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— Page references correspond to locations of Extra Examples icons in the textbook.

p.680, icon at Example 11
#1. The relative strengths of the teams that compete against each other can be measured using a graph model.

For example, we can set up a graph G that models the National Football League season. The vertices of G are the NFL
teams. We draw an edge from vertex x to vertex y if x played a game against y and x beat y. (If these two teams played
a second game, we would add a second edge from x to y if x beat y a second time, and from y to x if y beat x.) If a
game between x and y ended in a tie, we add an edge from x to y and an edge from y to x. The resulting digraph will
have 32 vertices (one for each of the 32 NFL teams) and 256 edges (because each team plays 16 games). (The number
of edges would be larger than 256 if tie games occurred during the season.)

We can use this digraph to measure the strength of the teams. For example, suppose teams A and B each have a final
win-loss record of 10–6. (In graph theory terms, this means that the outdegree of each of the two vertices is 10 and
the indegree is 6.) If team A played team B during the season and A beat B in their game, it might be reasonable to
say that A is stronger than B. But suppose that A and B did not play each other. To decide which of the two teams
might be considered the stronger team, we might look at the strength of the teams that each of these two teams beat.
For example, A might have beaten “strong” teams (i.e., teams with many wins) and B might have beaten “weak” teams
(i.e., teams with few wins). In this case we might conclude that team A is stronger than team B because A’s ten wins
are against stronger teams than those that B beat. In graph theory terms, we are examining paths of the form A–x–y
(“A beat x who beat y”); these are “two-step wins”—paths of length 2.

Later in this chapter we will see that this large graph G can be described as a 32 × 32 matrix (called the adjacency
matrix) and the two-step wins can be easily counted by examining terms of the square of this matrix.
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p.707, icon at Example 9
#1. Determine whether the following graphs are isomorphic.
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Solution:
The graphs are isomorphic. In the graph on the left, only vertices 2 and 5 have degree four. In the graph on the right,
only vertices C and E have degree four. Therefore, if the two graphs are to be isomorphic, we must have 2 and 5
correspond to C and E as either 2-C, 5-E, or as 2-E, 5-C. Either correspondence gives rise to an isomorphism:

1-F , 2-C, 3-B, 4-D, 5-E, 6-A.
1-D, 2-E, 3-A, 4-F , 5-C, 6-B.

p.707, icon at Example 9
#2. Determine whether the following digraphs are isomorphic.
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Solution:
Even though the graphs have many features in common (such as the same number of vertices, the same number of
edges, matching in-degrees and out-degrees), the digraphs are not isomorphic.

Here is one reason: Vertex B must correspond to vertex 1 because they are the only vertices with in-degree 2 and out-
degree 2. Vertices D and E each have in-degree 1 and out-degree 2. If the two graphs are to be isomorphic, then D and
E must correspond to 2 and 5 (in some order). Because there is an edge from E to D, there must be a corresponding
edge in the digraph on the right—this forces D to correspond to 2 and E to correspond to 5. However in the left graph
there is an edge from E to B, but no edge from 5 to 1 (the vertices corresponding to B and E) in the right graph.
Therefore, the two digraphs are not isomorphic.
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p.694, icon at Example 2
#1. Determine whether the following graph has an Euler circuit or Euler path.

Solution:
The graph has no Euler circuit or Euler path because it has four vertices of odd degree.

p.694, icon at Example 2
#2. Determine whether the following graph has an Euler circuit or Euler path.
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Solution:
The graph has no Euler circuit or path because it has 4 vertices of odd degree.

p.694, icon at Example 2
#3. The Chinese Postman Problem: The following graph shows the streets along which a mail carrier must deliver
mail. Each street segment has a label consisting of two numbers: the first number gives the time (in minutes) that it
takes for the mail carrier to deliver mail along that street; the second number gives the time (in minutes) that it takes
the mail carrier to walk along that street without delivering mail. What is the minimum total length of time required
to start from point A, complete mail delivery along all the streets in the map, and return to A?

Note: A further discussion of this problem and similar ones can be found on this website in Chapter 20 of Applications
of Discrete Mathematics.

B 25-15 C

30-1520-10

40-30 20-10

10-5

D E F

G

A

15-10

20-15

45-40

45-35 20-15

15-10I J

H

Solution:
Ideally, an Euler circuit would give the best solution, but one does not exist in the graph because vertices D and I have
odd degree. Thus, in order for the mail carrier to start at A, deliver mail along the entire route, and return to A, the
mail carrier will need to retrace steps along some blocks without delivering mail (called deadheading).

In particular, the mail carrier must somehow retrace steps between the odd vertices D and I . (This deadheading may
occur in pieces; i.e. the mail carrier might deliver mail along a block, deadhead along a couple of blocks, then deliver
mail along another block, etc.) Therefore, we need to find the shortest path between D and I — these edges will
minimize the deadheading time. Here are the possible simple paths joining D and I with the length of time it takes to
walk along each path:

D-B-C-E-F -J -I : 70 min
D-B-C-E-I : 75 min
D-E-F -J -I : 60 min
D-E-I : 65 min
D-H-G-A-I : 70 min.

The path that takes the least amount of time to follow is the path D-E-F -J -I , which means that the mail carrier will
spend 60 minutes in deadheading time. Therefore, the total length of time it takes the mail carrier is the time delivering
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mail (305 minutes) plus the deadheading time (60 minutes), or 6 hours 5 minutes. An example of a route that uses this
amount of time is

A − G −H −D − B − C − E − F − J − I ∗− J ∗− F ∗− E −D ∗− E − I − A.

(An asterisk indicates a deadheading segment.)

p.699, icon at Example 5
#1. Determine whether the following graph has a Hamilton circuit or Hamilton path.

Solution:
The graph has no Hamilton circuit or Hamilton path. To see this, note that the graph is bipartite. If the vertices are
labeled A (starting with the left vertex at the top of the figure) and B so that no adjacent vertices have the same label,
there are 14 vertices labeled A and 12 labeled B. Any Hamilton circuit or path must consist of an alternating sequence
of A’s and B’s, which is not possible with two more A’s than B’s.

p.699, icon at Example 5
#2. Determine whether the following graph has a Hamilton circuit or Hamilton path.
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Solution:
The graph does not have a Hamilton circuit. Suppose the graph did have a Hamilton circuit. Then the following edges
must all be used in such a circuit: {1, 2}, {1, 3}, {4, 5}, {5, 6}, {4, 7}, {7, 8}, {6, 10}, {9, 10}. If these edges must be
used, then the following edges cannot be used: {2, 4}, {3, 6}, {4, 8}, and {6, 9}. If it is impossible to use these four
edges, they can be removed from the graph, yielding
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But this graph has no Hamilton circuit because it is disconnected. Therefore the original graph has no Hamilton circuit.

The graph does have a Hamilton path — for example, 1, 2, 3, 6, 5, 4, 7, 8, 9, 10.

p.699, icon at Example 5
#3. Find a Hamilton circuit in the graph at the right, called the Grötzsch graph.
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Solution:
Here is one line of reasoning. We know that any Hamilton circuit must pass through vertex 7. There are two ways in
which a circuit can pass through this vertex:

(1) by using two edges that are not “next to each other” (such as {7, 8} and {7, 6}), or
(2) by using two edges that are “next to each other” (such as {7, 8} and {7, 9}).

We will consider these two cases separately.

(1) Suppose we choose edges {7, 8} and {7, 6}. If we do this, then edges {3, 7}, {5, 7}, and {9, 7} cannot be used
(because a Hamilton circuit only uses two edges incident with a vertex). Erasing these three edges makes vertices
3, 5, and 9 of degree 2. This is shown in the following graph on the left. But if a vertex has degree 2, both edges
incident with that vertex must be used in forming any Hamilton circuit. Therefore, if we use edges {7, 8} and
{7, 6}, we must use edges {2, 3}, {3, 4}, {1, 5}, {5, 10}, {4, 9}, and {9, 10}. We have made these eight edges
dark in the following graph on the right.
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We have used edges that pass through vertices 4 and 10, so we can now remove edges {1, 4}, {4, 11}, {2, 10},
and {10, 11} because they are no longer needed. This is illustrated in the following graph on the left. But this
forces us to use edges {6, 11} and {8, 11}, as shown in the following graph on the right. But this gives a circuit
— 6, 7, 8, 11, 6 — and this cannot be part of a Hamilton circuit. Therefore, taking two edges that are not “next
to each other” does not lead to a Hamilton circuit.
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(2) We now consider the case where we use two edges that are “next to each other”, such as {7, 8} and {7, 9}. If
we use these two edges, we cannot use edges {3, 7}, {5, 7}, or {6, 7}. We erase them, and obtain the following
graph on the left. Vertices 3, 5, and 6 now have degree 2, so the remaining edges incident with them must be
used. This gives the following graph on the right.
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We can no longer use the edge {1, 2} or {1, 4} (because we have already passed through vertex 1), so we erase
them, obtaining the following graph on the left. Examining this graph, we see that we need to try to link the
three shaded paths into one circuit. It is not difficult to see that we can do this by adding edges {4, 9}, {8, 11},
and {2, 10}.
Thus, an example of a Hamilton circuit in the Grötzsch graph is 1–6–11–8–7–9–4–3–2–10–5–1.

1

2

3

5
7

6

8 9

4

1110

1

2

3

5
7

6

8 9

4

1110

6



Rosen, Discrete Mathematics and Its Applications, 8th edition
Extra Examples
Section 10.7—Planar Graphs

— Page references correspond to locations of Extra Examples icons in the textbook.

p.724, icon at Example 8
#1. Determine whether the following graph is planar.
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Solution:
The graph is not planar. If the edge {5, 6} is removed, the resulting subgraph is isomorphic to K3,3. (Use {2, 3, 4} and
{1, 5, 6} as the partition of the vertices of K3,3.)

p.724, icon at Example 8
#2. Determine whether the following graph is planar.
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Solution:
The graph is not planar. It contains a subgraph homeomorphic to K5, using vertices E,B,D, F ,H . First remove some
edges to obtain the following subgraph:
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Then use elementary subdivisions at vertices A,C,G to obtain the following graph, K5:
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p.729, icon at Example 1
#1. Find the minimum number of colors needed to color the regions, including the infinite region, of the following
map, so no adjacent regions have the same color.

Solution:
Four colors suffice, as shown in the following figure:
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Note that three colors cannot be enough because the “center” region and the three regions that make up the outer ring
are all adjacent to each other.
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