
Rosen, Discrete Mathematics and Its Applications, 8th edition
Extra Examples
Section 8.1—Recurrence Relations

— Page references correspond to locations of Extra Examples icons in the textbook.

p.528, icon at Example 1
#1. Find a recurrence relation (and initial condition) for each of the following:

(a) the number of strings of length n of letters of the alphabet.
(b) the number of strings of length n of letters of the alphabet, if no adjacent letters can be the same.
(c) the number of strings of length n of letters of the alphabet with no repeated letters.

Solution:

(a) Let an equal the number of strings of length n of letters of the alphabet. We can obtain any such string by
taking a string s of length n − 1 and appending a letter to the end of s. This can be done in 26 ways. Therefore,
an = 26an−1. The initial condition is a1 = 26.

(b) Let bn equal the number of strings of length n of letters of the alphabet with no adjacent letters identical. Each
such string can be obtained from a string s of length n−1 by taking s and appending to it a letter that is different
from the last letter of s. Because there are 25 letters that can be appended, there are 25 ways to extend s to a
string of length n. Therefore, bn = 25bn−1. The initial condition is b1 = 26.

(c) Let cn equal the number of strings of length n of letters of the alphabet with no repeated letters. Each such string
can be obtained from a string s of length n− 1 by taking s and appending to it a letter that is different from each
of the letters of s. Because there are n− 1 letters used in s, there are 26 − (n− 1) = 27 − n letters available to be
appended to s. Therefore, cn = (27 − n)cn−1. The initial condition is c1 = 26. Note that c27 = (27 − 27)c26 = 0
because there are only 26 letters in the alphabet. Likewise, the recurrence relation yields c28 = c29 = … = 0.

p.528, icon at Example 1
#2. Find a recurrence relation for the sequence 1, 1

3
, 1
5
, 1
7
, 1
9
,…, which is given by the formula an = 1

2n + 1
for

n = 0, 1, 2, 3,… .

Solution:

We will try to relate an =
1

2n + 1
and an−1 =

1
2(n − 1) + 1

= 1
2n − 1

to each other:

an =
1

2n + 1
= 1

(2n − 1) + 2
.

But we can rewrite an−1 =
1

2n − 1
as 2n − 1 = 1

an−1
.
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Therefore,

an =
1

2(n − 1) + 2
= 1

1
an−1

+ 2
= 1

1 + 2an−1
an−1

=
an−1

1 + 2an−1
.

Thus, a recurrence relation for the given sequence is

an =
an−1

1 + 2an−1
,

with initial condition a0 = 1.

Alternately, we could write an = 1
2n + 1

= 1
2n + 1

⋅
2n − 1
2n + 1

= 2n − 1
2n + 1

⋅
1

2n + 1
= 2n − 1

2n + 1
⋅ an−1, obtaining a second

recurrence relation

an =
2n − 1
2n + 1

⋅ an−1,

with initial condition a0 = 1.

p.528, icon at Example 1
#3. Suppose bn = 2bn−1 + n − 2n and b0 = 5.

(a) Find bn−1 in terms of bn−2.
(b) Find bn in terms of bn−2.
(c) Find bn in terms of bn−3.
(d) Use parts (b) and (c) to conjecture a formula for bn.

Solution:

(a) The recurrence relation for bn doubles the previous term (which is 2bn−1), adds the subscript number of bn (which
is n), and subtracts 2 raised to the power of the subscript of bn (which is 2n).

The term bn−1 is obtained in the same way: double the previous term (which is 2bn−2), add the subscript number
of bn−1 (which is n − 1), and subtract 2 raised to the power of the subscript of bn−1 (which is 2n−1). Therefore
bn−1 = 2bn−2 + (n − 1) − 2n−1.

(b) To obtain bn in terms of bn−2, we first use the recurrence relation to obtain bn in terms of bn−1 and then use
part (a) to obtain bn−1 in terms of bn−2:

bn = 2bn−1 + n − 2n

= 2[2bn−2 + (n − 1) − 2n−1] + n − 2n

= 22bn−2 + (n − 1) + n − 2n−1 − 2n.

(c) To obtain bn in terms of bn−3, we can use the recurrence equation for bn−2 and part (b). The recurrence relation
for bn−2 is bn−2 = 2bn−3 + (n − 2) − 2n−2. Substituting for bn−2 into the result in part (b), we have

bn = 22bn−2 + (n − 1) + n − 2n−1 − 2n

= 22[2bn−3 + (n − 2) − 2n−2] + (n − 1) + n − 2n−1 − 2n

= 23bn−3 + (n − 2) + (n − 1) + n − 2n−2 − 2n−1 − 2n.

2



(d) Mentally continuing the pattern in part (c), it seems reasonable to guess that the first term becomes 2nb0, the
sum (n− 2) + (n− 1) + n becomes 1 + 2 + 3 + · · · + (n− 2) + (n− 1) + n, and the sum of the powers of 2 being
subtracted becomes −21 − 22 − 23 − · · · − 2n−1 − 2n−1 − 2n. Thus, it is reasonable to conjecture that

bn = 2nb0 + [1 + 2 + 3 + · · · + (n − 2) + (n − 1) + n] − [21 + 22 + 23 + · · · + 2n−1 + 2n−1 + 2n]

= 5 ⋅ 2n +
n(n + 1)

2
− 2n+1,

where summation formulas were used at the last step to replace 1 + 2 + 3 + · · · + (n − 2) + (n − 1) + n and
21 + 22 + 23 + · · · + 2n−1 + 2n−1 + 2n.

Note: You can check that this is correct by substituting the formula for bn and bn−1 into the given recurrence relation
and showing that both sides of the recurrence relation are equal.

p.528, icon at Example 1
#4. Solve: an = 3an−1 + 1, a0 = 4, by substituting for an−1, then an−2, etc.

Solution:
Beginning with an = 3an−1 + 1 and substituting for an−1, then an−2, then an−3, etc., yields:

an = 3an−1 + 1
= 3(3an−2 + 1) + 1

= 32an−2 + 3 ⋅ 1 + 1

= 32(3an−3 + 1) + 3 ⋅ 1 + 1

= 33an−3 + 32 ⋅ 1 + 3 ⋅ 1 + 1
⋮

= 3na0 + (3n−1 + 3n−2 + · · · + 32 + 3 + 1)

= 4 ⋅ 3n + 3n−1
2

= 9
2
⋅ 3n − 1

2

= 3n+2
2

− 1
2
.

p.528, icon at Example 1
#5. Find a formula for the recurrence relation an = 2an−1 + 2n, a0 = 1, using a recursive method.

Solution:

an = 2an−1 + 2n

= 2(2an−2 + 2n−1) + 2n = (22an−2 + 2 ⋅ 2n−1) + 2n = (22an−2 + 2n) + 2n = 22an−2 + 2 ⋅ 2n

= 22(2an−3 + 2n−2) + 2 ⋅ 2n = (23an−3 + 22 ⋅ 2n−2) + 2 ⋅ 2n = (23an−3 + 2n) + 2 ⋅ 2n = 23an−2 + 3 ⋅ 2n.
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At this stage it would be reasonable to guess that if we continue this process we will obtain:

an = 2na0 + n ⋅ 2n = 2n ⋅ 1 + n ⋅ 2n = (n + 1)2n.

Therefore, an = (n + 1)2n is a formula for the given sequence.

We can verify that this formula is correct by substituting an = (n+ 1)2n and an−1 = n2n−1 into the original recurrence
relation and checking that an equality results.:

2an−1 + 2n = 2(n2n−1) + 2n = n2n + 2n = (n + 1)2n = an.

p.528, icon at Example 1
#6. You begin with $1000. You invest it at 5% compounded annually, but at the end of each year you withdraw $100
immediately after the interest is paid.

(a) Set up a recurrence relation and initial condition for the amount you have after n years.
(b) How much is left in the account after you have withdrawn $100 at the end of the third year?
(c) Find a formula for an.
(d) Use the formula to determine how long it takes before the last withdrawal reduces the balance in the account to

$0.

Solution:

(a) For n > 0, let an be the amount in the account at the end of year n; i.e., just after the interest has been added to
the account and the $100 has been withdrawn. Then an is equal to the amount from the previous year (an−1) plus
the interest earned (0.05an−1) minus the $100 withdrawal. That is,

an = an−1 + 0.05an−1 − 100 = 1.05an−1 − 100, if n > 0, a0 = 1000.

(b) Using the recurrence relation yields

a1 = 1050 − 100 = 950
a2 = 1.05a1 − 100 = 1.05(950) − 100 = 997.50 − 100 = 897.50
a3 = 1.05a2 − 100 = 1.05(897.50) − 100 = 942.38 − 100 = 842.38

Thus, the answer is $842.38.
(c) To develop a formula, note that

an = 1.05an−1 − 100,
an−1 = 1.05an−2 − 100,
an−2 = 1.05an−3 − 100,

⋮
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Therefore

an = 1.05an−1 − 100
= 1.05(1.05an−2 − 100) − 100

= 1.052an−2 − (1.05 ⋅ 100) − 100

= 1.052(1.05an−3 − 100) − (1.05 ⋅ 100) − 100

= 1.053an−3 − (1.052 ⋅ 100) − (1.05 ⋅ 100) − 100
⋮

= 1.05na0 − (1.05n−1 ⋅ 100) − (1.05n−2 · · · 100) − · · · − (1.052 ⋅ 100) − (1.05 ⋅ 100) − 100

= 1.05n ⋅ 1000 − 100(1.05n−1 + 1.05n−2 + · · · + 1.052 + 1.05 + 1)

= 1.05n ⋅ 1000 − 100 ⋅ 1.05
n − 1

1.05 − 1
= 1.05n ⋅ 1000 − 2000(1.05n − 1)
= 2000 − 1.05n ⋅ 1000

and hence a formula for an is an = 2000 − 1.05n ⋅ 1000.
(d) Using various values of n in the formula for an yields a14 = 20.07 and a15 = −78.93. Hence, at the end of the

15th year the balance will be 1.05 ⋅ 20.07 = 21.07 before a withdrawal is made; if this amount is withdrawn, the
balance will become $0. (Alternately, we could solve the equation 2000 − 1.05n ⋅ 1000 = 0 for n and obtain ⌊n⌋
as the solution.)

p.528, icon at Example 1
#7. Find a recurrence relation for the number of strings of letters of the ordinary alphabet that do not have adjacent
vowels.

Solution:
Let us call a string of letters of the alphabet “good” if it has no adjacent vowels. Let an be the number of strings of
length n of letters of the alphabet that do not have adjacent vowels.

The set of all good strings of length n is the union of the following two disjoint sets —

A: the set of good strings of length n that end with a consonant, and
B: the set of good strings of length n that end with a vowel.

Each string in A can be obtained from a good string of length n − 1 by adding any consonant at the end of the string.
Thus, |A| = 21 ⋅ an−1.

Each string in B ends with a vowel. In this case we know that that second letter from the end must be a consonant
(otherwise the string would have adjacent vowels). Thus, each string in B is a good string of length n − 2 followed by
a consonant (in the second last position) and a vowel at the end. Therefore, |B| = 5 ⋅ 21 ⋅ an−2.

Because A and B are disjoint, the set of all good strings of length n is their sum, |A| + |B|. That is,

an = 21 an−1 + 105 an−2.
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The two initial conditions are obtained by counting the number of good strings of lengths 1 and 2: a1 = 26 because
any string of one of the 26 letters of the alphabet cannot have adjacent vowels; a2 = 262−52 = 651 (we take all strings
of length 2 and subtract those with two vowels).

p.528, icon at Example 1
#8. You have two distinct parallel lines L1 and L2. You keep adding additional lines, L3, L4,…, with none parallel
to L1 or L2 or to each other, and no three passing through the same point.

(a) Find a recurrence relation and initial condition(s) for rn, which is defined to be the number of regions into which
the plane is divided by the lines L1, L2,… , Ln.

(b) Find a formula for the number of regions into which the plane is divided by L1, L2,… , Ln.

Solution:

(a) The recurrence relation is rn = rn−1 + n(n > 2), with initial condition r2 = 3. To see this, note that line Ln must
cut each of the previous n−1 lines in exactly one point. This in effect divides Ln into n segments, each of which
divides an existing region into two parts. Therefore, rn = rn−1 + n.

(b) Proceeding inductively:

r2 = 3,
r3 = r2 + 3 = 3 + 3,
r4 = r3 + 4 = 3 + 3 + 4,
r5 = r4 + 5 = 3 + 3 + 4 + 5,
r6 = r5 + 6 = 3 + 3 + 4 + 5 + 6.

This suggests that

rn = 3 + (3 + 4 + · · · + n)
= (1 + 2) + (3 + 4 + · · · + n)
= 1 + 2 + 3 + · · · + n

=
n(n + 1)

2
.

To verify that this guess is correct, take rn = rn−1 + n and substitute n(n + 1)
2

for rn and (n − 1)n
2

for rn−1, obtain-

ing n(n + 1)
2

=
(n − 1)n

2
+ n, which is true because the right side simplifies to give the left side: (n − 1)n

2
+ n =

(n − 1)n + 2n
2

= n2 + n
2

=
n(n + 1)

2
.

p.528, icon at Example 1
#9. This is a variation on Fibonacci’s rabbit sequence. We begin with one pair of newborn rabbits. Once a pair is two
months old, the pair has two pairs of offspring, and continues to have two pairs of offspring each month thereafter. Give
a recurrence relation and initial condition(s) for the sequence fn, where fn is equal to the number of pairs of rabbits
alive at the end of the nth month (after the offspring are born). Assume that the rabbits never die during the period
being considered.
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Solution:
The number of pairs at the end of n months (fn) is equal to the number of pairs alive one month earlier (fn−1) plus the
number of newborn pairs. But each pair of rabbits alive two months earlier gives birth to two pairs of newborn rabbits.
Therefore, there are 2fn−2 pairs of newborn rabbits. Hence

fn = fn−1 + 2fn−2, f (1) = 1, f (2) = 3.

p.528, icon at Example 1
#10. Here is another variation on Fibonacci’s rabbit sequence. We begin with one pair of newborn rabbits. At the end
of each month a new pair of newborn rabbits is added to the population. Once any pair is two months old, the pair has
one pair of offspring and continues to have one pair of offspring each month thereafter. Give a recurrence relation and
initial condition(s) for the sequence fn, where fn is equal to the number of pairs of rabbits alive at the end of the nth
month (after the rabbits have given birth and the newborn pair has been introduced). Assume that the rabbits never die
during the period being considered.

Solution:
The number of pairs at the end of n months (fn) is equal to 1 (the newborn pair added) plus the number of pairs alive
one month earlier (fn−1) plus the number of newborn pairs (which is equal to the number of pairs alive two months
earlier, fn−2. Thus

fn = 1 + fn−1 + fn−2, f (1) = 2, f (2) = 4.

p.528, icon at Example 1
#11. Here is a third variation on Fibonacci’s rabbit sequence. We begin with one pair of newborn rabbits. Once the
pair is three months old, the pair has one pair of offspring, and continues to have one pair of offspring every other month
thereafter. Give a recurrence relation and initial condition(s) for the sequence fn , where fn is equal to the number of
pairs of rabbits alive at the end of the nth month (just after any offspring are born). Assume that the rabbits never die
during the period being considered.

Solution:
The number of pairs alive at the end of n months (fn) is equal to the number of pairs alive one month earlier (fn−1)
plus the number of pairs of newborn rabbits. To determine the number of newborn pairs, we need to know the number
of pairs born three months earlier, five months earlier, seven months earlier, etc. But, for example, the number of pairs
born three months before month n is equal to fn−3 − fn−4 and the number of pairs born five months before month n is
equal to fn−5 − fn−6. Thus,

fn = fn−1 + number of pairs born in month n
= fn−1 + (fn−3 − fn−4) + (fn−5 − fn−6) + (fn−7 − fn−8) + · · ·

where the sum continues as long as the subscripts are positive. Similarly,

fn−1 = fn−2 + number of pairs born in month n − 1
= fn−2 + (fn−4 − fn−5) + (fn−6 − fn−7) + (fn−8 − fn−9) + · · · .
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Substitute fn−1 from the second equation into the first equation. Almost all terms cancel and we obtain

fn = fn−2 + fn−3,

with f (1) = 1, f (2) = 1, f (3) = 2.

p.528, icon at Example 1
#12. (Problem A1 from the 1990 William Lowell Putnam Mathematics Competition)

Here are the first ten terms of an infinite sequence:

2, 3, 6, 14, 40, 152, 784, 5168, 40567, 363392.

(a) Find a formula for an infinite sequence a0, a1, a2, a3,… such that the first ten terms of the sequence are the ones
given here. (Hint: consider the sum of two rapidly increasing sequences.)

(b) Show that the sequence in (a) satisfies the recurrence relation

an = (n + 4)an−1 − 4nan−2 + (4n − 8)an−3.

Solution:

(a) The sequence increases rapidly, which suggests the possibility that the formula may involve an exponential func-
tion cn. If we look for 2n in each term, we find that the first few terms are:

20 + 1, 21 + 1, 22 + 2, 23 + 6, 24 + 24, 25 + 120, 26 + 720, 27 + 5040.

The second term in each sum is a factorial, yielding

20 + 0!, 21 + 1!, 22 + 2!, 23 + 3!, 24 + 4!, 25 + 5!, 26 + 6!, 27 + 7!.

Thus, an = 2n + n! is one such formula.
(b) We need to show that an = (n + 4)an−1 − 4nan−2 + (4n − 8)an−3 is satisfied by the sequence an = 2n + n!. That

is,

2n + n! = (n + 4)[2n−1 + (n − 1)!] − 4n[2n−2 + (n − 2)!] + (4n − 8)[2n−3 + (n − 3)!].

The right side can be simplified as follows:

(n + 4)[2n−1 + (n − 1)!] − 4n[2n−2 + (n − 2)!] + (4n − 8)[2n−3 + (n − 3)!]

= n2n−1 + 4 ⋅ 2n−1 − 4n2n−2 + 4n2n−3 − 8 ⋅ 2n−3+
n(n − 1)! + 4(n − 1)! − 4n(n − 2)! + (4n − 8)(n − 3)!

= n2n−1 + 2n+1 − n2n + n2n−1 − 2n + n! + 4(n − 1)! − 4n(n − 2)! + (4n − 8)(n − 3)!

= n2n + 2n+1 − n2n − 2n + n! + 4(n − 1)! − 4n(n − 2)! + (4n − 8)(n − 3)!

= 2n+1 − 2n + n! + 4(n − 1)! − 4n(n − 2)! + (4n − 8)(n − 3)!
= 2n + n! + 4(n − 1)! − 4n(n − 2)! + (4n − 8)(n − 3)!
= 2n + n! + 4(n − 1)! − 4n(n − 2)! + 4(n − 2)!
= 2n + n! + 4(n − 1)! + (4 − 4n)(n − 2)!
= 2n + n! + 4(n − 1)! − 4(n − 1)(n − 2)!
= 2n + n! + 4(n − 1)! − 4(n − 1)!
= 2n + n!.
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p.528, icon at Example 1
#13. Suppose a chess king is placed on the lower left square of an m × n chessboard (that is, a rectangular board with
m rows and n columns). Let M(m, n) be equal to the number of paths that a king can use moving from the lower left
corner to the upper right corner of an m × n board, with the restriction that each move is either up, to the right, or
diagonally up and to the right.

(a) Find a recurrence relation and initial condition(s) for M(m, n).
(b) Find the number of ways in which the king can move from the lower left square to the upper right square on a

5 × 5 chessboard.

Solution:

(a) In order for the king to reach the upper right square, the king’s last move must be from one of the following
three squares: the square immediately below the corner square, the square immediately to the left of the corner
square, or the square diagonally down and to the left of the corner square. The number of ways in which the king
could have arrived at each of these three squares is M(m, n−1), M(m−1, n), and M(m−1, n−1), respectively
(assuming that m > 1 and n > 1). Therefore,

M(m, n) = M(m, n − 1) +M(m − 1, n) +M(m − 1, n − 1),

with initial conditions M(1, 1) = M(2, 1) = M(1, 2) = 1.
(b) First note that M(k, 1) = M(1, k) = 1 for all k > 1 and M(j, k) = M(k, j) for all j and k (by symmetry). The

following steps use the recurrence relation to find M(5, 5):

M(2, 2) = M(2, 1) +M(1, 2) +M(1, 1) = 1 + 1 + 1 = 3
M(2, 3) = M(3, 2) = M(1, 3) +M(2, 2) +M(1, 2) = 1 + 3 + 1 = 5
M(3, 3) = M(3, 2) +M(2, 3) +M(2, 2) = 5 + 5 + 3 = 13
M(2, 4) = M(4, 2) = M(1, 4) +M(2, 3) +M(1, 3) = 1 + 5 + 1 = 7
M(2, 5) = M(5, 2) = M(1, 5) +M(2, 4) +M(1, 4) = 1 + 7 + 1 = 9
M(3, 4) = M(4, 3) = M(3, 3) +M(2, 4) +M(3, 2) = 13 + 7 + 5 = 25
M(3, 5) = M(5, 3) = M(4, 3) +M(5, 2) +M(2, 4) = 25 + 9 + 7 = 41
M(4, 4) = M(4, 3) +M(3, 4) +M(3, 3) = 25 + 25 + 13 = 63
M(4, 5) = M(5, 4) = M(4, 4) +M(3, 5) +M(3, 4) = 63 + 41 + 25 = 129
M(5, 5) = M(5, 4) +M(4, 5) +M(4, 4) = 129 + 129 + 63 = 321.

Therefore, M(5, 5) = 321.

This is shown in the following table, where, beginning from the lower left corner, each square has as its value the sum
of the numbers in the squares directly below, to the left, and diagonally below on the left.

1 9 41 129 321
1 7 25 63 129
1 5 13 25 41
1 3 5 7 9
1 1 1 1 1
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Rosen, Discrete Mathematics and Its Applications, 8th edition
Extra Examples
Section 8.2—Solving Linear Recurrence Relations

— Page references correspond to locations of Extra Examples icons in the textbook.

p.543, icon at Example 3
#1. Solve: an = 2an−1 + 3an−2, a0 = 0, a1 = 1.

Solution:
Using an = rn, the following characteristic equation is obtained:

r2 − 2r − 3 = 0

The left side factors as (r − 3)(r + 1), yielding the roots 3 and −1. Hence, the general solution to the given recurrence
relation is

an = c3n + d(−1)n.

Using the initial conditions a0 = 0 and a1 = 1 yields the system of equations

c + d = 0
3c − d = 1

with solution c = 1∕4 and d = −1∕4. Therefore, the solution to the given recurrence relation is

an =
1
4
⋅ 3n − 1

4
⋅ (−1)n.

p.543, icon at Example 3
#2. Solve: an = −7an−1 − 10an−2, a0 = 3, a1 = 3.

Solution:
Using an = rn yields the characteristic equation r2 + 7r+ 10 = 0, or (r+ 5)(r+ 2) = 0. Therefore the general solution
is

an = c(−5)n + d(−2)n.

The initial conditions give the system of equations

c + d = 3
−5c − 2d = 3.

The solution to the system is c = −3 and d = 6. Hence, the solution to the recurrence relation is

an = (−3)(−5)n + 6(−2)n.
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p.516, icon at Example 3
#3. Solve: an = 10an−1 − 25an−2, a0 = 3, a1 = 4.

Solution:
Using an = rn yields the characteristic equation r2 − 10r+ 25 = 0, or (r− 5)(r− 5) = 0, with 5 as a repeated solution.
Therefore the general solution is

an = c ⋅ 5n + d ⋅ n ⋅ 5n.

The initial conditions give the system of equations

c = 3
5c + 5d = 4.

The solution to the system is c = 3 and d = −11∕5. Hence, the solution to the recurrence relation is

an = 3 ⋅ 5n − 11
5

⋅ n ⋅ 5n.

p.543, icon at Example 3
#4. Suppose that the characteristic equation of a linear homogeneous recurrence relation with constant coefficients is

(r − 3)4(r − 2)3(r + 6) = 0.

Write the general solution of the recurrence relation.

Solution:

an = a3n + bn3n + cn23n + dn33n + e2n + fn2n + gn22n + ℎ(−6)n.

p.548, icon at Example 11
#1. Solve the recurrence relation an = 3an−1 + 2n, with initial condition a0 = 2.

Solution:
The characteristic equation for the associated homogeneous recurrence relation is r− 3 = 0, which has solution r = 3.
Therefore the general solution to the associated homogeneous recurrence relation is

an = a3n.

To obtain a particular solution to the given recurrence relation, try a(p)n = c2n, obtaining c2n = 3c2n−1 + 2n, which
yields c = −2. Therefore a particular solution is

a(p)n = −2n+1.
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Hence, the general solution to the given recurrence relation is

an = a3n − 2n+1.

The initial condition a0 = 2 gives 2 = a ⋅ 1 − 2, or a = 4. Therefore the solution to the given nonhomogeneous
recurrence relation is

an = 4 ⋅ 3n − 2n+1.

p.548, icon at Example 11
#2. Solve the recurrence relation an = 8an−1 − 12an−2 + 3n, with initial conditions a0 = 1 and a1 = 5.

Solution:
The characteristic equation for the associated homogeneous recurrence relation is r2−8r+12 = 0, which has solutions
r = 6 and r = 2. Therefore, the general solution to the associated homogeneous recurrence relation is an = a⋅6n+b⋅2n.
To obtain a particular solution to the given recurrence relation, try a(p)n = cn + d, obtaining

cn + d = 8[c(n − 1) + d] − 12[c(n − 2) + d] + 3n,

which can be rewritten as

n(c − 8c + 12c − 3) + (d + 8c − 8d − 24c + 12d) = 0.

The coefficient of n-term and the constant term must each equal 0. Therefore, we have

c − 8c + 12c − 3 = 0
d + 8c − 8d − 24c + 12d = 0,

or c = 3∕5 and d = 48∕25.

Therefore,

an = a6n + b2n + 3
5
n + 48

25
.

Using the two initial conditions, a0 = 1 and a1 = 5, yields the system of equations

a60 + b20 + 3
5
⋅ 0 + 48

25
= 1

a61 + b21 + 3
5
⋅ 1 + 48

25
= 5

and the solution is found to be a = 27∕25 and b = −2. Therefore, the solution to the given recurrence relation is

an =
27
25

6n − 2n+1 + 3
5
n + 48

25
.
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— Page references correspond to locations of Extra Examples icons in the textbook.

p.554, icon at Example 1
#1. Suppose f (n) = 3f (n∕2) + 4 and f (1) = 5. Find f (8).

Solution:

f (2) = 3f (2∕2) + 4 = 3 ⋅ 5 + 4 = 19,
f (4) = 3f (4∕2) + 4 = 3 ⋅ 19 + 4 = 57 + 4 = 61,
f (8) = 3f (8∕2) + 4 = 3 ⋅ 61 + 4 = 183 + 4 = 187.

p.554, icon at Example 1
#2. Suppose f (n) = 2f (n∕3) − 1 and f (1) = 2. Find f (9).

Solution:

f (3) = 2f (3∕3) − 1 = 2 ⋅ 2 − 1 = 3,
f (9) = 2f (9∕3) − 1 = 2 ⋅ 3 − 1 = 5.

p.554, icon at Example 1
#3. Suppose f (n) = 5f (n∕2) + 2n − 1 and f (4) = 40. Find f (1).

Solution:
First use f (4) to find f (2)∶ f (4) = 5f (4∕2) + 2 ⋅ 4 − 1. Therefore 40 = 5f (2) + 7, or f (2) = 33∕5.

Then use f (2) to find f (1)∶ f (2) = 5f (2∕2) + 2 ⋅ 2 − 1.

Therefore 33∕5 = 5f (1) + 3, or f (1) = 18∕25.
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p.557, icon at Example 6
#1. Suppose f (n) = 2f (n∕3) + 3. Find a big-oh function for f .

Solution:
Using Theorem 1 of Section 7.3, f (n) is O(nlog3 2).

p.557, icon at Example 6
#2. A recursive algorithm for finding the maximum of a list of numbers divides the list into three equal (or nearly
equal) parts, recursively finds the maximum of each sublist, and then finds the largest of these three maxima. Let f (n)
be the total number of comparisons needed to find the maximum of a list of n numbers (n a power of 3). Set up a
recurrence relation for f (n) and give a big-oh estimate for f .

Solution:
A recurrence relation for the number of steps in this algorithm with an input of size n > 1 (n a power of 3) is

f (n) = 3f (n∕3) + 2

(assuming that two operations are required to compare the three maxima). Using Theorem 1 of Section 7.3, f (n) is
O(nlog3 3). But nlog3 3 = n1 = n. Therefore f (n) is O(n).
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p.569, icon at Example 10
#1. Find the number of solutions of e1 + e2 + e3 + e4 = 15, where e1, e2, e3 and e4 are integers with 1 ≤ e1 ≤ 5,
2 ≤ e2 ≤ 6, 3 ≤ e3 ≤ 7 and 4 ≤ e4 ≤ 8 by setting up and expanding a suitable product of polynomials. Use a computer
algebra system. You will find the product of the polynomials easier to enter if you perform algebraic simplification
first.

Solution:
The number of solutions of e1 + e2 + e3 + e4 = 15 is the coefficient of x15 in the expansion of

(x + x2 + x3 + x4 + x5)(x2 + x3 + x4 + x5 + x6)(x3 + x4 + x5 + x6 + x7)(x4 + x5 + x6 + x7 + x8)

= x ⋅ (1 + x + x2 + x3 + x4) ⋅ x2 ⋅ (1 + x + x2 + x3 + x4) ⋅ x3 ⋅ (1 + x + x2 + x3 + x4) ⋅ x4 ⋅ (1 + x + x2 + x3 + x4)

= x10 ⋅ (1 + x + x2 + x3 + x4)4

Using a computer algebra system, we find that the coefficient of x15 is 52.

#2. Find the number of solutions of 20 ≤ e1 + e2 + e3 + e4 ≤ 23, where e1, e2, e3 and e4 are integers with 1 ≤ e1 ≤ 5,
2 ≤ e2 ≤ 6, 3 ≤ e3 ≤ 7 and 4 ≤ e4 ≤ 8.

Solution:
The number of solutions of 20 ≤ e1 + e2 + e3 + e4 ≤ 23 is sum of the coefficients of x20, x21, x22 and x23 in the
expansion of

(x + x2 + x3 + x4 + x5)(x2 + x3 + x4 + x5 + x6)(x3 + x4 + x5 + x6 + x7)(x4 + x5 + x6 + x7 + x8)

= x ⋅ (1 + x + x2 + x3 + x4) ⋅ x2 ⋅ (1 + x + x2 + x3 + x4) ⋅ x3 ⋅ (1 + x + x2 + x3 + x4) ⋅ x4 ⋅ (1 + x + x2 + x3 + x4)

= x10 ⋅ (1 + x + x2 + x3 + x4)4

Using a computer algebra system, we find that the coefficients of x20, x21, x22 and x23 are 68, 52, 35 and 20, respectively.
Therefore, the number of solutions we are seeking is 175.
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p.583, icon at Example 5
#1. How many positive integers less than or equal to 100 are divisible by 6 or 9?

Solution:
Let A be the set of integers from 1 to 100 divisible by 6 and let B be the set of integers from 1 to 100 divisible by 9.
By the inclusion-exclusion principle, the number of positive integers from 1 to 100 divisible by 6 or 9 is

|A ∪ B| = |A| + |B| − |A ∩ B|

=
⌊100

6

⌋

+
⌊100

9

⌋

−
⌊100
18

⌋

= 16 + 11 − 5
= 22.

p.583, icon at Example 5
#2. How many positive integers less than or equal to 100 are relatively prime to 15?

Solution:
An integer is relatively prime to 15 if and only if it is not divisible by 3 and not divisible by 5. Let A be the set of
integers from 1 to 100 divisible by 3 and let B be the set of integers from 1 to 100 divisible by 5. Then the number of
integers from 1 to 100 that are not relatively prime to 15 is

|A ∪ B| = |A| + |B| − |A ∩ B|
= 33 + 20 − 6
= 47.

Hence, the number of integers from 1 to 100 that are relatively prime to 15 is

|A ∪ B| = 100 − 47 = 53.

p.583, icon at Example 5
#3. Find the number of elements in A1 ∪ A2 ∪ A3 ∪ A4 if each set has size 50, each intersection of two sets has size
30, each intersection of three sets has size 10, and the intersection of all four sets has size 2.

1



Solution:
Using the inclusion-exclusion principle,

|A1 ∪ A2 ∪ A3 ∪ A4| =
4
∑

i=1
|Ai| −

∑

i≠j
|Ai ∩ Aj| +

∑

i<j<k
|Ai ∩ Aj ∩ Ak| − |A1 ∩ A2 ∩ A3 ∩ A4|

= 4 ⋅ 50 −
(

4
2

)

⋅ 30 +
(

4
3

)

⋅ 10 − 2

= 200 − 180 + 40 − 2
= 58.

p.583, icon at Example 5
#4.

(a) Find the number of permutations of 1, 2,… , 8 that begin with 52 or end with 387.
(b) Find the number of permutations of 1, 2,… , 8 that begin with 52 or end with 327.

Solution:

(a) Let A be the set of permutations of 1, 2,… , 8 that begin with 52 and let B be the set of permutations of 1, 2,… , 8
that end with 387. Using the inclusion-exclusion principle,

|A ∪ B| = 6! + 5! − 3! = 720 + 120 − 6 = 834.

(b) Let A be the set of permutations of 1, 2,… , 8 that begin with 52 and let B be the set of permutations of 1, 2,… , 8
that end with 327. In this caseA∩B = ∅ because the digit 2 cannot occur in both the string 52 and 327. Therefore,

|A ∪ B| = 6! + 5! = 720 + 120 = 840.

p.583, icon at Example 5
#5. Find the number of permutations of all 26 letters of the alphabet that contain at least one of the words FIGHT,
BALKS, MOWER.

Solution:
LetF ,B, andM be the sets of permutations of all 26 letters in the alphabet that contain FIGHT, BALKS, and MOWER,
respectively. Then the set of all permutations of the 26 letters of the alphabet that contain at least one of these words is
|F ∪ B ∪M|. Using the inclusion-exclusion principle,

|F ∪ B ∪M| = |F | + |B| + |M| − |F ∩ B| − |F ∩M| − |B ∩M| + |F ∩ B ∩M|

= 22! + 22! + 22! − 18! − 18! − 18! + 14!
= 3 ⋅ 22! − 3 ⋅ 18! + 14!.

2



(We obtain |F | = 22! by treating the five letters F, I, G, H, T as being glued together on one card, leaving 21 other
cards with single letters. Similarly we obtain the values for the other sets.)

p.583, icon at Example 5
#6. Find the number of permutations of all 26 letters of the alphabet that contain at least one of the words CAR, CARE,
SCARE, SCARED.

Solution:
Let A, B, C , and D be the sets of permutations of the 26 letters of the alphabet that contain the words CAR, CARE,
SCARE, and SCARED, respectively. Then D ⊆ C ⊆ B ⊆ A. Hence,

|A ∪ B ∪ C ∪D| = |A| = 24!.

p.583, icon at Example 5
#7. Suppose |U | = n and A and B are subsets of U such that |A| > n∕2, and B > n∕2. Prove that A ∩ B ≠ ∅.

Solution:
(a) Suppose A ∩ B = ∅. By the inclusion-exclusion principle

|A ∩ B| = |A| + |B| − |A ∩ B| = |A| + |B| > n∕2 + n∕2 = n.

Therefore |A∪B| > n. But this is not possible because A∪B ⊆ U and every subset of U has size at most n. Therefore
A ∩ B ≠ ∅.

p.583, icon at Example 5
#8. Let n be an odd positive integer and let a1, a2,… , an represent an arbitrary arrangement of the integers 1, 2, 3,… , n.
Prove that the product (a1 − 1)(a2 − 2)… (an − n) is an even integer.

Solution:
We can use the inclusion-exclusion principle in (a) to give a proof.

We need to show that the product (a1 − 1)(a2 − 2)… (an − n) is even. As a strategy to consider here, note that this
will happen if at least one of the factors is even. Thus, reasoning backwards, it is enough to show that at least one of
the factors is even. This will happen if the product has a factor of the form “even-even” or “odd-odd”. The proof of
this depends on the simple observation that if n is odd, the set {1, 2, 3,… , n} has one more odd integer than even integer.

Each factor in the product has the form “ai − i”. We do not know whether ai and i are both even, both odd, or have
opposite parity. Let

A = {ai − i | ai odd} and B = {ai − i | i odd}.

3



Because n is an odd integer, the number of odd integers in {1, 2, 3,… , n} and in {a1, a2,… , an} is one more than the
number of even integers in {1, 2, 3,… , n}. Therefore |A| > n∕2 and |B| > n∕2. By part (a) we know that A ∩ B ≠ ∅.
This means that at least one of the factors ai − i must be in A ∩ B, and hence must have both ai and i odd. Therefore
ai − i is even, which forces the product (a1 − 1)(a2 − 2)… (an − n) to be even.

4
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