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p.748, icon at Example 2
#1.

(a) Find the number of nonisomorphic rooted trees with four vertices.
(b) Find the number of nonisomorphic labeled rooted trees with four vertices. (Two trees are isomorphic as labeled

trees if they are isomorphic with vertex i in the first graph corresponding to vertex i in the second graph.)
(c) Suppose you have four cloth bags — red, blue, green, and yellow. In how many different ways can they be put

inside each other. (For example, the red bag and the yellow bag might be put separately inside the green bag,
and this green bag might then be put inside the blue one, as in the following figure.)

blue

green

red yellow

Solution:

(a) There are four nonisomorphic rooted trees with four vertices:

A B C D

(b) The rooted tree A can be labeled in 4! ways. The rooted tree B can be labeled in 4 ⋅ 3 ways (there are four
ways to label the root and three ways to label its child; the other two vertices can be labeled in either order
without producing a different tree because the tree is not ordered). The rooted tree C can be labeled in 4 ways
(corresponding to the number of ways of labeling the root). The rooted tree D can be labeled in 4⋅3⋅2 ways (label

1



the root, then label the child that has no descendants, and finally label the child that has a single descendant).
Therefore, the total number of labeled rooted trees is equal to

4! + 4 ⋅ 3 + 4 + 4 ⋅ 3 ⋅ 2 = 64.

(c) There are four patterns according to which the four bags can be placed inside each other — they correspond to
the four nonisomorphic rooted trees in part (a). (For example, the illustration in part (c) above has the pattern
of rooted tree B with “blue” as the root, “green” as its child, and “red” and “yellow” as the children of “green”.)
Therefore, using part (b) of the solution, there are 64 ways in which the bags can be put inside one another.
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p.760, icon at Example 3
#1. Suppose you have five coins — three are good, but two are counterfeit. Assume that a counterfeit coin is heavier
than a good coin and that the two heavy coins have the same weight. A balance scale will be used to find the bad coins
and determine which are the heavy coins. Draw a decision tree that describes the process.

Solution:
The following decision tree finds the two heavy coins in at most three weighings. A vertex labeled “X/Y” corresponds
to a weighing with coin X on the left pan and coin Y on the right pan. The symbols “<”, “>”, and “=” on the edges
mean that the left pan goes up and the right pan goes down, the left pan goes down and the right pan goes up, and the
pans balance, respectively. The leaves in the tree are the ten possibilities for the two heavy coins. (For example, the
leaf labeled “2H4H” means that coins 2 and 4 are heavy, and therefore counterfeit.) Note that if coins 1 and 2 balance,
this does not mean that both coins are good; they could both be counterfeit.

It is not possible to guarantee that the two heavy coins can be found in two weighings. A decision tree for coin weighing
is a 3-ary tree, and such a tree can have at most nine leaves if its height is two; but there are ten possibilities, which
forces the tree to have more than nine leaves.
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p.764, icon at Example 5
#1. Use Huffman coding to encode the following five symbols with given frequencies:

A∶ 0.23 B∶ 0.14 C ∶ 0.16 D∶ 0.18 E ∶ 0.29

Solution:
The following shows the steps in constructing the Huffman code. The resulting code is:

A∶ 10 B∶ 001 C ∶ 000 D∶ 11 E ∶ 01.
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p.773, icon at Example 1
#1. Write in lexicographic ordering the universal address system labels for the following tree.

0

1

1.1 2.1
2.2 4.1

2.2.1 2.2.2 4.1.1 4.1.2 4.1.3

2 3 4

Solution:
0 < 1 < 1.1 < 2 < 2.1 < 2.2 < 2.2.1 < 2.2.2 < 3 < 4 < 4.1 < 4.1.1 < 4.1.2 < 4.1.3.

p.773, icon at Example 2
#1. Use a preorder traversal to list the vertices of the following tree.

a

b

d e

h i j

f g

k

l m n

c
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Solution:
The preorder traversal is a, b, d, e, f , ℎ, i, c, g, j, k, l, m, n.

p.775, icon at Example 3
#1. Use an inorder traversal to list the vertices of the following tree.

a

b

d e

h i j

f g

k

l m n

c

Solution:
The inorder traversal is d, b, e, ℎ, f , i, a, j, g, l, k, m, n, c.

p.777, icon at Example 4
#1. Use a postorder traversal to list the vertices of the following tree.

a

b

d e

h i j

f g

k

l m n

c
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Solution:
The postorder traversal is d, e, ℎ, i, f , b, j, l, m, n, k, g, c, a.

p.782, icon at Example 10

#1. Write the algebraic expression (3a + b2)3 − 7
6c

in

(a) prefix notation.
(b) postfix notation.
(c) infix notation.

Solution:
The parsing tree for this expression is

7

3

23 a b

6 c

*

*

+

−

From this we obtain:

(a) prefix notation: ∕ − ↑ + ∗ 3 a ↑ b 2 3 7 ∗ 6 3
(b) postfix notation: 3 a ∗ b 2 ↑ + 3 ↑ 7 − 6 c ∗ ∕
(c) infix notation: 3 ∗ a + b ↑ 2 ↑ 3 − 7 ∕ 6 ∗ 3

3



p.782, icon at Example 10
#2. Write the logic expression ¬r → (p ∨ ¬(q ∧ ¬s)) in prefix, postfix, and infix notation.

Solution:
The following is the parsing tree for the logic expression:

r p

∧

q

s

∨

prefix notation: → ¬ r ∨ p ¬ ∧ q ¬ s.

postfix notation: r ¬ p q s ¬ ∧ ¬ ∨ →.

infix notation: r ¬ → p ∨ q ∧ s ¬ ¬.
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p.788, icon at Example 3
#1. Use a depth-first search to find a spanning tree for the following graph. Use vertex 1 as the root and use numerical
ordering to determine in which order to visit the vertices.

1

3
4 6 9

2

10 11

5 7
8

Solution:
The following tree shows the result of the depth-first search. The numbers along the edges indicate the order in which
the edges were chosen.
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p.790, icon at Example 5
#1. Use a breadth-first search to find a spanning tree for the following graph. Use vertex 1 as the root and use numerical
ordering to determine in which order to visit the vertices.

1

3
4 6 9

2

10 11
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8

Solution:
The following tree shows the result of the breadth-first search. The numbers along the edges indicate the order in which
the edges were chosen.
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p.801, icon at Example 3
#1. Suppose the vertices of K5 are numbered 1, 2, 3, 4, 5 (in clockwise order) and each edge is assigned a weight equal
to the sum of the labels on the endpoints of the edge, as in the following figure. Find a spanning tree of minimum
weight for this graph.
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Solution:
Using either Kruskal’s Algorithm or Prim’s Algorithm, the edges {1, 2}, {1, 3}, {1, 4}, and {1, 5}make up the spanning
tree of minimum weight. Its weight is 18.

p.801, icon at Example 3
#2. Suppose the vertices of Kn are numbered 1, 2,… , n (in clockwise order) and each edge is assigned a weight equal
to the sum of the labels on the endpoints of the edge. Find a spanning tree of minimum weight for this graph and find
the weight of this spanning tree.

Solution:
The spanning tree of minimum cost has edges {1, 2}, {1, 3},… , {1, n}. Using either Kruskal’s Algorithm or Prim’s
Algorithm, the first edges added are {1, 2} and {1, 3}. At the next stage, edges {2, 3} and {1, 4} have the smallest
weight, but adding edge {2, 3} would create a circuit. Therefore edges {1, 2}, {1, 3}, and {1, 4} are inserted into
the spanning tree. In general, if edges {1, 2}, {1, 3},… , {1, k} have been selected, the next edge inserted must be
{1, k + 1} (of weight k + 2). (Any other edge {i, j} with weight ≤ k + 2 would have 1 < i ≤ k and 1 < j ≤ k and
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would create a circuit when combined with {1, i} and {1, j}.) Thus, the spanning tree of minimum weight consists of
{1, 2}, {1, 3},… , {1, n}. Its total weight is

(1 + 2) + (1 + 3) + · · · + (1 + n) = (n − 2) +
n(n + 1)

2
=

(n + 4)(n − 1)
2

.
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