
Rosen, Discrete Mathematics and Its Applications, 8th edition
Extra Examples
Section 6.1—The Basics of Counting

— Page references correspond to locations of Extra Examples icons in the textbook.

p.406, icon at Example 1
#1. There are three available flights from Indianapolis to St. Louis and, regardless of which of these flights is taken,
there are five available flights from St. Louis to Dallas. In how many ways can a person fly from Indianapolis to
St. Louis to Dallas?

Solution:
There are three ways to make the first part of the trip and five ways to continue on with the second part of the trip,
regardless of which flight was taken for the first leg of the trip. Therefore, by the product rule there are 3 ⋅ 5 = 15 ways
to make the entire trip.

p.406, icon at Example 1
#2. A certain type of push-button door lock requires you to enter a code before the lock will open. The lock has five
buttons, numbered 1, 2, 3, 4, 5.

(a) If you must choose an entry code that consists of a sequence of four digits, with repeated numbers allowed, how
many entry codes are possible?

(b) If you must choose an entry code that consists of a sequence of four digits, with no repeated digits allowed, how
many entry codes are possible?

Solution:

(a) We need to fill in the four blanks in _ _ _ _, where each blank can be filled in with any of the five digits 1, 2, 3, 4, 5.
By the generalized product rule this can be done in 54 = 625 ways.

(b) We need to fill in the four blanks in _ _ _ _, but each blank must be filled in with a distinct integer from 1 to 5.
By the generalized product rule that can be done in 5 ⋅ 4 ⋅ 3 ⋅ 2 = 120 ways.

p.406, icon at Example 1
#3. Count the number of print statements in this algorithm:

for i ∶= 1 to n
begin

for j ∶= 1 to n
print “hello”
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for k ∶= 1 to n
print “hello”

end

Solution:
For each value of i, both the j-loop and k-loop are executed. Thus for each i, the number of print statements executed
is n + n, or 2n. Therefore the total number of print statements executed is n ⋅ 2n = 2n2.

p.406, icon at Example 1
#4. Count the number of print statements in this algorithm:

for i ∶= 1 to n
begin

for j ∶= 1 to i
print “hello”

for k ∶= i + 1 to n
print “hello”

end

Solution:
For each value of i, both the j-loop and k-loop are executed. Thus for each i, the number of print statements executed
is i in the first loop plus n− i in the second loop. Therefore, for each i, the number of print statements is i+ (n− i) = n.

Therefore the total number of print statements executed is n ⋅ n = n2.

p.411, icon at Example 15
#1. Find the number of strings of length 10 of letters of the alphabet, with no repeated letters, that contain no vowels.

Solution:
The key to solving the problem is to keep in mind a row of ten blanks: _ _ _ _ _ _ _ _ _ _.

Each of the ten blanks in the string must contain one of the 21 consonants, with no repeated consonants allowed. By
the extended version of the product rule, the answer is 21 ⋅ 20 ⋅ 19 · · · 13 ⋅ 12.

p.411, icon at Example 15
#2. Find the number of strings of length 10 of letters of the alphabet, with no repeated letters, that begin with a vowel.

2



Solution:
Keep in mind a row of ten blanks: _ _ _ _ _ _ _ _ _ _.

There are five ways in which the first letter in the string can be a vowel. Once the vowel is placed in the first blank,
there are 25 ways in which to fill in the second blank, 24 ways to fill in the third blank, etc. Using the extended product
rule we obtain

5
⏟⏟⏟

place
vowel

⋅ 25 ⋅ 24 ⋅ 23 · · · 18 ⋅ 17
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

place other
letters

.

p.411, icon at Example 15
#3. Find the number of strings of length 10 of letters of the alphabet, with no repeated letters, that have C and V at
the ends (in either order).

Solution:
Using a row of ten blanks, we first count the number of ways to have the pattern

C _ _ _ _ _ _ _ _ V.

The number of ways to fill in the eight interior letters is 24 ⋅ 23 · · · 18 ⋅ 17.

Similarly, the number of words of the form

V _ _ _ _ _ _ _ _ C.

is 24 ⋅ 23 · · · 18 ⋅ 17.

Therefore, by the sum rule the answer is (24 ⋅ 23 · · · 18 ⋅ 17) + (24 ⋅ 23 · · · 18 ⋅ 17) = 2(24 ⋅ 23 · · · 18 ⋅ 17).

p.144, icon at Example 15
#4. Find the number of strings of length 10 of letters of the alphabet, with repeated letters allowed, that have vowels
in the first two positions.

Solution:
Keep in mind a row of ten blanks: _ _ _ _ _ _ _ _ _ _.

If vowels must be in the first two positions and letters can be repeated, we obtain the product

5 ⋅ 5
⏟⏟⏟
place 2
vowels

⋅ 26 ⋅ 26 · · · ⋅ 26
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

place any
8 letters

,

which is 52 ⋅ 268.
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p.411, icon at Example 15
#5. Find the number of strings of length 10 of letters of the alphabet, with no repeated letters, that have vowels in the
first two positions.

Solution:
Keep in mind a row of ten blanks: _ _ _ _ _ _ _ _ _ _.

We will first count the number of ways to place vowels in the first two blanks. We can choose any of the five vowels
for the first blank and any of the remaining four vowels to put in the second blank. Because we must do both, there are
5 ⋅ 4 = 20 ways to place the two vowels.

Next we will place eight of the remaining 24 letters in the remaining eight blanks. This can be done in 24 ⋅23 · · · 18 ⋅17
ways.

Therefore, by the product rule, the number of ways to place vowels in the first two blanks and eight letters in the
remaining eight blanks is

5 ⋅ 4
⏟⏟⏟
place 2
vowels

⋅ 24 ⋅ 23 · · · 18 ⋅ 17
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

place 8
other letters

.

p.411, icon at Example 15
#6. Ten men and ten women are to be put in a row. Find the number of possible rows.

Solution:
Keep in mind a row of twenty blanks. There is no restriction on how the men and women can be placed in a row, so
the answer is 20 ⋅ 19 ⋅ 18 · · · 3 ⋅ 2 ⋅ 1 = 20!.

p.411, icon at Example 15
#7. Ten men and ten women are to be put in a row. Find the number of possible rows if no two of the same sex stand
adjacent.

Solution:
Keep in mind a row of twenty blanks. If no two of the same sex stand in adjacent positions, then there are two possible
patterns, using M for male and F for female:

MFMFMFMFMFMFMFMFMFMF and FMFMFMFMFMFMFMFMFMFM.
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We will count the number of ways of achieving the first pattern and double this number to find the final answer. The
first man can be chosen in 10 ways, the first woman can be chosen in 10 ways, the second man can be chosen in 9 ways,
etc. Thus, by the extended product rule, each pattern can be obtained in

10
⏟⏟⏟

place
first
man

⋅ 10
⏟⏟⏟

place
first

woman

⋅ 9
⏟⏟⏟

place
second

man

⋅ 9
⏟⏟⏟

place
second
woman

· · · 2
⏟⏟⏟

place
ninth
man

⋅ 2
⏟⏟⏟

place
ninth

woman

⋅ 1
⏟⏟⏟

place
tenth
man

⋅ 1
⏟⏟⏟

place
tenth

women

or (10 ⋅ 9 · · · 2 ⋅ 1)2 ways. The second pattern can be obtained in the same number of ways, so we double the answer to
get 2(10 ⋅ 9 · · · 2 ⋅ 1)2 = 2 ⋅ 10!2.

p.411, icon at Example 15
#8. Ten men and ten women are to be put in a row. Find the number of possible rows if Beryl, Carol, and Darryl want
to stand next to each other in some order (such as Carol, Beryl, and Darryl, or Darryl, Beryl, and Carol).

Solution:
Keep in mind a row of twenty blanks.

We first consider the arrangements where Beryl, Carol, and Darryl stand next to each other in that order. We begin by
putting the 17 other people in a row, which can be done in 17! ways. No matter how the 17 are placed in a row, Beryl,
Carol, and Darryl can either be inserted (in that order) between two of the 17, or else placed at one of the two ends.
This is pictured in the following diagram, where the 17 x’s represent the 17 people placed in a row. There are 18 places
in which Beryl, Carol, and Darryl can be placed together — 16 places between the x’s and two places on the two ends
— marked by blanks.

_ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x _ x_ x_

Therefore, the number of ways to place the 18 people, with Beryl, Carol, and Darryl next to each other (in that order)
is

17!
⏟⏟⏟

place
other 17

⋅ 18!
⏟⏟⏟

spots
fot B,C,D

.

But Beryl, Carol, and Darryl can be permuted in 3! ways. Therefore, the final answer is 17! ⋅ 18 ⋅ 3!.

p.413, icon at Example 18
#1. Find the number of integers from 1 to 400 inclusive that are:

(a) divisible by 6.
(b) not divisible by 6.

5



Solution:

(a) Every sixth integer from 1 to 400 is divisible by 6, yielding
⌊

400
6

⌋

= 66. (Note: When we divide 400 by 6 we
obtain 66 2∕3. The fraction 2∕3 indicates that we are two thirds of the way toward the next integer divisible by
6, which is 402. We round down because 402 is beyond the range of numbers from 1 to 400.)

(b) From part (a) we know that 66 integers from 1 to 400 are divisible by 6. Hence the numbers that are not divisible
by 6 are 400 − 66 = 334.

p.413, icon at Example 18
#2. Find the number of integers from 1 to 400 inclusive that are:

(a) divisible by 6 and 8.
(b) divisible by 6 or 8.

Solution:

(a) Divisibility by a and b is the same as divisibility by the least common multiple of a and b. Therefore, divisibility
by 6 and 8 is the same as divisibility by 24. The answer is

⌊

400
24

⌋

= 16.
(b) We cannot take the number of integers divisible by 6 and add to it the number of integers divisible by 8, because

this would count integers such as 24 or 48 twice (because they are divisible by both 6 and 8). We need to use the
inclusion-exclusion principle to avoid the “double counting”.

Let A1 = {x | 1 ≤ x ≤ 400, x is divisible by 6} and A2 = {x | 1 ≤ x ≤ 400, x is divisible by 8}. We want |A1 ∪ A2|.
By the inclusion-exclusion principle we have

|A1 ∪ A2| = |A1| + |A2| − |A1 ∩ A2|

=
⌊400

6

⌋

+
⌊400

8

⌋

−
⌊400
24

⌋

= 66 + 50 − 16
= 100.

Note: When the word “or” appears in a counting problem, it is a wise strategy to consider using the inclusion-exclusion
principle.

p.413, icon at Example 18
#3. Find the number of strings of length 10 of letters of the alphabet, with repeated letters allowed,

(a) that begin with C and end with V.
(b) that begin with C or end with V.
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Solution:

(a) Keep in mind a row of ten blanks: _ _ _ _ _ _ _ _ _ _.
If the string has the form

C _ _ _ _ _ _ _ _ V,

there are 26 ways to fill in each of the eight intermediate blanks. Hence there are 268 strings of this form.
(b) We need to count the number of strings that have the form

C _ _ _ _ _ _ _ _ _ or _ _ _ _ _ _ _ _ _ V

The number of strings of each form is 269. However, we cannot simply add the two numbers to get our answer.
If we do this, we are counting the number of strings of the form C _ _ _ _ _ _ _ _ V twice because each such
string fits both patterns.

We need to use the inclusion-exclusion principle to avoid the double-counting. Let A1 be the set of all strings of length
ten that begin with C and let A2 be the set of all strings of length ten that end with V. We want |A1 ∪ A2|. But by the
inclusion-exclusion principle,

|A1 ∪ A2| = |A1| + |A2| − |A1 ∩ A2|

= 269 + 269 − 268.

(The term 268 was obtained as the size of A1 ∩ A2, which is the set of all strings of length ten that begin with C and
end with V.)
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Rosen, Discrete Mathematics and Its Applications, 8th edition
Extra Examples
Section 6.2—The Pigeonhole Principle

— Page references correspond to locations of Extra Examples icons in the textbook.

p.422, icon at Example 4
#1. Prove that in any group of three positive integers, there are at least two whose sum is even.

Solution:
Consider two pigeonholes, labeled EVEN and ODD. If three positive integers are placed in these pigeonholes, one of
the pigeonholes must have at least two integers (say a and b) in it. Thus, a and b are either both even or both odd. In
either case, a + b is even.

p.422, icon at Example 4
#2. If positive integers are chosen at random, what is the minimum number you must have in order to guarantee that
two of the chosen numbers are congruent modulo 6.

Solution:
In order for a and b to be congruent modulo 6, we must have a mod 6 = b mod 6. But there are six possible values for
x mod 6: 0, 1, 2, 3, 4, or 5. Therefore seven positive integers must be chosen in order to guarantee that at least two are
congruent modulo 6.

p.422, icon at Example 4
#3. Suppose you have a group of n people (n ≥ 2). Use the Pigeonhole Principle to prove that there are at least two in
the group with the same number of friends in the group.

Solution:
Suppose you have a group of n people, and suppose that no two persons have the same number of friends in the group.
There are n numbers of possible friends that a person can have: 0, 1, 2,… , n − 1, where 0 means that the person has
no friends in the group, 1 means that the person has exactly one friend in the group, . . . , n − 1 means that the person
is friends with all other people in the group.
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It is impossible for the numbers 0 and n− 1 to both occur as “friendship numbers” in a group of n people. To see this,
suppose person A has 0 friends and person B has n − 1 friends. If the friendship number for B is n − 1, then B must
be friends with everyone, including A. But this contradicts the fact that the friendship number for A is 0. Therefore,
of the n possible friendship numbers, only n − 1 friendship numbers are available in any group of n people.

Because there are n people in the group and only n − 1 available friendship numbers, by the Pigeonhole Principle at
least two people have the same friendship number. That is, at least two people in the group have the same number of
friends in the group.

p.422, icon at Example 4
#4. Prove that in any set of 700 English words, there must be at least two that begin with the same pair of letters (in
the same order), for example, STOP and STANDARD.

Solution:
The number of possible pairs of letters that can appear in the first two positions is 26 ⋅ 26 = 676. Thus, by the Pigeon-
hole Principle, any set of 677 or more words must have at least two words with the same pair of letters at the beginning
of the word.

(Note: In reality, the number 700 can be replaced with a much smaller number, because many combinations of letters
do not appear as the two beginning letters of a word. For example, there are no English words that begin with NQ, RR,
or TZ.)

p.423, icon at Example 6
#1. Each type of machine part made in a factory is stamped with a code of the form “letter-digit-digit”, where the
digits can be repeated. Prove that if 8000 parts are made, then at least four must have the same code stamped on them.

Solution:
The maximum number of possible codes (pigeonholes) is 26 ⋅ 10 ⋅ 10 = 2600. But 8000 > 3 ⋅ 2600. Therefore at least
four parts must have the same code.

p.423, icon at Example 6
#2. Each student is classified as a member of one of the following classes: Freshman, Sophomore, Junior, Senior. Find
the minimum number of students who must be chosen in order to guarantee that at least eight belong to the same class.
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Solution:
The four classes are the pigeonholes. A group of 28 students could have 7 belonging to each class. But if there are
29 students, at least 8 must be members of the same class. Therefore, the minimum number of students who must be
chosen is 29.

In other words, we are looking for the minimum number N such that
⌈

N
4

⌉

= 8. The minimum number is 29.

p.423, icon at Example 6
#3. What is the minimum number of cards that must be drawn from an ordinary deck of cards to guarantee that you
have been dealt

(a) at least three of at least one rank?
(b) at least three aces?
(c) the ace of diamonds?

Solution:

(a) There are thirteen ranks. If you are dealt 26 cards, it is possible that they consist of two cards of each rank —
two aces, two twos, two threes, . . . , two queens, two kings. The 27th card dealt must give you a hand with three
of some rank. (The pigeonholes are the thirteen ranks and the cards are the pigeons.)

(b) In the worst-case scenario, you are dealt 48 cards that include no aces. In order to get three aces, you would need
to be dealt 51 cards.

(c) It is possible that the ace of diamonds could be the last card dealt. Thus, you would need to have all 52 cards
dealt to obtain the ace of diamonds.

p.423, icon at Example 6
#4. What is the minimum number of cards that must be drawn from an ordinary deck of cards to guarantee that you
have been dealt

(a) at least three of at least one suit?
(b) at least three clubs?

Solution:

(a) There are four suits. If you are dealt 8 cards, it is possible that they consist of two cards of each suit. The ninth
card dealt must give you three of at least one suit. (The pigeonholes are the four ranks and the cards are the
pigeons.)

(b) In the worst-case scenario, you are dealt 39 cards that include only diamonds, hearts, and spades. In order to get
three clubs, you would need to be dealt three additional cards, making 42 cards.
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Rosen, Discrete Mathematics and Its Applications, 8th edition
Extra Examples
Section 6.3—Permutations and Combinations

— Page references correspond to locations of Extra Examples icons in the textbook.

p.429, icon at Example 1
#1. A class has 30 students enrolled. In how many ways can:

(a) four be put in a row for a picture?
(b) all 30 be put in a row for a picture?
(c) all 30 be put in two rows of 15 each (that is, a front row and a back row) for a picture?

Solution:

(a) We need to fill in the following row of four blanks: _ _ _ _. This can be done in 30 ⋅ 29 ⋅ 28 ⋅ 27 ways. This is the
number of 4-permutations from a set of 30, which is P (30, 4).

(b) The answer can be visualized as the number of ways to fill in a row of 30 blanks with the 30 students, which is
30!, or P (30, 30).

(c) The answer can be visualized as the number of ways to fill in two rows, each with 15 blanks, with the 30 students:

– – – – – – – – – – – – – – –
– – – – – – – – – – – – – – –

We can begin by filling in the bottom row, which can be done in 30 ⋅ 29 ⋅ 28 ⋅… ⋅ 17 ⋅ 16 ways. Then we fill in
the top row, which can be done in 15 ⋅ 14 ⋅ 13 ⋅… ⋅ 2 ⋅ 1 ways. Therefore the answer is

(30 ⋅ 29 ⋅ 28 · · · 17 ⋅ 16) ⋅ (15 ⋅ 14 ⋅ 13 · · · 2 ⋅ 1) = 30!.

p.429, icon at Example 1
#2. A class has 20 women and 16 men. In how many ways can you

(a) put all the students in a row?
(b) put 7 of the students in a row?
(c) put all the students in a row if all the women are on the left and all the men are on the right?

Solution:

(a) There are 36 students. They can be put in a row in 36! ways.
(b) You need to have an ordered arrangement of 7 out of 36 students. The number of such arrangements is P (36, 7).
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(c) You need to have an ordered arrangement of all 20 women and ordered arrangement of all 16 men. By the
product rule, this can be done in 20! ⋅ 16! ways.

p.434, icon at Example 12
#1. A certain type of push-button door lock requires you to enter a code before the lock will open. The lock has five
buttons, numbered 1, 2, 3, 4, 5. The lock is programmed to recognize six different 4-digit codes, with repeated digits
allowed in each code. How many different sets of recognizable codes are there?

Solution:
There are 54 = 625 possible four-digit codes. Therefore, there are C(625, 6) different sets of six codes that the lock
can be programmed to recognize.

p.434, icon at Example 12
#2. Several states play a lottery game called Mega Millions. On a Mega Millions lottery game ticket, you pick a set of
five numbers from the numbers 1 through 56 on the top panel of the ticket, and one number (the Mega Ball number)
from 1 through 46 on the bottom half of the ticket. (The Mega Ball number can be the same as one of the five numbers
picked on the top half of the ticket.) A set of six winning numbers is selected: five numbers from 1 through 56 and
one Mega Ball number from the numbers 1 through 46. You win a prize if your selections match some or all of the
winning numbers, as follows: five and Mega Ball, five and no Mega Ball, four and Mega Ball, four and no Mega Ball,
three and Mega Ball, three and no Mega Ball, two and Mega Ball, one and Mega Ball, only the Mega Ball.

Find the number of ways in which you can have one ticket with

(a) five winning numbers, but no Mega Ball.
(b) two winning numbers and the Mega Ball.

Solution:

(a) The number of ways in which all five numbers can be chosen correctly is C(5, 5) = 1 and the number of ways
of choosing a number other than the Mega Ball is C(45, 1) = 45. Therefore, the number of ways to choose five
numbers and miss the Mega Ball is C(5, 5) ⋅ C(45, 1) = 45.

(b) The number of ways in which exactly two of the five numbers can be chosen correctly is C(5, 2) ⋅C(51, 3) — you
choose two of the five winning numbers and three of the 51 losing numbers. The number of ways of choosing
the Mega Ball is C(1, 1). Therefore, the number of ways to choose exactly two winning numbers and the Mega
Ball is C(5, 2) ⋅ C(51, 3) ⋅ C(1, 1) = 208, 250.
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p.434, icon at Example 12
#3. How many ways are there to choose a committee of size five consisting of three women and two men from a group
of ten women and seven men?

Solution:
The number of ways to choose three women is C(10, 3) and the number of ways to choose two men is C(7, 2). Using
the product rule to choose three women and two men, the answer is

C(10, 3) ⋅ C(7, 2) = 2, 520.

Note: The answer is not C(17, 5) (which counts all committees of size five) because this ignores the fact that the
committees must have exactly three women and exactly two men. Also, the answer is not C(10, 3)+C(7, 2), which is a
commonly made mistake. This says that you are choosing either three women or two men; it does not count committees
of size five.

p.434, icon at Example 12
#4. Let S = {1, 2,… , 19}. Find the number of subsets of S with equal numbers of odd integers and even integers.

Solution:
Note that there are 10 odd integers and 9 even integers inS. The subsets to be counted must consist of k odd integers and
k even integers, where k = 1, 2, 3,… , 9. Therefore, by the product rule, the number of each type is C(10, k) ⋅ C(9, k).
Therefore, by the sum rule the answer is

C(10, 0) ⋅ C(9, 0)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

subsets with
0 odd and 0 even

+ C(10, 1) ⋅ C(9, 1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

subsets with
1 odd and 1 even

+ C(10, 2) ⋅ C(9, 2)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

subsets with
2 odd and 2 even

+ · · · + C(10, 9) ⋅ C(9, 9)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

subsets with
9 odd and 9 even

= 92, 377.

p.434, icon at Example 12
#5. Find the number of words of length 10 of letters of the alphabet, with no repeated letters, such that each word has
equal numbers of vowels and consonants.

Solution:
Visualize a row of ten blanks. Each word of length 10 must contain all five vowels and five of the 21 consonants. There
are different ways to solve this problem.

Here is one way to solve the problem. Choose a set of five of the ten blanks for the vowels. Then place the five vowels in
these positions. These two steps can be done in C(10, 5) ⋅ 5! ways. Next, choose 5 consonants from the 21 consonants,
and place them in the remaining five blanks. These two steps can be done in C(21, 5) ⋅ 5! ways. Thus, the number of
ways of forming the desired words by placing the vowels and consonants is

C(10, 5) ⋅ 5! ⋅ C(21, 5) ⋅ 5! = 10!
5!5!

⋅ 5! ⋅ 21!
5!16!

⋅ 5! = 10!21!
5!16!

= 10 ⋅ 9 ⋅ 8 ⋅ 7 ⋅ 6 ⋅ 21 ⋅ 20 ⋅ 19 ⋅ 18 ⋅ 17 = 73, 842, 451, 200.
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Here is a second way to approach the problem. Choose any set of five consonants, and form a set consisting of
these five consonants and the five vowels. These ten letters can be arranged in 10! ways, each of which forms
one of the words we are counting. But there are C(21, 5) ways to choose the five consonants. Therefore, there are
C(21, 5) ⋅ 10! = 10 ⋅ 9 ⋅ 8 ⋅ 7 ⋅ 6 ⋅ 21 ⋅ 20 ⋅ 19 ⋅ 18 ⋅ 17 words.

Here is a third way to approach the problem. First, place the five vowels in five of the ten blanks (10 choices for A, 9
choices for E, etc.)—this can be done in 10 ⋅9 ⋅8 ⋅7 ⋅6 ways. Then place five of the 21 consonants in the five remaining
blanks (21 choices for the first blank, 20 choices for the second blank, etc.)—this can be done in 21 ⋅ 20 ⋅ 19 ⋅ 18 ⋅ 17
ways. Therefore, by the product rule, the number of words with the five vowels and five consonants is 10 ⋅ 9 ⋅ 8 ⋅ 7 ⋅ 6 ⋅
21 ⋅ 20 ⋅ 19 ⋅ 18 ⋅ 17.

p.434, icon at Example 12
#6. Find the number of ways to take an ordinary deck of 52 playing cards and break it into:

(a) four equal piles, labeled A,B, C,D.
(b) four equal piles that are not labeled.

Solution:

(a) Each pile must have 52∕4 = 13 cards in it. In sequence, we form pile A, then pile B, then pile C , and finally pile
D. There are C(52, 13) ways to obtain pile A, C(39, 13) ways to obtain pile B, C(26, 13) ways to obtain pile C ,
and C(13, 13) = 1 way to obtain pile D. Therefore, by the product rule the answer is

C(52, 13) ⋅ C(39, 13) ⋅ C(26, 13) ⋅ C(13, 13) = 52!
13! ⋅ 39!

⋅
39!

13! ⋅ 26!
⋅

26!
13! ⋅ 13!

⋅
13!

13! ⋅ 0!

= 52!
(13!)4

.

(b) If the four piles are not labeled, there is no distinction to be made among piles A,B, C,D. We can permute these
in 4! ways. Hence the answer is the answer to part (a) divided by 4!:

C(52, 13) ⋅ C(39, 13) ⋅ C(26, 13) ⋅ C(13, 13)
4!

= 52!
(13!)4 ⋅ 4!

.

p.434, icon at Example 12
#7. Suppose S = {1, 2,… , 25}. Find the number of subsets T ⊆ S of size five such that T consists of two odd
numbers and three even numbers.

Solution:
There are 13 odd numbers; we can choose two in C(13, 2) ways. There are 12 even numbers; we can choose three
in C(12, 3) ways. Using the product rule to find the number of elements in T , we have C(13, 2) ⋅ C(12, 3) = 17,160
subsets.
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p.434, icon at Example 12
#8. Suppose S = {1, 2,… , 25}. Find the number of subsets T ⊆ S of size five such that T consists of exactly three
prime numbers.

Solution:
(b) The prime numbers in S are 2, 3, 5, 7, 11, 13, 17, 19, and 23, and there are C(9, 3) ways to select three of them.
But we also need to select two of the 16 composite numbers to make T have size five; there are C(16, 2) ways to this.
Therefore, the product rule gives C(9, 3) ⋅ C(16, 2) = 10,080 possible subsets T .

p.434, icon at Example 12
#9. Suppose S = {1, 2,… , 25}. Find the number of subsets T ⊆ S of size five such that T has the sum of its elements
less than 18.

Solution:
There are very few subsets with this property. It is easiest in this case to count directly the set of five numbers whose
sum is less than 18:

1, 2, 3, 4, 5, 1, 2, 3, 4, 6, 1, 2, 3, 4, 7, 1, 2, 3, 5, 6.

Thus, there are four such subsets.

p.434, icon at Example 12
#10. Suppose S = {1, 2,… , 25}. Find the number of subsets T ⊆ S of size five such that T has at least one even
number in it.

Solution:
It is easiest to count the total number of subsets of size five, and then subtract the number of subsets with no even
numbers in them: C(25, 5) − C(13, 5) = 51,843.

Note: When you need to count objects that have a certain property, a good problem solving strategy to consider is
“complement counting”—count the total number of objects in the universe and then subtract the number of objects
that fail to have the desired property.
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p.438, icon at Example 2
#1. Write the expansion of (x + 2y)3.

Solution:
By the binomial theorem,

(x + 2y)3 =
(

3
0

)

x3(2y)0 +
(

3
1

)

x2(2y)1 +
(

3
2

)

x1(2y)2 +
(

3
3

)

x0(2y)3

= x3 + 6x2y + 12xy2 + 8y3.

p.438, icon at Example 2
#2. Find the coefficient of a17b23 in the expansion of (3a − 7b)40.

Solution:
We expand (3a−7b)40 using the binomial theorem, locate the term with the product a17b23, and then find the coefficient:

(3a − 7b)40 = · · · +
(

40
17

)

(3a)17(−7b)23 + · · ·

= · · · +
(

40
17

)

317(−7)23a17b23 + · · · .

Thus, the coefficient is
(

40
17

)

317(−7)23, which can also be written as
(

40
23

)

317(−7)23.

1



p.438, icon at Example 2

#3. Write the expansion of
(

x2 − 1
x

)8
.

Solution:
We use the binomial theorem. We then use various rules for exponents to simplify the terms.

(

x2 − 1
x

)8
=

8
∑

i=0

(

8
i

)

(x2)i
(−1

x

)8−i

=
8
∑

i=0

(

8
i

)

x2i(−1)8−i

x8−i

=
8
∑

i=0

(

8
i

)

x3i−8(−1)8−i

= x−8 − 8x−5 + 28x−2 − 56x1 + 70x4 − 56x7 + 28x10 − 8x13 + x16

= 1
x8

− 8
x5

+ 28
x2

− 56x + 70x4 − 56x7 + 28x10 − 8x13 + x16.
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p.448, icon at Example 4
#1. A jar contains 30 pennies, 20 nickels, 20 dimes, and 15 quarters. (The coins of each denomination are considered
to be identical.)

(a) Find the number of ways to put all 85 coins in a row.
(b) Find the number of possible handfuls of 12 coins.

Solution:

(a) The answer is not 85! because not all the coins are distinct. Think of the problem as one of taking 30 p’s, 20 n’s,
20 d’s, and 15 q’s, and putting these letters in a row. Taking into account the identical letters, we have

85!
30! ⋅ 20! ⋅ 20! ⋅ 15!

.

(b) The number of handfuls of 12 coins is equal to the number of nonnegative integer solutions to the equation

p + n + d + q = 12.

The number of solutions to this equation is C(15, 3) = 455.

p.488, icon at Example 4
#2. A bakery sells four kinds of cookies: chocolate, jelly, sugar, and peanut butter. You want to buy a bag of 30
cookies. Assuming that the bakery has at least 30 of each kind of cookie, how many bags of 30 cookies could you buy
if you must choose:

(a) at least 3 chocolate cookies and at least 6 peanut butter cookies.
(b) exactly 3 chocolate cookies and exactly 6 peanut butter cookies.

Solution:
We will use c to represent the number of chocolate cookies purchased, j for the number of jelly cookies purchased, s
for the number of sugar cookies purchased, and p for the number of peanut butter cookies purchased.

1



(a) We must have c ≥ 3 and p ≥ 6. Picture yourself in the bakery with an empty bag in which you will place 30
cookies. Put into the bag three chocolate cookies and six peanut butter cookies. The bag now has nine cookies
in it, so you need to place 21 more cookies into the bag. You have met the two conditions, so you do not care
about the numbers of each of the four types you choose for the remaining 21 cookies. Therefore, you need to
find the number of nonnegative integer solutions to the equation

c + j + s + p = 21.

The number of nonnegative integer solutions to this equation is C(24, 3). Therefore there are C(24, 3) = 2,024
ways to buy 30 cookies with at least 3 chocolate cookies and at least 6 peanut butter cookies.

(b) We must have c = 3 and p = 6. Picture yourself in the bakery with an empty bag in which you will place 30
cookies. Put into the bag three chocolate cookies and six peanut butter cookies. The bag now has nine cookies
in it, so you need to place 21 more cookies into the bag, but you cannot select more chocolate or peanut butter
cookies. Therefore you need to find the number of nonnegative integer solutions to the equation

j + s = 21.

The number of nonnegative integer solutions to this equation is C(22, 1) = 22. Therefore there are 22 ways to
buy 30 cookies with exactly 3 chocolate cookies and exactly 6 peanut butter cookies.

p.448, icon at Example 4
#3. A bakery sells four kinds of cookies: chocolate, jelly, sugar, and peanut butter. You want to buy a bag of 30
cookies. Assuming that the bakery has at least 30 of each kind of cookie, how many bags of 30 cookies could you buy
if you must choose at most 5 sugar cookies.

Solution:
We will use c to represent the number of chocolate cookies purchased, j for the number of jelly cookies purchased, s
for the number of sugar cookies purchased, and p for the number of peanut butter cookies purchased.

To solve the problem, we use “complement counting”. That is, we find the number of possible bags of 30 cookies
with more than 5 sugar cookies, and then subtract that number from the total number of bags of 30 cookies. That is,
we find the number of solutions to c + j + s + p = 30 with s ≥ 6. This is the number of solutions to the equation
c + j + s + p = 24, which equals C(27, 3).

Thus, the answer to the question is the total number of nonnegative integer solutions to the equation c+ j + s+p = 30,
C(33, 3), with C(27, 3) subtracted:

(total number of solutions) − (number of solutions with s ≥ 6) = C(33, 3) − C(27, 3) = 2,531.

p.448, icon at Example 4
#4. A bakery sells four kinds of cookies: chocolate, jelly, sugar, and peanut butter. You want to buy a bag of 30
cookies. Assuming that the bakery has at least 30 of each kind of cookie, how many bags of 30 cookies could you buy
if you must choose at least one of each of the four types of cookies.
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Solution:
We will use c to represent the number of chocolate cookies purchased, j for the number of jelly cookies purchased, s
for the number of sugar cookies purchased, and p for the number of peanut butter cookies purchased.

To “see” the solution, take an empty bag and place in it one cookie of each of the four types. This leaves 26 more cookies
to be selected and there are no additional restrictions on the cookies. This yields the equation c + j + s + p = 26. The
number of nonnegative integer solutions to this new equation is C(29, 3) = 3,654.

p.450, icon at Example 7
#1. In how many ways can the letters in DECEIVED be arranged in a row?

Solution:
The word has two D’s, three E’s, one C, one I, and one V. Therefore, the number of permutations of DECEIVED is

8!
2! ⋅ 3! ⋅ 1! ⋅ 1! ⋅ 1!

= 8!
2! ⋅ 3!

= 3,360.

Note: In practice we need only count the letters that are repeated, because dividing by 1! does not change the final
result.

p.450, icon at Example 7
#2. In how many ways can 7 of the 8 letters in CHEMISTS be put in a row?

Solution:
There are two patterns to consider:

(a) seven distinct letters are selected (that is, only one S is selected), and
(b) the two S’s are selected.

In the first pattern, there are 7! ways to put the 7 distinct letters in a row.

In the second pattern, we select the two S’s and use all but one of the six other letters. For example, we could use the
letters S,S and C,H,E,M,T, or S,S and C,H,E,M,I. Each of these sets of seven letters can be put in a row in 7!/2 ways.
There are 6 ways to choose five of the six letters that are not S’s; therefore, there are 6 ⋅ 7!∕2 ways to have the second
pattern.
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Adding the totals obtained from the two cases, we have the total number of ways to put seven of the eight letters in a
row is

7! + 6 ⋅ 7!
2!

= 20,160.

p.451, icon after start of “Distributing Objects into Boxes” subsection
#1. Four players are playing bridge. In how many ways can they be dealt hands of cards? (In bridge, a hand of cards
consists of 13 out of 52 cards.)

Solution:
This is a problem of placing 52 distinguishable objects (the cards) in four distinguishable piles of size 13 (one pile for
each of the four players). This can be done in

52!
13! ⋅ 13! ⋅ 13! ⋅ 13!

ways.

p.451, icon after start of “Distributing Objects into Boxes” subsection
#2. In how many ways can ten books be put in four labeled boxes, if one or more of the boxes can be empty? Assume
that the books are:

(a) distinct.
(b) identical.

Solution:

(a) Each book can be placed in any of the four boxes. By the product rule, this can be done in 410 ways.
(b) Let xi be the number of books in box i. We need to find the number of nonnegative integer solutions to the

equation x1 + x2 + x3 + x4 = 10. There are C(13, 3) such solutions.
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p.458, icon at Example 2
#1. Place the following permutations of 1, 2, 3, 4, 5, 6 in lexicographic order:

461325, 326145, 516243, 324165, 461235, 324615, 462135.

Solution:
Proceeding from smallest to largest we have:

324165, 324615, 326145, 461235, 461325, 462135, 516243.

p.458, icon at Example 2
#2. Find the permutation of 1, 2, 3, 4, 5, 6 immediately after 263541 in lexicographic order.

Solution:
The digits 5, 4, 1 are in descending order, so we need to increase the digit in the third position, 3. Replacing this digit
3 by 4 and then putting the remaining digits in increasing order, we have 264135.

p.458, icon at Example 2
#3. Find the permutation of 1, 2, 3, 4, 5, 6 immediately before 261345 in lexicographic order.

Solution:
The final four digits, 1345, are in increasing order. Therefore the permutation that comes immediately before this must
have a 5 in the second position and the four digits to the right of the 5 in decreasing order. Thus, the predecessor of
261345 is 256431.

p.458, icon at Example 2
#4. If the permutations of 1, 2, 3, 4, 5, 6 are put in lexicographic order, with 123456 in position 1, 123465 in position
2, etc., find the permutation in position 362.

1



Solution:
There are 6! = 720 permutations of 1, 2, 3, 4, 5, 6. The first 120 (i.e., the permutations in positions 1 through 120)
begin with 1, the second 120 (in positions 121 through 240) begin with 2, etc. Hence the first permutation beginning
with 4, 412356, is in position 361. Therefore, the next permutation, 412365, will be in position 362.

p.458, icon at Example 2
#5. If the permutations of 1, 2, 3, 4, 5 are put in lexicographic order, in what position is the permutation 41253?

Solution:
There are 4! = 24 permutations of 1, 2, 3, 4, 5 that begin with 1; these permutations are in positions 1 through 24.
Similarly, the permutations in positions 25 through 48 begin with 2 and the permutations in positions 49 through 72
begin with 3. Thus, the first permutation beginning with 4, 41235, is in position 73. Therefore 41253 is in position 74.
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