Rosen, Discrete Mathematics and Its Applications, 8th edition
 Extra Examples
 Section 4.1—Divisibility and Modular Arithmetic

Extra
Examples - Page references correspond to locations of Extra Examples icons in the textbook.

p.252, icon at Example 2

\#1. Certain rules allow us to determine by inspection when a positive integer n is divisible by a positive integer k. For example, $5 \mid n$ if and only if n ends in the digit 5 or 0 . Similarly, $2 \mid n$ if and only if n ends in one of the digits $0,2,4,6,8$.
There is also a rule to determine divisibility by 3 :

$$
3 \mid n \text { if and only if the sum of the digits in } n \text { is divisible by } 3 \text {. }
$$

For example $3 \mid 478,125$ because the sum of the six digits in 478,125 is 27 , which is divisible by 3 . Why does the rule work?

See Solution

p.252, icon at Example 2

\#2.
(a) Find the number of positive integer divisors of $648=2^{3} 3^{4}$.
(b) Find the sum of all positive integer divisors of 648.

See Solution

p.254, icon at Example 4

\#1. For each pair of numbers, when the division algorithm is used to divide a by d, what are the quotient q and remainder r ?
(a) $a=88, d=11$.
(b) $a=-29, d=9$
(c) $a=58^{237}, d=58^{168}$

See Solution

Rosen, Discrete Mathematics and Its Applications, 8th edition
Extra Examples
Section 4.2-Integer Representation and Algorithms
Extra - Page references correspond to locations of Extra Examples icons in the textbook.
p.261, icon at Example 4
\#1. Find the decimal expansion of $(D 5 A 3)_{16}$.

p.261, icon at Example 4

\#2. Find the hexadecimal expansion of $(35,491)_{10}$.

See Solution

p.261, icon at Example 4
\#3. Find the binary expansion of 547.

p.261, icon at Example 4

\#4. Find values a, b, and c (not all 0) such that $(a b c)_{5}=(c b a)_{8}$, or prove that there are none.
See Solution

Rosen, Discrete Mathematics and Its Applications, 8th edition
Extra Examples
Section 4.3-Primes and Greatest Common Divisors
Extra - Page references correspond to locations of Extra Examples icons in the textbook.
p.272, icon at Example 2
\#1. Find the prime factorization of:
(a) 487 .
(b) 6600 .

See Solution

p.278, icon at Example 6

\#1. Suppose the odd primes $3,5,7,11,13,17, \ldots$ in order of increasing size are $p_{1}, p_{2}, p_{3}, \ldots$. Prove or disprove:

$$
p_{1} p_{2} p_{3} \ldots p_{k}+2 \text { is prime, for all } k \geq 1
$$

p.278, icon at Example 6

\#2. Suppose the odd primes $3,5,7,11,13,17, \ldots$ in order of increasing size are $p_{1}, p_{2}, p_{3} \ldots$. Prove or disprove:

$$
p_{i} p_{i+1}+2 \text { is prime, for all } i \geq 1
$$

See Solution

p.278, icon at Example 6

\#3. (Problem A1 from the 1989 William Lowell Putnam Mathematics Competition.) Consider the sequence of integers (in base 10): 101, 10101, 1010101, 101010101, 10101010101, \ldots. Prove that 101 is the only number in this sequence that is prime. (Hint: Use place value to write each number in terms of the sum of its digits; for example, abcde = $a 10^{4}+b 10^{3}+c 10^{2}+d 10+e$. Then examine how the sum might be factored.)

See Solution

