Rosen, Discrete Mathematics and Its Applications, 8th edition
 Extra Examples
 Section 3.1—Algorithms

Extra - Page references correspond to locations of Extra Examples icons in the textbook.

p.202, icon at Example 1

\#1.
(a) Describe an algorithm that determines the location of the last even integer in a nonempty list $a_{1}, a_{2}, \ldots, a_{n}$ of integers. (If no integer in the list is even, the output should be that the location is 0 .)
(b) Describe the algorithm, with "last" replaced by "first".

See Solution

p.202, icon at Example 1

\#2. Describe an algorithm that takes as input a sequence of distinct integers $a_{1}, a_{2}, \ldots, a_{n}(n \geq 2)$ and determines if the integers are in increasing order.

p.202, icon at Example 1

\#3. Describe an algorithm that takes as input a positive integer n and gives as output the tens' digit of n. For example, if the input is the positive integer 3752, the output is 5 ; if the input is the positive integer 4 , the output is 0 (because we can think of 4 as 04).

See Solution

p.202, icon at Example 1

\#4. Describe an algorithm that takes as input a list of integers $a_{1}, a_{2}, \ldots, a_{n}$ (where $n>2$) and determines if some a_{i} is equal to the average of an earlier entry in the list and a later entry in the list.

Rosen, Discrete Mathematics and Its Applications, 8th edition
Extra Examples
Section 3.2-The Growth of Functions
Extra - Page references correspond to locations of Extra Examples icons in the textbook.

p.218, icon at Example 1

\#1. Give a big- O estimate for each of these functions. Use a simple function in the big- O estimate.
(a) $3 n+n^{3}+4$.
(b) $1+2+3+\cdots+n$.
(c) $\log _{10}\left(2^{n}\right)+10^{10} n^{2}$.

See Solution

p.218, icon at Example 1

\#2. Use the definition of big- O to prove that $5 x^{4}-37 x^{3}+13 x-4=O\left(x^{4}\right)$

See Solution

p.218, icon at Example 1

\#3. Suppose we wish to prove that $f(x)=2 x^{2}+5 x+9$ is big- O of $g(x)=x^{2}$ and want to use $C=3$ in the big- O definition. Find a value k such that $|f(x)| \leq 3|g(x)|$ for all $x>k$.

p.218, icon at Example 1

\#4. Use the definition of big- O to prove that $\frac{3 x^{4}-2 x}{5 x-1}$ is $O\left(x^{3}\right)$.

See Solution

p.227, icon at Example 12

\#1. Show that the sum of the squares of the first n odd positive integers is of order n^{3}.

See Solution

p.228, icon at Example 13
\#1. Use the definition of big-theta to prove that $7 x^{2}+1$ is $\Theta\left(x^{2}\right)$.

See Solution

Rosen, Discrete Mathematics and Its Applications, 8th edition
 Extra Examples
 Section 3.3-Complexity of Algorithms

Extra - Page references correspond to locations of Extra Examples icons in the textbook.

p.232, icon at Example 1

\#1. Determine the complexity function that measures the number of print statements in an algorithm that takes a positive integer n and prints one 1 , two 2 's, three 3 's,..., $n n$'s.

See Solution

p.232, icon at Example 1

\#2. Suppose an algorithm takes a sequence of $n(\geq 2)$ integers and determines if it contains an integer that is a repeat of the first integer in the list. Find the complexity function for the:
(a) best case analysis.
(b) worst case analysis.

See Solution

