, y)).

Solution:
The statement ∀x∃y (C(x) → M(y) ∧ T (x, y)) asserts that for every student x there is a course y such that if x is a
major in Computer Science then x is taking y and y is a math course. Therefore, “Every Computer Science major is
taking at least one math course.”

p.61, icon at Example 1
#7. Write the following statement in English, using the predicates

C(x): “x is a Computer Science major”
T (x, y): “x is taking y”

where x represents students and y represents courses:

∀y∃x (¬C(x) ∧ T (x, y)).

Solution:
The statement ∀y∃x (¬C(x) ∧ T (x, y)) says that for every course y there is a student x such that x is not a Computer
Science major and x is taking y. That is, “Every course has a student in it who is not a Computer Science major.”

p.61, icon at Example 1
#8. Write the following statement in English, using the predicates

F (x): “x is a Freshman”
M(y): “y is a math course”

T (x, y): “x is taking y”
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where x represents students and y represents courses:

¬∃x [F (x) ∧ ∀y (M(y) → T (x, y))].

Solution:
First examine part of the statement, ∀y (M(y) → T (x, y)). This says that “if y is a math course, then x is taking y”,
or, equivalently, “x is taking every math course”. The given statement says that there is no student with this property:
F (x) ∧ ∀y (M(y) → T (x, y)); that is, there is no student who is both a freshman and who is taking every math course.
Therefore, we have “No Freshman is taking every math course.”

p.61, icon at Example 1
#9. Write the following statement using quantifiers and the predicate S(x, y) for “x shops in y”, where the universe
for x consists of people and the universe for y consists of stores:

“Will shops in Al’s Record Shoppe.”

Solution:
Using “Will” for x and “Al’s Record Shoppe” for y, we have

S(Will, Al’s Record Shoppe).

No quantifiers are needed.

p.61, icon at Example 1
#10. Write the following statement using quantifiers and the predicates

S(x, y): “x shops in y”
T (x): “x is a student”

where the universe for x consists of people and the universe for y consists of stores:

“There is no store that has no students who shop there.”

Solution:
We can begin by stating that “It is false that there exists a store y with the property that no students shop in y.” Saying
that “no students shop in y” is saying ∀x (T (x) → ¬S(x, y)). Completely written in symbols, we have

¬∃y∀x (T (x) → ¬S(x, y)).
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p.61, icon at Example 1
#11. Write the following statement using quantifiers and the predicates

S(x, y): “x shops in y”
T (x): “x is a student”

where the universe for x consists of people and the universe for y consists of stores:

“The only shoppers in some stores are students.”

Solution:
The given statement asserts that “There is at least one store, y, such that only students shop there.” Saying that “only
students shop in y” means that ∀x (S(x, y) → T (x)). Putting these together gives

∃y∀x (S(x, y) → T (x)).

p.61, icon at Example 1
#12. Suppose that the universe for x and y is {1, 2, 3}. Also, assume that P (x, y) is a predicate that is true in the
following cases, and false otherwise: P (1, 3), P (2, 1), P (2, 2), P (3, 1), P (3, 2), P (3, 3). Determine whether each of the
following is true or false:

(a) ∀y∃x (x ≠ y ∧ P (x, y)).
(b) ∀x∃y (x ≠ y ∧ ¬P (x, y)).
(c) ∀y∃x (x ≠ y ∧ ¬P (x, y)).

Solution:

(a) True. We need to consider three cases: y = 1, y = 2, y = 3.
If y = 1, we can take x = 2, obtaining the true statement 2 ≠ 1 ∧ P (2, 1).
If y = 2, we can take x = 3, obtaining the true statement 3 ≠ 2 ∧ P (3, 2).
If y = 3, we can take x = 1, obtaining the true statement 1 ≠ 3 ∧ P (1, 3).

Therefore, the statement ∃x(x ≠ y∧ P (x, y)) is true for all possible choices of y. Hence, ∀y∃x (x ≠ y∧ P (x, y))
is true.

(b) False. Take x = 3. The statementsP (3, 1), P (3, 2), andP (3, 3) are true; that is, the statements¬P (3, 1), ¬P (3, 2),
and ¬P (3, 3) are false. Therefore, there is no value y such that 3 ≠ y ∧ ¬P (3, y) is true.

(c) False. Take y = 1. We need to consider x = 1, x = 2, and x = 3. The conjunctions 1 ≠ 1 ∧ ¬P (1, 1),
2 ≠ 1 ∧ ¬P (2, 1), and 3 ≠ 1 ∧ ¬P (3, 1) are all false.

p.61, icon at Example 1
#13. Suppose that the universe for x and y is {1, 2, 3, 4}. Assume that P (x, y) is a predicate that is true in the following
cases and false otherwise: P (1, 4), P (2, 1), P (2, 2), P (3, 4), P (4, 1), P (4, 4). Determine whether each of the following
is true or false:

(a) ∃y∀xP (x, y).
(b) ∀xP (x, x).
(c) ∀x∃y (x ≠ y ∧ P (x, y)).
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Solution:

(a) False. If we take y = 1, not all four statements P (x, 1) are true. (Take x = 1 for example.) If we take y = 2, not
all four statements P (x, 2) are true. (Take x = 1 for example.) If we take y = 3, not all four statements P (x, 3)
are true. (Take x = 1 for example.) If we take y = 4, not all four statements P (x, 4) is true. (Take y = 2.)

(b) False. P (1, 1) is false.
(c) True. For every x we can find a value y ≠ x such that P (x, y) is true: P (1, 4), P (2, 1), P (3, 4), and P (4, 1).

p.61, icon at Example 1
#14. Consider this sentence, which is Amendment 3 to the U.S. Constitution: “No soldier shall, in time of peace, be
quartered in any house, without the consent of the owner, nor in time of war, but in a manner to be prescribed by law.”

(a) The sentence has the form of a conjunction of two conditional sentences. Write the given sentence in this form.
(b) Using the six predicates, S(x): “x is a soldier,” P (t) “t is a peaceful time,” Q(x, y, ℎ): “x is required to allow y to

be quartered in ℎ,” O(x, ℎ): “x owns ℎ,” C(x, y, ℎ): “x consents to quarter y in ℎ,’, A(x, ℎ): “the law allows x to
be quartered in ℎ,” where the universe for x and y consists of all people, the universe for t consists of all points
in time, and the universe for ℎ consists of all houses, rewrite the sentence using quantifiers and predicates.

Solution:

(a) The sentence has the form “If it is a time of peace, then . . . , and, if it is a time of war, then . . . .” Written in full,
the sentence is “If it is a time of peace, then no soldier shall be quartered in any house without the consent of
the owner, and, if it is a time of war, then no soldier shall be quartered in any house except in a manner to be
prescribed by law.”

(b) The statement is a conjunction; it has the form “(if P (t), then . . . ) ∧ (if ¬P (t), then . . . ).”

Let us examine the case when it is a time of peace. The statement says that “if the owner of a house does not give
consent, then no soldier shall be quartered in that house.” That is, if person x owns house ℎ and does not consent to
quarter soldier y in ℎ, then x is not required to quarter y in ℎ. In symbols, we have

((O(x, ℎ) ∧ S(y) ∧ ¬C(x, y, ℎ)) → ¬Q(x, y, ℎ).

Similarly, in the case when it is not a time of peace, we have

((O(x, ℎ) ∧ S(y) ∧ A(y, ℎ)) → Q(x, y, ℎ)).

Completely written in symbols we have

∀t∀x∀y∀ℎ {[P (t) → ((O(x, ℎ) ∧ S(y) ∧ ¬C(x, y, ℎ)) → ¬Q(x, y, ℎ))]∧
[¬P (t) → ((O(x, ℎ) ∧ S(y) ∧ A(y, ℎ)) → Q(x, y, ℎ))]}.
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p.61, icon at Example 1
#15. Consider these lines of code from a C++ program:

if (!(x!=0 && y/x < 1) || x==0)

cout � “True”;
else

cout � “False”

(a) Express the code in this statement as a compound statement using the logical connectives ¬, ∨, ∧, →, and these
predicates

E(x): x = 0
RL(x, y): y∕x < 1

A(z): “z is assigned to cout”

where x and y are integers and z is a Boolean variable (with values True and False).
(b) Use the laws of propositional logic to simplify the statement by expressing it in a simpler form.
(c) Translate the answer in part (b) back into C++.

Solution:

(a) First we insert the predicates into the code, obtaining

if (!(!E(x) && L(x, y)) ‖ E(x))
A(True)

else

A(False).

Next change to the usual logical connective symbols, keeping in mind that C++ code of the form “if p then q
else r” is really a statement of the form (p → q) ∧ (¬p → r):

[¬(¬E(x) ∧ L(x, y)) ∨ E(x)] →
A(True)

∧
¬[¬(¬E(x) ∧ L(x, y)) ∨ E(x)] →
A(False), or

(

[¬(¬E(x) ∧ L(x, y)) ∨ E(x)] → A(True)
)

∧
(

¬[¬(¬E(x) ∧ L(x, y)) ∨ E(x)] → A(False)
)

.

Because this statement applies to all numbers x and y, we have

∀x∀y
(

([¬(¬E(x) ∧ L(x, y)) ∨ E(x)] → A(True)) ∧ (¬[¬(¬E(x) ∧ L(x, y)) ∧ E(x)] → A(False))
)

.

(b) Using one of De Morgan’s laws on the negation of the conjunction, the statement becomes

∀x∀y
(

([(E(x) ∧ ¬L(x, y)) ∨ E(x)] → A(True)) ∧ (¬[(E(x) ∧ ¬L(x, y)) ∨ E(x)] → A(False))
)

,

which can be simplified to give

∀x∃y
(

((E(x) ∨ ¬L(x, y)) → A(True)) ∧ (¬(E(x) ∨ ¬L(x, y)) → A(False))
)

.
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(c) Translating the statement in (b) into C++ yields

if (x==0 || y/x >= 1)

cout � “True”
else

cout � “False”.

p.62, icon at Example 3
#1. What are the truth values of each of these? Assume that in each case the universe consists of all real numbers.

(a) ∃x∃y (xy = 2)
(b) ∃x∀y (xy = 2)
(c) ∀x∃y (xy = 2)
(d) ∀x∀y (xy = 2)

Solution:

(a) This statement asserts that there are numbers x and y such that xy = 2. This is true because we can take x = 2
and y = 1, for example.

(b) This statement asserts that there is a number x such that when we multiply this particular x by every possible
number y we obtain xy = 2. There is no such number x. (If there were such a number x, then xy = 2 for all y.
If we take y = 0, the product xy cannot equal 2.) Therefore the statement is false.

(c) This statement asserts that for every number x we choose, we can find a number y such that the xy = 2. This
is almost always the case, except if we choose x = 0. If we take x = 0, there is no number y such that xy = 2.
Therefore the statement is false. (Note that the statement would be true if the universe for x consisted of all
nonzero real numbers.)

(d) This statement claims that no matter what numbers x and y we choose, we obtain xy = 2. Clearly, this is false,
because we could choose x = y = 1.

p.62, icon at Example 3
#2. Write the following statements in English, using the predicate S(x, y): “x shops in y”, where x represents people
and y represents stores:

(a) ∃y∀xS(x, y).
(b) ∀x∃yS(x, y).

Solution:

(a) The sentence states that there is a store y such that every person x shops there. Thus, “There is a store in which
everyone shops.”

(b) The sentence states that for every person x there is a store y in which x shops. Therefore, we have “Everyone
shops somewhere.”

8



p.62, icon at Example 3
#3. Suppose that the universe for x and y is {1, 2, 3}. Also, assume that P (x, y) is a predicate that is true in the
following cases, and false otherwise: P (1, 3), P (2, 1), P (2, 2), P (3, 1), P (3, 2), P (3, 3). Determine whether each of the
following is true or false:

(a) ∃x∀y (y < x → P (x, y)).
(b) ∀y∃x (y < x ∨ P (x, y)).
(c) ∃x∃y (P (x, y) ∧ P (y, x)).
(d) ∀y∃x (P (x, y) → ¬P (y, x)).

Solution:

(a) True. We can take x = 1. Because there is no y such that y < 1, the hypothesis of the implication y < x → P (x, y)
is false, making the implication true.

(b) True. We need to consider the cases y = 1, y = 2, and y = 3.
If y = 1, then the statement ∃x (y < x ∨ P (x, y)) is true for x = 2 (because 1 < 2).
If y = 2, then the statement ∃x (y < x ∨ P (x, y)) is true for x = 3 (because 2 < 3).
If y = 3, then the statement ∃x(y < x ∨ P (x, y)) is true for x = 1 (because P (1, 3) is true).

(c) True. Take x = y = 2, for example.
(d) True. We need to consider the cases y = 1, y = 2, and y = 3. This means that we must examine the three

statements

∃x (P (x, 1) → ¬P (1, x)) (true for x = 2 because P (2, 1) → ¬P (1, 2) is true)
∃x(P (x, 2) → ¬P (2, x)) (true for x = 1 because P (1, 2) → ¬P (2, 1) is true)
∃x(P (x, 3) → ¬P (3, x)) (true for x = 2 because P (2, 3) → ¬P (3, 2) is true).

p.62, icon at Example 3
#4. Suppose P (x, y, z) is a predicate where the universe for x, y, and z is {1, 2}. Also suppose that the predicate is
true in the following cases P (1, 1, 1), P (1, 2, 1), P (1, 2, 2), P (2, 1, 1), P (2, 2, 2), and false otherwise. Determine the
truth value of each of the following quantified statements:

(a) ∀x∃y∃z P (x, y, z). (b) ∀x∀y∃z P (x, y, z).
(c) ∀y∀z∃xP (x, y, z). (d) ∀x∃y∀z P (x, y, z).

Solution:

(a) True. For every value of x (x = 1 and x = 2) there are y and z such that P (x, y, z) is true. In both cases we can
choose both y = z = 2.

(b) True. For each choice of values for x and y, we can find z such that P (x, y, z) is true. We need to consider four
cases.

(1) x = y = 1: we take z = 1,
(2) x = 1 and y = 2: we can take z to be 1 or 2,
(3) x = 2, y = 1: we take z = 1,
(4) x = y = 2: we take z = 2.

(c) False. If we take y = 1 and z = 2, there is no value of x such that P (x, 1, 2) is true.
(d) False. Take x = 2. There is no value of y such that ∀z P (2, y, z) is true.

9



p.62, icon at Example 3
#5. Suppose P (x, y, z) is a predicate where the universe for x, y, and z is {1, 2}. Also suppose that the predicate is
true in the following cases P (1, 1, 1), P (1, 2, 1), P (1, 2, 2), P (2, 1, 1), P (2, 2, 2), and false otherwise. Determine the
truth value of each of the following quantified statements:

(a) ∃x∀y∀z P (x, y, z). (b) ∀x∃z∀y P (x, y, z).
(c) ∀y∃x∃z¬P (x, y, z). (d) ∃x∀z¬∀y P (x, y, z).

Solution:

(a) False. If we take x = 1, we do not have P (1, y, z) true for all possible values of y and z — P (1, 1, 2) is false. If
we take x = 2, we do not have P (2, y, z) true for all possible values of y and z — P (2, 1, 2) and P (2, 2, 1) are
both false.

(b) False. Take x = 2. Then ∃z∀y P (2, y, z) is false. To see this, suppose we try z = 1; then P (2, y, 1) is false for
y = 1. If we try z = 2, P (2, y, 2) is false for y = 1.

(c) True. We must consider the cases where y = 1 and y = 2. If we take y = 1. Then ∃x∃z¬P (x, 1, z) is true if
x = z = 2, that is, ¬P (2, 1, 2) is true. If we take y = 2. Then ∃x∃z¬P (x, 2, z) is true if x = 2 and z = 1, that
is, ¬P (2, 2, 1) is true.

(d) True. The given statement is equivalent to ¬∀x∃z∀y P (x, y, z), which is the negation of the statement in part
(b). Because the statement in part (b) is false, this statement must be true.

p.62, icon at Example 3
#6. Suppose that the universe for x and y is {1, 2, 3, 4}. Assume that P (x, y) is a predicate that is true in the following
cases and false otherwise: P (1, 4), P (2, 1), P (2, 2), P (3, 4), P (4, 1), P (4, 4). Determine whether each of the following
is true or false:

(a) ∀x∃yP (x, y).
(b) ∀y∃xP (x, y).
(c) ∃x∀yP (x, y).

Solution:

(a) True. For every value of x taken from the universe, there is a value y such that P (x, y) is true: P (1, 4), P (2, 1),
P (3, 4), and P (4, 1) are all true.

(b) False. If y = 3, there is no value of x such that P (x, 3) is true.
(c) False. If we take x = 1, not all four statements P (1, y) are true. (Take y = 1 for example.) If we take x = 2, not

all four statements P (2, y) are true. (Take y = 3 for example.) If we take x = 3, not all four statements P (3, y)
are true. (Take y = 1 for example.) If we take x = 4, not all four statements P (4, y) are true. (Take y = 2 for
example.)

p.64, icon at Example 6
#1. Write this fact about numbers using predicates and quantifiers: “Given a number, there is a number greater than
it.”
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Solution:
The statement says that “For every number x we choose, there is a number y such that y > x.” That is,

∀x∃y (y > x)

where the universe for x and y consists of all numbers.

p.64, icon at Example 6
#2. Express the following statement using predicates and quantifiers: “The product of two positive numbers is
positive.”

Solution:
Using the universe consisting of all real numbers for x and y, we are saying that “If x and y are greater than zero, then
xy is greater than zero. That is,

∀x∀y[(x > 0 ∧ y > 0) → (xy > 0)].

If we use all positive real numbers as the universe for x and y, we can write the statement more simply:

∀x∀y (xy > 0).

p.64, icon at Example 6
#3. Write these statements in symbols using the predicates:

S(x): x is a perfect square; N(x): x is negative.

Assume that the variable x is an integer.

(a) No perfect squares are negative.
(b) No negative numbers are perfect squares.

Solution:

(a) We are saying that it is not possible to have a perfect square that is negative. That is, ¬∃x (S(x) ∧ N(x)).
Equivalently, we could say that if x is a perfect square, then x is not negative. That is,

∀x (S(x) → ¬N(x)).

We could rewrite this as its contrapositive: If x is negative, then x is not a perfect square. That is,

∀x (N(x) → ¬S(x)).

11



(b) This statement is equivalent to (a). This statement says that it is not possible to have a negative number that is a
perfect square. That is,

¬∃x (N(x) → S(x)).

You should use the various laws of logic to show that ¬∃x (N(x) ∧ S(x)) is indeed equivalent to ∀x (S(x) →
¬N(x))

p.64, icon at Example 6
#4. Write the following statement in symbols using the predicates

S(x): x is a perfect square P (x): x is positive

where the universe for x is the set of all integers:

“Perfect squares are positive.”

Solution:
Note that “for all” is implied. When we say “Perfect squares are positive” we are really saying that “For all integers x
we choose, if x is a perfect square, then x is positive.” In symbols we have

∀x (S(x) → P (x)).

p.64, icon at Example 6
#5. Write the following statement in symbols using the predicate P (x) to mean “x is positive”, where the universe for
x is the set of all integers.

“Exactly one number is positive.”

Solution:
We are making a two-part statement:

(1) there is a number x that is positive, that is, ∃xP (x); and
(2) x is the only number with this property; that is, if y is any number different from x, then y is not positive. This

can be written as ∀y (y ≠ x → ¬P (y)).

Forming the conjunction of these two statements, we have

∃x [P (x) ∧ ∀y (y ≠ x → ¬P (y))],

or

∃x∀y [P (x) ∧ (y ≠ x → ¬P (y))].

12



p.64, icon at Example 6
#6. Write the following statements in symbols, using P (x) to mean “x is positive” and F (x) to mean “x ends in the
digit 5”. Assume that the universe for x is the set of all integers.

(a) Some positive integers end in the digit 5.
(b) Some positive integers end in the digit 5, while others do not.

Solution:

(a) We are asserting that there is an integer x that has two properties: (1) it is positive, (2) it ends in the digit 5. That
is, ∃x (P (x) ∧ F (x)).

(b) This statement begins with the statement for (a) and then asserts that there is a different positive integer that does
not end in the digit 5. That is,

∃x (P (x) ∧ F (x)) ∧ ∃y ((y ≠ x) ∧ P (x) ∧ ¬F (x)).

Equivalently, we could write

∃x∃y [(x ≠ y) ∧ P (x) ∧ P (y) ∧ F (x) ∧ ¬F (y)].

p.64, icon at Example 6
#7. Write in symbols: There is no smallest positive number.

Solution:
Using all positive real numbers as the universe for x and y, we are saying that “For every number x we can choose,
there is a number y that is smaller than x.” In symbols,

∀x∃y (y < x).

If we use all real numbers as the universe for x and y, we are saying that “For every positive real number x we can
choose, there is a real number y that is positive and smaller than x.” In symbols,

∀x(x > 0 → ∃y (0 < y < x)).

p.64, icon at Example 6
#8. Write in symbols: If a < b, then a + b

2
lies between a and b.

Solution:
Note that it is understood that the predicate applies to all a and b chosen from some universe. Using all real numbers
as the universe for a and b, we have

∀a∀b
(

a < b → a < a + b
2

< b
)

.
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p.64, icon at Example 6
#9. Write in symbols: For all choices of a and b, a + b

2
lies between a and b.

Solution:

Note that we cannot write ∀a∀b
(

a < a + b
2

< b
)

because we do not know that a < b. (It may be the case that a = b
or that a > b.) We can write

∀a∀b
((

a ≤ a + b
2

≤ b
)

∨
(

b ≤ a + b
2

≤ a
))

.

p.67, icon at Example 14
#1. Write the negation of the statement ∃x∀y (xy = 0) in symbols and in English. Determine the truth or falsity of
the statement and its negation. Assume that the universe for x and y is the set of all real numbers.

Solution:
We take the negation and then move the negation sign inside:

¬(∃x∀y (xy = 0)) ≡ ∀x (¬∀y (xy = 0)) ≡ ∀x∃y¬(xy = 0) ≡ ∀x∃y (xy ≠ 0).

The original statement says that “There is a number with the property that no matter what number we multiply it by,
we obtain 0.” (The statement is true because the number 0 is such a number x.) The negation states that “No matter
what number is chosen, there is a number such that the product is nonzero.” (As expected, the negation is false because
it is the negation of a true statement. To see that the negation is false, take x to be 0. Then no matter what value we
take for y, the product xy = 0.)

p.67, icon at Example 14
#2. Write the statement “There is a largest number” using predicates and quantifiers. Then give its negation in symbols.

Solution:
Taking the universe for x and y to consist of all real numbers, we are stating that there is a number x such that, no
matter what number y is chosen, we have x ≥ y. Therefore.

∃x∀y (x ≥ y).

Its negation can be formed using these steps:

¬(∃x∀y (x ≥ y)) ≡ ∀x∃y¬(x ≥ y) ≡ ∀x∃y (x < y).

(This says that there is no largest number.)
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Rosen, Discrete Mathematics and Its Applications, 8th edition
Extra Examples
Section 1.6—Rules of Inference

— Page references correspond to locations of Extra Examples icons in the textbook.

p.77, icon at Example 6
#1. The proposition (¬q∧(p → q)) → ¬p is a tautology, as the reader can check. It is the basis for the rule of inference
modus tollens:

¬q
p → q

) ¬p

Suppose we are given the propositions: “If the class finishes Chapter 2, then they have a quiz” and “The class does not
have a quiz.” Find a conclusion that can be drawn using modus tollens.

Solution:
Let p represent “The class finishes Chapter 2” and q represent “The class has a quiz.” According to modus tollens,
because we have ¬q and p → q, we can conclude ¬p, or “The class did not finish Chapter 2.”

p.77, icon at Example 6
#2. Suppose that “it is snowing” is true and that “it is windy” is true. Using the conjunction rule, what conclusion can
be drawn?

Solution:
Using s for “it is snowing” and w for “it is windy,” we are given that s is true and w is true. By the conjunction rule,
we can conclude s ∧w, or “it is snowing and windy”.

p.77, icon at Example 6
#3. Suppose “I have a dime or a quarter in my pocket” and “I do not have a dime in my pocket.” According to the
disjunctive syllogism rule, what can we conclude?
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Solution:
Using d for “I have a dime in my pocket” and q for “I have a quarter in my pocket”, we are given d ∨ q and ¬d.
According to the disjunctive syllogism rule, we can conclude q, or “I have a quarter in my pocket.”

p.77, icon at Example 6
#4. Determine whether this argument is valid by using a truth table:

I play golf or tennis.
If it is not Sunday, I play golf and tennis.
If it is Saturday or Sunday, then I don’t play golf.
Therefore, I don’t play golf.

Solution:
Using the variables:

g: I play golf
t: I play tennis
s: it is Saturday
u: it is Sunday,

the argument can be written in symbols as:

g ∨ t
¬u → (g ∧ t)
(s ∨ u) → ¬g

) ¬g

We construct the truth table:

g t s u g ∨ t ¬u → (g ∧ t) (s ∨ u) → ¬g ¬g
T T T T T T F F
T T T F T T F F
T T F T T T F F
T T F F T T T F

T F T T T T F F
T F T F T F F F
T F F T T T F F
T F F F T F T F

F T T T T T T T
F T T F T F T T
F T F T T T T T
F T F F T F T T

F F T T F T T T
F F T F F F T T
F F F T F T T T
F F F F F F T T
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In the fourth row the three hypotheses (columns 5, 6, 7) are true and the conclusion is false. Therefore, the argument
is not valid.

p.77, icon at Example 6
#5. Determine whether this argument is valid:

Lynn works part time or full time.
If Lynn does not play on the team, then she does not work part time.
If Lynn plays on the team, she is busy.
Lynn does not work full time.
Therefore, Lynn is busy.

Solution:
Using the variables:

p: Lynn works part time
f : Lynn works full time
t: Lynn plays on the team
b: Lynn is busy,

the argument can be written in symbols as:

p ∧ f
¬t → ¬p
t → b
¬f

) b

One method to find whether the argument is valid is to construct the truth table:

p f t b p ∧ f ¬t → ¬p t → b ¬f b
T T T T T T T F T
T T T F T T F F F
T T F T T F T F T
T T F F T F T F F

T F T T T T T T T
T F T F T T F T F
T F F T T F T T T
T F F F T F T T F

F T T T T T T F T
F T T F T T F F F
F T F T T T T F T
F T F F T T T F F

F F T T F T T T T
F F T F F T F T F
F F F T F T T T T
F F F F F T T T F
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We need to examine all cases where the hypotheses (columns 5, 6, 7, 8) are all true. There is only one case in which
all four hypotheses are true (row 5), and in this case the conclusion is also true. Therefore, the argument is valid.

Alternately, rules of logic can be used to give a proof that the argument is valid. We begin with the four hypotheses
and show how to derive the conclusion, b.

1. p ∨ f premise
2. ¬t → ¬p premise
3. t → b premise
4. ¬f premise
5. p disjunctive syllogism on (1) and (4)
6. p → t contrapositive of (2)
7. t modus ponens on (5) and (6)
8. b modus ponens on (7) and (3)

Note: This method can provide a relatively quick way to verify that an argument is valid. It requires that we be clever
enough to be able to chain together valid argument forms that lead from the hypotheses to the conclusion. But suppose
we do not have any idea whether the argument is valid. The truth table method will always enable us to determine
whether or not the argument is valid — either the conclusion is true whenever the hypotheses are all true (argument is
valid), or else there is a case where the hypotheses are true but the conclusion is false (argument is not valid). However,
using the rules of logic cannot tell us that the argument is not valid. If we use this technique on an argument and are
unable to reach the conclusion, that does not tell us that the argument is not valid — someone else might still be able
to reach the conclusion, which would mean that the argument is valid.

p.78, icon at Example 8
#1. Suppose we have the two propositions (with symbols to represent them):

“It is raining (r) or I work in the yard (w).”
“It is not raining (¬r) or I go to the library (l).”

What conclusion can we draw from these propositions?

Solution:
We can use the resolution rule of inference to draw a conclusion from these propositions. In symbols the two given
propositions are (r ∨w) ∧ (¬r ∨ l). From resolution we have (r ∨w) ∧ (¬r ∨ l) → (w ∨ l). Therefore, we can draw the
conclusion “I work in the yard or I go to the library.”

p.80, icon at Example 12
#1. Suppose we have:

“Every student in this class is a Junior.”
“Every Junior in this class passed the final exam.”
“Allen is a student in this class.”
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Explain why we can draw the conclusion “Allen passed the final exam.”

Solution:
We will use S(x) to mean “x is a student in this class”, J (x) to mean “x is a Junior”, and P (x) to mean “x passed the
final exam”, where the universe for x consists of all people. The proof is:

1. ∀x(S(x) → J (x)) premise
2. ∀x(J (x) → P (x)) premise
3. S(Allen) → J (Allen) universal instantiation on (1)
4. J (Allen) → P (Allen) universal instantiation on (2)
5. S(Allen) → P (Allen) hypothetical syllogism on (3) and (4)
6. S(Allen) premise
7. P (Allen) modus ponens on (5) and (6)
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p.85, icon below start of “Understanding How Theorems Are State” subsection
#1. Sometimes quantifiers in statements are understood, but do not actually appear in the words of the statement.
Explain what quantifiers are understood in the statement “The product of two negative numbers is positive.”

Solution:
What is really meant is “For all pairs of negative numbers, the product is positive.” In symbols,

∀x∀y [((x < 0) ∧ (y < 0)) → (xy > 0)].

p.85, icon below start of “Understanding How Theorems Are State” subsection
#2. Consider the theorem “If x ends in the digit 3, then x3 ends in the digit 7.” What quantifier is understood, but not
written?

Solution:
The universal quantifier “∀x” (where the universe for x consists of all integers) is understood. That is, we have

∀x ((x ends in the digit 3) → (x3 ends in the digit 7)).

p.85, icon below start of “Understanding How Theorems Are State” subsection
#3. Consider the theorem “No squares of integers end in the digit 8.” What quantifier is understood, but not written?

Solution:
The universal quantifier “∀x” (where the universe for x consists of all integers) is understood, if we read the statement
as “for every x we choose, x2 does not end in the digit 8”. That is, we have

∀x (x2 does not end in the digit 8).

1



However, we can read the given statement equivalently as “there does not exist an integer x such that x2 ends in the
digit 8”. If we do this, the existential quantifier is used:

¬∃x (x2 ends in the digit 8).

Both statements are equivalent.

p.85, icon below start of “Understanding How Theorems Are State” subsection
#4. Consider the theorem “The average of two numbers can be 0.” What quantifier is understood, but not written?

Solution:
Two existential quantifiers “∃x” and “∃y” (where the universe for x and y consists of all real numbers) are understood.
That is, we have

∃x∃y
(x + y

2
= 0

)

.

p.87, icon at Example 1
#1. Using the definitions of even integer and odd integer, give a direct proof that this statement is true for all integers
n:

If n is odd, then 5n + 3 is even.

Solution:
We give a proof using two columns, one for statements and one for reasons:

Suppose n is odd. given
Therefore n = 2k + 1 for some integer k definition of odd integer
Therefore 5n + 3 = 5(2k + 1) + 3 substitution of 2k + 1 for n
Therefore 5n + 3 = 10k + 8 algebra
Therefore 5n + 3 = 2(5k + 4) algebra
Therefore 5n + 3 is even 5n + 3 is an integer multiple of 2

p.87, icon at Example 3
#1. Using the definitions of even integer and odd integer, give a proof by contraposition that this statement is true for
all integers n:

If 3n − 5 is even, then n is odd.

2



Solution:
We begin by assuming that n is not odd and try to conclude that 3n−5 is not even. You should supply reasons for each
step.

Suppose n is not odd.
Therefore n is even and hence n = 2k.
Therefore 3n − 5 = 3(2k) − 5 = 6k − 5 = 2(3k − 3) + 1.
Therefore 3n − 5 is odd, and hence is not even.

p.87, icon at Example 3
#2. Suppose we need to prove that this statement is true for all integers n, using the definitions of even integer and
odd integer:

If 7n − 5 is odd, then n is even.

Solution:
Suppose we try a direct proof:

Suppose 7n − 5 is odd.
Therefore 7n − 5 = 2k + 1 for some integer k.
Therefore 7n = 2k + 6 = 2(k + 3).
Therefore n = 2(k+3)

7 .

At this point it is not clear how to proceed in order to conclude that n is even. (We could fashion such a proof, but
it would require some additional knowledge about primes and divisibility.) It would be wise to look at a proof by
contraposition.

Suppose n is not even. Therefore n is odd.
Therefore n = 2k + 1 for some integer k.
Therefore 7n − 5 = 7(2k + 1) − 5 = 14k + 2 = 2(7k + 1).
Therefore 7n − 5 is even.

As a general rule, it is usually better to try to proceed from simple to complicated. For example, in the proof of “If
7n−5 is odd, then n is even” a proof by contraposition (beginning with “Suppose n is not even”) is easier than a direct
proof (beginning with “Suppose 7n − 5 is odd”).

p.89, icon at Example 8
#1. Suppose a, b, and c are odd integers. Prove that the roots of ax2 + bx + c = 0 are not rational.
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Solution:
In general, it is not very easy to give a direct proof that numbers are not rational. Here we would need to show that
neither root can be written as a quotient of integers. It might be easier to try a proof by contradiction because we can
make the assumption that the roots are rational and hence can be written as fractions. That is, there is a very specific
form in which the roots can be written.

Suppose the roots of ax2 + bx + c = 0 are rational — say the roots are e∕f and g∕ℎ. Then we can write
(

x − e
f

)

(

x −
g
ℎ

)

= 0. Equivalently, this is
(

fx − e
f

)

⋅
(

ℎx − g
ℎ

)

= 0, or (fx − e)(ℎx − g) = 0.

Multiplying together the two terms yields:

(fℎ)x2 − (fg + eℎ)x + (eg) = 0.

Because this must have the form ax2 + bx + c = 0, the corresponding coefficients must be equal:

fℎ = a, −(fg + eℎ) = b, eg = c.

Therefore f and ℎ must be odd because their product is the odd integer a. Likewise, e and g must be odd because their
product is the odd integer c. But this forces fg + eℎ to be even because it is the sum of the odd integers fg and eℎ.
Therefore b = −(fg + eℎ) must be even, a contradiction of the fact that b is odd.

p.90, icon at Example 10
#1. Give a proof by contradiction of: “If n is an even integer, then 3n + 7 is odd.”

Solution:
To give a proof by contradiction, we assume that the hypothesis “n is an even integer” is true, but the conclusion “3n+7
is odd” is false, and show that this results in a contradiction (a proposition that is never true).

Suppose n is even but 3n + 7 is not odd.
Therefore n = 2k and 3n + 7 = 2l for some integers k and l.
Therefore 3(2k) + 7 = 2l by substituting 2k for n.
Therefore 6k + 7 = 2l.
Therefore 2l − 6k = 7.
Therefore 2(l − 3k) = 7.
But in this equation the left side is even and the right side is odd, a contradiction.
Therefore, if n is an even integer, we cannot have 3n + 7 even.

That is: if n is an even integer, then 3n + 7 is odd.
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p.92, icon at Example 13
#1. Prove that this statement is true for all integers n: n is odd if and only if 5n + 3 is even.

Solution:
We must prove that two statements are true: n is odd if 5n + 3 is even, and n is odd only if 5n + 3 is even. That is,

(a) If 5n + 3 is even, then n is odd, and
(b) If n is odd, then 5n + 3 is even.

It is easy to give a proof by contraposition of (a):

Suppose n is not odd, and therefore is even.
Therefore n = 2k for some integer k.
Therefore 5n + 3 = 5(2k) + 3 = 10k + 3 = 2(5k + 1) + 1.
Therefore 5n + 3 is odd.

It is also easy to give a direct proof of (b):

Suppose n is odd.
Therefore n = 2k + 1 for some integer k.
Therefore 5n + 3 = 5(2k + 1) + 3 = 10k + 8 = 2(5k + 4).
Therefore 5n + 3 is even.

p.93, icon at Example 15
#1. Show that the statement “Every integer is less than its cube” is false by finding a counterexample.

Solution:
Note that−2 > (−2)3 = −8, so that−2 is not less than its cube, −8. Because we have found a counterexample, we know
that the statement “Every integer is less than its cube” is false. (Note that every negative integer is a counterexample
to this statement.)
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p.97, icon at Example 1
#1. Prove that there is only one pair of positive integers that is a solution to 3x2 + 2y2 = 30.

Solution:
The two terms on the left side of the equation each involve a square, and hence the sum exceeds 30 for small values
of x and y. In particular, in order to have a solution, we must have x ≤ 3 and y ≤ 4. The number of such pairs is
sufficiently small that we can use an exhaustive proof, considering the cases (1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3),
(2,4), (3,1), (3,2), (3,3), (3,4). The only solution among these twelve pairs is (2,3). That is, the only integer solution to
3x2 + 2y2 = 30 is x = 2, y = 3.

p.98, icon at Example 3
#1. Prove that the square of every even integer ends in 0, 4, or 6.

Solution:
Every even integer n can be written as n = 10k+r where r = 0, 2, 4, 6, 8. (For example, 34 = 10⋅3+4 and 6 = 6⋅0+6.)
Examine each of these five cases separately:

n = 10k + 0: n2 = 100k2, which ends in 0 (it is a multiple of 10)
n = 10k + 2: n2 = 100k2 + 40k + 4 = 10(10k2 + 4k) + 4 and hence ends in 4
n = 10k + 4: n2 = 100k2 + 80k + 16 = 10(10k2 + 8k + 1) + 6 and hence ends in 6
n = 10k + 6: n2 = 100k2 + 120k + 36 = 10(10k2 + 12k + 3) + 6 and hence ends in 6
n = 10k + 8: n2 = 100k2 + 160k + 64 = 10(10k2 + 16k + 6) + 4 and hence ends in 4.

p.98, icon at Example 3
#2. Prove that the following is true for all real numbers x and y: max(x, y) = 1

2 (x + y + |x − y|).

Solution:
We will carry out a proof by cases. Because the absolute value function is used in the given equation, and because
the absolute value of a number depends on whether the number is negative or nonnegative, it would be reasonable to

1



consider two cases: x − y < 0 and x − y ≥ 0. That is, we consider x < y and x ≥ y.

Case 1: x < y. In this case,

1
2
(x + y + |x − y|) = 1

2
(x + y − (x − y)) = 1

2
(x + y + y − x) = 1

2
(2y) = y.

But if x < y, then we also have max(x, y) = y.

Case 2: x ≥ y. In this case,

1
2
(x + y + |x − y|) = 1

2
(x + y + (x − y)) = 1

2
(x + y + x − y) = 1

2
(2x) = x.

But if x ≥ y, then we also have max(x, y) = x.

Thus, in both cases we have max(x, y) = 1
2 (x + y + |x − y|).

p.98, icon at Example 3
#3. Prove that the square of every odd integer ends in 1, 5, or 9.

Solution:
Every odd integer n can be written as n = 10k + r where r = 1, 3, 5, 7, 9. (For example, 163 = 10 ⋅ 16 + 3 and
7 = 10 ⋅ 0+ 7.) Examine each of these five cases separately, writing each square as “multiple of 10, plus an integer x”.
The integer x will be the units’ digit.

n = 10k + 1: n2 = 100k2 + 20k + 1 = 10(10k2 + 2k) + 1, which ends in 1.
n = 10k + 3: n2 = 100k2 + 60k + 9 = 10(10k2 + 6k) + 9, which ends in 9.
n = 10k + 5: n2 = 100k2 + 100k + 25 = 10(10k2 + 10k + 2) + 5, which ends in 5.
n = 10k + 7: n2 = 100k2 + 140k + 49 = 10(10k2 + 14k + 4) + 9, which ends in 9.
n = 10k + 9: n2 = 100k2 + 180k + 81 = 10(10k2 + 18k + 8) + 1, which ends in 1.

Therefore, in each of the five possible cases the square ends in 1, 5, or 9.

p.101, icon at Example 10
#1. Prove that there are numbers x and y whose sum is 5 and whose product is 2. (Note that we are only required to
show that x and y exist; we are not required to find specific values for x and y.)

Solution:
We need to prove that x and y exist such that x + y = 5 and xy = 2. To find x and y, rewrite the first equation as
y = 5−x and substitute for y in the second equation: x(5−x) = 2. This yields the quadratic equation x2−5x+2 = 0.
We could solve the equation (by using the quadratic formula) to find a specific value for x, which would then yield a
specific value for y, but we do not need to do this. We are only asked to prove the existence of x and y.
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We only need to use the discriminant, b2 − 4ac, to see if there are any real number solutions. We obtain b2 − 4ac =
(−5)2−4(1)(2) = 17. Because the discriminant is greater than 0, the given equation has two real numbers as solutions.
This guarantees that there is such an x. Because such a number x exists, so does the corresponding number y, which
is equal to 5 − x.

[Note: If we wish to produce specific numbers x and y that satisfy x+ y = 5 and xy = 2, we use the quadratic formula
to obtain x = 5+

√

17
2 and y = 5−

√

17
2 as two numbers whose sum is 5 and whose product is 2.]

p.104, icon at Example 13
#1. Show that if x is a nonzero rational number, then there is a unique rational number y such that xy = 2.

Solution:
Note that if x is a nonzero rational number, there exists integers a and b such that x = a∕b and b ≠ 0. It follows that
if y = 2b∕a, then xy = (a∕b)(2b∕a) = 2. Because y = 2b∕a is a rational number, it follows that for every nonzero
integer x, there exists a rational number y such that xy = 2. This completes the existence part of the proof.

Now suppose given the nonzero rational number x, z is a rational number with xz = 2. It follows that xz = xy where
y = 2b∕a. Because x ≠ 0, we can divide both sides of the equation xz = xy by x to find that z = y. This completes
the uniqueness part of the proof.

p.105, icon at Example 14
#1. Prove that the square of every odd integer has the form 8k + 1, where k is an integer.

Solution:
We begin by taking an odd integer n, which must have the form n = 2i + 1 for some integer i. Then n2 = (2i + 1)2 =
4i2 +4i+1. We need to show that this has the form 8k+1. Using backward reasoning, this will follow if we can show
that 4i2 + 4i can be written as 8k.

But 4i2 + 4i = 4i(i + 1). Note that i(i + 1) is the product of two consecutive integers. Because every other integer is
even, either i or i+ 1 is even. Therefore the product i(i+ 1) is even, and hence can be written as 2j for some integer j.

Therefore

4i2 + 4i = 4(i(i + 1)) = 4(2j) = 8j.

Because we can write 4i2 + 4i = 8j, it follows that

n2 = 4i2 + 4i + 1 = (4i2 + 4i) + 1 = 8j + 1.
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p.105, icon at Example 14
#2. Suppose a and b are integers such that 2a = b2 + 3. Prove that a is the sum of three squares.

Solution:
We first observe that b2 + 3 is even — it is equal to 2a. Because 3 is odd, b2 must also be odd. Therefore b must be
odd and we can write b = 2n + 1. Therefore

2a = b2 + 3 = (2n + 1)2 + 3 = 4n2 + 4n + 4.

Dividing by 2, we have a = 2n2+2n+2. We need to examine 2n2+2n+2 and try to write it as the sum of three squares.

If we write 2n2 as n2 + n2, we have

a = n2 + n2 + 2n + 2.

This gives two squares, but the remaining terms, 2n + 2, does not appear to be a square. But if we write this as
a = n2 + n2 + 2n + 1 + 1 we obtain a as sum of three squares:

a = n2 + (n2 + 2n + 1) + 1 = n2 + (n + 1)2 + 1.

p.106, icon at Example 16
#1. Over the centuries, mathematicians have tried to adapt the proofs of others to obtain new results. A classic exam-
ple of this is the proof of the Four Color Theorem. The Four Color Theorem states that the countries on every map can
be colored with at most four colors so that two countries that share a common border have different colors.

In the nineteenth century it was proved that five colors are sufficient to color the countries on any map so that countries
that share a common border receive different colors. No one was able to produce a map that required five colors, but
no one was able to prove that four colors were sufficient to color every possible map. In 1976, two mathematicians,
Kenneth Appel and Wolfgang Haken, were able to prove that four colors suffice to color the countries of every map
so no countries that share a common border have the same color. This proof, complicated and very lengthy, was an
adaptation of the much simpler proof that five colors always suffice. Map coloring problems will be discussed in detail
in Section 9.8.

p.106, icon at Example 16
#2. (Adapted from Problem A4 from the 1988 William Lowell Putnam Mathematics Competition.)

(a) Suppose that every point of the plane is painted one of two colors, a or b. Must there be two points of the same
color that are exactly one inch apart?

(b) Suppose that every point of the plane is painted one of three colors, a, b, or c. Must there be two points of the
same color that are exactly one inch apart?

(c) Prove that if nine colors are allowed, a coloring is possible with the property that no two points one inch apart
have the same color.

Solution:

(a) Our strategy here is to examine three points and conclude that two of the three must have the same color. To do
this, take an equilateral triangle with each of its sides one inch long. Of the three vertices of the triangle, at least
two (say P and Q) must have the same color because there are only two possible colors. Therefore P and Q have
the same color and are 1 inch apart.
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(b) Note that we cannot adapt the proof from part (a) to find four points, each one inch away from the other three,
because it is impossible to obtain such a set of four points in the plane. (You should show that such a set does
not exist.)
To show that there must be two points of the same color one inch apart, we will give a proof by contradiction.
Suppose it is possible to color every point of the plane such that no two points that are one inch apart have the
same color. We begin as in part (a) by taking an equilateral triangle one inch long on each side. The colors of
the three vertices of the triangle must all be different — color the three points a, b, and c. Fix the point colored
a (call the point A) and consider all equilateral triangles of side length one with one vertex at A. The other two
vertices of such triangles trace a circle S of radius one with center at A, as in the following figure. Note that each
point on S must be colored b or c. (If any point of S is colored a, then that point and the center of the circle S
have the same color and are one inch apart, which would be a contradiction.)

Take any one triangle with a vertex at A that has its other vertices on the circle S — the other two vertices of
the triangle are colored b and c (call these points B and C). Flip this triangle over the side BC to obtain a new
point, which must also be colored a. (Otherwise we would have two points one inch apart both colored b or both
colored c.) This is illustrated for one triangle in the figure below.

S

A

B

T

C

A

If this is done for all triangles with a vertex at A and sides one inch long, the new vertex of each flipped triangle
must also be colored a. This gives a circle T with the property that all points on the circle must be colored a.
Take any two points on this circle T that are one inch apart (which is possible because its diameter is at least
one), and a contradiction is obtained.

(c) One such coloring can be obtained by using the following figure, where each square has diagonal length
0.9 inches. Color all points in the same square the same color. Use this 3 × 3 square as a “tile”, and tile the
plane with such squares, arranging the squares left-to-right and bottom-to-top. No two points in the same square
of a tile can have the same color (the squares are not large enough). Also, squares of the same color in different
tiles are too far apart to have points one inch apart.

A B C

D E F

G H I
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p.107, icon at Example 17
1. Find a counterexample to the statement that the sum of two irrational numbers is also an irrational number.

Solution:
To find a counterexample, we will take the sum of

√

2 and −
√

2, which are both irrational numbers. The sum of these
numbers is

√

2 + (−
√

2) = 0, which is rational. Note that we could have taken any irrational number and its negative
to find a counterexample.

p. 107, icon BELOW Example 17
1. By examining the small powers of 2 and of 3, what conjectures can you make about how close a power of 2 can be
to a power of 3?

Solution:
The smallest powers of 2 are 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,. . . and the smallest powers of 3 are 3, 9, 27, 81,
243, 729, 2187, . . . . We first note that none of these powers are ever the same, so we can quickly conjecture that the two
sequences of positive powers have no common terms. Using material from Chapter 4, we will see that this conjecture
is true.

Looking at these powers we see that 2 and 3 differ by 1, as do 23 = 8 and 32 = 9, but no other pairs of powers differ by
1 in our list. We can get more evidence for the conjecture that the only powers of 2 and 3 that differ by one are these
two pairs by extending our lists of powers further. More formally, this leads to the conjecture that the only solutions to
the equation 2a − 3b = ±1 where a and b are positive integers are when a = b = 1 and when a = 3 and b = 2. This
conjecture turns out to be true and can be proved using methods based on the contents of Chapter 4.

We leave it to the student to make other conjectures about possible difference of powers of 2 and of 3.

p.108, icon at Example 19
#1. A rectangular floor is tiled using two kinds of tiles, square 2 × 2 tiles and rectangular 1 × 4 tiles. Suppose that one
tile is destroyed, but that one tile of the other kind is available. It is possible to tile the entire floor, using the original
tiles with this one replacement, by rearranging the tiles?

Solution:
The answer is no. To see this, suppose that we color the rectangular floor so that all squares of the odd numbered rows
are colored white while squares in the even numbered rows begin with a black square and are alternately colored white
and black. With this coloring a 2 × 2 square always covers exactly one black square while a 1 × 4 tile covers either
zero or two black squares. Consequently, it is impossible to tile the same rectangular floor after exchanging one tile for
one of the other kind and rearranging because the tile replacement changes the parity of the number of black squares
covered.
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p.108, icon at Example 19
#2. Can you tile a 17 × 28 checkerboard using 4 × 7 tiles?

Solution:
Even though the number of squares on a 17 × 28 checkerboard is divisible by the number of squares of a 4 × 7 tile, the
answer is no. To see this, note that the first column of 17 squares must be covered by a combination of 4×7 tiles placed
either vertically or horizontally. This means that 17 must be the sum of a multiple of 4 and a multiple of 7. However,
by exhaustion, we can see that there is no solution in nonnegative integers a and b of the equation 17 = 4a+7b. Hence,
such a tiling is impossible.

p.108, icon at Example 19
#3. An T-tetromino consists of a row of three squares with a fourth square directly above the middle square. Show
that a 14 × 14 checkerboard cannot be tiled with T-tetrominoes.

Solution:
Suppose that the squares of the 14×14 checkerboard are colored white and black in the usual alternating way. There are
14 ⋅14 = 196 squares on this checkerboard; 98 are black and 98 are white. Because each tetromino covers four squares,
a total of 196∕4 = 49 tetrominoes are needed to tile the checkerboard. Note that each T-tetromino covers either three
white and one black square or one white and three black squares. If there are k T-tetrominoes each covering three white
and one black square, there are 49 − k T-tetrominoes each covering one white and three black squares. It follows that
the number of white squares covered equals 3k + (49 − k) = 2k + 49. Because there are 98 white squares, we have
96 = 2k + 49. But this is impossible because 96 and 2k are even, but 49 is odd.

p.108, icon at Example 19
#4. Show that in any tiling of an 8×8 checkerboard by tetrominoes, where any of the five different kinds of tetrominoes
can be used, the number of T-tetrominoes must be even.

Solution:
Suppose that the squares of the 8 × 8 checkerboard are colored in the usual alternating way, with 32 white squares and
32 black squares. Note that except for the T-tetromino, each of the other four kinds of tetrominoes covers two white
and two black squares. However, a T-tetromino covers either one or three black squares. Consequently, if the tiling
contains an odd number of T-tetrominoes, it covers an odd number of black squares. Because there are 32 black squares
in this checkerboard, this is a contradiction. It follows that the number of T-tetrominoes must be even.

p.108, icon at Example 19
#5. In a tiling of a checkerboard by dominoes, a fault line is a vertical or horizontal line that cuts the checkerboard
into two pieces without passing through any of the dominoes. Show that whenever a 6 × 6 checkerboard is tiled with
dominoes, the tiling has a fault line. That is, no matter how the 6×6 checkerboard is tiled with dominoes, it is possible
to cut the checkerboard in two without passing through one of the dominoes.
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Solution:
We will use a proof by contradiction. Suppose that there was a tiling of the 6× 6 checkerboard that did not have a fault
line. In particular, each of the five vertical lines, beginning at the right of each of the first five columns of squares,
which are potential fault lines, and each of the five horizontal lines, beginning at the bottom of each of the first five
rows of squares, which are potential fault lines, must cross a domino. Consider each of these five vertical lines. Note
that there are an even number of squares to the left of this line. Consequently, this vertical line must cross at least two
dominoes, for if it just crossed one, this would mean that there were an odd number of squares to its left. Similarly,
each of the five horizontal lines which are potential fault lines must cross at least two dominoes in the tiling. Because
each of these ten lines (the five vertical lines and the five horizontal lines, each of which is a potential fault line) must
cross at least two dominoes, there must be at least 10 × 2 = 20 dominoes in the tiling. However, a tiling of a 6 × 6
checkerboard only contains 18 dominoes. Therefore, every tiling of a 6 × 6 checkerboard by dominoes must have a
fault line.

p.108, icon at Example 19
#6. Prove or disprove that there is a tiling of the 5 × 6 checkerboard that does not have a fault line, that is, a vertical
or horizontal line that cuts the checkerboard in two without passing through one of the dominoes.

Solution:
It is possible to tile the 5 × 6 checkerboard so that there is no fault line for the tiling. To describe such a tiling, suppose
that we number the squares of the checkerboard using the numbers 1 through 5 for the tiles in the first row, going left
to right, the numbers 6 through 10 for the tiles in the second row, going left to right, and so on. When the dominoes
in the tiling cover squares 1-6,2-3,4-5,7-8,9-14,10-15,11-12,13-18,16- 21,17-22,19-20,23-24,25-30,26-27, and 28-29,
the resulting tiling does not have a fault line (and is said to be fault-free). We leave the verification that each of the
eight possible fault lines passes through one of these dominoes.

p.108, icon at Example 19
#7. How many different pentominoes, that is, arrangements of five squares of a checkerboard joined along edges, are
there, where two such arrangements are considered the same if one can be obtained from the other by a rotation or a
flipping?

Solution:
There are 12 different pentominoes. We can describe them by indicating which squares are part of the pentomino in
the smallest rectangle on the checkerboard in which they fit. We use a 1 to indicate the presence of a square to indicate
its absence: 1,1,1,1,1 (straight pentomino, resembling the letter I); 10,10,10,11 (resembles the letter L); 01,11,10,10;
01,11,01,01; 100,100,111; 111,010,010; 001,011,110; 010,111,010; 101,111; 110,010,011; 011,110,010; 11,11,10.
We can prove, using a proof by exhaustion, that there are only 12 different pentominoes by considering all possible
ways to construct a pentomino and show that we can rotate or flip it to obtain one of these 12.
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