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p.252, icon at Example 2
#1. Certain rules allow us to determine by inspection when a positive integer n is divisible by a positive integer k.
For example, 5 | n if and only if n ends in the digit 5 or 0. Similarly, 2 | n if and only if n ends in one of the digits
0, 2, 4, 6, 8.
There is also a rule to determine divisibility by 3:

3 | n if and only if the sum of the digits in n is divisible by 3.

For example 3 | 478, 125 because the sum of the six digits in 478, 125 is 27, which is divisible by 3. Why does the rule
work?

Solution:
We want to show that if n is written as the string of digits akak−1… a2a1a0, then 3 | n if and only if 3 | (ak + ak−1 +
· · · + a2 + a1 + a0).

Begin by writing

n = ak10k + ak−110k−1 + · · · + a2102 + a110 + a0
= [(10k − 1) + 1]ak + [(10k−1 − 1) + 1]ak−1 + · · · + [(102 − 1) + 1]a2 + [(10 − 1) + 1]a1 + a0
= [(10k − 1)ak + (10k−1 − 1)ak−1 + · · · + (102 − 1)a2 + (10 − 1)a1]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=A

+ [ak + ak−1 + · · · + a2 + a1 + a0]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=B

.

Note that in A each summand is of the form (10i − 1)ai and is divisible by 3 because each coefficient is a power of
10, with 1 subtracted, that is, each summand is a string of 9’s. Therefore A is divisible by 3 because A is the sum of
numbers of this form.

Now suppose that 3 | n. Write n − A = B. The numbers n and A are both divisible by 3. Therefore B is divisible by 3
because B is the difference of two numbers divisible by 3. But B is the sum of the digits in n. Therefore, if 3 | n, then
the sum of the digits of n is divisible by 3.

Conversely, suppose 3 divides the sum of the digits in n. Then 3 | (ak + ak−1 + · · · + a2 + a1 + a0), which is B. But we
already know that 3 |A. Therefore 3 divides their sum A + B, which is n.
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p.252, icon at Example 2
#2.

(a) Find the number of positive integer divisors of 648 = 2334.
(b) Find the sum of all positive integer divisors of 648.

Solution:

(a) Each divisor must have the form 2i3j where 0 ≤ i ≤ 3 and 0 ≤ j ≤ 4. Hence, there are 4 ⋅ 5 = 20 divisors of
648.

(b) The sum of the divisors is

2030 + 2031 + 2032 + 2033 + 2034+

2130 + 2131 + 2132 + 2133 + 2134+

2230 + 2231 + 2232 + 2233 + 2234+

2330 + 2331 + 2332 + 2333 + 2334 =

20(30 + 31 + 32 + 33 + 34)+

21(30 + 31 + 32 + 33 + 34)+

22(30 + 31 + 32 + 33 + 34)+

23(30 + 31 + 32 + 33 + 34) =

20 ⋅ 121 + 21 ⋅ 121 + 22 ⋅ 121 + 23 ⋅ 121 = 15 ⋅ 121 = 1815.

If you are familiar with sigma notation (covered in Section 2.4), this summation process can be more compactly
written as

3
∑

i=0

4
∑

j=0
2i3j = 20

4
∑

j=0
3j + 21

4
∑

j=0
3j + 22

4
∑

j=0
3j + 23

4
∑

j=0
3j

= (20 + 21 + 22 + 23)121
= 1815.

p.254, icon at Example 4
#1. For each pair of numbers, when the division algorithm is used to divide a by d, what are the quotient q and
remainder r?

(a) a = 88, d = 11.
(b) a = −29, d = 9
(c) a = 58237, d = 58168
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Solution:

(a) Because 88 = 11 ⋅ 8 + 0, we have q = 8, r = 0. (The fact that r = 0 says that 11 | 88.)
(b) Because −29 = 9 ⋅ (−4)+7, we have q = −4 and r = 7. (Note that although we can write −29 = 9 ⋅ (−3)+ (−2),

we cannot use −2 as r because r is not allowed to be negative.)
(c) We do not need to perform the exponentiations to find a and d. We need only observe that a is a multiple of

d ∶ 58237 = 58168 ⋅ 5869 (recall the rule for exponents: abac = ab+c). Therefore 58237 = 58168 ⋅ 5869 + 0 and we
have q = 5869 and r = 0.
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p.261, icon at Example 4
#1. Find the decimal expansion of (D5A3)16.

Solution:
We expand (D5A3)16 in terms of powers of 16: (D5A3)16 = 13 ⋅ 163 + 5 ⋅ 162 + 10 ⋅ 161 + 3 ⋅ 160 = 54,691.

p.261, icon at Example 4
#2. Find the hexadecimal expansion of (35,491)10.

Solution:

35,491 = 16 ⋅ 2,218 + 3
2,218 = 16 ⋅ 138 + 10
138 = 16 ⋅ 8 + 10
8 = 16 ⋅ 0 + 8

We use the remainders as the “digits”, using A for 10. Reading the remainders from bottom to top, we obtain 35,491 =
(8AA3)16.

p.261, icon at Example 4
#3. Find the binary expansion of 547.
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Solution:

547 = 2 ⋅ 273 + 1
273 = 2 ⋅ 136 + 1
136 = 2 ⋅ 68 + 0
68 = 2 ⋅ 34 + 0
34 = 2 ⋅ 17 + 0
17 = 2 ⋅ 8 + 1
8 = 2 ⋅ 4 + 0
4 = 2 ⋅ 2 + 0
2 = 2 ⋅ 1 + 0
1 = 2 ⋅ 0 + 1

Using the remainders as the digits, and reading from bottom to top, we have 547 = (10 0010 0011)2.

p.261, icon at Example 4
#4. Find values a, b, and c (not all 0) such that (abc)5 = (cba)8, or prove that there are none.

Solution:
Note that each of a, b, and c must be between 0 and 4 because the base of the number on the left is 5. Expanding (abc)5
and (cba)8 in terms of base 5 and 8 respectively yields

(abc)5 = 25a + 5b + c and (cba)8 = 64c + 8b + a.

If (abc)5 = (cba)8, then

25a + 5b + c = 64c + 8b + a,

or

24a − 3b − 63c = 0.

This simplifies to

8a − b − 21c = 0.

The only solution with each variable between 0 and 4 (and not all 0) is a = b = 3 and c = 1. (This is easily seen by
trial and error.) Hence (331)5 = (133)8 = 91.
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p.272, icon at Example 2
#1. Find the prime factorization of:

(a) 487.
(b) 6600.

Solution:

(a) If we try to divide 487 by all primes from 2 to ⌊

√

487⌋ = 22 (that is, 2, 3, 5, 7, 11, 13, 17, 19), we find that none
of these divides 487 without a remainder. Therefore 487 is prime.

(b) Begin by writing 6600 as any product of smaller positive factors, such as 6600 = 66 ⋅ 100. We continue this
process until only primes are obtained:

6600 = 66 ⋅ 100
= (6 ⋅ 11)(10 ⋅ 10)
= (2 ⋅ 3 ⋅ 11) ⋅ (2 ⋅ 5 ⋅ 2 ⋅ 5)

= 23 ⋅ 3 ⋅ 52 ⋅ 11.

If we initially factor 6600 in a different way, such as 6 ⋅ 1100, we would still arrive at the same product of prime
factors.

p.278, icon at Example 6
#1. Suppose the odd primes 3, 5, 7, 11, 13, 17,… in order of increasing size are p1, p2, p3,…. Prove or disprove:

p1p2p3… pk + 2 is prime, for all k ≥ 1.

Solution:
We begin by trying a few cases. Hopefully we will either get an idea of how to prove the result, or we will find a
counterexample.
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3 + 2 = 5
3 ⋅ 5 + 2 = 17
3 ⋅ 5 ⋅ 7 + 2 = 107
3 ⋅ 5 ⋅ 7 ⋅ 11 + 2 = 1,157
3 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 13 + 2 = 15,017
3 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 13 ⋅ 17 + 2 = 255,257.

We stop at this step because the number 255,257 is not prime; it can be factored as 47 ⋅ 5,431. Therefore we have a
counterexample to the statement that p1p2p3… pk + 2 is always prime.

p.278, icon at Example 6
#2. Suppose the odd primes 3, 5, 7, 11, 13, 17,… in order of increasing size are p1, p2, p3…. Prove or disprove:

pipi+1 + 2 is prime, for all i ≥ 1.

Solution:
We begin by trying a few cases. Hopefully we will either get an idea of how to prove the result, or we will find a
counterexample.

3 ⋅ 5 + 2 = 17
5 ⋅ 7 + 2 = 37
7 ⋅ 11 + 2 = 79
11 ⋅ 13 + 2 = 145.

We stop here because 145 is not prime. The number 145 is a counterexample. Therefore the original statement is false.

p.278, icon at Example 6
#3. (Problem A1 from the 1989 William Lowell Putnam Mathematics Competition.) Consider the sequence of integers
(in base 10): 101, 10101, 1010101, 101010101, 10101010101,…. Prove that 101 is the only number in this sequence
that is prime. (Hint: Use place value to write each number in terms of the sum of its digits; for example, abcde =
a104 + b103 + c102 + d10 + e. Then examine how the sum might be factored.)

Solution:
It is easily checked that 101 is prime. Given any number of the form 10101…01 greater than 101, write the number
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in terms of its digits. Then there is an integer n ≥ 2 such that

10101…01 = 102n + 102n−2 + · · · + 104 + 102 + 1 (this is a geometric series)

= 102n+2 − 1
99

(the geometric series has this sum)

=
(10n+1)2 − 1

99
(by the law of exponents abc = (ab)c)

=
(10n+1 − 1)(10n+1 + 1)

99
(10n−1 − 1 is an integer of the form 999…9, which is divisible by 9)

=
an(10n+1 + 1)

11
,

where an is the integer that is a string of n + 1 1’s. The reader can verify that if n is odd, then 11 | an, and if n is
even, then 11 | (10n+1 + 1). In either case, 10101…01 is a product of two integers, each greater than 1. Therefore
10101…01 is not prime if n > 1.
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