Rosen, Discrete Mathematics and Its Applications, 8th edition
 Extra Examples
 Section 12.1—Boolean Functions

p.816, icon at Example 10

\#1. Prove the idempotent law $x=x \cdot x$ using the other identities of Boolean algebra listed in Table 5 of Section 11.1 of the textbook.

See Solution

p.816, icon at Example 10

\#2. Prove the domination law $x \cdot 0=0$ using the other identities of Boolean algebra listed in Table 5 in Section 11.1 of the textbook.

See Solution

p.816, icon at Example 10

\#3. Using the properties of Boolean algebra, prove that

$$
y z+x \overline{(x z)}+y(\bar{z}+1)+\bar{z} x
$$

can be simplified to give $y+\bar{z} x$.

See Solution

Rosen, Discrete Mathematics and Its Applications, 8th edition
Extra Examples
Section 12.2—Representing Boolean Functions
Extra - Page references correspond to locations of Extra Examples icons in the textbook.
p.820, icon at Example 3
\#1. Find a Boolean function $f(x, y, z)$ that has the following element table:

x	y	z	$f(x, y, z)$
1	1	1	0
1	1	0	1
1	0	1	1
1	0	0	0
0	1	1	0
0	1	0	1
0	0	1	1
0	0	0	0

See Solution

p.820, icon at Example 3

\#2. Let $f(x, y, z)=\bar{z}+\bar{x} z$.
(a) Find the sum-of-products expansion (disjunctive normal form) for f.
(b) Find the product-of-sums expansion (conjunctive normal form) for f.

See Solution

Rosen, Discrete Mathematics and Its Applications, 8th edition
Extra Examples
Section 12.3-Logic Gates
Extra - Page references correspond to locations of Extra Examples icons in the textbook.

p.825, icon at Example 2

\#1. Design a circuit that takes three inputs x, y, and z and produces a value 1 if and only if the input for x is 1 and exactly one of the inputs for y and z is 1 .

See Solution

