
Rosen, Discrete Mathematics and Its Applications, 8th edition
Extra Examples
Section 3.1—Algorithms

— Page references correspond to locations of Extra Examples icons in the textbook.

p.202, icon at Example 1
#1.

(a) Describe an algorithm that determines the location of the last even integer in a nonempty list a1, a2,… , an of
integers. (If no integer in the list is even, the output should be that the location is 0.)

(b) Describe the algorithm, with “last” replaced by “first”.

Solution:

(a) We need to find the last subscript, i, such that ai is even, that is, ai mod 2 = 0. We use location to keep track of
the subscript. Initially we set location to 0 (because an even integer has not yet been found), and then proceed
to examine each element of the list by advancing the subscript i one step at a time, until the end of the list is
reached. Here is the pseudocode:

location := 0 {location is initially set to 0}
for i := 1 to n {examine, in order, each entry ai in the list}
if ai mod 2 = 0 then location := i {change location to i if ai is even, otherwise keep old location}

(b) Suppose we seek the location of the first even integer in the list. In this case the loop should end once an
even integer ai is encountered or else all entries in the list have been examined and no even integer has been
encountered. We can use a while-loop

location := 0 {location is initially set to 0}
i := 1 {begin by examining first element in the list}
while (location = 0 and i ≤ n) {as long as no even element has been found and there are

more elements in the list yet to be examined}

begin
if ai mod 2 = 0 then location ∶= i {examine element ai; if it is even, update the location}
i ∶= i + 1 {advance counter to examine next element}

end

p.202, icon at Example 1
#2. Describe an algorithm that takes as input a sequence of distinct integers a1, a2,… , an (n ≥ 2) and determines if
the integers are in increasing order.

1

Solution:
One way to do this is to examine each pair of consecutive integers, ai−1 and ai, to see if ai < ai−1. If this happens,
the integers are not in increasing order, and we stop and output FALSE. If this never happens, then the output remains
TRUE.

output := TRUE
i ∶= 2
while (i ≤ n and output = TRUE)
begin

if ai−1 > a1 then output := FALSE
i ∶= i + 1

end

p.202, icon at Example 1
#3. Describe an algorithm that takes as input a positive integer n and gives as output the tens’ digit of n. For example,
if the input is the positive integer 3752, the output is 5; if the input is the positive integer 4, the output is 0 (because we
can think of 4 as 04).

Solution:
Suppose that the number n is akak−1… a2a1a0 when written as a string of digits. We want to find a1. For example,
suppose we start with 3752. We want the output 5. We first subtract 3752 – 3700, which removes all digits to the left of
the tens’ digit, and obtain 52. We next subtract the units’ digit, 2, and divide by 10, obtaining the tens’ digit, 5. These
subtractions can be carried out using multiples of the floor function.

We use the floor function to compute the numbers consisting of the tens’ and units’ digit, a1a0, and the units’ digit, a0,
of n. We then subtract, a1a0 − a0, and divide by 10 to obtain the tens’ digit, a1.

x ∶= n − 100
⌊ n
100

⌋

{x is the number a0a1, consisting of the tens’ and units’ digits of n}

y ∶= x − 10
⌊ x
10

⌋

{y is the units’ digit of a1a0}

z ∶= (x − y)∕10 {z is the tens’ digit}

(Observe that if the number consists of a single digit, such as 7, then x = 7 and z = 0 as it should be in a case such as
this.)

p.202, icon at Example 1
#4. Describe an algorithm that takes as input a list of integers a1, a2,… , an (where n > 2) and determines if some ai
is equal to the average of an earlier entry in the list and a later entry in the list.

2

Solution:
The algorithm must take each “inside” element ai (where 1 < i < n) and examine the sublist to the left of ai and
the sublist to the right of ai. The algorithm must check each aj (1 ≤ j < i) and ak (i < k ≤ n) to see whether
ai = (aj + ak)∕2.

answer := FALSE
i := 2
while (answer = FALSE and i < n)
begin
j := 1
while (j < i and answer = FALSE) { examine entries to the left of ai }

begin
k ∶= i + 1
while (k ≤ n and answer = FALSE) { examine entries to the right of ai }
begin

if ai =
aj + ak

2
then answer := TRUE

k ∶= k + 1
end

end
end

3

Rosen, Discrete Mathematics and Its Applications, 8th edition
Extra Examples
Section 3.2—The Growth of Functions

— Page references correspond to locations of Extra Examples icons in the textbook.

p.218, icon at Example 1
#1. Give a big-O estimate for each of these functions. Use a simple function in the big-O estimate.

(a) 3n + n3 + 4.
(b) 1 + 2 + 3 + · · · + n.
(c) log10(2n) + 1010n2.

Solution:

(a) 3n + n3 + 4 ≤ 3n3 + n3 + 4n3 = 8n3 for n > 1. Therefore 3n + n3 + 4 is O(n3). (It is also O(n4), O(n5), etc.)
(b) We have 1 + 2 + 3 + · · · + n ≤ n + n + n + · · · + n = n ⋅ n. Therefore 1 + 2 + 3 + · · · + n is O(n2). (It is also

O(n3), O(n4), etc.)
(c) log10(2n)+1010n2 = n log10 2+1010n2 ≤ (log10 2+1010)n2 if n ≥ 1. But log10 2+1010 is a constant. Therefore

log10(2n) + 1010n2 is O(n2). (It is also O(n3), O(n4), etc.)

p.218, icon at Example 1
#2. Use the definition of big-O to prove that 5x4 − 37x3 + 13x − 4 = O(x4)

Solution:
We must find integers C and k such that

5x4 − 37x3 + 13x − 4 = C|x4|

for all x ≥ k. We can proceed as follows:

|5x4 − 37x3 + 13x − 4| ≤ |5x4 + 37x3 + 13x + 4| ≤ |5x4 + 37x4 + 13x4 + 4x4| = 59|x4|,

where the first inequality is satisfied if x ≥ 0 and the second inequality is satisfied if x ≥ 1. Therefore

|5x4 − 37x3 + 13x − 4| ≤ 59|x4|

if x ≥ 1, so we have C = 59 and k = 1.

Note that the solution we have given is by no means the only possible one. Here is a second solution. It makes the
value C smaller, but requires us to make the value k larger:

|5x4 − 37x3 + 13x − 4| ≤ |5x4 + 37x3 + 13x + 4| ≤ |5x4 + 4x4 + x4 + x4| = 11|x4|

1

In the first inequality we changed from subtraction to addition of two terms (which is valid if x ≥ 0). In the second
inequality we replaced the term 37x3 by 4x4 (which is valid if x ≥ 10), replaced 13x by x4 (which is valid if x ≥ 3)
and replaced 4 by x4 (which is valid if x ≥ 2). Therefore,

|5x4 − 37x3 + 13x − 4| = 11|x4|,

if x ≥ 10. Hence we can use C = 11 and k = 10.

p.218, icon at Example 1
#3. Suppose we wish to prove that f (x) = 2x2 + 5x + 9 is big-O of g(x) = x2 and want to use C = 3 in the big-O
definition. Find a value k such that |f (x)| ≤ 3|g(x)| for all x > k.

Solution:
We need a value k such that |2x2 + 5x + 9| ≤ 3x2 for all x > k. The expression 2x2 + 5x + 9 is nonnegative, so we
can omit the absolute value bars. But 2x2 +5x+9 ≤ 3x2 if and only if 5x+9 ≤ x2, which is true if and only if x ≥ 7.
Therefore, we can take k = 7 (or any larger integer).

p.218, icon at Example 1

#4. Use the definition of big-O to prove that 3x
4 − 2x
5x − 1

is O(x3).

Solution:
We must find positive integers C and k such that

|

|

|

|

3x4 − 2x
5x − 1

|

|

|

|

≤ C|x3|

for all x ≥ k. To make the fraction
|

|

|

|

3x4 − 2x
5x − 1

|

|

|

|

larger, we can do two things: make the numerator larger or make the
denominator smaller:

|

|

|

|

3x4 − 2x
5x − 1

|

|

|

|

≤
|

|

|

|

3x4
5x − 1

|

|

|

|

≤
|

|

|

|

3x4
5x − x

|

|

|

|

=
|

|

|

|

3x4
4x

|

|

|

|

= 3
4
|x3|.

In the first step we made the numerator larger (by not subtracting 2x) and in the second step we made the denominator
smaller by subtracting x, not 1. Note that the first inequality requires x ≥ 0 and the second inequality requires x ≥ 1.

Therefore, if x > 0,
|

|

|

|

3x4 − 2x
5x − 1

|

|

|

|

≤ 3
4
|x3|, and hence

|

|

|

|

3x4 − 2x
5x − 1

|

|

|

|

is O(x3).

2

p.227, icon at Example 12
#1. Show that the sum of the squares of the first n odd positive integers is of order n3.

Solution:
First note that 12 + 32 + 52 + · · · + (2n+ 1)2 ≤ n(2n+ 1)2 = 4n3 + 4n2 + n ≤ 9n3 for all positive integers n. It follows
that the sum of the squares of the first n odd positive integers is O(n3). Note also that 12 + 32 + 52 + · · · + (2n+ 1)2 ≥
(2⌈n∕2⌉ + 1)2 + · · · + (2n + 1)3 ≥ (n − ⌈n∕2⌉ + 1)(2⌈n∕2⌉ + 1)2 ≥ (n∕2)(n + 1)2 ≥ (n∕2)n2 = n3∕2. Consequently,
12 + 32 + 52 + · · · + (2n + 1)2 = Θ(n3). It follows that the sum of the squares of the first n odd integers is of order n3.

p.228, icon at Example 13
#1. Use the definition of big-theta to prove that 7x2 + 1 is Θ(x2).

Solution:
We have

7x2 ≤ 7x2 + 1 ≤ 7x2 + x2 ≤ 8x2

(where we need x ≥ 1 to obtain the second inequality).

Therefore,

7x2 ≤ 7x2 + 1 ≤ 8x2 if x ≥ 1.

This says that 7x2 + 1 is Θ(x2).

3

Rosen, Discrete Mathematics and Its Applications, 8th edition
Extra Examples
Section 3.3—Complexity of Algorithms

— Page references correspond to locations of Extra Examples icons in the textbook.

p.232, icon at Example 1
#1. Determine the complexity function that measures the number of print statements in an algorithm that takes a
positive integer n and prints one 1, two 2’s, three 3’s,. . . , n n’s.

Solution:
For input n the number of print statements is equal to f (n) = 1 + 2 + 3 + · · · + n.

To find a big-O estimate for f (n), note that

f (n) = 1 + 2 + 3 + · · · + n ≤ n + n + n + · · · + n = n ⋅ n = n2,

which is O(n2).

This is the best possible big-O function for f (n). To see this, we will give a formula for the sum 1+2+3+· · ·+n∶ f (n) =
1+2+3+· · ·+n = n(n+1)∕2. To develop this formula, begin by writing the sum for f (n) both forward and backward:

f (n) = 1 + 2 + 3 + · · · + (n − 1) + n
f (n) = n + (n − 1) + · · · + 3 + 2 + 1.

Add the first term in each sum, the second terms in each sum, etc., to obtain

2f (n) = (n + 1) + (n + 1) + · · · + (n + 1)

where there are n terms in this sum. Therefore 2f (n) = n(n + 1) and hence f (n) = n(n + 1)∕2.

(The technique we just used to obtain this sum has been attributed to the mathematician Gauss when he was very young.)
In Section 4.1 we will discuss another way to prove that this formula is correct. Therefore we have f (n) = n(n+ 1)∕2,
which is O(n2), but clearly not O(n).

p.232, icon at Example 1
#2. Suppose an algorithm takes a sequence of n (≥ 2) integers and determines if it contains an integer that is a repeat
of the first integer in the list. Find the complexity function for the:

(a) best case analysis.
(b) worst case analysis.

1

Solution:

(a) The complexity function for the best case is f (n) = 1. Making the second integer equal to the first will force the
algorithm to terminate after only one comparison.

(b) The complexity function for the worst case is f (n) = n. Having no repeat of the first integer will force the
algorithm to terminate after making all n − 1 comparisons.

2

	Rosen7eExtraExamples0301
	Rosen7eExtraExamples0302
	Rosen7eExtraExamples0303

