
Rosen, Discrete Mathematics and Its Applications, 8th edition
Extra Examples
Section 2.1—Sets

— Page references correspond to locations of Extra Examples icons in the textbook.

p.122, icon at Example 4
#1. Write the set {2, 3, 4} (given in list notation) in set builder notation.

Solution:
Here are three ways of writing the set in set builder notation:

{x | x ∈ N, 1 < x < 5},

{x | x ∈ N, 2 ≤ x ≤ 4}, or

{x | x ∈ R, x3 − 9x2 + 26x − 24 = 0}.

(This last set was obtained by taking the equation (x − 2)(x − 3)(x − 4) = 0 and multiplying out the left side.)

p.122, icon at Example 4
#2. Write the set {x | x ∈ R, x2 = 4 or x2 = 9} in list form.

Solution:
The set can be written in list form as {−3,−2, 2, 3} because the two equations each have two real number solutions.

p.122, icon at Example 4
#3. Write the set {x | x ∈ R, x is a solution to x2 = −1} in list form.

Solution:
The set is the empty set because x2 = −1 has no real number solutions; we can write it as { }.
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p.122, icon at Example 4
#4. The same set can be written as a list in different ways. For example,

{1, 2, 3,… , 99} = {1, 2, 3,… , 98, 99} = {1, 2, 3, 4, 5,… , 97, 98, 99}.

These three sets all describe the set of positive integers less than 100. As long as the pattern is clear, you can use any
number of terms before and after the ellipsis.

Write this set in set-builder notation.

Solution:
We can write this set in set-builder notation by specifying the property that the elements must have: each x satisfies
x ≥ 1 and x ≤ 99. Therefore, we can write this set as {x | x ∈ N, 1 = x = 99}.

We can also write the set as {y | y ∈ N, 1 ≤ y ≤ 99}. You can name the variable however you wish, but you must use
the same letter to name the general element as you use in the description of the property.

The same set can also be written as {x | x ∈ Z, 1 ≤ x ≤ 99}, using Z instead of N, because the property restricts
membership to the same collection of integers.

We can also write the set as {x | x ∈ N, 0 < x < 100}, {x | x a positive integer with one or two digits}, or {x | x a
positive integer less than 100} by altering the property or by describing the property in English.

p.122, icon at Example 4
#5. Write the set S = {x | x is an even positive integer and x ≤ 64} in list notation.

Solution:
The integers in S are the even integers beginning with 2 and ending with 64. We can write S = {2, 4, 6, 8,… , 64},
S = {2, 4, 6,… , 64}, or S = {2, 4, 6,… , 62, 64}, for example. Note than writing S = {2, 4,… , 64} would not be
wise because the pattern in the list is not obvious — it could be 2, 4, 8, 16, 32, 64.

p.127, icon at Example 13
#1. Determine whether each set is finite or infinite:

(a) {1, 10, 100, 1000, 10000,…}.
(b) {1, 3, 5, 7, 9,… , 599}.
(c) The set of all real number solutions to x + 3 + 2x = 3(x + 1).
(d) The set of telephone numbers of the form “(XXX) XXX-XXXX” in the United States.
(e) The set of real number solutions to the equation x2 = −4.
(f) {x | x an integer, x2 − 9x + 14 < 0}.
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Solution:

(a) The ellipsis indicates that the pattern continues forever, so the set is infinite.
(b) The set consists of the first 300 odd positive integers, stopping at 599. Therefore the set is finite.
(c) The equation can be rewritten as 3x + 3 = 3x + 3; hence all real numbers are solutions. The set is therefore

infinite.
(d) The number is quite large, but the number of possibilities is still finite.
(e) There are no real numbers that are solutions to this equation. Therefore the set is empty, that is, it has size zero,

and hence is finite.
(f) The polynomial factors as (x−7)(x−2). This product is positive if x > 7 or x < 2, and is negative if 2 < x < 7.

Therefore, the set is finite — it is equal to {3, 4, 5, 6}.

p.127, icon at Example 13
#2. Let S = {∅, a, {a}}. Determine whether each of these is an element of S, a subset of S, neither, or both.

(a) {a}
(b) {{a}}
(c) ∅
(d) {{∅}, a}
(e) {∅}
(f) {∅, a}

Solution:

(a) {a} is the third element in the list of elements of S. Therefore {a} ∈ S. The set {a} is also a subset of S∶ {a}
has one element, a, which is also an element of S.

(b) {{a}} is not an element of S, because it does not appear in the list of elements of S. However {{a}} ⊆ S
because every element of {{a}} belongs to S. (The only element of {{a}} is {a}, which is an element of S.)

(c) ∅ ∈ S (it is the first element in the list for S) and ∅ ⊆ S (the empty set is a subset of all sets).
(d) {{∅}, a} is neither a subset of S nor an element of S. It is not a subset of S because {∅} is not an element of S;

it is not an element of S because it does not appear in the list of elements of S.
(e) {∅} ⊆ S. The set {∅} has one element, ∅, which is the first element in the list for S. However, {∅} is not an

element of S.
(f) {∅, a} ⊆ S. The set {∅, a} has two elements, each of which is an element of S. However {∅, a} is not an element

of S because it is not one of the three elements in the list for S.

p.127, icon at Example 13
#3.

(a) Prove that P(A) ∪ P(B) ⊆ P(A ∪ B) is true for all sets A and B.
(b) Prove that the converse of (a) is not true. That is, prove that P(A ∪ B) ⊆ P(A) ∪ P(B) is false for some sets A

and B.
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Solution:

(a) The statement P(A) ∪ P(B) ⊆ P(A ∪ B) is true. Let S ∈ P(A) ∪ P(B). Therefore S ⊆ A or S ⊆ B. Therefore
S is a subset of A ∪ B, and hence S ∈ P(A ∪ B).

(b) The statement P(A ∪ B) ⊆ P(A) ∪ P(B) is false. You can have a subset S ⊆ A ∪ B without having S be a
subset of either A or B. For example, let A = {1, 2}, B = {2, 3}, and S = {1, 3}. Then S ⊆ A ∪ B is true, so
S ∈ P(A ∪ B), but S ⊆ A and S ⊆ B are both false, so S ∉ P(A) and S ∉ P(B).

p.127, icon at Example 13
#4. Suppose that A and B are sets such that P(A ∪ B) ⊆ P(A) ∪ P(B). Prove that A ⊆ B or B ⊆ A.

Solution:
We give a proof by contraposition. That is, we will give a direct proof of the following: If A ⊆ B and B ⊆ A are false,
then P(A ∪ B) ⊆ P(A) ∪ P(B) is false.

Suppose A ⊆ B and B ⊆ A are false. Then there is an element a ∈ A − B and an element b ∈ B − A. Consider the
set S = {a, b}. Then S ⊆ A ∪ B, but S is not a subset of A and S is not a subset of B. Therefore, S ∈ P(A ∪ B) but
S ∉ P(A) and S ∉ P(B).

p.128, icon at Example 14
#1. What is the power set of the set {1, a, b}?

Solution:
The power set of {1, a, b} is the set of all subsets of {1, a, b}. Hence,

P ({1, a, b}) = {∅, {1}, {a}, {b}, {1, a}, {1, b}, {a, b}, {1, a, b}}.

p.128, icon at Example 14
#2. What is the power set of the set {∅, {0}}?

Solution:
The power set of {∅, {0}} is the set of all subsets of {∅, {0}}. Hence,

P {∅, {0}} = {∅, {∅}, {{0}}, {∅, {0}}}.
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p.123, icon at Example 16
#1. The set R × R = {(x, y) | x ∈ R, y ∈ R} = R2 is the xy-plane. Of particular interest is any subset of R2 defined
by {(x, y) | x ∈ R, y ∈ R, y = f (x)} where f ∶ R → R is a function. This set of points is the graph of the function.
For example, {(x, y) | x ∈ R, y = x2} = {(x, x2) | x ∈ R} is the graph of a parabola.

More generally, any “relation” between real numbers x and y can be described as a subset of the Cartesian product
R×R. For example, {(x, y) | x ∈ R, y ∈ R, x2 + y2 = 1} is the graph of the circle of radius 1 with center at the origin.
The set {(x, y) | x ∈ R, y ∈ R, x < y} is the portion of the plane above the diagonal line y = x.
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Rosen, Discrete Mathematics and Its Applications, 8th edition
Extra Examples
Section 2.2

— Page references correspond to locations of Extra Examples icons in the textbook.

p.140, icon at Example 16
#1. For i = 1, 2,… let Ai =

[

0, 1
i

)

. If n is a positive integer, find the union and the intersection of these sets from
i = 1 to n.

Solution:
Observe that each Ai is a subset of the previous Aj , i.e. for all i, Ai ⊆ Aj for j = 1, 2,… , i.

Then,
n
⋃

i=1
Ai =

⋃

{

[0, 1) ,
[

0, 1
2

)

,
[

0, 1
3

)

,… ,
[

0, 1
n

)}

= [0, 1) = Ai,

and
n
⋂

i=1
Ai =

⋂

{

[0, 1) ,
[

0, 1
2

)

,
[

0, 1
3

)

,… ,
[

0, 1
n

)}

=
[

0, 1
n

)

= An.

p.140, icon at Example 16
#2. For i = 1, 2,… let Ai = [i, i + 1). If n is a positive integer, find the union and the intersection of these sets from
i = 1 to n.

Solution:
For sets A1 = [1, 2) and A2 = [2, 3), the union is [1, 3). The union of the sets Ai from i = 1 to n is Ai = [1, n + 1).
Since the sets Ai are mutually disjoint, i.e. Ai ∩ Aj = ∅ if i ≠ j, the intersection is ∅.

Thus,
n
⋃

i=1
Ai =

⋃

{[1, 2) , [2, 3) , [3, 4) ,… , [n, n + 1)} = [1, n + 1) ,

and
n
⋂

i=1
Ai =

⋂

{[1, 2) , [2, 3) , [3, 4) ,… , [n, n + 1)} = ∅.
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Rosen, Discrete Mathematics and Its Applications, 8th edition
Extra Examples
Section 2.3—Functions

— Page references correspond to locations of Extra Examples icons in the textbook.

p.148, icon at Example 3
#1. Determine if the following describes a function with the given domain and codomain.

f ∶ N → N where f (n) is equal to the sum of the digits in n.

Solution:
For each input value n (a nonnegative integer), there is one number that is the sum of the digits of n. Thus, this is a
function.

p.148, icon at Example 3
#2. Determine if each of the following describes a function with the given domain and codomain.

(a) f ∶ N → N where f (n) = 7 − n.
(b) f ∶ N → Z where f (n) = 7 − n.

Solution:

(a) This is not a function with codomain N because f (8) = 7 − 8 = −1, which is not an element of N.
(b) (Note that we have taken part (a) and changed the codomain.) If we take any natural number and subtract it

from 7, we have an integer. Therefore, this is a function.

p.148, icon at Example 3
#3. Determine if each of the following describes a function with the given domain and codomain.

(a) f ∶ N → N where f (n) = 1
n−� .

(b) f ∶ N → R where f (n) = 1
n−� .

(c) f ∶ R → R where f (n) = 1
n−� .

Solution:

(a) This is not a function because f (0) = −1∕�, which is not a natural number.
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(b) This is a function because every input integer produces a real number as output. Note that no integer will produce
a 0 in the denominator.

(c) This is not a function because f (�) is not defined. (It yields a denominator of 0.)

p.148, icon at Example 3
#4. Determine if the following describes a function with the given domain and codomain.

f ∶ N → N where f (n) = x + 4, if n < 7
x2, if n > 11.

Solution:
This is not a function because f (7) is not defined (neither case covers the values n = 7, 8, 9, 10, 11).

p.148, icon at Example 3
#5. Determine if the following describes a function with the given domain and codomain.

f ∶ N → N where f (n) = x + 4, if n < 7
x2, if n > 4.

Solution:
This is not a function because f (5) is equal to both 9 (using the first case) and 25 (using the second case). Note: some
programming languages will accept this as a function by using the first applicable case to define the function; in this
case the programming language would give f (5) = 5 + 4 = 9.

p.150, icon at Example 8

#1. Let f ∶ N → Z be defined by the two-part rule f (n) = n∕2, if n is even
−(n + 1)∕2, if n is odd.

Determine whether f is one-to-one.

Solution:
Suppose m ≠ n are two integers. There are three cases to consider, depending on whether m or n are even or odd.

Case 1: m and n are even. Then f (m) = m∕2 and f (n) = n∕2. Butm∕2 ≠ n∕2 (becausem ≠ n). Therefore f (m) ≠ f (n).

Case 2: m and n are odd. Then f (m) = −(m + 1)∕2 and f (n) = −(n + 1)∕2. Because m ≠ n, −m ≠ −n. Therefore
−m − 1 ≠ −n − 1, and −(m + 1)∕2 ≠ −(n + 1)∕2. Therefore f (m) ≠ f (n).
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Case 3: one of m and n is even and the other is odd. (Say m is even and n is odd.) Therefore f (m) ≥ 0 and f (n) < 0,
and hence f (m) ≠ f (n).

These are the only three possibilities. Therefore f is one-to-one.

p.152, icon at Example 13

#1. Let f ∶ N → Z be defined by the two-part rule f (n) = n∕2, if n is even;
−(n + 1)∕2, if n is odd.

Determine whether f is onto Z.

Solution:
Let y ∈ Z. We need to try to find an n ∈ N such that f (n) = y. There are two cases to consider, depending on whether
y ≥ 0 or y < 0.

Case 1: y ≥ 0. Let n = 2y. Because n is even we use the first case in the definition of f . We have f (2y) = (2y)∕2 = y.

Case 2: y < 0. Let n = −2y − 1. Then f (−2y − 1) = −(−2y − 1 + 1)∕2 = −(−2y)∕2 = y.

Therefore, for each y ∈ Z there is an n ∈ N such that f (n) = y. Hence f is onto Z

p.152, icon at Example 13
#2. Find a function f ∶ Z → N that is one-to-one but not onto.

Solution:

We can take f (n) = n2 n < 0
n2 + 2 n ≥ 0.

The function is not onto because there is no n such that f (n) = 5 (there is no integer n such that either n2 or n2 + 2 is
equal to 5).

The function is one-to-one. If m and n are nonequal nonnegative integers, then m2 + 2 cannot be equal to n2 + 2.
Likewise, if m and n are nonequal negative integers, then m2 cannot be equal to n2. Finally, suppose m < 0 and n ≥ 0.
Then the function value m2 cannot equal the function value n2 + 2 (because no two squares differ by 2).

3



p.152, icon at Example 13
#3. Find a function f ∶ Z → N that is one-to-one and onto.

Solution:

For example, we can take the function f (n) = −2n n ≤ 0
2n − 1 n > 0.

The function is one-to-one because no two function values of the form −2n(n ≤ 0) can be equal, no two function values
of the form 2n − 1(n > 0) can be equal, and no function value of the form 2n (which is an even integer) can equal a
function value of the form 2n − 1 (which is an odd integer).

The function is onto. If n ∈ N is even, then f (−n∕2) = n; if n ∈ N is odd, then f ((n + 1)∕2) = n.

p.159, icon at Example 31
#1. Let f ∶ R → R have the rule f (x) = ⌊3x⌋ − 1. Find f (S) where S = [1, 3].

Solution:
Because we have the expression ⌊3x⌋, we need to examine x-values where x has the form k∕3 (that is,
x = 3

3 ,
4
3 ,

5
3 ,

6
3 ,

7
3 ,

8
3 ,

9
3 ), because at these numbers f (x) = ⌊3x⌋ − 1 changes value. We obtain {2, 3, 4, 5, 6, 7, 8}.

p.159, icon at Example 31
#2. Let f ∶ R → R have the rule f (x) = ⌊3x⌋ − 1. Find f−1(S) where S = {0}

Solution:
f−1(0) is equal to the set of all x such that ⌊3x⌋ − 1 = 0, or ⌊3x⌋ = 1. Any number x ∈ [1∕3, 2∕3) will work.

p.159, icon at Example 31
#3. Let f ∶ R → R have the rule f (x) = ⌊3x⌋ − 1 and g ∶ R → R have the rule g(x) = x∕3. Find f ◦ g(T ) where
T = [−3, 3.5].
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Solution:
We first find g(T ). The function g takes each number and divides it by 3. When we divide the numbers in the interval
[−3, 3.5] by 3 we have the interval [−1, 3.53 ]. Now we apply the function f to each of these numbers. Applying
f (x) = ⌊3x⌋ − 1 to each number in the interval [−1, 3.53 ] we have {−4,−3,−2,−1, 0, 1, 2}.

p.159, icon at Example 31
#4. Let f ∶ R → R have the rule f (x) = ⌊3x⌋ − 1.

(a) Find (f ◦ f )(1).
(b) Find (f ◦ f )(U ) where U = [2, 3].

Solution:

(a) (f ◦ f )(1) = f (f (1)) = f (⌊3 ⋅ 1⌋ − 1) = f (2) = ⌊3 ⋅ 2⌋ − 1 = 5.
(b) Paying careful attention to the numbers 2, 73 ,

8
3 , 3 (because there are the values of x at which the graph of f

jumps), we have (f ◦ f )(U ) = f (f (U )) = f ({5, 6, 7, 8}) = {14, 17, 20, 23}.

p.159, icon at Example 31
#5. Let f ∶ R → R have the rule f (x) = ⌊3x⌋ − 1 and g ∶ R → R have the rule g(x) = x∕3.

(a) Find (f ◦ g)−1({2.5}).
(b) Find (f ◦ g)−1({2}).

Solution:

(a) We are looking for numbers x such that (f ◦ g)(x) = 2.5. But (f ◦ g)(x) = f (g(x)) and the range of f consists
only of integers, and hence cannot include 2.5. Therefore we cannot have such an x, so (f ◦ g)−1(V ) = ∅. That
is, 2.5 is not an element of the range of f ◦ g.

(b) Note that (f ◦ g)−1({2}) = g−1 ◦ f−1({2}) = g−1(f−1({2})). But f−1({2}) = [1, 4∕3). Therefore g−1([1, 4∕3)) =
[3, 4). Hence, (f ◦ g)−1({2}) = [3, 4).

p.159, icon at Example 31
#6. Find all solutions to ⌈x⌉ + ⌊x⌋ = 2x.

Solution:
⌈x⌉ + ⌊x⌋, the sum of two integers, must be an integer. Hence 2x must be an integer, which means that either x itself
is an integer, or x + 0.5 is an integer.
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If x is an integer, then ⌈x⌉ + ⌊x⌋ = x + x = 2x.

If x + 0.5 is an integer, then ⌈x⌉ + ⌊x⌋ = (x + 0.5) + (x − 0.5) = 2x.

Thus, the solution set is {x ∶ x or x + 0.5 is an integer} = {k2 ∶ k an integer}.

p.159, icon at Example 31
#7. Find all solutions to ⌊x⌋⌈x⌉ = x2.

Solution:
We first observe that every integer is a solution because in this case ⌊x⌋ = x and ⌈x⌉ = x.

Now suppose that x is not an integer. Therefore, there is an integer n such that ⌊x⌋ = n and ⌈x⌉ = n + 1.

Hence, in this case the original equation becomes n(n+ 1) = x2, or x = ± n(n + 1) = ±
√

2, ±
√

6, ±
√

12, ±
√

20, etc.
Therefore, the solutions to the equation ⌊x⌋⌈x⌉ = x2 are all integers and all numbers of the form ± n(n + 1).

p.159, icon at Example 31
#8. Use the floor and/or ceiling function to find a formula for computing the units’ digit of a positive integer n.

Solution:
For example, the units’ digit of 547 is 7, and can be obtained as follows: 547 − 540 = 7. This indicates that the units’
digit of n can be obtained by rounding down n to the nearest multiple of 10 and subtracting this rounded-down number
from n. The expression 10 n

10
rounds n down to the nearest multiple of 10. Hence

n − 10 n
10

= units’ digit of n.
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Rosen, Discrete Mathematics and Its Applications, 8th edition
Extra Examples
Section 2.4—Sequences and Summations

— Page references correspond to locations of Extra Examples icons in the textbook.

p.169, icon at Example 11
#1. Find a rule that produces a sequence a1, a2, a3,… with the first terms 5, 7, 9, 11, 13,… .

Solution:
This is the sequence of odd positive integers, beginning with 5. Each odd positive integer has the form 2n+1. Because
we need a1 = 5, we add 3, not 1. Therefore an = 2n + 3.

p.169, icon at Example 11
#2. Find a formula for an infinite sequence a1, a2, a3,… that begins with the terms 1∕3, 1∕4, 1∕5, 1∕6,… .

Solution:
The sequence behaves like the sequence whose terms are 1∕n, except that we begin with a1 = 1∕3 rather than a1 = 1∕1.
Therefore, an = 1∕(n + 2).

p.169, icon at Example 11
#3. Find a formula for an infinite sequence a1, a2, a3,… that begins with the terms 7, 11, 15, 19, 23,… .

Solution:
Each term is a multiple of 4, with 1 subtracted. The first term is “4 times 2 minus 1”, the second term is “4 times 3
minus 1”, etc.. Therefore the nth term is an = 4(n + 1) − 1 = 4n + 3.

The first few terms can be checked: a1 = 4 ⋅ 1 + 3 = 7, a2 = 4 ⋅ 2 + 3 = 11, a3 = 4 ⋅ 3 + 3 = 15, etc.
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p.169, icon at Example 11
#4. Find a formula for an infinite sequence a1, a2, a3,… that begins with the terms 1, 2, 1, 2, 1, 2, 1 and continues this
alternating pattern.

Solution:
The terms alternate between 1 and 2. We can look on this as beginning with a “central number” 1.5 and alternately
subtracting 0.5 from 1.5 and adding 0.5 to 1.5. A method of alternately adding and subtracting the same number in-
volves using powers of −1. We can alternately subtract 0.5 from 1.5 and add 0.5 to 1.5 by using 1.5 + 0.5(−1)n. Thus,
an = 1.5 + 0.5(−1)n.

Note: This is not the only formula for the given sequence. For example, we could use an = ((n + 1) mod 2) + 1.

p.169, icon at Example 11
#5. Find a formula for an infinite sequence a1, a2, a3,… that begins with the terms 0, 2, 6, 12, 20, 30, 42,… .

Solution:
This sequence increases at an increasing rate, which suggests n2 as a possibility. If we write the first terms of the n2
sequence, we have 1, 4, 9, 16, 25, 36, 49,… . The terms of this sequence of squares differ from the terms of the given
sequence by 1, 2, 3, 4, 5,… . This gives a formula for the given sequence: an = n2 − n.

p.169, icon at Example 11
#6. Find a rule that produces a sequence a1, a2, a3,… with the first terms 3, 6, 12, 24, 48,… .

Solution:
After the first term, each term is double the previous term. This suggests that a formula is 3(2n). However, this does
not work because this rule gives a1 = 3(21) = 6. In order to have a1 = 3, we need to reduce the exponent by
1∶ an = 3(2n−1).

p.169, icon at Example 11
#7. Find a rule that produces a sequence a1, a2, a3,… with the first terms 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,… .

Solution:
This sequence grows, but at half the rate of an = n. If we try an = n∕2, we obtain the sequence 1

2 , 1,
3
2 , 2,

5
2 , 3,

7
2 , 4,… .

Round up each of these terms to get 1, 1, 2, 2, 3, 3, 4, 4,… . Therefore a formula for the sequence is an = ⌊n∕2⌋.
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p.170, icon at Example 12
#1. Find a recurrence relation (and initial condition) for each of the following:

(a) the number of strings of length n of letters of the alphabet.
(b) the number of strings of length n of letters of the alphabet, if no adjacent letters can be the same.
(c) the number of strings of length n of letters of the alphabet with no repeated letters.

Solution:

(a) Let an equal the number of strings of length n of letters of the alphabet. We can obtain any such string by
taking a string s of length n − 1 and appending a letter to the end of s. This can be done in 26 ways. Therefore,
an = 26an−1. The initial condition is a1 = 26.

(b) Let bn equal the number of strings of length n of letters of the alphabet with no adjacent letters identical. Each
such string can be obtained from a string s of length n−1 by taking s and appending to it a letter that is different
from the last letter of s. Because there are 25 letters that can be appended, there are 25 ways to extend s to a
string of length n. Therefore, bn = 25bn−1. The initial condition is b1 = 26.

(c) Let cn equal the number of strings of length n of letters of the alphabet with no repeated letters. Each such string
can be obtained from a string s of length n− 1 by taking s and appending to it a letter that is different from each
of the letters of s. Because there are n− 1 letters used in s, there are 26 − (n− 1) = 27 − n letters available to be
appended to s. Therefore, cn = (27 − n)cn−1. The initial condition is c1 = 26. Note that c27 = (27 − 27)c26 = 0
because there are only 26 letters in the alphabet. Likewise, the recurrence relation yields c28 = c29 = … = 0.

p.170, icon at Example 12
#2. Find a recurrence relation for the sequence 1, 1

3
, 1
5
, 1
7
, 1
9
,…, which is given by the formula an = 1

2n + 1
for

n = 0, 1, 2, 3,…

Solution:

We will try to relate an =
1

2n + 1
and an−1 =

1
2(n − 1) + 1

= 1
2n − 1

to each other:

an =
1

2n + 1
= 1

(2n − 1) + 2
.

But we can rewrite an−1 =
1

2n − 1
as 2n − 1 = 1

an−1
.

Therefore,

an =
1

2(n − 1) + 2
= 1

1
an−1 + 2

= 1
1 + 2an−1

an−1

=
an−1

1 + 2an−1
.

Thus, a recurrence relation for the given sequence is

an =
an−1

1 + 2an−1
,

with initial condition a0 = 1.

3



Alternately, we could write an = 1
2n + 1

= 1
2n + 1

⋅
2n − 1
2n + 1

= 2n − 1
2n + 1

⋅
1

2n + 1
= 2n − 1

2n + 1
⋅ an−1, obtaining a second

recurrence relation

an =
2n − 1
2n + 1

⋅ an−1,

with initial condition a0 = 1.

p.170, icon at Example 12
#3. Suppose bn = 2bn−1 + n − 2n and b0 = 5.

(a) Find bn−1 in terms of bn−2.
(b) Find bn in terms of bn−2.
(c) Find bn in terms of bn−3.
(d) Use parts (b) and (c) to conjecture a formula for bn.

Solution:

(a) The recurrence relation for bn doubles the previous term (which is 2bn−1), adds the subscript number of bn (which
is n), and subtracts 2 raised to the power of the subscript of bn (which is 2n).
The term bn−1 is obtained in the same way: double the previous term (which is 2bn−2), add the subscript number
of bn−1 (which is n − 1), and subtract 2 raised to the power of the subscript of bn−1 (which is 2n−1). Therefore
bn−1 = 2bn−2 + (n − 1) − 2n−1.

(b) To obtain bn in terms of bn−2, we first use the recurrence relation to obtain bn in terms of bn−1 and then use
part (a) to obtain bn−1 in terms of bn−2:

bn = 2bn−1 + n − 2n

= 2[2bn−2 + (n − 1) − 2n−1] + n − 2n

= 22bn−2 + (n − 1) + n − 2n−1 − 2n.

(c) To obtain bn in terms of bn−3, we can use the recurrence equation for bn−2 and part (b). The recurrence relation
for bn−2 is bn−2 = 2bn−3 + (n − 2) − 2n−2. Substituting for bn−2 into the result in part (b), we have

bn = 22bn−2 + (n − 1) + n − 2n−1 − 2n

= 22[2bn−3 + (n − 2) − 2n−2] + (n − 1) + n − 2n−1 − 2n

= 23bn−3 + (n − 2) + (n − 1) + n − 2n−2 − 2n−1 − 2n.

(d) Mentally continuing the pattern in part (c), it seems reasonable to guess that the first term becomes 2nb0, the
sum (n− 2) + (n− 1) + n becomes 1 + 2 + 3 + · · · + (n− 2) + (n− 1) + n, and the sum of the powers of 2 being
subtracted becomes −21 − 22 − 23 − · · · − 2n−1 − 2n−1 − 2n. Thus, it is reasonable to conjecture that

bn = 2nb0 + [1 + 2 + 3 + · · · + (n − 2) + (n − 1) + n] − [21 + 22 + 23 + · · · + 2n−1 + 2n−1 + 2n]

= 5 ⋅ 2n +
n(n + 1)

2
− 2n+1,

where summation formulas were used at the last step to replace 1 + 2 + 3 + · · · + (n − 2) + (n − 1) + n and 21 + 22 +
23 + · · · + 2n−1 + 2n−1 + 2n.
Note: You can check that this is correct by substituting the formula for bn and bn−1 into the given recurrence relation

and showing that both sides of the recurrence relation are equal.

4
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#4. Solve: an = 3an−1 + 1, a0 = 4, by substituting for an−1, then an−2, etc.

Solution:
Beginning with an = 3an−1 + 1 and substituting for an−1, then an−2, then an−3, etc., yields:

an = 3an−1 + 1
= 3(3an−2 + 1) + 1

= 32an−2 + 3 ⋅ 1 + 1

= 32(3an−3 + 1) + 3 ⋅ 1 + 1

= 33an−3 + 32 ⋅ 1 + 3 ⋅ 1 + 1
⋮

= 3na0 + (3n−1 + 3n−2 + · · · + 32 + 3 + 1)

= 4 ⋅ 3n + 3n − 1
2

= 9
2
⋅ 3n − 1

2

= 3n+2
2

− 1
2
.

p.170, icon at Example 12
#5. Find a formula for the recurrence relation an = 2an−1 + 2n, a0 = 1, using a recursive method.

Solution:

an = 2an−1 + 2n

= 2(2an−2 + 2n−1) + 2n = (22an−2 + 2 ⋅ 2n−1) + 2n = (22an−2 + 2n) + 2n = 22an−2 + 2 ⋅ 2n

= 22(2an−3 + 2n−2) + 2 ⋅ 2n = (23an−3 + 22 ⋅ 2n−2) + 2 ⋅ 2n = (23an−3 + 2n) + 2 ⋅ 2n = 23an−2 + 3 ⋅ 2n.

At this stage it would be reasonable to guess that if we continue this process we will obtain:

an = 2na0 + n ⋅ 2n = 2n ⋅ 1 + n ⋅ 2n = (n + 1)2n.

Therefore, an = (n + 1)2n is a formula for the given sequence.

We can verify that this formula is correct by substituting an = (n+ 1)2n and an−1 = n2n−1 into the original recurrence
relation and checking that an equality results.

2an−1 + 2n = 2(n2n−1) + 2n = n2n + 2n = (n + 1)2n = an.

5
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#6. You begin with $1000. You invest it at 5% compounded annually, but at the end of each year you withdraw $100
immediately after the interest is paid.

(a) Set up a recurrence relation and initial condition for the amount you have after n years.
(b) How much is left in the account after you have withdrawn $100 at the end of the third year?
(c) Find a formula for an.
(d) Use the formula to determine how long it takes before the last withdrawal reduces the balance in the account to

$0.

Solution:

(a) For n > 0, let an be the amount in the account at the end of year n; i.e., just after the interest has been added to
the account and the $100 has been withdrawn. Then an is equal to the amount from the previous year (an−1) plus
the interest earned (0.05an−1) minus the $100 withdrawal. That is,

an = an−1 + 0.05an−1 − 100 = 1.05an−1 − 100, if n > 0, a0 = 1000.

(b) Using the recurrence relation yields

a1 = 1050 − 100 = 950
a2 = 1.05a1 − 100 = 1.05(950) − 100 = 997.50 − 100 = 897.50
a3 = 1.05a2 − 100 = 1.05(897.50) − 100 = 942.38 − 100 = 842.38

Thus, the answer is $842.38.
(c) To develop a formula, note that

an = 1.05an−1 − 100,
an−1 = 1.05an−2 − 100,
an−2 = 1.05an−3 − 100,

⋮

Therefore

an = 1.05an−1 − 100
= 1.05(1.05an−2 − 100) − 100

= 1.052an−2 − (1.05 ⋅ 100) − 100

= 1.052(1.05an−3 − 100) − (1.05 ⋅ 100) − 100

= 1.053an−3 − (1.052 ⋅ 100) − (1.05 ⋅ 100) − 100
⋮

= 1.05na0 − (1.05n−1 ⋅ 100) − (1.05n−2 ⋅ 100) − · · · − (1.052 ⋅ 100) − (1.05 ⋅ 100) − 100

= 1.05n ⋅ 1000 − 100(1.05n−1 + 1.05n−2 + · · · + 1.052 + 1.05 + 1)

= 1.05n ⋅ 1000 − 100 ⋅ 1.05
n − 1

1.05 − 1
= 1.05n ⋅ 1000 − 2000(1.05n − 1)
= 2000 − 1.05n ⋅ 1000

and hence a formula for an is an = 2000 − 1.05n ⋅ 1000.

6



(d) Using various values of n in the formula for an yields a14 = 20.07 and a15 = −78.93. Hence, at the end of the
15th year the balance will be 1.05 ⋅ 20.07 = 21.07 before a withdrawal is made; if this amount is withdrawn, the
balance will become $0. (Alternately, we could solve the equation 2000 − 1.05n ⋅ 1000 = 0 for n and obtain ⌊n⌋
as the solution.)

p.170, icon at Example 12
#7. Find a recurrence relation for the number of strings of letters of the ordinary alphabet that do not have adjacent
vowels.

Solution:
Let us call a string of letters of the alphabet “good” if it has no adjacent vowels. Let an be the number of strings of
length n of letters of the alphabet that do not have adjacent vowels.

The set of all good strings of length n is the union of the following two disjoint sets —

A: the set of good strings of length n that end with a consonant, and
B: the set of good strings of length n that end with a vowel.

Each string in A can be obtained from a good string of length n − 1 by adding any consonant at the end of the string.
Thus, |A| = 21 ⋅ an−1.

Each string in B ends with a vowel. In this case we know that that second letter from the end must be a consonant
(otherwise the string would have adjacent vowels). Thus, each string in B is a good string of length n − 2 followed by
a consonant (in the second last position) and a vowel at the end. Therefore, |B| = 5 ⋅ 21 ⋅ an−2.

Because A and B are disjoint, the set of all good strings of length n is their sum, |A| + |B|. That is,

an = 21an−1 + 105an−2.

The two initial conditions are obtained by counting the number of good strings of lengths 1 and 2: a1 = 26 because
any string of one of the 26 letters of the alphabet cannot have adjacent vowels; a2 = 262−52 = 651 (we take all strings
of length 2 and subtract those with two vowels).

p.170, icon at Example 12
#8. You have two distinct parallel lines L1 and L2. You keep adding additional lines, L3, L4,…, with none parallel
to L1 or L2 or to each other, and no three passing through the same point.

(a) Find a recurrence relation and initial condition(s) for rn, which is defined to be the number of regions into which
the plane is divided by the lines L1, L2,… , Ln.

(b) Find a formula for the number of regions into which the plane is divided by L1, L2,… , Ln.

7



Solution:

(a) The recurrence relation is rn = rn−1 + n(n > 2), with initial condition r2 = 3. To see this, note that line Ln must
cut each of the previous n−1 lines in exactly one point. This in effect divides Ln into n segments, each of which
divides an existing region into two parts. Therefore, rn = rn−1 + n.

(b) Proceeding inductively:

r2 = 3,
r3 = r2 + 3 = 3 + 3,
r4 = r3 + 4 = 3 + 3 + 4,
r5 = r4 + 5 = 3 + 3 + 4 + 5,
r6 = r5 + 6 = 3 + 3 + 4 + 5 + 6.

This suggests that

rn = 3 + (3 + 4 + · · · + n)
= (1 + 2) + (3 + 4 + · · · + n)
= 1 + 2 + 3 + · · · + n

=
n(n + 1)

2
.

To verify that this guess is correct, take rn = rn−1 + n and substitute n(n + 1)
2

for rn and (n − 1)n

2
for rn−1,

obtaining n(n + 1)
2

=
(n − 1)n

2
+n, which is true because the right side simplifies to give the left side: (n − 1)n

2
+

n =
(n − 1)n + 2n

2
= n2 + n

2
=

n(n + 1)
2

.

p.170, icon at Example 12
#9. This is a variation on Fibonacci’s rabbit sequence. We begin with one pair of newborn rabbits. Once a pair is two
months old, the pair has two pairs of offspring, and continues to have two pairs of offspring each month thereafter. Give
a recurrence relation and initial condition(s) for the sequence fn, where fn is equal to the number of pairs of rabbits
alive at the end of the nth month (after the offspring are born). Assume that the rabbits never die during the period
being considered.

Solution:
The number of pairs at the end of n months (fn) is equal to the number of pairs alive one month earlier (fn−1) plus the
number of newborn pairs. But each pair of rabbits alive two months earlier gives birth to two pairs of newborn rabbits.
Therefore, there are 2fn−2 pairs of newborn rabbits. Hence

fn = fn−1 + 2fn−2, f (1) = 1, f (2) = 3.

8



p.170, icon at Example 12
#10. Here is another variation on Fibonacci’s rabbit sequence. We begin with one pair of newborn rabbits. At the end
of each month a new pair of newborn rabbits is added to the population. Once any pair is two months old, the pair has
one pair of offspring and continues to have one pair of offspring each month thereafter. Give a recurrence relation and
initial condition(s) for the sequence fn, where fn is equal to the number of pairs of rabbits alive at the end of the nth
month (after the rabbits have given birth and the newborn pair has been introduced). Assume that the rabbits never die
during the period being considered.

Solution:
(fn) is equal to 1 (the newborn pair added) plus the number of pairs alive

one month earlier (fn−1) plus the number of newborn pairs (which is equal to the number of pairs alive two months
earlier, fn−2. Thus

fn = 1 + fn−1 + fn−2, f (1) = 2, f (2) = 4.

p.170, icon at Example 12
#11. Here is a third variation on Fibonacci’s rabbit sequence. We begin with one pair of newborn rabbits. Once the
pair is three months old, the pair has one pair of offspring, and continues to have one pair of offspring every other month
thereafter. Give a recurrence relation and initial condition(s) for the sequence fn, where fn is equal to the number of
pairs of rabbits alive at the end of the nth month (just after any offspring are born). Assume that the rabbits never die
during the period being considered.

Solution:
The number of pairs alive at the end of n months (fn) is equal to the number of pairs alive one month earlier (fn−1)
plus the number of pairs of newborn rabbits. To determine the number of newborn pairs, we need to know the number
of pairs born three months earlier, five months earlier, seven months earlier, etc. But, for example, the number of pairs
born three months before month n is equal to fn−3 − fn−4 and the number of pairs born five months before month n is
equal to fn−5 − fn−6. Thus,

fn = fn−1 + number of pairs born in month n
= fn−1 + (fn−3 − fn−4) + (fn−5 − fn−6) + (fn−7 − fn−8) + · · ·

where the sum continues as long as the subscripts are positive. Similarly,

fn−1 = fn−2 + number of pairs born in month n − 1
= fn−2 + (fn−4 − fn−5) + (fn−6 − fn−7) + (fn−8 − fn−9) + · · · .

Substitute fn−1 from the second equation into the first equation. Almost all terms cancel and we obtain

fn = fn−2 + fn−3,

with f (1) = 1, f (2) = 1, f (3) = 2.

9
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p.170, icon at Example 12
#12. (Problem A1 from the 1990 William Lowell Putnam Mathematics Competition)

Here are the first ten terms of an infinite sequence:

2, 3, 6, 14, 40, 152, 784, 5168, 40567, 363392.

(a) Find a formula for an infinite sequence a0, a1, a2, a3,… such that the first ten terms of the sequence are the ones
given here. (Hint: consider the sum of two rapidly increasing sequences.)

(b) Show that the sequence in (a) satisfies the recurrence relation

an = (n + 4)an−1 − 4nan−2 + (4n − 8)an−3.

Solution:

(a) The sequence increases rapidly, which suggests the possibility that the formula may involve an exponential func-
tion cn. If we look for 2n in each term, we find the first few terms are:

20 + 1, 21 + 1, 22 + 2, 23 + 6, 24 + 24, 25 + 120, 26 + 720, 27 + 5040.

The second term in each sum is a factorial, yielding

20 + 0!, 21 + 1!, 22 + 2!, 23 + 3!, 24 + 4!, 25 + 5!, 26 + 6!, 27 + 7!.

Thus, an = 2n + n! is one such formula.
(b) We need to show that an = (n + 4)an−1 − 4nan−2 + (4n − 8)an−3 is satisfied by the sequence an = 2n + n!. That

is,

2n + n! = (n + 4)[2n−1 + (n − 1)!] − 4n[2n−2 + (n − 2)!] + (4n − 8)[2n−3 + (n − 3)!].

The right side can be simplified as follows:

(n + 4)[2n−1 + (n − 1)!] − 4n[2n−2 + (n − 2)!] + (4n − 8)[2n−3 + (n − 3)!]

= n2n−1 + 4 ⋅ 2n−1 − 4n2n−2 + 4n2n−3 − 8 ⋅ 2n−3+
n(n − 1)! + 4(n − 1)! − 4n(n − 2)! + (4n − 8)(n − 3)!

= n2n−1 + 2n+1 − n2n + n2n−1 − 2n + n! + 4(n − 1)! − 4n(n − 2)! + (4n − 8)(n − 3)!

= n2n + 2n+1 − n2n − 2n + n! + 4(n − 1)! − 4n(n − 2)! + (4n − 8)(n − 3)!
= 2n + 1 − 2n + n! + 4(n − 1)! − 4n(n − 2)! + (4n − 8)(n − 3)!
= 2n + n! + 4(n − 1)! − 4n(n − 2)! + (4n − 8)(n − 3)!
= 2n + n! + 4(n − 1)! − 4n(n − 2)! + 4(n − 2)!
= 2n + n! + 4(n − 1)! + (4 − 4n)(n − 2)!
= 2n + n! + 4(n − 1)! − 4(n − 1)(n − 2)!
= 2n + n! + 4(n − 1)! − 4(n − 1)!
= 2n + n!.

p.170, icon at Example 12
#13. Suppose a chess king is placed on the lower left square of an m × n chessboard (that is, a rectangular board with
m rows and n columns). Let M(m, n) be equal to the number of paths that a king can use moving from the lower left
corner to the upper right corner of an m × n board, with the restriction that each move is either up, to the right, or
diagonally up and to the right.

10



(a) Find a recurrence relation and initial condition(s) for M(m, n).
(b) Find the number of ways in which the king can move from the lower left square to the upper right square on a

5 × 5 chessboard.

Solution:

(a) In order for the king to reach the upper right square, the king’s last move must be from one of the following
three squares: the square immediately below the corner square, the square immediately to the left of the corner
square, or the square diagonally down and to the left of the corner square. The number of ways in which the king
could have arrived at each of these three squares is M(m, n−1), M(m−1, n), and M(m−1, n−1), respectively
(assuming that m > 1 and n > 1). Therefore,

M(m, n) = M(m, n − 1) +M(m − 1, n) +M(m − 1, n − 1),

with initial conditions M(1, 1) = M(2, 1) = M(1, 2) = 1.
(b) First note that M(k, 1) = M(1, k) = 1 for all k > 1 and M(j, k) = M(k, j) for all j and k (by symmetry). The

following steps use the recurrence relation to find M(5, 5):

M(2, 2) = M(2, 1) +M(1, 2) +M(1, 1) = 1 + 1 + 1 = 3
M(2, 3) = M(3, 2) = M(1, 3) +M(2, 2) +M(1, 2) = 1 + 3 + 1 = 5
M(3, 3) = M(3, 2) +M(2, 3) +M(2, 2) = 5 + 5 + 3 = 13
M(2, 4) = M(4, 2) = M(1, 4) +M(2, 3) +M(1, 3) = 1 + 5 + 1 = 7
M(2, 5) = M(5, 2) = M(1, 5) +M(2, 4) +M(1, 4) = 1 + 7 + 1 = 9
M(3, 4) = M(4, 3) = M(3, 3) +M(2, 4) +M(3, 2) = 13 + 7 + 5 = 25
M(3, 5) = M(5, 3) = M(4, 3) +M(5, 2) +M(2, 4) = 25 + 9 + 7 = 41
M(4, 4) = M(4, 3) +M(3, 4) +M(3, 3) = 25 + 25 + 13 = 63
M(4, 5) = M(5, 4) = M(4, 4) +M(3, 5) +M(3, 4) = 63 + 41 + 25 = 129
M(5, 5) = M(5, 4) +M(4, 5) +M(4, 4) = 129 + 129 + 63 = 321.

Therefore, M(5, 5) = 321.

This is shown in the following table, where, beginning from the lower left corner, each square has as its value the sum
of the numbers in the squares directly below, to the left, and diagonally below on the left.

1 9 41 129 321
1 7 25 63 129
1 5 13 25 41
1 3 5 7 9
1 1 1 1 1

p.173, icon at Example 17
#1. Express in sigma notation the sum of the first 50 terms of the series 4 + 4 + 4 + 4 + 4 +… .

11



Solution:

In sigma notation we have
50
∑

i=1
4. This series tells us to add fifty 4’s — one 4 when i is 1, one 4 when i is 2, one 4 when

i is 3, etc. Note: It is not correct to write
50
∑

i=1
4i, which would be 4 + 8 + 12 + · · · + 200.

p.173, icon at Example 17
#2. Find the value of each of these sums

(a)
4
∑

j=1
(j2 − 1).

(b)
4
∑

k=1
(k2 − 1).

(c)
4
∑

j=1
(k2 − 1).

Solution:

(a)
4
∑

j=1
(j2 − 1) = (12 − 1) + (22 − 1) + (32 − 1) + (42 − 1) = 26.

(b) The variable used in the summation process does not matter, so the sum is identical to that in part (a):
4
∑

k=1
(k2−1) =

(12 − 1) + (22 − 1) + (32 − 1) + (42 − 1) = 26,
(c) In this case the variable of summation, j, does not appear in the definition of the terms. The letter k is a constant.

When j = 1, the term is k2 − 1; when j = 2, the term is k2 − 1; when j = 3, the term is k2 − 1; and when j = 4,

the term is k2 − 1. Therefore
4
∑

j=1
(k2 − 1) = (k2 − 1) + (k2 − 1) + (k2 − 1) + (k2 − 1) = 4k2 − 4.

p.173, icon at Example 17
#3. Find the value of each of these sums:

(a)
4
∑

k=1
(k2 − 1).

(b)
4
∑

k=1
(k2 − 1).

12



Solution:

(a)
4
∑

k=1
(k2 − 1) = (12 − 1) + (22 − 1) + (32 − 1) + (42 − 1) = 0 + 3 + 8 + 15 = 26.

(b) Note that only the terms k2 are summed. After this sum is found, then 1 is subtracted.
4
∑

k=1
k2 − 1 = 12 + 22 +

32 + 42 − 1 = 29. (It matters whether or not parentheses are placed around the terms in the expressions being
added.)

p.174, icon at Example 20
#1. Express in sigma notation the sum of the first 50 terms of the series 3 + 6 + 9 + 12 + 15 +… .

Solution:

In sigma notation we have
50
∑

i=1
3i. Note that we could also write this in other forms, for example

50
∑

j=1
3j or

50
∑

k=1
3k (we

can use any variable as the index of summation). We can also change the limits of summation, obtaining forms such

as the sum
49
∑

i=0
3(i + 1). Note: It is not correct to write

50
∑

i=1
(3 + i); this represents the sum 4 + 5 + 6 + · · · + 53.

p.174, icon at Example 20

#2. The following is a geometric series:
10
∑

i=0
2i. Identify a, r, and n, and then find the sum of the series.

Solution:
Written out in expanded form, the series is 20 + 21 + 22 + · · · + 210. Therefore a = 20 = 1, r = 2, and n = 10. Using

the formula for the sum, we have
10
∑

i=0
2i =

a(rn+1 − 1)
r − 1

= 211 − 1 = 2, 047.

p.174, icon at Example 20
#3. The following is a geometric series: 4 + 2 + 1 + 1

2 +
1
4 +

1
8 + · · · + 1

64 . Identify a, r, and n, and then find the sum
of the series.
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Solution:
a = 4 and r = 1∕2. To find n it helps to rewrite the series as 4 + 4 ⋅ 12 + 4 ⋅ ( 12 )

2 + 4 ⋅ ( 12 )
3 + · · · + 4 · · · ( 12 )

8. Therefore
n = 8. (It is a common mistake to take the last term, 1

64 , and write it as 1
26 and conclude that n = 6. To use the formula

for the sum of a geometric series, we need to write the last term as arn, not simply rn.)

Using the formula for the sum of a geometric series, we obtain the sum

a(rn+1 − 1)
r − 1

=
4(( 12 )

8+1 − 1)
1
2 − 1

=
4(− 511

512 )

− 1
2

= 4 ⋅ 511
256

= 511
64

.

p.174, icon at Example 20
#4. Find the sum of the series 24 + 25 + 26 + · · · + 217.

Solution:

This is a geometric series with a = 24, r = 2, and n = 13. Therefore the sum is 24(214 − 1)
2 − 1

= 262, 128.

Alternately, we can write 24 + 25 + 26 + · · · + 217 = 24(1 + 2 + 22 + · · · + 213) = 24 ⋅ 2
14 − 1
2 − 1

= 218 − 24 = 262, 128.

p.176, icon at Example 24
#1. Find 1 + x2 + x4 + x6 + x8 + · · · assuming |x| < 1.

Solution:

This is an infinite geometric series with a = 1 and r = x2. Therefore the sum is a
1 − r

= 1
1 − x2

and we have

1 + x2 + x4 + x6 + x8 + · · · = 1
1 − x2

.

p.176, icon at Example 24

#2. Prove that
∞
∑

i=1

1
4i

= 2
∞
∑

i=1

1
7i

.
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Solution:

Both sums are geometric series.
∞
∑

i=1

1
4i

=
1
4

1 − 1
4

= 1
3

and
∞
∑

i=1

1
7i

=
1
7

1 − 1
7

= 1
6

. Therefore, the sum on the left is equal

to twice the sum on the right.

p.176, icon at Example 24
#3. Find the sum of each of these infinite series:

(a)
∞
∑

i=1

1
2i

.

(b)
∞
∑

i=1
(−1)i 1

2i
.

Solution:

(a) a = 1∕2 and r = 1∕2. Therefore the sum is
1∕2

1 − 1∕2
= 1.

(b) a = −1∕2 and r = −1∕2. Therefore the sum is
−1∕2

1 − (−1∕2)
= −1∕3.
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p.183, icon at Example 5
#1. We know that the set of rational numbers is countable. Are the irrational numbers (the real numbers that cannot
be written as fractions a∕b where a and b are integers and b ≠ 0) also countable, or are they uncountable?

Solution:
We will give a proof by contradiction that the irrational numbers are uncountable.

Suppose the irrational numbers were countable; then they can be listed as b1, b2, b3,… . But we know that the rational
numbers are also countable, and hence can be listed as a1, a2, a3,… . “Interlace” the two lists as a1, b1, a2, b2, a3,…
to obtain a countable set. But this is equal to the set of real numbers, because every real number is either rational or
irrational. This says that the set of real numbers is a countable set, which contradicts the fact that the real numbers
form an uncountable set. Therefore the irrational numbers are uncountable.

p.183, icon at Example 5
#2. Show that the set {x | 0 < x < 1} is uncountable by showing that there is a one-to-one correspondence between
this set and the set of all real numbers.

Solution:
We first show that there is a one-to-one correspondence between the interval {x | −p∕2 < x < p∕2} and R. We can use
the function f (x) = arctan x (the inverse tangent function), which is a one-to-one function from {x |−�∕2 < x < �∕2}
onto R.

We can then use the function g ∶ (0, 1) → (−�∕2, �∕2) defined by g(x) = �
2 (2x−1) (which is a one-to-one correspon-

dence) and form the composition f ◦ g ∶ (0, 1) → R.

This gives the desired one-to-one correspondence from the interval (0,1) to R. Because we know that R is uncountable,
so is (0, 1).
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p.190, icon at Example 3

#1. Let A =
(

2 7
−1 5

)

and B =
(

1 −3
4 2

)

. Find the products AB and BA.

Solution:
The order in which the two matrices appear matters.

AB =
(

2 7
−1 5

)(

1 −3
4 2

)

=
(

2 ⋅ 1 + 7 ⋅ 4 2 ⋅ (−3) + 7 ⋅ 2
(−1) ⋅ 1 + 5 ⋅ 4 (−1) ⋅ (−3) + 5 ⋅ 2

)

=
(

30 8
19 13

)

.

BA =
(

1 −3
4 2

)(

2 7
−1 5

)

=
(

1 ⋅ 2 + (−3) ⋅ (−1) 1 ⋅ 7 + (−3) ⋅ 5
4 ⋅ 2 + 2 ⋅ (−1) 4 ⋅ 7 + 2 ⋅ 5

)

=
(

5 −8
6 38

)

.

p.190, icon at Example 3
#2. Determine whether the following is true for all 2 × 2 matrices: (A + B)2 = A2 + 2AB + B2.

Solution:
Using the distributive law to multiply the left side yields (A+B)2 = (A+B)(A+B) = A2+AB+BA+B2. Therefore,
the original equation is true if and only if BA = AB.

But AB ≠ BA. For example, we can take A =
(

1 0
0 0

)

and B =
(

0 0
1 0

)

. Then AB =
(

0 0
0 0

)

but

BA =
(

0 0
1 0

)

.

Therefore, the original equation is not always true.

p.190, icon at Example 3

#3. Suppose a matrix A =
(

a b
c d

)

with real numbers as entries commutes under multiplication with all real 2 × 2

matrices. That is, AB = BA all 2 × 2 matrices B with real numbers as entries. What form must A have?

1



Solution:

Although we could begin my multiplying A by a general matrix B =
(

w x
y z

)

and examining the corresponding

resulting sums of products when we form AB and BA and assume AB = BA, we should consider exploiting the fact
that in this case AB = BA holds for all matrices B. In particular, AB = BA must hold for very simple matrices B. If
we take the matrix B to be very simple, the products AB and BA may be simple and allow to easily draw conclusions
about the entries of A.

Suppose we take B =
(

0 0
1 0

)

. Then

AB =
(

a b
c d

)(

0 0
1 0

)

=
(

b 0
d 0

)

and BA =
(

0 0
1 0

)(

a b
c d

)

=
(

0 0
a b

)

.

But we are told that AB = BA. Therefore
(

b 0
d 0

)

=
(

0 0
a b

)

Because corresponding entries must match, we must have b = 0 and d = a. This says that the matrix A must have the

form
(

a 0
c a

)

. We can obtain a condition of c by taking B =
(

1 0
0 0

)

. Again forming the products AB and BA

we have

AB =
(

a 0
c a

)(

1 0
0 0

)

=
(

a 0
c 0

)

and BA =
(

1 0
0 0

)(

a 0
c a

)

=
(

a 0
0 0

)

.

This forces c = 0. Therefore A must have the form
(

a 0
0 a

)

.

We can check that AB = BA for all 2 × 2 matrices B:

AB =
(

a 0
0 a

)(

w x
y z

)

=
(

aw ax
ay az

)

and BA =
(

w x
y z

)(

a 0
0 a

)

=
(

aw ax
ay az

)

.

Therefore if a matrix A commutes with all 2 × 2 matrices, then A must have the form
(

a 0
0 a

)

.

2


	Rosen7eExtraExamples0201
	Rosen7eExtraExamples0202
	Rosen7eExtraExamples0203
	Rosen7eExtraExamples0204
	Rosen7eExtraExamples0205
	Rosen7eExtraExamples0206



