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— Page references correspond to locations of Extra Examples icons in the textbook.

p.604, icon at Example 10
#1. Let R be the following relation defined on the set {a, b, c, d}:

R = {(a, a), (a, c), (a, d), (b, a), (b, b), (b, c), (b, d), (c, b), (c, c), (d, b), (d, d)}.

Determine whether R is:

(a) reflexive. (b) symmetric. (c) antisymmetric.

Solution:

(a) R is reflexive because R contains (a, a), (b, b), (c, c), and (d, d).
(b) R is not symmetric because (a, c) ∈ R, but (c, a) ∉ R.
(c) R is not antisymmetric because both (b, c) ∈ R and (c, b) ∈ R, but b ≠ c.

p.604, icon at Example 10
#2. Let R be the following relation on the set of real numbers:

aRb ↔ ⌊a⌋ = ⌊b⌋, where ⌊x⌋ is the floor of x.

Determine whether R is:

(a) reflexive. (b) symmetric. (c) antisymmetric.

Solution:

(a) R is reflexive: ⌊a⌋ = ⌊a⌋ is true for all real numbers.
(b) R is symmetric: suppose ⌊a⌋ = ⌊b⌋; then ⌊b⌋ = ⌊a⌋.
(c) R is not antisymmetric: we can have aRb and bRa for distinct a and b. For example, ⌊1.1⌋ = ⌊1.2⌋.

p.604, icon at Example 10
#3. Let A be the set of all points in the plane with the origin removed. That is,

A = {(x, y)|x, y ∈ R} − {(0, 0)}.
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Define a relation R on A by the rule:

(a, b)R(c, d) ↔ (a, b) and (c, d) lie on the same line through the origin.

Determine whether R is:

(a) reflexive. (b) symmetric. (c) antisymmetric.

Solution:

(a) R is reflexive: (a, b) and (a, b) lie on the same line through the origin, namely on the line y = bx∕a (if a ≠ 0), or
else on the line x = 0 (if a = 0).

(b) R is symmetric: if (a, b) and (c, d) lie on the same line through the origin, then (c, d) and (a, b) lie on the same
line through the origin.

(c) R is not antisymmetric: (1, 1) and (2, 2) lie on the same line through the origin. Therefore, (1, 1)R(2, 2) and
(2, 2)R(1, 1).

p.604, icon at Example 10
#4. Let A = {(x, y)|x, y integers}. Define a relation R on A by the rule

(a, b)R(c, d) ↔ a ≤ c and b ≤ d.

Determine whether R is:

(a) reflexive. (b) symmetric. (c) antisymmetric.

Solution:

(a) R is reflexive: (a, b)R(a, b) for all elements (a, b) because a ≤ a and b ≤ b is always true.
(b) R is not symmetric: For example, (1, 2)R(3, 7) (because 1 ≤ 3 and 2 ≤ 7), but (3, 7) ̸ R(1, 2).
(c) R is antisymmetric: Suppose (a, b)R(c, d) and (c, d)R(a, b). Therefore a ≤ c, c ≤ a, b ≤ d, d ≤ b. Therefore

a = c and b = d, or (a, b) = (c, d).

p.604, icon at Example 10
#5. Let A = {(x, y)|x, y integers}. Define a relation R on A by the rule

(a, b)R(c, d) ↔ a = c or b = d.

Determine whether R is:

(a) reflexive. (b) symmetric. (c) antisymmetric.
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Solution:

(a) R is reflexive: (a, b)R(a, b) for all elements (a, b) because a = a and b = b are always true.
(b) R is symmetric: Suppose (a, b)R(c, d). Therefore a = c or b = d. Therefore c = a or d = b. Therefore

(c, d)R(a.b).
(c) R is not antisymmetric: For example, (1, 2)R(1, 3) and (1, 3)R(1, 2) because 1 = 1, but (1, 2) ≠ (1, 3).

p.605, icon at Example 13
#1. Let R be the following relation defined on the set {a, b, c, d}:

R = {(a, a), (a, c), (a, d), (b, a), (b, b), (b, c), (b, d), (c, b), (c, c), (d, b), (d, d)}.

Determine whether R is transitive.

Solution:
The relation R is not transitive because, for example, (a, c) ∈ R and (c, b) ∈ R, but (a, b) ∉ R.

p.605, icon at Example 13
#2. Let R be the following relation on the set of real numbers:

aRb ↔ ⌊a⌋ = ⌊b⌋, where ⌊x⌋ is the floor of x.

Determine whether R is transitive.

Solution:
R is transitive: suppose ⌊a⌋ = ⌊b⌋ and ⌊b⌋ = ⌊c⌋; from transitivity of equality of real numbers, it follows that
⌊a⌋ = ⌊c⌋.

p.605, icon at Example 13
#3. Let A be the set of all points in the plane with the origin removed. That is,

A = {(x, y)|x, y ∈ R} − {(0, 0)}.

Define a relation on A by the rule:

(a, b)R(c, d) ↔ (a, b) and (c, d) lie on the same line through the origin.

Determine if R is transitive.
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Solution:
R is transitive: suppose (a, b) and (c, d) lie on the same line L through the origin and (c, d) and (e, f ) lie on the same
line M through the origin. Then L and M both contain the two distinct points (0, 0) and (c, d). Therefore L and M are
the same line, and this line contains (a, b) and (e, f ). Therefore (a, b) and (e, f ) lie on the same line through the origin.

p.605, icon at Example 13
#4. Let A = {(x, y)|x, y integers}. Define a relation R on A by the rule

(a, b)R(c, d) ↔ a ≤ c and b ≤ d.

Determine whether R is transitive.

Solution:
R is transitive: Suppose (a, b)R(c, d) and (c, d)R(e, f ). Therefore a ≤ c and c ≤ e, and b ≤ d and d ≤ f . Therefore,
a ≤ e and b ≤ f , or (a, b)R(e, f ).

p.605, icon at Example 13
#5. Let A = {(x, y)|x, y integers}. Define a relation R on A by the rule

(a, b)R(c, d) ↔ a = c or b = d.

Determine whether R is transitive.

Solution:
R is not transitive: For example, (1, 2)R(1, 3) because 1 = 1, and (1, 3)R(4, 3) because 3 = 3. But (1, 2) ≠ (4, 3)
because 1 ≠ 4 and 2 ≠ 3.
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Section 9.2–n-ary Relations and Their Applications.
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p. 613, icon at Example 5
#1. Consider the following table of planets of the solar system:

Name Mean Distance from the Sun (in AU) Number of Moons

Mercury 0.39 0

Venus 0.723 0

Earth 1 1

Mars 1.524 2

Jupiter 5.203 67

Saturn 9.539 62

Uranus 19.18 27

Neptun 30.06 13

Which one of the domains are primary keys for the relation displayed in the table?

Solution:
Name is a primary key because each planet has a unique name. Mean Distance from the Sun (in AU) is also a primary
key, because no two planets share the same mean distance from the sun. The number of moons is not a primary key
because Mercury and Venus share the same number of moons: 0.

p.613, icon at Example 7
#1. Consider the table of planets of the solar system again:

Name Mean Distance from the Sun (in AU) Number of Moons

Mercury 0.39 0

Venus 0.723 0

Earth 1 1

Mars 1.524 2

Jupiter 5.203 67
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Saturn 9.539 62

Uranus 19.18 27

Neptun 30.06 13

If C is the condition (Mean Distance from the Sun < 10 ∧ Number of Moons > 2), and R is the relation represented
by the table, what is the output of the selection operator s_C applied to R?

Solution:
The selection operator returns all tuples in the relation that satisfy the condition C. Here, it returns (Jupiter, 5.203, 67)
and (Saturn 9.539, 62).

p.617, icon at Example 14
#1. In a given hour, a grocery store recorded the following transactions:

Transaction Number Items

1 { avocados, strawberries, tomatoes, peppers, salt }
2 { red beans, avocados, tomatoes }
3 { red beans, white beans, peppers }
4 { avocados }
5 { peppers, tomatoes }
6 { salt }
7 { strawberries, blueberries }
8 { white beans, salt, avocados }
9 { peppers, red beans }

10 { avocados, tomatoes, peppers, salt }

1. Determine the count and the support of A = { salt } and B = { peppers, tomatoes }.
2. If we set the support treshold to 0.4, which are the frequent items and itemsets?

Solution:

1. The count of A is 4, since salt occurs in 4 transactions. The support of A is therefore 4/10.
The count of B is 3, since B is a subset of 3 transaction (the 1st, 5th and 10th). Its support is 3/10.

2. At a support treshold of 0.4, items or itemsets are frequent in the given transaction list if they occur in at least 4
transactions.

The following are the frequent items, with their counts in parentheses:

avocados (5)

tomatoes (4)

peppers (5)

salt (4)
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Finding the frequent itemsets is a little more work. We have already found some of them, since the frequent items we
just listed correspond to frequent singleton itemsets, i.e. itemsets with one item. Now we find the frequent itemsets, if
any, with at least two items.

Observe that for an itemset to be frequent, it is necessary that each of the items in the itemset is frequent, because the
count of an itemset can be no more than the count of each of the contained items.

On the other hand, even if each item in an itemset is frequent, it is not guaranteed that the itemset itself is frequent, be-
cause not every transaction that contains one of the items in the itemset necessarily contains all the items in the itemset.

We proceed by listing all sets of two frequent items and computing their counts:

{ avocados, tomatoes } 3

{ avocados, peppers } 2

{ avocados, salt } 3

{ tomatoes, peppers } 3

{ tomatoes, salt } 2

{ peppers, salt } 2

Since none of these itemsets is frequent, it follows that there cannot be any frequent itemsets with three items or more,
since their counts can be no more than any of the counts of their two-item subsets.

Thus, the only frequent itemsets are the singleton ones corresponding to frequent items: { avocados } , { tomatoes },
{ pepers } , { salt }.

p.619, icon at Example 15
#1. In a given hour, a grocery store recorded the following transactions:

Transaction Number Items

1 { avocados, strawberries, tomatoes, peppers, salt }
2 { red beans, avocados, tomatoes }
3 { red beans, white beans, peppers }
4 { avocados }
5 { peppers, tomatoes }
6 { salt }
7 { strawberries, blueberries }
8 { white beans, salt, avocados }
9 { peppers, red beans }

10 { avocados, tomatoes, peppers, salt }

For this set of transactions, find the support and the confidence of the association rule { avocados, tomatoes } →
{ salt }.
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Solution:
The support of the association rule is the count of { avocados, tomatoes, salt }, divided by the number of transactions.
Therefore, the support is 2/10 or 1/5.

The confidence of the rule is the count of { avocados, tomatoes, salt }, divided by the count of { avocados, tomatoes }.
Therefore, the confidence is 2/3.
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p.629, icon at Example 2
#1. Let R be the relation on {1, 2, 3, 4} such that

R = {(1, 1), (1, 4), (2, 3), (3, 1), (3, 3), (4, 4)}.

Find:

(a) the reflexive closure of R.
(b) the symmetric closure of R.
(c) the transitive closure of R.

Solution:

(a) {(1, 1), (1, 4), (2, 2), (2, 3), (3, 1), (3, 3), (4, 4)}.
(b) {(1, 1), (1, 3), (1, 4), (2, 3), (3, 1), (3, 2), (3, 3), (4, 1), (4, 4)}.
(c) {(1, 1), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 3), (3, 4), (4, 4)}.
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p.609, icon at Example 2
#1.

(a) Verify that the following is an equivalence relation on the set of real numbers:

aRb ↔ ⌊a⌋ = ⌊b⌋, where ⌊x⌋ is the floor of x.

(b) Describe the equivalence classes arising from the equivalence relation in part (a).

Solution:

(a) R is reflexive: ⌊a⌋ = ⌊a⌋ is true for all real numbers.
R is symmetric: suppose ⌊a⌋ = ⌊b⌋; then ⌊b⌋ = ⌊a⌋.
R is transitive: suppose ⌊a⌋ = ⌊b⌋ and ⌊b⌋ = ⌊c⌋; from transitivity of equality of real numbers, it follows that
⌊a⌋ = ⌊c⌋.

(b) Two real numbers, a and b, are related if they have the same floor. This happens if and only if a and b lie in
the same interval [n, n + 1) where n is an integer. That is, the equivalence classes are the intervals …, [−2,−1),
[−1, 0), [0, 1), [1, 2), [2, 3), ….

p.609, icon at Example 2
#2. Let A be the set of all points in the plane with the origin removed. That is,

A = {(x, y)|x, y ∈ R} − {(0, 0)}.

Define a relation on A by the rule:

(a, b)R(c, d) ↔ (a, b) and (c, d) lie on the same line through the origin.

(a) Prove that R is an equivalence relation.
(b) Describe the equivalence classes arising from the equivalence relation R in part (a).
(c) If A is replaced by the entire plane, is R an equivalence relation?

Solution:

(a) R is reflexive: (a, b) and (a, b) lie on the same line through the origin, namely on the line y = bx∕a (if a ≠ 0), or
else on the line x = 0 (if a = 0).
R is symmetric: if (a, b) and (c, d) lie on the same line through the origin, then (c, d) and (a, b) lie on the same
line through the origin.
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R is transitive: suppose (a, b) and (c, d) lie on the same line L through the origin and (c, d) and (e, f ) lie on the
same line M through the origin. Then L and M both contain the two distinct points (0, 0) and (c, d). Therefore
L and M are the same line, and this line contains (a, b) and (e, f ). Therefore (a, b) and (e, f ) lie on the same
line through the origin.
Note: The proof that R is an equivalence relation can be carried out using analytic geometry: if (a, b) and
(c, d) lie on the same nonvertical line through the origin, then the slope must equal b∕a because the line passes
through (0, 0) and (a, b) and the slope must also equal d∕c because the line passes through (0, 0) and (c, d); thus,
b∕a = d∕c, or ad = bc. If (a, b) and (c, d) lie on the same vertical line through the origin, then the points
must have the form (0, b) and (0, d), and again it must happen that ad = bc. Therefore, (a, b)R(c, d) means that
ad = bc. This equation can be used to verify that R is reflexive, symmetric, and transitive.

(b) Each equivalence class is the set of points of A on a line of the form y = mx or the vertical line x = 0.
(c) If A is replaced by the entire plane, R is not an equivalence relation. It fails to satisfy the transitive property; for

example, (1, 2)R(0, 0) and (0, 0)R(2, 2), but (1, 2) ̸ R(2, 2) because the line passing through (1, 2) and (2, 2) does
not pass through the origin.

p.641, icon at Example 9
#1. Let A be the set of real numbers, and R be the equivalence relation R where xRy if and only if x-y is an integer.
(Example 2 in the textbook confirms that R is an equivalence relation.)

Find the equivalence classes of 0, 1, 1.5 and 1.7. How many equivalence classes are there?

Solution:
The equivalence class of 0 contains all real numbers that differ from 0 by an integer. Thus [0] is the set of integers
itself, i.e. [0] = Z.

0 and 1 are equivalent, hence are in the same equivalence class. This means [1] = Z as well.

The equivalence class of 1.5 is all real numbers that have the form n + 0.5, where n is an integer: [1.5] =
{..,−1.5,−0.5, 0.5, 1.5, 2.5, 3.5,…}.

The equivalence class of 1.7 is all real numbers that have the form n + 0.7, where n is an integer: [1.7] =
{..,−1.3,−0.3, 0.7, 1.7, 2.7, 3.7,…}.

There are infinitely many equivalence classes. Every real number in the interval [0,1) lies in its own unique equivalence
class, and those are all the equivalence classes.

p.641, icon at Example 9
#2. Let A be the set of real numbers, and R be the equivalence relation R where xRy if and only if x-y is a rational
number.

1. Find the equivalence classes of 0, 1/2 and sqrt(2).
2. Are sqrt(2) and sqrt(3) in the same equivalence class or not?
3. How many equivalence classes are there?
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Solution:

1. The equivalence class of 0 contains all real numbers that differ from 0 by a rational number. Thus [0] is the set
of rational numbers itself, i.e. [0] = Q.
0 and 1/2 are equivalent, hence are in the same equivalence class. This means [1∕2] = Q as well.
The equivalence class of sqrt(2) is all numbers of the form r + sqrt(2), where r is a rational number.

2. sqrt(2) and sqrt(3) are not in the same equivalence class. We can show this by giving a proof by contradiction:
suppose they are in the same equivalence class. That means by definition that
sqrt(2)-sqrt(3) = p/q, where p and q are integers and q is nonzero. By squaring both sides and expanding the
left side, we obtain 2 - 2sqrt(6) + 3 = p∧2 / q∧2. This implies sqrt(6) = (5 - p∧2/q∧2)/2, a rational number. This
contradicts the known fact that sqrt(6) is irrational.

3. The previous part inspires us to conjecture that sqrt(n) and sqrt(2) are not in the same equivalence class if n
is a positive integer such that 2n is not a perfect square. We know that sqrt(2n) is irrational in that case. Let
us assume, to get a contradiction, that sqrt(n)-sqrt(2) = p/q, where p and q are integers and q is nonzero. By
squaring both sides and expanding the left side, we obtain n - 2sqrt(2n) + 2 = p∧2 / q∧2. This implies sqrt(2n)
= (n + 2 - p∧2/q∧2)/2, a rational number. This contradicts that sqrt(2n) is irrational.
There are infinitely many positive integers n where n is not a perfect square. For example, if n is a prime greater
than 2, then 2n is not a perfect square.
Thus there are infinitely many equivalence classes with respect to R.

3



Rosen, Discrete Mathematics and Its Applications, 8th edition
Extra Examples
Section 9.6—Partial Orderings

— Page references correspond to locations of Extra Examples icons in the textbook.

p.650, icon at Example 1
#1. Let A = {(x, y)|x, y integers}. Define a relation R on A by the rule

(a, b)R(c, d) ↔ a ≤ c or b ≤ d.

Determine whether R is a partial order relation on A.

Solution:
R is reflexive: (a, b)R(a, b) for all elements (a, b) because a ≤ a or b ≤ b is always true.

R is not antisymmetric: For example, (1, 4)R(3, 2) because 1 ≤ 3, and (3, 2)R(1, 4) because 2 ≤ 4. But (1, 4) ≠ (3, 2).

R is not transitive: For example, (1, 4)R(3, 2) because 1 ≤ 3, and (3, 2)R(0, 3) because 2 ≤ 3. But (1, 4) ̸ R(0, 3)
because 1 � 0 and 4 � 3.

Therefore, R is not a partial order relation because R is neither antisymmetric nor transitive.

p.650, icon at Example 1
#2. Let A = {(x, y)|x, y integers}. Define a relation R on A by the rule

(a, b)R(c, d) ↔ a = c or b = d.

Determine whether R is a partial order relation on A.

Solution:
R is reflexive: (a, b)R(a, b) for all elements (a, b) because a = a and b = b are always true.

R is not antisymmetric: For example, (1, 2)R(1, 3) and (1, 3)R(1, 2) because 1 = 1, but (1, 2) ≠ (1, 3).
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R is not transitive: For example, (1, 2)R(1, 3) because 1 = 1, and (1, 3)R(4, 3) because 3 = 3. But (1, 2) ≠ (4, 3)
because 1 ≠ 4 and 2 ≠ 3.

Therefore, R is not a partial order relation because R is neither antisymmetric nor transitive.

p.650, icon at Example 4
#1. Let R be the relation on the set of words in the English language where xRy if x precedes (that is, comes before)
y in the dictionary. Show that R is not a partial ordering.

Solution:
Note that R is antisymmetric because if x precedes y in the dictionary, where x and y are English words, then y does
not precede x. Also note that R is transitive, for if x precedes y in the dictionary and y precedes z in the dictionary,
where x, y, and z are English words, then x precedes z in the dictionary. However, R is not reflexive because no word
precedes itself in the dictionary. This means that R is not a partial ordering.

p.658, icon at Example 20
#1. Referring to this Hasse diagram of a partially ordered set, find the following:

(a) all upper bounds of {d, e}.
(b) the least upper bound of {d, e}.
(c) all lower bounds of {a, e, g}.
(d) the greatest lower bound of {a, e, g}.
(e) greatest lower bound of {b, c, f}.
(f) least upper bound of {ℎ, i, j}.
(g) greatest lower bound of {g, ℎ}.
(h) least upper bound of {f, i}.

a

b c

f

i j

g

d

e

h
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Solution:

(a) There are no upper bounds of {d, e}.
(b) Because there are no upper bounds of {d, e}, there is no least upper bound of {d, e}.
(c) The only lower bound of {a, e, g} is i.
(d) The glb of {a, e, g} is the only lower bound of {a, e, g}, namely i.
(e) Both ℎ and i are lower bounds of {b, c, f}. But there is no greatest lower bound.
(f) Both a and c are upper bounds of {ℎ, i, j}. The element c is the least upper bound.
(g) There is no lower bound of {g, ℎ}. Hence there is no greatest lower bound.
(h) The elements a, c, and f are upper bounds of {f, i}. The element f is the least upper bound.
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