
Rosen, Discrete Mathematics and Its Applications, 8th edition
Extra Examples
Section 7.1—An Introduction to Discrete Probability

— Page references correspond to locations of Extra Examples icons in the textbook.

p.470, icon at Example 1
#1. A computer password consists of five lower case letters, with repeated letters allowed. Find p(E) where E is the
event that the password begins with c.

Solution:
The sample space S has 265 elements, corresponding to the number of ways to fill in the following five blanks with
lower case letters: _ _ _ _ _. The event E has 264 elements, corresponding to the number of ways to fill in the four
blanks in c _ _ _ _. Therefore

p(E) = p(password begins with c) = |E|

|S|
= 264

265
= 1

26
≈ 0.038.

Note: In place of writing p(E), we often replace E with the English description of E.

p.470, icon at Example 1
#2. A computer password consists of five lower case letters, with repeated letters allowed.

(a) Find p(F1), where F1 is the event that the password contains no vowels.
(b) Find p(F2), where F2 is the event that the password contains only vowels.

Solution:

(a) The setF1 has 215 elements because each of the five blanks must be filled in with one of 21 consonants. Therefore

p(F1) = p(password contains no vowels) =
|F1|

|S|
= 215

265
≈ 0.344.

(b) The set F2 has 55 elements because each of the five blanks must be filled in with one of five vowels. Therefore

p(F2) = p(password contains only vowels) =
|F2|

|S|
= 55

265
≈ 0.000263.
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p.470, icon at Example 1
#3. A professor teaches two sections of a calculus course and gave a quiz to the students in each section. In Section 1,
8 students out of 35 got a score of 90 or higher. In Section 2, 11 students out of 28 got a score of 90 or higher.

Find the probability that the student:

(a) is in Section 1, if the student is chosen at random from among all 63 students.
(b) is not in Section 1, if the student is chosen at random from among all 63 students.
(c) scored at least 90 on the quiz, if the student is chosen at random from those in Section 1.
(d) is in Section 1 and scored at least 90 on the quiz, if the student is chosen at random.
(e) is in Section 1, if the student is chosen at random from those who scored at least 90 on the quiz.

Solution:
The given information can be displayed in the following table:

Section 1 Section 2
score ≥ 90 8 11
score < 90 27 17

(a) Of the 63 students, 35 are in Section 1. Therefore, the probability that the student is in Section 1 is 35/63.
(b) The probability that a randomly chosen student is not in Section 1 is equal to the probability that the student is

in Section 2, which is 28/63.
(c) There are 35 students in Section 1. The probability that the student scored at least 90 is 8/35.
(d) Eight students are in Section 1 and scored at least 90 on the quiz. Therefore, the probability that the student is in

Section 1 and scored at least 90 on the quiz is 8/63.
(e) The number of students who scored at least 90 on the quiz is 19, and, of these, 8 come from Section 1. Therefore,

the probability that a randomly chosen student comes from Section 1 is 8/19.

p.470, icon at Example 1
#4. You flip a coin twice. Find the following:

(a) p(E) where E is the event of getting heads on the first flip and tails on the second flip.
(b) p(F ) where F is the event of getting one head and one tail in the two flips.

Solution:
The sample space for this experiment is S = {HH,HT , TH, T T } where H stands for heads, T for tails, the first
letter in each pair is the result of the first flip, and the second letter is the result of the second flip.

(a) The event E = {HT }. Thus p(E) = |E|∕|S| = 1∕4.
(b) The event F = {HT , TH}. Thus p(F ) = |E|∕|F | = 2∕4 = 1∕2.
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p.470, icon at Example 1
#5. A tetrahedral die is a regular polyhedron consisting of 4 equilateral triangles, with the four faces numbered 1,2,3,4.
You roll the pair of tetrahedral dice. Find the probability that the sum is: (a) 2, (b) 3, (c) 4, (d) 5, (e) 6, (f) 7, (g) 8.

Solution:
The sample space consists of the 16 elements:

(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4).

Thus, the probabilities are: (a) 1/16, (b) 2/16, (c) 3/16, (d) 4/16, (e) 3/16, (f) 2/16, (g) 1/16.

p.470, icon at Example 1
#6. You pick five numbers, without replacement, from the set {1, 2, 3,… , 24, 25}. What is the probability that the
product of the numbers chosen is odd?

Solution:
We can think of the experiment of choosing five numbers in two ways: pick all five numbers at once (i.e., order does
not matter), or pick the five numbers in succession (i.e., order matters).

Suppose we interpret the problem as one where we choose the five numbers all at once. Then the sample space S
consists of all subsets of five numbers chosen from the set {1, 2, 3,… , 24, 25}, and we have |S| = C(25, 5).

The product will be odd if and only if each of the five chosen numbers is odd. (If any of the five chosen numbers is
even, the product will be even.) Therefore

p(product is odd) = C(13, 5)
C(25, 5)

=
13!∕(5! ⋅ 8!)
25!∕(5! ⋅ 20!)

= 13! ⋅ 20!
25! ⋅ 8!

≈ 0.024.

Now suppose that we assume that order does matter. Because the five numbers chosen must all come from the 13 odd
numbers between 1 and 25, the number of successes is P (13, 5). The number of possibilities is P (25, 5). Therefore,

p(product is odd) = P (13, 5)
P (25, 5)

=
13!∕8!
25!∕20!

= 13! ⋅ 20!
25! ⋅ 8!

≈ 0.024.

In this case the same answer is obtained whether we assume order matters or that order does not matter.
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p.470, icon at Example 1
#7. Suppose S = {1, 2,… , 20}. You select a subset T ⊆ S of size three. Find the probability that T consists of two
odd numbers and one even number.

Solution:
There are C(20, 3) subsets of size three, and choosing any of them is equally likely. There are ten odd numbers and
ten even numbers in S. A “success” means that we select two odd numbers from the ten odd numbers and one even
number from the ten even numbers. Therefore

p(T has two odd numbers and one even number) = C(10, 2) ⋅ C(10, 1)
C(20, 3)

≈ 0.395.

p.470, icon at Example 1
#8. Suppose S = {1, 2,… , 20}. You select a subset T ⊆ S of size three. Find the probability that T consists of three
prime numbers.

Solution:
There are C(20, 3) subsets of size three, and choosing any of them is equally likely. There are eight primes in the first
20 integers — 2, 3, 5, 7, 11, 13, 17, 19. Therefore

p(T consists of three primes) = C(8, 3)
C(20, 3)

≈ 0.049.

p.470, icon at Example 1
#9. Suppose S = {1, 2,… , 20}. You select a subset T ⊆ S of size three. Find the probability that the three numbers
in T have a sum that is less than nine.

Solution:
There are C(20, 3) subsets of size three, and choosing any of them is equally likely. There are four ways in which the
three numbers can have a sum less than nine: 1, 2, 3; 1, 2, 4; 1, 2, 5; and 1, 3, 4. Therefore

p(sum of the integers is less than nine) = 4
C(20, 3)

≈ 0.004.

p.470, icon at Example 1
#10. A class has 20 women and 13 men. A committee of five is chosen at random. Find

(a) p(the committee consists of all women).
(b) p(the committee consists of all men)
(c) p(the committee consists of all of the same sex)
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Solution:

(a) There are C(33, 5) possible committees of size five. Of these, there are C(20, 5) committees consisting only of
women. Therefore, the probability that the committee consists of all women is

C(20, 5)
C(33, 5)

≈ 0.065.

(b) There are C(33, 5) possible committees of size five. Of these, there are C(13, 5) committees consisting only of
men. Therefore, the probability that the committee consists of all women is

C(13, 5)
C(33, 5)

≈ 0.005.

(c) There are C(33, 5) possible committees of size five. Of these, there are C(20, 5) committees consisting only of
women and C(13, 5) committees consisting only of men. Therefore, the probability that the committee consists
of all women is

C(20, 5) + C(13, 5)
C(33, 5)

≈ 0.07.

p.470, icon at Example 1
#11. What is the probability of getting more heads than tails, if you toss a fair coin

(a) nine times?
(b) ten times?

Solution:

(a) If you toss a fair coin nine times, half the time you will have more H than T and half the time you will have more
T than H. Therefore, the probability that you obtain more heads than tails is 1/2.

(b) If you toss a coin ten times, one of the following three possibilities must happen:

1. you toss equal numbers of H and T,
2. you toss more H than T,
3. you toss more T than H.

The sample space consists of all strings of ten letters, each of which is H or T. The number of ways of obtain-
ing 5 H’s and 5 T’s is C(10, 5). (To see this, note that we must choose a set of 5 of the 10 spots in a string for H’s.)

Therefore, the number of ways of obtaining unequal numbers of heads and tails is 210 − C(10, 5). Half of these
will have more heads than tails, and half will have more tails than heads. Thus, the number of ways of obtaining
more heads than tails is 1

2 (2
10−C(10, 5)) = 29−C(10, 5)∕2. Therefore, the probability of obtaining more heads

than tails is

29 − C(10, 5)∕2
210

= 1
2
−

C(10, 5)
211

.
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p.470, icon at Example 1
#12. A family has two children. They are not twins. You ring the doorbell of the house they live in and a girl answers
the door. What is the probability that the other child in the family is a girl? Assume that in the births of two children
the probability of the birth of a girl or a boy are independent events and that the probability of the birth of a child of
either sex is 1∕2.

Solution:
The obvious answer is 1∕2, because according to the assumptions in this example the probability that any child is a
girl is 1/2. However this is not correct. The error here is in determining the sample space S. We know that the family
cannot have two boys, because a girl answered the door. If we take as the sample space {1 girl and 1 boy, 2 girls}, then
the two outcomes are not equally likely. Having “1 girl and 1 boy” is twice as likely as having “2 girls”. This is true
because “1 girl and 1 boy” can occur in two ways: the older child is a girl and the younger child is a boy, or the older
child is a boy and the younger child is a girl.

If we wish to use the basic definition of probability, p(E) = |E|∕|S|, then the outcomes must all be equally likely.
We can use the sample space where each element has the form “older child, younger child”. In this case we begin
with a sample space of size four: {GG,GB,BG,BB}. Note that the probability of having one child of each sex is
1∕2, not 1∕4. Given that the family has at least one girl, we eliminate the possibility BB to obtain sample space
S = {GG,GB,BG}. Each outcome has probability 1∕3 and thus

p(other child is a girl) = 2∕3.

Note: Suppose, in addition, we knew that it was the older child who answered the door. In this case the sample space
becomes S = {GG,GB} because the older child is not a boy. Thus, the probability that the other child is a girl is 1∕2.

Note: This example will be studied in the textbook from a slightly different point of view as Example 4 in Section 6.2.

p.474, icon at Example 9
#1. Suppose S = {1, 2,… , 20}. You select a subset T ⊆ S of size three. Find the probability that T has at least one
even number in it.

Solution:
There are C(20, 3) subsets of size three, and choosing any of them is equally likely. It is easiest to use the rule p(E) =
1 − p(E). Let E be the event “T has at least one even number in it”. Therefore E is the event “T has only odd numbers
in it”. We have

p(E) = 1 − p(E) = 1 −
C(10, 3)
C(20, 3)

≈ 0.895.
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p.474, icon at Example 9
#2. Suppose S = {1, 2,… , 20}. You select a subset T ⊆ S of size three. Find the probability that T contains the
numbers 10 or 20.

Solution:
There are C(20, 3) subsets of size three, and choosing any of them is equally likely. We use the rule for finding the
probability of the union of two events, where E is the event “10 ∈ T ” and F is the event “20 ∈ T ”. Note that we must
subtract p(E ∩ F ) because both 10 and 20 might be elements of T .

p(E ∪ F ) = p(E) + p(F ) − p(E ∩ F )

=
C(19, 2)
C(20, 3)

+
C(19, 2)
C(20, 3)

−
C(18, 1)
C(20, 3)

=
C(19, 2) + C(19, 2) − C(18, 1)

C(20, 3)
≈ 0.284.

p.474, icon at Example 9
#3. A true/false quiz has 10 questions. If you randomly answer each question, what is the probability that you score
at least 70%?

Solution:
To score at least 70%, you need to answer 7, 8, 9, or 10 questions correctly. There is C(10, 10) = 1 way to answer
all ten questions correctly, C(10, 9) = 10 ways to correctly answer nine questions correctly, C(10, 8) = 45 ways to
answer eight questions correctly, and C(10, 7) = 120 ways to answer seven questions correctly. Thus, the probability
of answering at least seven questions correctly is

p(answer at least 7 correctly) = p(answer 10 correctly) + p(answer 9 correctly) + p(answer 8 correctly)
+ p(answer 7 correctly)

= 1
210

+ 10
210

+ 45
210

+ 120
210

= 1
210

+ 10
2010

+ 45
210

+ 120
210

= 176
1024

≈ 0.172.

p.474, icon at Example 9
#4. In a lottery game, a winning set of five numbers is chosen from the set {1, 2,… , 44}. To play, you pick a set of
five numbers. If your five numbers match the five winning numbers, you win first prize. If exactly four match, you win
second prize. If exactly three match, you win third prize. If two or fewer numbers match, you win nothing. Find

(a) p(win first prize).
(b) p(win second prize).
(c) p(win third prize).
(d) p(win no prize).
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Solution:
There are C(44, 5) equally likely ways in which you can choose five numbers from the 44 numbers. Therefore, the
sample space has size C(44, 5).

(a) First prize can be won in only one way — match the five winning numbers. Therefore

p(win first prize) = C(5, 5)
C(44, 5)

= 1
C(44, 5)

≈ 0.0000009.

(b) p(win second prize) = C(5, 4) ⋅ C(39, 1)
C(44, 5)

≈ 0.0002

(c) p(win third prize) = C(5, 3) ⋅ C(39, 2)
C(44, 5)

≈ 0.007

(d) Winning no prize is the same as not winning first, second, or third prize. Therefore

p(win no prize) = 1 − p(win first, second, or third prize)

= 1 −
C(5, 5)
C(44, 5)
⏟⏞⏟⏞⏟
1st prize

−
C(5, 4) ⋅ C(39, 1)

C(44, 5)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

2nd prize

−
C(5, 3) ⋅ C(39, 2)

C(44, 5)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

3rd prize

≈ 0.993.

p.474, icon at Example 9
#5. Several states play a lottery game call Mega Millions. A Mega Millions lottery game ticket has two halves: you
pick a set of five numbers from the numbers 1 through 56 on the top half of the ticket, and one number (the Mega Ball
number) from 1 through 46 on the bottom half of the ticket. (The Mega Ball number can be the same as one of the
five numbers picked on the top half of the ticket.) Six winning numbers are chosen: five numbers from 1 through 56
and one Mega Ball number from the numbers 1 through 46. You win a prize if your choices match some or all of the
winning numbers, as follows: five and Mega Ball, five and no Mega Ball, four and Mega Ball, four and no Mega Ball,
three and Mega Ball, three and no Mega Ball, two and Mega Ball, one and Mega Ball, only the Mega Ball.

Suppose you purchase one ticket. Find the probability that you win each of these prizes.

Solution:
Elements of the sample space consist of all sets of five numbers chosen from {1, 2, 3,… , 56}, followed by one number
from the set {1, 2, 3,… , 46}. For example, {3, 7, 17, 22, 49}, 8 is one element of the sample space. The number of
elements in the sample space is C(56, 5) ⋅C(46, 1) = 175, 711, 536. We obtain the following probabilities. In each case
the numerator is the number of ways of getting a “success” and the denominator is C(56, 5) ⋅ C(46, 1).

For example, if we wish to compute the probability of matching three numbers and not matching the Mega Ball, the
number of ways of getting three matching numbers and no Mega Ball is counted as follows:

5 numbers
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
[C(5, 3)
⏟⏟⏟
3 winning
numbers

C(51, 2)]
⏟⏞⏟⏞⏟
2 losing
numbers

⋅C(45, 1)
⏟⏞⏟⏞⏟
no Mega

Ball

.

We must choose five numbers between 1 and 56 — three will match the five winning numbers and two will match the
51 losing numbers — and we must match one of the 45 losing Mega Ball numbers. We then divide by the number of
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possibilities, C(56, 5) ⋅ C(46, 1). The following are the probabilities and the approximate odds in favor of the event
happening. (If E is an event and we take p(E) and write it in the form 1∕x, the odds in favor of E are written as 1∶x.)

p(five numbers and Mega Ball) = C(5, 5) ⋅ C(1, 1)
C(56, 5) ⋅ C(46, 1)

≈ 0. 000 000 005 7 (odds: 1∶175,711,536)

p(five numbers and no Mega Ball) = C(5, 5) ⋅ C(45, 1)
C(56, 5) ⋅ C(46, 1)

≈ 0. 000 000 256 (odds: 1∶3,904,701)

p(four numbers and Mega Ball) = [C(5, 4) ⋅ C(51, 1)] ⋅ C(1, 1)
C(56, 5) ⋅ C(46, 1)

≈ 0. 000 001 45 (odds: 1∶689,065)

p(four numbers and no Mega Ball) = [C(5, 4) ⋅ C(51, 1)] ⋅ C(45, 1)
C(56, 5) ⋅ C(46, 1)

≈ 0. 000 065 3 (odds: 1∶15,313)

p(three numbers and Mega Ball) = [C(5, 3) ⋅ C(51, 2)] ⋅ C(1, 1)
C(56, 5) ⋅ C(46, 1)

≈ 0. 000 072 56 (odds: 1∶13,781)

p(two numbers and Mega Ball) = [C(5, 2) ⋅ C(51, 3)] ⋅ C(1, 1)
C(56, 5) ⋅ C(46, 1)

≈ 0. 0012 (odds: 1∶844)

p(three numbers and no Mega Ball) = [C(5, 3) ⋅ C(51, 2)] ⋅ C(45, 1)
C(56, 5) ⋅ C(46, 1)

≈ 0.0033 (odds: 1∶306)

p(one number and Mega Ball) = [C(5, 1) ⋅ C(51, 4)] ⋅ C(1, 1)
C(56, 5) ⋅ C(46, 1)

≈ 0.007 (odds: 1∶141)

p(no numbers and Mega Ball) = C(51, 5) ⋅ C(1, 1)
C(56, 5) ⋅ C(46, 1)

≈ 0.0134 (odds: 1∶75)

We can also find the probability that we win a prize by taking the sum of all the probabilities we found. We obtain
p(ticket wins a prize) ≈ 0.025 (approximate odds 1:40). Hence, p(win no prize) ≈ 1− .025 = 0.975 (approximate odds
39:40).

p.474, icon at Example 9
#6. Six cards, numbered 1, 2, 3, 4, 5, 6, are placed in a row. Let E be the event that 1 and 2 are next to each other or 3
and 4 are next to each other. Which is more likely: E or E?

Solution:
The six cards can be put in a row in 6! = 720 ways. We need to determine the size of event E. To do this, we write
E = F ∪ G, where F is the set of arrangements with 1 and 2 adjacent and G is the set of arrangements with 3 and 4
adjacent.

To find |F |, temporarily glue cards 1 and 2 together, giving five cards: 12, 3, 4, 5, 6. These five cards can be put in a
row in 5! = 120 ways. For each of the 120 patterns, the “12” card can be separated, with 1 on the left of 2, or 2 on the
left of 1. Therefore, |F | = 2 ⋅ 120 = 240.

Likewise, if we count the number of arrangements with 3 and 4 adjacent, we obtain |G| = 2 ⋅ 120 = 240.
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Because |E| = |F ∪ G| = |F | + |G| − |F ∩ G| by the inclusion-exclusion principle, we need to find |F ∩ G|. To do
this, glue cards 1 and 2 together and glue cards 3 and 4 together. This gives us four cards: 12, 34, 5, 6, which we can
arrange in 4! = 24 ways. We can interchange the positions of 1 and 2 and interchange the positions of 3 and 4 in two
ways each. Therefore, |F ∩ G| = 24 ⋅ 2 ⋅ 2 = 96.

Therefore,

p(E) = p(F ∪ G)
= p(F ) + p(G) − p(F ∩ G)

= 240
720

+ 240
720

− 96
720

= 384
720

.

Therefore p(E) = 1 − 384
720

= 336
720

. This tells us that event E is more likely.

p.474, icon at Example 9
#7. You pick five numbers, without replacement, from the set {1, 2, 3,… , 24, 25}. What is the probability that the
sum of the numbers chosen is odd?

Solution:
We can think of the experiment of choosing five numbers in two ways: pick all five numbers at once (i.e., order does
not matter), or pick the five numbers in succession (i.e., order matters).

Suppose we interpret the problem as one where we choose the five numbers all at once. Then the sample space S
consists of all subsets of five numbers chosen from the set {1, 2, 3,… , 24, 25}, and we have |S| = C(25, 5).

The only way to have the sum of the five numbers chosen be odd is to have one, three, or five odd numbers in the set
of five chosen. Let E be the event that one odd number is chosen, F the event that three odd numbers are chosen,
and G the event that five odd numbers are chosen. We need to find p(E ∪ F ∪ G). But E, F , and G are disjoint, so
p(E ∪ F ∪ G) = p(E) + p(F ) + p(G). Using the fact that there are 13 odd numbers and 12 even numbers, we have

p(E ∪ F ∪ G) = p(E) + p(F ) + p(G)

=
C(13, 1) ⋅ C(12, 4)

C(25, 5)
+

C(13, 3) ⋅ C(12, 2)
C(25, 5)

+
C(13, 5) ⋅ C(12, 0)

C(25, 5)

=
C(13, 1) ⋅ C(12, 4) + C(13, 3) ⋅ C(12, 2) + C(13, 5) ⋅ C(12, 0)

C(25, 5)
≈ 0.501.

Suppose we solve the problem again, but we assume that the order in which the five numbers are chosen matters. In
this case the sample space S consists of all sequences of length five of numbers from 1 to 25, and we have |S| = P (25, 5).

We need to compute the number of successes. In order to have an odd sum, we need to compute the number of sequences
of length five consisting of one, three, or five odd integers. To compute the number of sequences of length five with
exactly one odd integer, we can take a row of five blanks and choose one of them to hold the one odd number chosen.
The choice of one blank can be done in C(5, 1) ways and the number of ways to insert an odd integer in this blank is
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P (13, 1). Because the number of ways to pick four even integers to place in the other four blanks is P (12, 4), the number
of ways to obtain a sequence of length five with exactly one odd integer is C(5, 1) ⋅ P (13, 1) ⋅ P (12, 4). Therefore, the
probability of obtaining a sequence of length five with exactly one odd integer is

[C(5, 1) ⋅ P (13, 1) ⋅ P (12, 4)]∕P (25, 5).

Similarly, the number of ways to obtain a sequence of length five with exactly three odd integers is

[C(5, 3) ⋅ P (13, 3) ⋅ P (12, 2)]∕P (25, 5)

and the number of ways to obtain a sequence of length five with all five odd integers is

[C(5, 5) ⋅ P (13, 5)]∕P (25, 5).

Therefore we have

p(E ∪ F ∪ G) = p(E) + p(F ) + p(G)

=
C(5, 1) ⋅ P (13, 1) ⋅ P (12, 4)

P (25, 5)
+

C(5, 3) ⋅ P (13, 3) ⋅ P (12, 2)
P (25, 5)

+
C(5, 5) ⋅ P (13, 5)

P (25, 5)

=
C(5, 1) ⋅ P (13, 1) ⋅ P (12, 4) + C(5, 3) ⋅ P (13, 3) ⋅ P (12, 2) + C(5, 5) ⋅ P (13, 5)

P (25, 5)
≈ 0.501.

Note: In this case the same answer is obtained regardless of whether or not we assume order matters.
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Rosen, Discrete Mathematics and Its Applications, 8th edition
Extra Examples
Section 7.2—Probability Theory

— Page references correspond to locations of Extra Examples icons in the textbook.

p.481, icon at Example 3
#1. You draw 2 cards, one at a time without replacement, at random from a deck of 52 cards. Find

(a) p(second card is a Jack | first card is a Jack)
(b) p(second card is red | first card is black)

Solution:

(a) If the first card is a Jack, then there are three Jacks in the remaining deck. Hence the probability that the second
card is a Jack is 3∕51 = 1∕17.

(b) If the first card is black, then there are still 26 out of 51 cards that are red. Hence the probability that the second
card is red is 26/51.

p.482, icon at Example 5
#1. You write a string of letters of length 3 from the usual alphabet, with no repeated letters allowed. Let E1 be the
event that the string begins with a vowel and E2 be the event that the string ends with a vowel. Determine whether E1
and E2 are independent.

Solution:
The sample space has size 26 ⋅ 25 ⋅ 24. The event E1 consists of all strings of the form _ _ _, where the first blank is to
be filled in with a vowel. Hence |E1| = 5 ⋅ 25 ⋅ 24. Similarly, |E2| = 25 ⋅ 24 ⋅ 5. Therefore

p(E1) ⋅ p(E2) =
5 ⋅ 25 ⋅ 24
26 ⋅ 25 ⋅ 24

⋅
25 ⋅ 24 ⋅ 5
26 ⋅ 25 ⋅ 24

= 5
26

⋅
5
26

and

p(E1 ∩ E2) =
5 ⋅ 24 ⋅ 4
26 ⋅ 25 ⋅ 24

= 2
65

.

Because 5
26

⋅
5
26

≠ 2
65

, the events are not independent.

p.485, icon at Example 9
#1. A fair coin is flipped five times. Find the probability of obtaining exactly four heads.
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Solution:
This is an example of a sequence of five independent Bernoulli trials. In this example, a success is getting heads. The
probability of success is 1∕2 and the probability of failure (getting tails) is q = 1−1∕2 = 1∕2. Therefore the probability
of getting exactly four heads is b(4; 5, 12 ) = C(5, 4)( 12 )

4(1 − 1
2 )

1 ≈ 0.156.

p.485, icon at Example 9
#2. A die is rolled six times in a row. Find

(a) p(exactly four 1’s are rolled).
(b) p(no 6’s are rolled).

Solution:

(a) This is an example of a sequence of six independent Bernoulli trials, where the probability of success is 1∕6
and the probability of failure is 5∕6. Therefore the probability of rolling exactly four 1’s when a die is rolled six

times is b(4; 6, 16 ) = C(6, 4)
(

1
6

)4 ( 5
6

)2
≈ 0.008.

(b) In this case a success is “rolling a number other than 6”, which has probability p = 5∕6 and failure is “rolling a
6”, which has probability q = 1∕6. Therefore the probability of rolling no 6’s when a die is rolled six times is

b(6; 6, 56 ) = C(6, 6)
(

5
6

)6 ( 1
6

)0
≈ 0.335.

p.485, icon at Example 9
#3. A quiz consists of 20 true/false questions. You need to have a score of at least 65% in order to pass the quiz. What
is the probability that you pass the quiz if you guess at random at each answer?

Solution:
This is an example of a sequence of 20 independent Bernoulli trials, where the probability of a success (guessing
correctly) and the probability of a failure are both 1∕2. To pass, you need to guess correctly on at least 13 of the 20
questions. Therefore, the probability of passing is

20
∑

i=13
= C(20, i)

(1
2

)i (
1 − 1

2

)20−i

=
20
∑

i=13
C(20, i)

(1
2

)20

=
(1
2

)20
(C(20, 13) + C(20, 14) + · · · + C(20, 20))

=
(1
2

)20
(77520 + 38760 + 15504 + 4845 + 1140 + 190 + 20 + 1)

=
(1
2

)20
(137980) ≈ 0.13.
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p.494, icon at Example 1
#1. It is estimated that a certain disease occurs in 0.1% of the U.S. population. A test that attempts to detect the disease
has been developed with the following results: 99.7% of people with the disease test positive for the disease and 0.2%
of people without the disease test positive for the disease. (A result that says that a person has the disease when in
reality the person does not have the disease is called a “false positive”.)
Find the probability that a person actually has the disease, given that the person tests positive for the disease.

Solution:
Let

A be the event that the person tests positive for the disease

and

B be the event that the person actually has the disease.

We want p(B |A). According to Bayes’ Theorem, we have

p(B |A) =
p(B) ⋅ p(A |B)

p(B) · (A |B) + p(B) ⋅ p(A |B)
=

1
1000 ⋅

997
1000

1
1000 ⋅

997
1000 +

999
1000 ⋅

2
1000

= 997
997 + 1998

≈ 0.333 = 33.3%.

That is, only about one third of the people who test positive for the disease actually have the disease and about two
thirds of the people who test positive for the disease are really disease-free. (How would you weigh the advantage of
having such a test to detect the disease against the anxiety that it would cause two thirds of the people who take the
test?)
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p.504, icon at Example 2
#1. You roll a die. If a 5 or 6 shows, you win three points. If a 1, 2, 3, or 4 shows, you lose one point. Set up a random
variable X that measures the number of points you win, and find the expected value of X.

Solution:

X(1) = X(2) = X(3) = X(4) = −1, X(5) = X(6) = 3.

E(X) = (−1) ⋅ 4
6
+ 3 ⋅ 2

6
= 1

3
.

p.504, icon at Example 2
#2. You roll a die four times. Let X be the random variable that counts the sum of the numbers rolled. Find E(X).

Solution:
Let X = the sum of the four numbers rolled. For i = 1, 2, 3, 4, let Xi = the number rolled on the ith toss. Then E(X) =
E(X1)+E(X2)+E(X3)+E(X4). But for each i we have E(Xi) = 7∕2. Therefore E(X) = 7∕2+7∕2+7∕2+7∕2 = 14.

p.504, icon at Example 2
#3. A 6-sided die has its sides labeled 1, 1, 2, 2, 2, 3. If you roll the die once, what is the expected value of the number
that shows?

Solution:
Here S = {1, 2, 3} and p(1) = 2∕6, p(2) = 3∕6 and p(3) = 1∕6. For s ∈ S, we let X(s) = the number rolled. Therefore

E(X) =
∑

s∈S
p(s)X(s) = 2

6
⋅ 1 + 3

6
⋅ 2 + 1

6
⋅ 3 = 11

6
.
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p.504, icon at Example 2
#4. A multiple-choice exam consists of a series of questions, each with four possible responses. If you answer a
question correctly, you receive 1 point. If you answer a question incorrectly, you lose 1∕3 point. If you do not answer
a question, you neither lose not gain any points. What is the expected value of the number of points you receive on a
question

(a) if you randomly choose an answer?
(b) if you can eliminate one of the four choices and randomly choose one of the other three choices?

Solution:

(a) Let X be the random variable that measures the number of points you receive on the question. Then

E(X) = 1
4
⋅ 1 + 3

4
⋅
(

−1
3

)

= 0.

This says that guessing will neither raise nor lower your test score.
(b) Let X be the random variable that measures the number of points you receive on the question. Then

E(X) = 1
3
⋅ 1 + 2

3
⋅
(

−1
3

)

= 1
9
.

Thus, it is to your advantage to guess if you can eliminate one of the responses.

p.511, icon at Example 11
#1. A fair coin is flipped three times. Let X be the random variable that counts the number of heads and let Y be the
random variable that counts the number of tails. Then

p(X = 0) = 1
8 , p(X = 1) = 3

8 , p(X = 2) = 3
8 , p(X = 3) = 1

8 .

p(Y = 0) = 1
8 , p(Y = 1) = 3

8 , p(Y = 2) = 3
8 , p(Y = 3) = 1

8 .

Determine whether X and Y are independent random variables.

Solution:
It is quickly seen that the random variables are not independent. For example,

p(X = 0 and Y = 0) = 0

because it is impossible to have 0 heads and 0 tails in three tosses of the coin. But

p(X = 0) ⋅ p(Y = 0) = 1
8
⋅
1
8
≠ 0.
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p.511, icon at Example 11
#2. A coin is flipped and a die rolled. The sample space

S = {(H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6), (T , 1), (T , 2), (T , 3), (T , 4), (T , 5), (T , 6)}.

Let X be the random variable defined as follows: X = 1 if H is obtained on the coin and 0 if T is obtained on the
coin. Let Y be the random variable that counts the number of spots showing on the die. Determine whether X and Y
are independent random variables.

Solution:
We need to check that

p
(

X(s) = i and Y (s) = j
)

=
(

p(X(s) = i
)

⋅
(

p(Y (s) = j
)

for i = 0, 1 and j = 1, 2, 3, 4, 5, 6.

If i = 0, we need to check

p(X = 0 and Y = j) = p(X = 0) ⋅ p(Y = j)

for each j. But this is true because the left side is equal to 1
12 and the right side is equal to 1

2 ⋅ 1
6 . If i = 1, we need to

check

p(X = 1 and Y = j) = p(X = 1) ⋅ p(Y = j)

for each j. But this is true because the left side is equal to 1
12 and the right side is equal to 1

2 ⋅
1
6 .

p.514, icon at Example 14
#1. Two tetrahedral dice are rolled. (A tetrahedral die is a die with four faces, which are numbered 1, 2, 3, 4. Let
X(i, j) = i + j, where the first die shows i and the second die shows j. Find E(X) and V (X).

Solution:
The sample space S consists of 16 outcomes: S = {(i, j) | i, j = 1, 2, 3, 4}. We have the following probabilities:

p(2) = 1∕16, p(3) = 2∕16, p(4) = 3∕16, p(5) = 4∕16, p(6) = 3∕16, p(7) = 2∕16, p(8) = 1∕16.

Therefore,

E(X) = 2 ⋅ 1
16

+ 3 ⋅ 2
16

+ 4 ⋅ 3
16

+ 5 ⋅ 4
16

+ 6 ⋅ 3
16

+ 7 ⋅ 2
16

+ 8 ⋅ 1
16

= 80
16

= 5.

To find V (X), we use the equality V (X) = E(X2) − E(X)2:

V (X) = E(X2) − E(X)2

=
(

4 ⋅ 1
16

+ 9 ⋅ 2
16

+ 16 ⋅ 3
16

+ 25 ⋅ 4
16

+ 36 ⋅ 3
16

+ 49 ⋅ 2
16

+ 64 ⋅ 1
16

)

− 52

= 1
16

(440) − 52 = 27.5 − 25 = 2.5.
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