
Rosen, Discrete Mathematics and Its Applications, 8th edition
Extra Examples
Section 5.1—Mathematical Induction

— Page references correspond to locations of Extra Examples icons in the textbook.

p.337, icon at Example 1
#1. Use the Principle of Mathematical Induction to prove that

1 + 5 + 52 + 53 + · · · + 5n = 5n+1 − 1
4

for all n ≥ 0.

Solution:

Let P (n) be 1 + 5 + 52 + 53 + · · · + 5n = 5n+1 − 1
4

.

BASIS STEP: P (0): 1 = 50+1 − 1
4

. (Note that the sum on the left side of P (0) begins and ends with 50, and hence is
just the first term, 1.) P (0) is true because both sides equal 1.

INDUCTIVE STEP: P (k) → P (k + 1): Suppose for some k, P (k) is true; i.e.

1 + 5 + 52 + 53 + · · · + 5k = 5k+1 − 1
4

.

We need to show that the next statement, P (k + 1), is true:

1 + 5 + 52 + 53 + · · · + 5k+1 = 5k+2 − 1
4

To do this, begin with P (k) and add the next term, 5k+1, to both sides. Then show that this is P (k + 1).

1 + 5 + 52 + 53 + · · · + 5k = 5k+1 − 1
4

+5k+1 +5k+1

1 + 5 + 52 + 53 + · · · + 5k + 5k+1 = 5k+1 − 1 + 4 ⋅ 5k+1
4

1 + 5 + 52 + 53 + · · · + 5k + 5k+1 =
(1 + 4)5k+1 − 1

4

1 + 5 + 52 + 53 + · · · + 5k + 5k+1 = 5 ⋅ 5k+1 − 1
4

1 + 5 + 52 + 53 + · · · + 5k + 5k+1 = 5k+2 − 1
4

.

This is P (k + 1). Hence P (k) → P (k + 1) is true.

Therefore, by the Principle of Mathematical Induction, P (n) is true for all n ≥ 0.
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Note: Alternately, the proof of P (k) → P (k+1) can be written in this form. Note that the assumption that P (k) is true
is being used in the substitution in the first step.

1 + 5 + 52 + 53 + · · · + 5k + 5k+1 = (1 + 5 + 52 + 53 + · · · + 5k) + 5k+1

= 5k+1 − 1
4

+ 5k+1

= 5k+1 − 1 + 4 ⋅ 5k+1
4

=
(1 + 4)5k+1 − 1

4

= 5 ⋅ 5k+1 − 1
4

= 5k+2 − 1
4

.

p.337, icon at Example 1
#2. Use the Principle of Mathematical Induction to prove the “generalized” distributive law

a(b1 + b2 + · · · + bn) = ab1 + ab2 + · · · + abn

for all integers n ≥ 2.

Solution:
For each positive integer n, let P (n) be the statement a(b1+b2+· · ·+bn) = ab1+ab2+· · ·+abn. To give a proof using
the Principle of Mathematical Induction, we need to show that P (2) is true and that P (k) → P (k+1) is true for all k ≥ 2.

P (2) is true: P (2) states that a(b1 + b2) = ab1 + ab2, which is the usual distributive law.

P (k) → P (k + 1) is true: Suppose k ≥ 2 and a(b1 + b2 + · · · + bk) = ab1 + ab2 + · · · + abk is true. We need to show
that a(b1 + b2 + · · · + bk+1) = ab1 + ab2 + + abk+1. The key to showing this is rewriting the sum on the left side as
the sum of two numbers: b1 + b2 + · · · + bk+1 = (b1 + b2 + · · · + bk) + bk+1. We can then use P (2) to split this apart.
We have

a(b1 + b2 + · · · + bk+1) = a((b1 + b2 + · · · + bk) + bk+1)
= a(b1 + b2 + · · · + bk) + abk+1
= (ab1 + ab2 + · · · + abk) + abk+1
= ab1 + ab2 + · · · + abk + abk+1.

p.337, icon at Example 1
#3. Use the Principle of Mathematical Induction to prove that

n
∑

i=1
(2i + 3) = n(n + 4) for all n ≥ 1.
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Solution:

Let P (n) be
n
∑

i=1
(2i + 3) = n(n + 4).

BASIS STEP: P (1) is true because 2 + 3 = 1(1 + 4).

INDUCTIVE STEP: P (k) → P (k + 1): Suppose P (k) is true; that is,
k
∑

i=1
(2i + 3) = k(k + 4).

Therefore,
k+1
∑

i=1
(2i + 3) = k(k + 4) + (2k + 5)

= k2 + 6k + 5
= (k + 1)(k + 5)

which is P (k + 1). Thus, P (k) → P (k + 1) is true.

Therefore, by the Principle of Mathematical Induction, P (n) is true for all n ≥ 1.

p.337, icon at Example 1
#4. Find a formula for

(

1 − 1
22
)

(

1 − 1
32

)

(

1 − 1
42
)

· · ·
(

1 − 1
n2

)

for n ≥ 2, and use the Principle of Mathematical Induction to prove that the formula is correct.

Solution:
We first need to guess at a formula for the product. Using n = 2, 3, 4, 5 yields:

(

1 − 1
22
)

= 3
4

(

1 − 1
22
)

(

1 − 1
32

)

= 3
4
⋅
8
9
= 2

3
(

1 − 1
22
)

(

1 − 1
32

)

(

1 − 1
42
)

= 3
4
⋅
8
9
⋅
15
16

= 5
8

(

1 − 1
22
)

(

1 − 1
32

)

(

1 − 1
42
)

(

1 − 1
52

)

= 3
4
⋅
8
9
⋅
15
16

⋅
24
25

= 3
5
.

Thus, the products are 3
4

, 2
3

, 5
8

, 3
5

. Searching for a pattern, we see that we can rewrite these fractions as 3
4

, 4
6

, 5
8

, 6
10

.

This suggests n + 1
2n

as the general form for the sum.

Let P (n) be
(

1 − 1
22
)

(

1 − 1
32

)

(

1 − 1
42
)

· · ·
(

1 − 1
n2

)

= n + 1
2n

.
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We now try to show that this is true for all n ≥ 2.

BASIS STEP: P (2) is true: P (2) states that
(

1 − 1
22
)

= 2 + 1
2 ⋅ 2

, which is true because both sides of this equation are

equal to 3
4

.

INDUCTIVE STEP: P (k) → P (k + 1): Suppose P (k) is true for an integer k ≥ 2.

Therefore
(

1 − 1
22
)

(

1 − 1
32

)

(

1 − 1
42
)

· · ·
(

1 − 1
k2

)

= k + 1
2k

.

Multiply both sides of this equation by 1 − 1
(k + 1)2

to obtain

(

1 − 1
22
)

(

1 − 1
32

)

(

1 − 1
42
)

· · ·
(

1 − 1
k2

)(

1 − 1
(k + 1)2

)

= k + 1
2k

(

1 − 1
(k + 1)2

)

= k + 1
2k

(

(k + 1)2 − 1
(k + 1)2

)

= k + 1
2k

⋅
k(k + 2)
(k + 1)2

= k + 2
2(k + 1)

,

which is P (k + 1).

We have shown that P (2) is true and that P (k) → P (k + 1) is true for all k ≥ 2. Therefore, by the Principle of
Mathematical Induction, P (n) is true for all n ≥ 2.

p.341, icon at Example 5
#1. Use the Principle of Mathematical Induction to show that the following inequality is true for all integers n ≥ 2:

n
∑

i=1

1
√

i
>
√

n.

Solution:

Let P (k) be the inequality
k
∑

i=1

1
√

i
>
√

k. We need to show that P (2) is true and that P (k) → P (k + 1) is true for all

k ≥ 2.

P (2) is true: P (2) states that 1
√

1
+ 1

√

2
>
√

2. This is true because the left side is greater than 1.7, while the right side
is less than 1.5.
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P (k) → P (k+ 1) is true: Assume k is a positive integer (k ≥ 2) such that
k
∑

i=1

1
√

i
>
√

k is true. We need to show that

k+1
∑

i=1

1
√

i
>
√

k + 1 is true. Take the inequality P (k) and add 1
√

k + 1
to both sides, obtaining

k
∑

i=1

1
√

i
+ 1
√

k + 1
>
√

k + 1
√

k + 1
.

If we can show that the right side,
√

k + 1
√

k + 1
, is greater than

√

k + 1, we will have proved that P (k + 1) is true.

We will use backward reasoning.

Begin by multiplying both sides of
√

k + 1
√

k + 1
>
√

k + 1 by the positive number
√

k + 1 to obtain the equivalent

inequality
√

k + 1

(

√

k + 1
√

k + 1

)

>
√

k + 1
(
√

k + 1
)

,

which simplifies to
√

k
√

k + 1 + 1 > k + 1,

or
√

k(k + 1) > k.

But this last inequality is true because
√

k(k + 1) >
√

k ⋅ k = k. Reversing the steps shows that P (k + 1) is true.

Because both P (2) and P (k) → P (k+1) are true, the Principle of Mathematical Induction guarantees that P (n) is true
for all n ≥ 2.

p.341, icon at Example 5
#2. Use the Principle of Mathematical Induction to prove that n2 − 5n + 3 > 0 for all n ≥ 5.

Solution:
Let P (n) be n2 − 5n + 3 > 0.

BASIS STEP: The basis step is P (5). P (5) states that 52 − 5 ⋅ 5 + 3 > 0, which is true because 3 > 0.

INDUCTIVE STEP: P (k) → P (k + 1): Assuming k2 − 5k + 3 > 0, we need to show that (k + 1)2 − 5(k + 1) + 3 > 0
is true. But

(k + 1)2 − 5(k + 1) + 3 = k2 + 2k + 1 − 5k − 5 + 3 = (k2 − 5k + 3) + (2k − 4).

We know that k2−5k+3 is positive (it is P (k)), and 2k−4 is positive because k is at least 5. Hence the sum is positive;
that is, P (k + 1) is true.
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We have shown that P (5) is true and that P (k) → P (k + 1) is true for all k ≥ 5. Therefore, by the Principle of
Mathematical Induction, P (n) is true for all n ≥ 5.

p.343, icon at Example 8
#1. Prove that 6 is a divisor of 4n + 7n + 1 for all positive integers n.

Solution:
Let P (n) be the statement 6 | 4n + 7n + 1.

P (1) is true: P (1) states that 6 | 41 + 71 + 1, or 6 | 12, which is true.

P (k) → P (k+1): Suppose k is an integer for which P (k) is true. That is, 6 | 4k+7k+1. We need to show that P (k+1)
is true; that is, that 6 | 4k+1 + 7k+1 + 1.
To show that P (k + 1) is true, we need to somehow connect 4k + 7k + 1 and 4k+1 + 7k+1 + 1. But

4k+1 + 7k+1 + 1 = 4 ⋅ 4k + 7 ⋅ 7k + 1

= (4k + 3 ⋅ 4k) + (7k + 6 ⋅ 7k) + 1

= 4k + 7k + 1 + 3 ⋅ 4k + 6 ⋅ 7k

= 4k + 7k + 1 + 3 ⋅ 22k + 6 ⋅ 7k

= (4k + 7k + 1) + (3 ⋅ 2 ⋅ 22k−1) + (6 ⋅ 7k).

But each of the terms in parentheses is divisible by 6—P (k) guarantees that the first term in parentheses is divisible
by 6, and the second and third terms in parentheses are each multiples of 6. Therefore, P (k + 1) is true.

Because P (1) and P (k) → P (k + 1) are true, by the Principle of Mathematical Induction, P (n) is true for all positive
integers n.

p.343, icon at Example 8
#2. Use the Principle of Mathematical Induction to prove that 2 | (n2 − n) for all n ≥ 0.

Solution:
Let P (n) be 2 | (n2 − n).

BASIS STEP: P (0) is true because it is the statement 2 | 02 − 0, or 2 | 0.

INDUCTION STEP: P (k) → P (k + 1): Suppose P (k) is true; i.e., 2 | (k2 − k).

Then (k+1)2 − (k+1) = k2 +2k+1− k−1 = (k2 − k) + 2k. But 2 | (k2 − k) by P (k), and 2 | 2k because 2k is even.
Therefore 2 is a divisor of the difference; i.e., 2 | (k + 1)2 − (k + 1). Hence P (k + 1) is true.
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We have shown that P (0) is true and that P (k) → P (k + 1) is true for all k ≥ 0. Therefore, by the Principle of
Mathematical Induction, P (n) is true for all n ≥ 0.

p.343, icon at Example 8
#3. Use mathematical induction to prove for all positive integers n, then 32n − 1 is divisible by 2n+2.

Solution:
BASIS STEP: The basis step follows because 321 − 1 = 32 − 1 = 8 is divisible by 21+2 = 23 = 8.

INDUCTIVE STEP: The inductive hypothesis is the assumption that 32k−1 is divisible by 2k+2. Using this assumption,
we need to show that 32k+1 − 1 is divisible by 2k+3. To show this, note that 32k+1 − 1 = 32k⋅2 − 1 = (32k )2 − 1 =
(32k − 1)(32k+1 ). By the inductive hypothesis, the first term in this last product is divisible by 2k+2. The second term
in this product is even because 32k is odd. We conclude (by the fundamental theorem of arithmetic) that this product
is divisible by 2k+2 ⋅ 2 = 2k+3. This completes the inductive step and the proof.

p.343, icon at Example 8
#4. Use mathematical induction to show that every positive integer not exceeding n! can be expressed as the sum of
at most n distinct divisors of n!

Solution:
BASIS STEP: 1 can be expressed as the sum of the single term 1 and 1 is a divisor of 1! = 1.

INDUCTIVE STEP: Assume that this statement holds for the positive integer k. That is, assume that every positive
integer not exceeding k! can be expressed as the sum of at most k distinct divisor of k!. Now consider a positive integer
m not exceeding (k + 1)!. By the division algorithm, we can write m = q(k + 1) + r where q and r are integers with
0 ≤ r ≤ k. Moreover, because 0 < m < (k + 1)! and q = (m − r)∕(k + 1), we have 0 ≤ q ≤ k. If q = 0, then
1 ≤ m = r ≤ k and by the inductive hypothesis, m is the sum of distinct divisors of k!, and consequently, the sum of
distinct divisors of (k + 1)!. If q ≥ 1, then because q ≤ k, q can be written as sum of at most k distinct divisors of k!.
That is,

q = d1 + d2 + · · · + dj

with j ≤ k where d1, d2,… , dj are distinct divisors of k!. It follows that

m = q(k + 1) + r = d1(k + 1) + d2(k + 1) + · · · + dj(k + 1) + r.

This sum includes at most j + 1 terms. Because r < k + 1, the terms in this sum are distinct and each term divides
(k + 1)!, unless r = 0 in which case we omit it in the sum.
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p.343, icon at Example 9
1. Use mathematical induction to prove that 5n + 9n + 6 is divisible by 4 whenever n is a positive integer.

Solution:
Let P (n) be the statement that 5n + 9n + 6 is divisible by 4.

BASIS STEP: To complete the basis step, we must show that P (1) is true, that is, that 51 +91 +6 is divisible by 4. This
is true because 51 + 91 + 6 = 5 + 9 + 6 = 20 = 5 ⋅ 4.

INDUCTIVE STEP: For the inductive hypothesis we assume that P (k) is true for an arbitrary positive integer k, that
is, that 5k + 9k + 6 is divisible by 4. To complete the inductive step, we must show that when we assume the inductive
hypothesis P (k) is true, then P (k + 1), the statement that 5k+1 + 9k+1 + 6 is divisible by 4, is also true.

We will show that the d, difference of 5k+1 + 9k+1 + 6 and 5k + 9k + 6, is divisible by 4. Once we have done this, we
can use the inductive hypothesis to show that 5k+1 + 9k+1 + 6 is divisible by 4. Note that

d = (5k+1 + 9k+1 + 6) − 5(5k + 9k + 6) = 9 ⋅ 9k + 6 − 5 ⋅ 9k − 30 = 4 ⋅ 9k − 24 = 4(9k − 6).

Hence, d = (5k+1 + 9k+1 + 6) − (5k + 9k + 6) is divisible by 4. Recall that the induction hypothesis tells us that
5k + 9k + 6 is divisible by 4. Hence, 5k+1 + 9k+1 + 6 = d + (5k + 9k + 6) is also divisible by 4 because it is the sum of
two terms each divisible by 4. This completes the inductive proof.

p.347, icon at Example 13
#1. Prove that for all positive integers n, (2n)!

2nn!
is odd.

Solution:

For each positive integer n, let P (n) be the statement (2n)!
2nn!

is odd. To give a proof using the Principle of Mathematical
Induction, we need to show that P (1) is true and that P (k) → P (k + 1) is true for all k ≥ 1.

P (1) is true: P (1) states that (2 ⋅ 1)!
21 ⋅ 1!

is odd. But (2 ⋅ 1)!
21 ⋅ 1!

= 2
2
= 1, which is odd.

P (k) → P (k + 1) is true: Suppose that k is an integer such that (2k)!
2kk!

is odd. We need to show that (2(k + 1))!
2k+1(k + 1)!

is

odd.

But (2(k + 1))!
2k+1(k + 1)!

=
(2k + 2)!

2k+1(k + 1)!
=

(2k + 2)(2k + 1)(2k)!
2 ⋅ 2k ⋅ (k + 1) ⋅ k!

=
2(k + 1)(2k + 1)(2k)!
2 ⋅ (k + 1) ⋅ 2k ⋅ k!

= (2k + 1) ⋅
(2k)!
2k ⋅ k!

.
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The factor 2k + 1 is odd because of its form, and the second factor is odd by the assumption P (k). We have a product
of two odd integers. Therefore, the product is odd.

The statement P (1) and P (k) → P (k + 1) are both true. Therefore, by the Principle of Mathematical Induction, P (n)
is true for all positive integers.

p.347, icon at Example 13
#2. Muddy Children Puzzle: The teacher of a group of children tells these children to play in their schoolyard without
getting dirty. However, while playing, exactly n children get mud on their foreheads. When the children come back to
the classroom after playing, the teacher states: “At least one of you has a muddy forehead” and then asks the children
to answer “Yes” or “No” to the question: “Do you know whether you have a muddy forehead?”
The teacher asks this question over and over. What will the children with the muddy foreheads answer each time this
question is asked, assuming that a child can see whether other children have muddy foreheads, but cannot see his or
her own forehead? Furthermore, we assume that each child is honest, intelligent, and perceptive, and that all children
answer each question simultaneously. (Note that the reason that the answer can differ when the question is asked
repeatedly is that the children might learn from the previous answers of the other children.)

Solution:
We will use the Principle of Mathematical Induction to prove the following proposition:

P (n): “the n children with muddy foreheads will answer ‘No’ each of the first n − 1 times the question is asked,
but all the children with muddy foreheads will answer ‘Yes’ the nth time.”

BASIS STEP: Suppose that n = 1. The first time the question is asked, the sole child with a muddy forehead concludes
that his or her forehead must be muddy because the teacher has announced that “At least one of you has a muddy
forehead” and no other child has a muddy forehead. Consequently, this child answers “Yes.”

Before turning to the inductive step, to gain some insight we consider the cases k = 2 and k = 3.

First, suppose that k = 2. Each of the two muddy children will answer “No” the first time the question is asked because
of the mud on the other muddy child’s forehead. Once the other muddy child has answered “No”, each of the two
muddy children knows that his or her forehead is dirty, because if it were clean the other child with a dirty forehead
would have answered “Yes” the first time.

Next suppose that k = 3. One of the three children with mud on his or her forehead reasons as follows. Suppose that
my forehead is clean. Then there are just two muddy children and by the k = 2 case both of these children will answer
“Yes” the second time the question is asked. When they do not, this child knows that his or her forehead must be dirty.
Consequently, all three children answer “Yes” the third time the question is asked.

INDUCTIVE STEP: Assume that P (k) is true, that is, that if precisely k children have muddy foreheads, the first k− 1
times the question is asked, the muddy children will answer “No”, but the kth time it is asked, they all answer “Yes”.
Now assume that there are k + 1 children with muddy foreheads.

9



A child with a muddy forehead will figure out how to answer the (k + 1)st question as follows. Suppose that my fore-
head is clean, so that there are exactly k children with muddy foreheads, namely all the other k children whom I see
have muddy foreheads. Then by the induction hypothesis, this child expects that the children with muddy foreheads
will answer “No” the first k − 1 times the question is asked, but “Yes” the kth time it is asked. But when this does not
happen, the child with the muddy forehead concludes that his or her forehead is muddy.

Consequently, the k + 1 children with muddy foreheads all answer “Yes” the (k + 1)st time the question is asked.

We have shown that P (1) is true and that P (k) → P (k + 1) is true for all n ≥ 1. Therefore, by the Principle of
Mathematical Induction, the statement P (n) is true for all n ≥ 1.
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Rosen, Discrete Mathematics and Its Applications, 8th edition
Extra Examples
Section 5.2—Strong Induction and Well-Ordering

— Page references correspond to locations of Extra Examples icons in the textbook.

p.357, icon at Example 2
#1. Consider an infinite checkerboard of squares, where all squares are white other than an initial set B0 of n black
squares; we call B0 the initial generation of black squares. We define new generations of black squares recursively.
Subsequent generations of black squares B1, B2,… are defined by the rule that a square is in Bk if and only if at least
two of this square itself, the square directly above it, and the square directly to its right are in Bk−1. That is, a square
on the checkerboard is in a new generation of black squares, if in the previous generation of black squares, there are
more black squares than white squares among the square itself, the square above it, and the square to its right. Use
strong induction to prove that Bn = ∅, that is, after n steps (where n is the number of initial black squares), no squares
are black.

Solution:
BASIS STEP: If we start with one black square, there will be no squares in B1. This is the case for if there is only one
black square in the initial generation, by the rule defining new generations, all squares in the following generation are
white.

INDUCTIVE STEP: The inductive hypothesis is that if B0 contains k squares where k < n, then Bk = ∅. That is, for
the inductive hypothesis, we assume that if there are fewer than n squares in the initial set of black squares, then after
k steps, no squares are black. Now consider an initial set B0 of black squares. Let R be the smallest rectangle that
contains B0. (The borders of this rectangle are found using the uppermost, lowermost, rightmost, and leftmost black
square, or squares, on the initial checkerboard.) Now let B′

0 consist of all squares in B0 not in the bottom row of R.
There are fewer than n squares in B′

0, because by the definition of R, there is at least one black square in its bottom
row. Furthermore, the colors of the squares in the bottom row of R are not used when determining which squares are
black in the generations of sets of black squares that arise when we begin with B′

0. Consequently, by the inductive
hypothesis, after at most n − 1 steps, there are no black squares when we begin with B′

0. Analogously, if we start with
the set B′′

0 consisting of all squares in B0 not in the leftmost column of R, by the inductive hypothesis, after at most
n−1 steps, there are black squares. Using what we have shown, it follows that when we start with B0, after n−1 steps,
no squares above the bottom row of R or the right of the leftmost column of R are black. Otherwise, there would have
been at least one black square after n− 1 steps when we start with either B′

0 or B′′
0 . Consequently, the only square that

can be black after n − 1 steps is the lower lefthand corner of R. But at the nth step, this square must be white because
it has no black neighbors. This completes the inductive step and the proof.

1

n



p.362, icon at Example 5
#1. Use the well-ordering property directly to show that if you can reach the first rung of an infinite ladder and if for
every positive integer, if you can reach the nth rung, then you can reach the (n + 1)st rung, then you can reach every
rung.

Solution:
Suppose that there is at least one rung you cannot reach. By the well-ordering property, there is a least positive integer
n such that you cannot reach the nth rung. We know that n cannot equal one, because by hypothesis, you can reach the
first rung. It follows that n > 1, and consequently, n − 1 is a positive integer. Because n is the least positive integer
such that you cannot reach the nth rung, it follows that you can reach the (n−1)st rung. Furthermore, because you can
reach the (n− 1)st rung, by hypothesis, you can reach rung (n− 1) + 1 = n. This is a contradiction. It follows that you
can reach all rungs of the ladder.
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Rosen, Discrete Mathematics and Its Applications, 8th edition
Extra Examples
Section 5.3—Recursive Definitions and Structural Induction

— Page references correspond to locations of Extra Examples icons in the textbook.

p.367, icon at Example 1

#1. Suppose f (n + 1) =
⌊

n2f (n) + 2
n + 1

⌋

and f (0) = 2. Find f (1), f (2), f (3), f (4).

Solution:

To find f (1), we use n = 0: f (1) = f (0 + 1) =
⌊

02f (0) + 2
0 + 1

⌋

=
⌊

02 ⋅ 2 + 2
0 + 1

⌋

=
⌊2
1

⌋

= 2.

To find f (2), we use n = 1: f (2) = f (1 + 1) =
⌊

12f (1) + 2
1 + 1

⌋

=
⌊

12 ⋅ 2 + 2
1 + 1

⌋

=
⌊4
2

⌋

= 2.

To find f (3), we use n = 2: f (3) = f (2 + 1) =
⌊

22f (2) + 2
2 + 1

⌋

=
⌊

22 ⋅ 2 + 2
2 + 1

⌋

=
⌊10
3

⌋

= 3.

To find f (4), we use n = 3: f (4) = f (3 + 1) =
⌊

32f (3) + 2
3 + 1

⌋

=
⌊

32 ⋅ 3 + 2
3 + 1

⌋

=
⌊29
4

⌋

= 7.

p.367, icon at Example 1
#2. Suppose

f (n) =

{

f (n − 2) if n is even
f (n − 2) + 3 if n is odd.

Also suppose that f (0) = 1 and f (1) = 4. Find f (7).

Solution:
Using the recurrence relation, we obtain f (3) = 7, f (5) = 10, and f (7) = 13.

p.367, icon at Example 1
#3. Prove that the following proposed recursive definition of a function on the set of nonnegative integers fails to
produce a well-defined function.

1



f (n) =

{

f (n − 2) if n is even
3f (n − 2) if n is odd

with f (0) = 4.

Solution:
The value f (1) cannot be computed because f (1) = 3f (−1), but f (−1) is not defined.

p.367, icon at Example 1
#4. Prove that the following proposed recursive definition of a function on the set of nonnegative integers fails to
produce a well-defined function.
f (n) = f (f (n − 1)) + 5, f (0) = 1.

Solution:
When we try to compute f (1), we obtain

f (1) = f (f (0)) + 5 = f (1) + 5,

which cannot happen.

p.368, icon at Example 4
#1. For the sequence of Fibonacci numbers f0, f1, f2, . . . (0, 1, 1, 2, 3, 5, 8, 13,…), prove that

f0 + f2 + f4 + f6 + · · · + f2n = f2n+1 − 1

for all n ≥ 0.

Solution:
Let P (n) be: f0 + f2 + f4 + f6 + · · · + f2n = f2n+1 − 1.

BASIS STEP: P (0) states that f0 = f1 − 1, which is true because f0 = 0 and f1 − 1 = 1 − 1 = 0.

INDUCTIVE STEP: P (k) → P (k+ 1): Suppose that P (k) is true; i.e., f0 + f2 + f4 + f6 + · · · + f2k = f2k+1 − 1. We
must show that f0 + f2 + f4 + f6 + · · · + f2(k+1) = f2(k+1)+1 − 1, i.e., f0 + f2 + f4 + f6 + · · · + f2k+2 = f2k+3 − 1:

f0 + f2 + f4 + f6 + · · · + f2k + f2k+2 = (f0 + f2 + f4 + f6 + · · · + f2k) + f2k+2
= (f2k+1 − 1) + f2k+2
= f2k+1 + f2k+2 − 1
= f2k+3 − 1.

2



p.368, icon at Example 4
#2. For the sequence of Fibonacci numbers f0, f1, f2,… (0, 1, 1, 2, 3, 5, 8, 13,…), prove for all nonnegative integers
n:

f 2
0 + f 2

1 + f 2
2 + · · · + f 2

n = fnfn+1.

Solution:
Let P (n) be the proposition

f 2
0 + f 2

1 + f 2
2 + · · · + f 2

n = fnfn+1.

BASIS STEP: P (0) is the proposition f 2
0 = f0f1. It is true because f 2

0 = 02 = 0 and f0f1 = 0 ⋅ 1 = 0.

INDUCTIVE STEP: Suppose P (k) is true. Then

f 2
0 + f 2

1 + f 2
2 + · · · + f 2

k = fkfk+1.

We need to show that P (k + 1) is true: f 2
0 + f 2

1 + f 2
2 + · · · + f 2

k+1 = fk+1fk+2. We take P (k) and add f 2
k+1 to both

sides of the equation, obtaining

(f 2
0 + f 2

1 + f 2
2 + · · · + f 2

k ) + f 2
k+1 = fkfk+1 + f 2

k+1

= fk+1(fk + fk+1)
= fk+1fk+2 (using the Fibonacci sequence recurrence)

Therefore P (k + 1) follows from P (k).

Therefore, by the Principle of Mathematical Induction, P (n) is true for all nonnegative integers n.

p.370, icon at Example 5
#1. Give a recursive definition for the set S = {4, 7, 10, 13, 16, 19,…}.

Solution:
The set can be written starting from 4 and adding 3 over and over.

BASIS STEP: 4 ∈ S.

RECURSIVE STEP: n ∈ S → n + 3 ∈ S.

3
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p.382, icon at Example 1
#1.

(a) Write a recursive algorithm for finding the sum of the first n even positive integers.
(b) Use mathematical induction to prove that the algorithm in (a) is correct.

Solution:

(a) Let evensum(n) be the sum of the first n even positive integers. A recursive algorithm is:

procedure evensum(n: integer ≥ 1)
if n = 1 then evensum(n) ∶= 2
else evensum(n) := evensum(n − 1) + 2n

(b) Let P (n) be “evensum(n) is the sum of the first n even positive integers.”

BASIS STEP: When n = 1, the “then” clause of the procedure takes effect, and gives evensum(1) = 2, which is the
sum of the first even integer.

INDUCTION STEP: We assume P (k) is true for some k ≥ 1 and must show that P (k+1) is true. The proposition P (k)
states that “evensum(k) is the sum of the first k even positive integers”. According to the algorithm, because k+1 > 1,
the “else” clause is used (with k + 1 in place of n) to obtain evensum (k + 1) and gives

evensum(k + 1) = evensum(k) + 2(k + 1)
= sum of the first k even integers + 2(k + 1),

which is the sum of the first k + 1 even integers. Therefore, the induction step follows.

Thus, the Principle of Mathematical Induction proves that the algorithm is correct.
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p.394, icon at Example 1
#1. Show that the program segment S
a ∶= 5
c ∶= a + 2b
is correct with respect to the initial assertion p∶ b = 3 and the final assertion q∶ c = 11.

Solution:
Suppose p is true. Therefore b = 3 at the beginning of the program. As the program runs, 5 is assigned to a and then
5 + 2 ⋅ 3, or 11, is assigned to c. Therefore, p{S}q is true.

p.396, icon at Example 4
#1. Use a loop invariant to prove that this program segment for computing nx (x a real number), where n is a positive
integer, is correct:

multiple := 0
i ∶= 1
while i ≤ n
begin

multiple := multiple + x
i ∶= i + 1

end

Solution:
We will show that

p∶ multiple = (i − 1)x and i ≤ n + 1

is a loop invariant.

1



Initially p is true because i = 1 and multiple = 0 = (1 − 1)x. Now suppose that p is true and i ≤ n after the loop is
executed. We must show that p is true after another execution of the loop. Because i ≤ n, after one more execution of
the loop, i will be incremented by 1 and we have i ≤ n+ 1. Also, multiple becomes multiple + x, or (i− 1)x+ x = ix.
Hence p remains true. Therefore, p is a loop invariant.

Finally, the loop terminates with i = n+1 after n traversals of the loop because i = 1 prior to the loop and each traversal
of the loop adds 1 to n. Thus, at termination multiple = nx.
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