Show All Solutions

Rosen, Discrete Mathematics and Its Applications, 8th edition
 Extra Examples
 Section 13.1—Modeling Computation
 Extra ——Page references correspond to locations of Extra Examples icons in the textbook.

p.852, icon at Example 8

\#1. Let $G=(V, T, S, P)$ be a grammar where $V=\{S, A, B, a, b\}$ is the vocabulary and $T=\{a, b\}$ is the set of terminal elements. Determine whether the following set of productions is a:
(i) a type 0 grammar, but not a type 1 grammar.
(ii) a type 1 grammar, but not a type 2 grammar.
(iii) a type 2 grammar, but not a type 3 grammar.

$$
S \rightarrow A B A, A \rightarrow b B, B \rightarrow b a
$$

See Solution

p.852, icon at Example 8

\#2. Let $G=(V, T, S, P)$ be a grammar where $V=\{S, A, B, a, b\}$ is the vocabulary and $T=\{a, b\}$ is the set of terminal elements. Determine whether the following set of productions is a:
(i) a type 0 grammar, but not a type 1 grammar.
(ii) a type 1 grammar, but not a type 2 grammar.
(iii) a type 2 grammar, but not a type 3 grammar.

$$
S \rightarrow A B, B \rightarrow b A a, b A a \rightarrow a .
$$

See Solution

p.855, icon at Example 13

\#1.
(a) What is the Backus-Naur form of the grammar described as follows:

1. a sentence is made up of a noun phrase followed by a verb phrase or else by a noun phrase followed by a verb phrase followed by a noun phrase.
2. a noun phrase is made up of a noun, an adjective followed by a noun, or an article followed by a noun.
3. a verb phrase is made up of a verb.
4. articles are a and the.
5. adjectives are lengthy, boring, and inaccurate.
6. nouns are book, newspaper, and information.
7. verbs are reads and contains.
(b) Explain how "the newspaper contains lengthy information" can be obtained.

See Solution

p.888, icon at Example 3

\#1. Let G be the grammar with Vocabulary $\{S, A, a, b\}$, set of Terminals $T=\{a, b\}$, starting symbol S, and productions $\mathrm{P}=\{\mathrm{S} \rightarrow \mathrm{aA}, \mathrm{S} \rightarrow \mathrm{Aab}, \mathrm{A} \rightarrow \mathrm{aa}, \mathrm{A} \rightarrow \mathrm{b}\}$. What is $\mathrm{L}(\mathrm{G})$, the language of this grammar?

See Solution

p.888, icon at Example 3

\#2. Let G be the grammar with Vocabulary $\{S, A, B, a, b\}$, set of Terminals $T=\{a, b\}$, starting symbol S, and productions $\mathrm{P}=\{\mathrm{S} \rightarrow \mathrm{bA}, \mathrm{S} \rightarrow \mathrm{aB}, \mathrm{A} \rightarrow \mathrm{ba}, \mathrm{B} \rightarrow \mathrm{ab}\}$. What is $\mathrm{L}(\mathrm{G})$, the language of this grammar?

See Solution

p.888, icon at Example 3

\#3. Let G be the grammar with Vocabulary $\{\mathrm{S}, \mathrm{A}, \mathrm{B}, \mathrm{a}, \mathrm{b}\}$, set of Terminals $\mathrm{T}=\{\mathrm{a}, \mathrm{b}\}$, starting symbol S , and productions $\mathrm{P}=\{\mathrm{S} \rightarrow \mathrm{bA}, \mathrm{S} \rightarrow \mathrm{aB}, \mathrm{S} \rightarrow \mathrm{AB}, \mathrm{A} \rightarrow \mathrm{b}, \mathrm{B} \rightarrow \mathrm{a}\}$. What is $\mathrm{L}(\mathrm{G})$, the language of this grammar?

See Solution

Rosen, Discrete Mathematics and Its Applications, 8th edition
Extra Examples
Section 13.3-Finite-State Machines with Output
Extra - Page references correspond to locations of Extra Examples icons in the textbook.

p.869, icon at Example 6

\#1. Construct a deterministic finite-state automaton that recognizes the set of all bit strings such that the first bit is 0 and all remaining bits are 1 's.

See Solution

p.869, icon at Example 6

\#2. Construct a deterministic finite-state automaton that recognizes the set of all bit strings that contain exactly one 0 .

[^0]
p.869, icon at Example 6

\#3. Determine the set of bit strings recognized by the following deterministic finite-state automaton.

See Solution

p.869, icon at Example 6
\#4. Determine the set of bit strings recognized by the following deterministic finite-state automaton.

See Solution

p.869, icon at Example 6

\#5. Determine the set of bit strings recognized by the following deterministic finite-state automaton.

See Solution

Rosen, Discrete Mathematics and Its Applications, 8th edition
 Extra Examples
 Section 13.5—Turing Machines

p.889, icon at Example 1

\#1. Let T be the Turing machine defined by these five-tuples:

$$
\left(s_{0}, 0, s_{1}, 1, R\right),\left(s_{0}, 1, s_{0}, 0, R\right),\left(s_{0}, B, s_{1}, 0, R\right),\left(s_{1}, 0, s_{0}, 0, R\right),\left(s_{1}, 1, s_{2}, 0, R\right),\left(s_{1}, B, s_{2}, 1, L\right) .
$$

If T is run on the following tape, beginning in initial position, what is the final tape when T halts?

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l|l}
\hline \cdots & \text { B } & \text { B } & 0 & 1 & \text { B } & 1 & 1 & \text { B } & \text { B } & \cdots \\
\hline
\end{array}
$$

See Solution

p.889, icon at Example 1
\#2. Let T be the Turing machine defined by these five-tuples:

$$
\left(s_{0}, 0, s_{1}, 1, R\right),\left(s_{0}, 1, s_{0}, 0, R\right),\left(s_{0}, B, s_{1}, 0, R\right),\left(s_{1}, 0, s_{0}, 0, R\right),\left(s_{1}, 1, s_{2}, 0, R\right),\left(s_{1}, B, s_{2}, 1, L\right)
$$

If T is run on the following tape, beginning in initial position, what is the final tape when T halts?

\cdots	B	B	1	B	0	1	0	B	B	\cdots

p.889, icon at Example 1

\#3. Let T be the Turing machine defined by these five-tuples:

$$
\left(s_{0}, 0, s_{1}, 1, R\right),\left(s_{0}, 1, s_{0}, 0, R\right),\left(s_{0}, B, s_{1}, 0, R\right),\left(s_{1}, 0, s_{0}, 0, R\right),\left(s_{1}, 1, s_{2}, 0, R\right),\left(s_{1}, B, s_{2}, 1, L\right)
$$

If T is run on the following tape, beginning in initial position, what is the final tape when T halts?

\cdots	B	B	0	0	0	1	0	B	B	\cdots

See Solution

p.889, icon at Example 1

\#4. Let T be the Turing machine defined by these five-tuples:

$$
\left(s_{0}, 0, s_{1}, 1, R\right),\left(s_{0}, 1, s_{0}, 0, R\right),\left(s_{0}, B, s_{1}, 0, R\right),\left(s_{1}, 0, s_{0}, 0, R\right),\left(s_{1}, 1, s_{2}, 0, R\right),\left(s_{1}, B, s_{2}, 1, L\right) .
$$

If T is run on the following tape, beginning with the third blank from the left, what is the final tape when T halts?

$$
\begin{array}{c|c|c|c|c|c|c|c|c|c|c}
\hline \cdots & \text { B } & \cdots \\
\hline
\end{array}
$$

See Solution

[^0]: See Solution

