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Chapter 3 emphasized the wide applicability of linear programming. Chapters 9 and 10 
then described some of the special types of linear programming problems that often 

arise, including the transportation problem (Sec. 9.1), the assignment problem (Sec. 9.3), 
the shortest-path problem (Sec. 10.3), the maximum flow problem (Sec. 10.5), and the 
minimum cost flow problem (Sec. 10.6). These latter chapters also presented streamlined 
versions of the simplex method for solving these problems very efficiently.
 We continue to broaden our horizons in this chapter by discussing some additional 
special types of linear programming problems. These additional types often share several 
key characteristics in common with the special types presented in Chapters 9 and 10. The 
first is that they all arise frequently in a variety of contexts. They also tend to require a 
very large number of constraints and variables, so a straightforward computer application 
of the simplex method may require an exorbitant computational effort. Fortunately, another 
characteristic is that most of the aij coefficients in the constraints are zeroes, and the 
relatively few nonzero coefficients appear in a distinctive pattern. As a result, it has been 
possible to develop special streamlined versions of the simplex method that achieve dra-
matic computational savings by exploiting this special structure of the problem. Therefore, 
it is important to become sufficiently familiar with these special types of problems so that 
you can recognize them when they arise and apply the proper computational procedure.
 To describe special structures, we shall again use the table (matrix) of constraint 
coefficients, first shown in Table 9.1 and repeated here in Table 23.1, where aij is the 
coefficient of the jth variable in the ith functional constraint. Later, portions of the table 
containing only coefficients equal to zero will be indicated by leaving them blank, 
whereas blocks containing nonzero coefficients will be shaded darker.
 The first section presents the transshipment problem, which is both an extension of 
the transportation problem and a special case of the minimum cost flow problem.
 Sections 23.2 to 23.5 discuss some special types of linear programming problems 
that can be characterized by where the blocks of nonzero coefficients appear in the table 
of constraint coefficients. One type frequently arises in multidivisional organizations. 
A  second arises in multitime period problems. A third combines the first two types. 
Section 23.3 describes the decomposition principle for streamlining the simplex method 
to efficiently solve either the first type or the dual of the second type.

Additional Special Types of Linear 
Programming Problems

23C H A P T E R
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■ TABLE 23.1  Table of constraint 
coefficients for linear 
programming

A =   

⎡

 ⎢ 
⎣
 

a11

  

a12

  

⋯

  

a1n

   a21  a22  ⋯  a2n                

am1

  

am2

  

⋯
  

amn

 

⎤

 ⎥ 
⎦
  

■ 23.1 THE TRANSSHIPMENT PROBLEM
One requirement of the transportation problem presented in Sec. 9.1 is advance knowl-
edge of the method of distribution of units from each source i to each destination j, so 
that the corresponding cost per unit (cij) can be determined. Sometimes, however, the 
best method of distribution is not clear because of the possibility of transshipments, 
whereby shipments would go through intermediate transfer points (which might be other 
sources or destinations). For example, rather than shipping a special cargo directly from 
port 1 to port 3, it may be cheaper to include it with regular cargoes from port 1 to port 2 
and then from port 2 to port 3.
 Such possibilities for transshipments could be investigated in advance to determine 
the cheapest route from each source to each destination. However, this might be a very 
complicated and time-consuming task if there are many possible intermediate transfer 
points. Therefore, it may be much more convenient to let a computer algorithm solve 
simultaneously for the amount to ship from each source to each destination and the route 
to follow for each shipment so as to minimize the total shipping cost.
 This extension of the transportation problem to include the routing decisions is 
referred to as the transshipment problem. This problem is the special case of the 
minimum cost flow problem presented in Sec. 10.6 where there are no restrictions on 
the amount that can be shipped through each shipping lane (unlimited arc capacities). 
The network representation of such a problem is displayed in Fig. 23.1, where each two-
sided arrow indicates that a shipment can be sent in either direction between the cor-
responding pair of locations. To avoid undue clutter, this network shows only the first 
two sources, destinations, and junctions (intermediate transfer points that are neither 
sources nor destinations), and the unit shipping cost associated with each arrow has been 
deleted. (As in Figs. 9.2 and 9.3, the quantity in square brackets next to each location is 
the net number of units to be shipped out of that location). Even when showing only 
these few locations, note that there now are many possible routes for a shipment from 
any particular source to any particular destination, including through other sources or 
destinations en route. With a large network, finding the cheapest such route is not an 
easy task.
 Fortunately, there is a simple way to reformulate the transshipment problem to fit it 
back into the format of the transportation problem. Thus, the transportation simplex 
method presented in Sec. 9.2 can be used to solve the transshipment problem. (As a 
special case of the minimum cost flow problem, the transshipment problem also can be 
solved by the network simplex method described in Sec. 10.7.)
 To clarify the structure of the transshipment problem and the nature of this refor-
mulation, we shall now extend the prototype example for the transportation problem to 
include transshipments.

hiL72998_ch23_001-027.indd   2 28/09/19   11:14 AM
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Prototype Example

After further investigation, the P & T COMPANY (see Sec. 9.1) has found that it can 
cut costs by discontinuing its own trucking operation and using common carriers 
instead to truck its canned peas. Since no single trucking company serves the entire 
area containing all the canneries and warehouses, many of the shipments will need to 
be transferred to another truck at least once along the way. These transfers can be made 
at intermediate canneries or warehouses, or at five other locations (Butte, Montana; 
Boise, Idaho; Cheyenne, Wyoming; Denver, Colorado; and Omaha, Nebraska) referred 
to as junctions, as shown in Fig. 23.2. The shipping cost per truckload between each 
of these points is given in Table 23.2, where a dash indicates that a direct shipment 
is not possible. (Some of these costs reflect small recent adjustments in the costs shown 
in Table 9.2.)
 For example, a truckload of peas can still be sent from cannery 1 to warehouse 4 by 
direct shipment at a cost of $871. However, another possibility, shown below, is to ship the 
truckload from cannery 1 to junction 2, transfer it to a truck going to warehouse 2, and then 
transfer it again to go to warehouse 4, at a cost of only ($286 + $207 + $341) = $834.

S1

S2

J1

J2 D2

D1

Junctions DestinationsSources

[0]

[0]

[s1]

[s2]

[−d1]

[−d2]

■ FIGURE 23.1
The network representation of 
the transshipment problem.

W.4J.2C.1 W.2
286 207 341

871
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JUNCTION 1
Butte

WAREHOUSE 3
Rapid City

JUNCTION 3
Cheyenne

JUNCTION 4
Denver

WAREHOUSE 4
Albuquerque

WAREHOUSE 2
Salt Lake City

JUNCTION 2
Boise

CANNERY 2
Eugene

WAREHOUSE 1
Sacramento

CANNERY 1
Bellingham

CANNERY 3
Albert Lea

JUNCTION 5
Omaha

■ FIGURE 23.2
Location of canneries, warehouses, and junctions for the P & T Co.

■ TABLE 23.2 Independent trucking data for P & T Co.

Shipping Cost per Truckload

To Cannery Junction Warehouse Output
From 1 2 3 1 2 3 4 5 1 2 3 4

1 $146 — $324 $286 — — — $452 $505 — $871 75

Cannery 2 $146 — $373 $212 $570 $609 — $335 $407 $688 $784 125
3 — — $658 — $405 $419 $158 — $685 $359 $673 100

1 $322 $371 $656 $262 $398 $430 — $503 $234 $329 —
2 $284 $210 — $262 $406 $421 $644 $305 $207 $464 $558

Junction 3 — $569 $403 $398 $406 $ 81 $272 $597 $253 $171 $282
4 — $608 $418 $431 $422 $ 81 $287 $613 $280 $236 $229
5 — — $158 — $647 $274 $288 $831 $501 $293 $482

1 $453 $336 — $505 $307 $599 $615 $831 $359 $706 $587
Warehouse 2 $505 $407 $683 $235 $208 $254 $281 $500 $357 $362 $341

3 — $687 $357 $329 $464 $171 $236 $290 $705 $362 $457
4 $868 $781 $670 — $558 $282 $229 $480 $587 $340 $457

Allocation 80 65 70 85
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 This possibility is only one of many indirect ways of shipping a truckload from 
cannery 1 to warehouse 4 that needs to be considered, if indeed this cannery should send 
anything to this warehouse. The overall problem is to determine how the output from all 
the canneries should be shipped to meet the warehouse allocations and minimize the total 
shipping cost.
 Now let us see how this transshipment problem can be reformulated as a transporta-
tion problem. The basic idea is to interpret the individual truck trips (as opposed to 
complete journeys for truckloads) as being the shipment from a source to a destination, 
and so label all 12 locations (canneries, junctions, and warehouses) as being both poten-
tial destinations and potential sources for these shipments. To illustrate this interpreta-
tion, consider the above example where a truckload of peas is shipped from cannery 1 
to warehouse 4 by being transshipped through junction 2 and then warehouse 2. The 
first truck trip for this shipment has cannery 1 as its source and junction 2 as its destina-
tion, but then junction 2 becomes the source for the second truck trip with warehouse 2 
as its destination. Finally, warehouse 2 becomes the source for the third trip with this 
same shipment, where warehouse 4 then is the destination. In a similar fashion, any of 
the 12 locations can become a source, a destination, or both, for truck trips.
 Thus, for the reformulation as a transportation problem, we have 12 sources and 12 
destinations. The cij unit costs for the resulting parameter table shown in Table 23.3 are 
just the shipping costs per truckload already given in Table 23.2. The impossible ship-
ments indicated by dashes in Table 23.2 are assigned a huge unit cost of M. Because 
each location is both a source and a destination, the diagonal elements in the parameter 
table represent the unit cost of a shipment from a given location to itself. The costs of 
these fictional shipments going nowhere are zero.
 To complete the reformulation of this transshipment problem as a transportation 
problem, we now need to explain how to obtain the demand and supply quantities in 
Table 23.3. The number of truckloads transshipped through a location should be included 
in both the demand for that location as a destination and the supply for that location as 
a source. Since we do not know this number in advance, we instead add a safe upper 
bound on this number to both the original demand and supply for that location (shown 
as allocation and output in Table 23.2) and then introduce the same slack variable into 

■ TABLE 23.3 Parameter table for the P & T Co. transshipment problem formulated as a transportation problem

Destination

(Canneries) (Junctions) (Warehouses) Supply
1 2 3 4 5 6 7 8 9 10 11 12

1 0 146 M 324 286 M M M 452 505 M 871 375
(Canneries) 2 146 0 M 373 212 570 609 M 335 407 688 784 425

3 M M 0 658 M 405 419 158 M 685 359 673 400

4 322 371 656 0 262 398 430 M 503 234 329 M 300
5 284 210 M 262 0 406 421 644 305 207 464 558 300

Source (Junctions) 6 M 569 403 398 406 0 81 272 597 253 171 282 300
7 M 608 418 431 422 81 0 287 613 280 236 229 300
8 M M 158 M 647 274 288 0 831 501 293 482 300

9 453 336 M 505 307 599 615 831 0 359 706 587 300
10 505 407 683 235 208 254 281 500 357 0 362 341 300

(Warehouses) 11 M 687 357 329 464 171 236 290 705 362 0 457 300
12 868 781 670 M 558 282 229 480 587 340 457 0 300

Demand 300 300 300 300 300 300 300 300 380 365 370 385
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its demand and supply constraints. This single slack variable thereby serves the role of 
both a dummy source and a dummy destination.) Since it would never pay to return a 
truckload to be transshipped through the same location more than once, a safe upper 
bound on this number for any location is the total number of truckloads (300), so we 
shall use 300 as the upper bound. The slack variable for both constraints for location i 
would be xii, the (fictional) number of truckloads shipped from this location to itself. 
Thus, (300 − xii) is the real number of truckloads transshipped through location i.
 Adding 300 to each of the allocation and demand quantities in Table 23.2 (where 
blanks are zeros) now gives us the complete parameter table shown in Table 23.3 for the 
transportation problem formulation of our transshipment problem. Therefore, using the 
transportation simplex method to obtain an optimal solution for this transportation prob-
lem provides an optimal shipping plan (ignoring the xii) for the P & T Company.

General Features

Our prototype example illustrates all the general features of the transshipment problem 
and its relationship to the transportation problem. Thus, the transshipment problem can 
be described in general terms as being concerned with how to allocate and route units 
(truckloads of canned peas in the example) from supply centers (canneries) to receiv-
ing centers (warehouses) via intermediate transshipment points (junctions, other supply 
centers, and other receiving centers). (The network representation in Fig. 23.1 ignores 
the geographical layout of these locations by lining up all the supply centers in the 
first column, all the junctions in the second column, and all the receiving centers in 
the third column.) In addition to transshipping units, each supply center generates a 
given net surplus of units to be distributed, and each receiving center absorbs a given 
net deficit, whereas each junction neither generates nor absorbs any units. (The net 
number of units generated at each location is shown in square brackets next to that 
location in Fig. 23.1.) The problem has feasible solutions only if the total net surplus 
generated at the supply centers equals the total net deficit to be absorbed at the receiv-
ing centers.
 A direct shipment may be impossible (cij = M) for certain pairs of locations. In 
addition, certain supply centers and receiving centers may not be able to serve as trans-
shipment points at all. In the reformulation of the transshipment problem as a transpor-
tation problem, the easiest way to deal with any such center is to delete its column (for 
a supply center) or its row (for a receiving center) in the parameter table, and then add 
nothing to its original supply or demand quantity.
 A positive cost cij is incurred for each unit sent directly from location i (a supply 
center, junction, or receiving center) to another location j. The objective is to determine 
the plan for allocating and routing the units that minimizes the total cost.
 The resulting mathematical model for the transshipment problem (see Prob. 23.1-4) 
has a special structure slightly different from that for the transportation problem. As in 
the latter case, it has been found that some applications that have nothing to do with 
transportation can be fitted to this special structure. However, regardless of the physical 
context of the application, this model always can be reformulated as an equivalent trans-
portation problem in the manner illustrated by the prototype example.
 This reformulation is not necessary to solve a transshipment problem. Another alter-
native is to apply the network simplex method (see Sec. 10.7) to the problem directly 
without any reformulation. Even though the transportation simplex method (see Sec. 9.2) 
is a little more efficient than the network simplex method for solving transportation 
problems, the great efficiency of the network simplex method in general makes this a 
reasonable alternative.

hiL72998_ch23_001-027.indd   6 28/09/19   11:14 AM
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■ 23.2 MULTIDIVISIONAL PROBLEMS
Another important class of linear programming problems having an exploitable special 
structure consists of multidivisional problems. Their special feature is that they involve 
coordinating the decisions of the separate divisions of a large organization. Because the 
divisions operate with considerable autonomy, the problem is almost decomposable into 
separate problems, where each division is concerned only with optimizing its own oper-
ation. However, some overall coordination is required in order to best divide certain 
organizational resources among the divisions.
 As a result of this special feature, the table of constraint coefficients for multidivisional 
problems has the block angular structure shown in Table 23.4. (Recall that shaded blocks 
represent the only portions of the table that have any nonzero aij coefficients.) Thus, each 
smaller block contains the coefficients of the constraints for one subproblem, namely, the 
problem of optimizing the operation of a division considered by itself. The long block at 
the top gives the coefficients of the linking constraints for the master problem, namely, 
the problem of coordinating the activities of the divisions by dividing organizational 
resources among them so as to obtain an overall optimal solution for the entire organization.
 Because of their nature, multidivisional problems frequently are very large, containing 
many thousands (or possibly even millions) of constraints and variables. Therefore, it may be 
necessary to exploit the special structure in order to be able to solve such a problem with a 
reasonable expenditure of computer time, or even to solve it at all! The decomposition principle 
(described in Sec. 23.3) provides an effective way of exploiting the special structure.
 Conceptually, this streamlined version of the simplex method can be thought of as 
having each division solve its subproblem and sending this solution as its proposal to 
“headquarters” (the master problem), where negotiators then coordinate the proposals from 
all the divisions to find an optimal solution for the overall organization. If the subproblems 
are of manageable size and the master problem is not too large (preferably not more than 
50 to 100 constraints), this approach is successful in solving some extremely large multi-
divisional problems. It is particularly worthwhile when the total number of constraints is 
quite large (at least tens of thousands) and there are more than a few subproblems.

Prototype Example

The GOOD FOODS CORPORATION is a very large producer and distributor of food 
products. It has three main divisions: the Processed Foods Division, the Canned Foods 

A

Coe�cients of Decision Variables for:

1st Division 2nd Division . . . Last Division

…

Constraints on organizational
resources needed by divisions

Constraints on resources
available only to 1 st division

Constraints on resources
available only to 2nd division

Constraints on resources
available only to last division

■ TABLE 23.4 Constraint coefficients for multidivisional problems

hiL72998_ch23_001-027.indd   7 28/09/19   11:14 AM
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Division, and the Frozen Foods Division. Because costs and market prices change fre-
quently in the food industry, Good Foods periodically uses a corporate linear program-
ming model to revise the production rates for its various products in order to use its 
available production capacities in the most profitable way. This model is similar to that 
for the Wyndor Glass Co. problem (see Sec. 3.1), but on a much larger scale, having 
thousands of constraints and variables. (Since our space is limited, we shall describe a 
simplified version of this model that combines the products or resources by types.)
 The corporation grows its own high-quality corn and potatoes, and these basic food 
materials are the only ones currently in short supply that are used by all the divisions. 
Except for these organizational resources, each division uses only its own resources and 
thus could determine its optimal production rates autonomously. The data for each divi-
sion and the corresponding subproblem involving just its products and resources are 
given in Table 23.5 (where Z represents profit in millions of dollars per month), along 
with the data for the organizational resources.
 The resulting linear programming problem for the corporation is

Maximize  Z = 8x1 + 5x2 + 6x3 + 9x4 + 7x5 + 9x6 + 6x7 + 5x8,

subject to

5x1 + 3x2   + 2x4    + 3x6 + 4x7 + 6x8 ≤ 30
2x1   + 4x3 + 3x4 + 7x5    +  x7   ≤ 20
2x1 + 4x2 + 3x3              ≤ 10
7x1 + 3x2 + 6x3              ≤ 15
5x1   + 3x3              ≤ 12
        3x4 +  x5 + 2x6      ≤  7
        2x4 + 4x5 + 3x6      ≤  9
                8x7 + 5x8 ≤ 25
                7x7 + 9x8 ≤ 30
                6x7 + 4x8 ≤ 20

and

xj ≥ 0, for j = 1, 2, . . . , 8.

 Note how the corresponding table of constraint coefficients shown in Table 23.6 fits 
the special structure for multidivisional problems given in Table 23.4. Therefore, the 
Good Foods Corp. can indeed solve this problem (or a more detailed version of it) by 
the streamlined version of the simplex method provided by the decomposition principle.

Important Special Cases

Some even simpler forms of the special structure exhibited in Table 23.4 arise quite 
frequently. Two particularly common forms are shown in Table 23.7.
 The first form occurs when some or all of the variables can be divided into groups 
such that the sum of the variables in each group must not exceed a specified upper bound 
for that group (or perhaps must equal a specified constant). Constraints of this form,

    xj1 + xj2 + . . . + xjk ≤ bi

(or  xj1 + xj2 + . . . + xjk = bi),

usually are called either generalized upper-bound constraints (GUB constraints for 
short) or group constraints. Although Table 23.7 shows each GUB constraint as involv-
ing consecutive variables, this is not necessary. For example,

x1 + x5 = x9 ≤ 1

hiL72998_ch23_001-027.indd   8 28/09/19   11:14 AM
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is a GUB constraint, as is

x8 + x3 + x6 = 20.

 The second form shown in Table 23.7 occurs when some or all of the individual 
variables must not exceed a specified upper bound for that variable. These constraints,

xj ≤ bi,

normally are referred to as upper-bound constraints. For example, both

x1 ≤ 1  and  x2 ≤ 5

are upper-bound constraints. A special technique for dealing efficiently with such con-
straints has been described in Sec. 8.3.

Data for Organizational Resources

Product
Resource Usage/Unit Amount

Resource 1 2 3 4 5 6 7 8 Available

Corn 5 3 0 2 0 3 4 6 30
Potatoes 2 0 4 3 7 0 1 0 20

Canned Foods Division

Product Resource 
Usage/Unit Amount

Resource 4 5 6 Available

4 3 1 2 7
5 2 4 3 9

ΔZ/unit  
Level

9 
x4

7 
x5

9 
x6

Maximize  Z2 = 9x4 + 7x5 + 9x6,

subject to 3x4 + x5 + 2x6 ≤ 7
 2x4 + 4x5 + 3x6 ≤ 9

and x4 ≥ 0,  x5 ≥ 0,  x6 ≥ 0.

Frozen Foods Division

Product Resource 
Usage/Unit Amount

Resource 7 8 Available

6 8 5 25
7 7 9 30
8 6 4 20

ΔZ/unit  
Level

6 
x7

5 
x8

Maximize  Z3 = 6x7 + 5x8,

subject to 8x7 + 5x8 ≤ 25
 7x7 + 9x8 ≤ 30
 6x7 + 4x8 ≤ 20

and x7 ≥ 0,  x8 ≥ 0.

Divisional Data Subproblem

Processed Foods Division

Product Resource  
Usage/Unit Amount

Resource 1 2 3 Available

1 2 4 3 10
2 7 3 6 15
3 5 0 3 12

ΔZ/unit  
Level

8 
x1

5 
x2

6 
x3

Maximize  Z1 = 8x1 + 5x2 + 6x3,

subject to 2x1 + 4x2 + 3x3 ≤ 10
 7x1 + 3x2 + 6x3 ≤ 15
 5x1     + 3x3 ≤ 12

and x1 ≥ 0,  x2 ≥ 0,  x3 ≥ 0.

■ TABLE 23.5 Data for the Good Foods Corp. multidivisional problem

hiL72998_ch23_001-027.indd   9 28/09/19   11:14 AM
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 Either GUB or upper-bound constraints may occur because of the multidivisional 
nature of the problem. However, we should emphasize that they often arise in many other 
contexts as well. In fact, you already have seen a few examples containing such con-
straints as summarized below.
 Note in Table 9.6 that all supply constraints in the transportation problem actually 
are GUB constraints. (Table 9.6 fits the form in Table 23.7 by placing the supply con-
straints below the demand constraints.) In addition, the demand constraints also are GUB 
constraints, but ones not involving consecutive variables.
 The technological limit constraints in the Nori & Leets Co. air pollution problem 
(see Sec. 3.4) are upper-bound constraints, as are two of the three functional constraints 
in the Wyndor Glass Co. product mix problem (see Sec. 3.1).
 Because of the prevalence of GUB and upper-bound constraints, it is very helpful 
to have special techniques for streamlining the way in which the simplex method deals 
with them. (The technique for GUB constraints1 is quite similar to the one for upper-
bound constraints described in Sec. 8.3.) If there are many such constraints, these tech-
niques can drastically reduce the computation time for a problem.

A

■ TABLE 23.6  Constraint coefficients for 
the Good Foods Corp. 
multidivisional problem

A A

Generalized Upper Bounds Upper Bounds

. . .
. . .

■ TABLE 23.7  Constraint coefficients for important special cases of the structure for 
multidivisional problems given in Table 23.4

1G. B. Dantzig, and R. M. Van Slyke, “Generalized Upper Bounded Techniques for Linear Programming,” 
Journal of Computer and Systems Sciences, 1: 213–226, 1967.

hiL72998_ch23_001-027.indd   10 28/09/19   11:14 AM



 23.3 THE DECOMPOSITION PRINCIPLE FOR  MULTIDIVISIONAL PROBLEMS 23-11
C

op
yr

ig
ht

 ©
 2

0
21

 T
he

 M
cG

ra
w

-H
ill

 C
om

pa
ni

es

■ 23.3  THE DECOMPOSITION PRINCIPLE FOR  
MULTIDIVISIONAL PROBLEMS

In Sec. 23.2, we discussed the special class of linear programming problems called 
multidivisional problems and their special block angular structure (see Table 23.4). We 
also mentioned that the streamlined version of the simplex method called the decompo-
sition principle provides an effective way of exploiting this special structure to solve very 
large problems. (This approach also is applicable to the dual of the class of multitime 
period problems presented in Sec. 23.4.) We shall describe and illustrate this procedure 
after reformulating (decomposing) the problem in a way that enables the algorithm to 
exploit its special structure.

A Useful Reformulation (Decomposition) of the Problem

The basic approach is to reformulate the problem in a way that greatly reduces the num-
ber of functional constraints and then to apply the revised simplex method (see Sec. 5.4). 
Therefore, we need to begin by giving the matrix form of multidivisional problems:

Maximize  Z = cx,

subject to

Ax ≤ b†  and x ≤ 0,

where the A matrix has the block angular structure

 A =  

⎡

 ⎢ 
⎣

 

A1

  

A2

  

⋯

  

AN

   
AN+1

  
0
  

⋯
  

0
   0  AN+2  ⋯  0   

⋮
  

⋮
  

 
  

⋮
   

0

  

0

  

⋯

  

A2N

 

⎤

 ⎥ 
⎦

  

where the Ai (i = 1, 2, . . . , 2N) are matrices, and the 0 are null matrices. Expanding, 
this can be rewritten as

 Maximize  Z =  ∑ 
j = 1

  
N

   cjxj , 

subject to

 [A1, A2, . . . , AN, I] [ 
x
  xs
 ]  = b0,   [ 

x
  xs
 ]  ≥ 0, 

AN+ j xj ≤ bj  and  xj ≥ 0,  for j = 1, 2, . . . , N,

where cj, xj, b0, and bj are vectors such that c = [c1, c2, . . . , cN],

 x =  
⎡
 ⎢ 

⎣
 

x1

  
x2  ⋮  
xN

 

⎤
 ⎥ 

⎦
 ,  b =  

⎡

 ⎢ 
⎣

 

b0

  b1  ⋮  

bN

 

⎤

 ⎥ 
⎦

 , 

and where xs is the vector of slack variables for the first set of constraints.

† The following discussion would not be changed substantially if Ax = b.
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 This structure suggests that it may be possible to solve the overall problem by doing 
little more than solving the N subproblems of the form

Maximize  Zj = cjxj,

subject to

AN+ jxj ≤ bj  and  xj ≥ 0,

thereby greatly reducing computational effort. After some reformulation, this approach 
can indeed be used.
 Assume that the set of feasible solutions for each subproblem is a bounded set (i.e., 
none of the variables can approach infinity). Although a more complicated version of 
the approach can still be used otherwise, this assumption will simplify the discussion.
 The set of points xj such that xj ≥ 0 and AN+j xj ≤ bj constitutes a convex set with 
a finite number of extreme points (the CPF solutions for the subproblem having these 
constraints.)2 Therefore, under the assumption that the set is bounded, any point in the 
set can be represented as a convex combination of the extreme points. To express this 
mathematically, let nj be the number of extreme points, and denote these points by x*jk 
for k = 1, 2, . . . , nj. Then any solution xj to subproblem j that satisfies the constraints 
AN+ jxj ≤ bj and xj ≥ 0 also satisfies the equation

 xj =  ∑ 
k=1

  
nj

   ρjkx*jk  

for some combination of ρjk such that

  ∑ 
k=1

  
nj

   ρjk = 1  

and ρjk ≥ 0 (k = 1, 2, . . . , nj). Furthermore, this is not true for any xj that is not a 
feasible solution for subproblem j.
 Therefore, this equation for xj and the constraints on the ρjk provide a method for 
representing the feasible solutions to subproblem j without using any of the original con-
straints. Hence, the overall problem can now be reformulated with far fewer constraints as

 Maximize  Z =  ∑ 
j=1

  
N

   ∑ 
k=1

  
nj

   (cjx*jk)ρjk  , 

subject to

  ∑ 
j=1

  
N

   ∑ 
k=1

  
nj

      (Ajx*jk)ρjk + xs = b0, xs ≥ 0,   ∑ 
k=1

  
nj

  ρjk = 1  ,  for j = 1, 2, . . . , N,

and

ρjk ≥ 0,  for j = 1, 2, . . . , N  and  k = 1, 2, . . . , nj.

This formulation is completely equivalent to the one given earlier. However, since it has 
far fewer constraints, it should be solvable with much less computational effort. The fact 
that the number of variables (which are now the ρjk and the elements of xs) is much 
larger does not matter much computationally if the revised simplex method is used. The 
one apparent flaw is that it would be tedious to identify all the x*jk. Fortunately, it is not 
necessary to do this when using the revised simplex method. The procedure is outlined 
below.

2See Appendix 2 for a definition and discussion of convex sets and extreme points.
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The Algorithm Based on This Decomposition

Let A′ be the matrix of constraint coefficients for this reformulation of the problem, and 
let c′ be the vector of objective function coefficients. (The individual elements of A′ and c′ 
are determined only when they are needed.) As usual, let B be the current basis matrix, 
and let cB be the corresponding vector of basic variable coefficients in the objective 
function.
 For a portion of the work required for the optimality test and step 1 of an iteration, 
the revised simplex method needs to find the minimum element of (cBB−1A′ − c′), the 
vector of coefficients of the original variables (the ρjk in this case) in the current Eq. (0). 
Let (zjk − cjk) denote the element in this vector corresponding to ρjk. Let m0 denote the 
number of elements of b0. Let (B−1)1;m0 be the matrix consisting of the first m0 columns 
of B−1, and let (B−1)i be the vector consisting of the ith column of B−1. Then (zjk − cjk) 
reduces to

zjk − cjk = cB(B−1)1;m0Aj x*jk + cB(B−1)m0+j −cjx*jk

= (cB(B−1)1;m0Aj − cj)x*jk + cB(B−1)m0+j .

 Since cB(B−1)m0+j is independent of k, the minimum value of (zjk − cjk) over k = 1, 
2, . . . , nj can be found as follows. The x*jk are just the CPF solutions for the set of 
constraints, xj ≥ 0 and AN+ jxj ≤ bj, and the simplex method identifies the CPF solution 
that minimizes (or maximizes) a given objective function. Therefore, solve the linear 
programming problem

Minimize  Wj = (cB(B−1)1;m0Aj − cj)xj + cB(B−1)m0+j ,

subject to

AN+jxj ≤ bj  and  x j ≥ 0.

The optimal value of Wj (denoted by W*j ) is the desired minimum value of (zjk − cjk) 
over k. Furthermore, the optimal solution for xj is the corresponding x*jk.
 Therefore, the first step at each iteration requires solving N linear programming 
problems of the above type to find W*j for j = 1, 2, . . . , N. In addition, the current 
Eq.  (0) coefficients of the elements of xs that are nonbasic variables would be found in 
the usual way as the elements of cB(B−1)1;m0. If all these coefficients [the W*j and the 
elements of cB(B−1)1;m0] are nonnegative, the current solution is optimal by the optimal-
ity test. Otherwise, the minimum of these coefficients is found, and the corresponding 
variable is selected as the new entering basic variable. If that variable is ρjk, then the 
solution to the linear programming problem involving Wj has identified x*jk, so that the 
original constraint coefficients of ρjk are now identified. Hence, the revised simplex 
method can complete the iteration in the usual way.
 Assuming that x = 0 is feasible for the original problem, the initialization step would 
use the corresponding solution in the reformulated problem as the initial BF solution. 
This involves selecting the initial set of basic variables (the elements of xB) to be the 
elements of xs and the one variable ρjk for each subproblem j ( j = 1, 2, . . . , N ) such 
that x*jk = 0. Following the initialization step, the above procedure is repeated for a suc-
cession of iterations until an optimal solution is reached. The optimal values of the ρjk 
are then substituted into the equations for the xj for the optimal solution to conform to 
the original form of the problem.

Example. To illustrate this procedure, consider the problem

Maximize Z = 4x1 + 6x2 + 8x3 + 5x4,

hiL72998_ch23_001-027.indd   13 28/09/19   11:14 AM
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subject to

 x1 + 3x2 + 2x3 + 4x4 ≤ 20
2x1 + 3x2 + 6x3 + 4x4 ≤ 25
 x1 +  x2      ≤  5
 x1 + 2x2      ≤ 8
      4x3 + 3x4 ≤ 12

and

xj ≥ 0, for j = 1, 2, 3, 4.

Thus, the A matrix is

 A =  

⎡

 ⎢ 
⎣

 

1

  

3

  

2

  

4

  
2
  

3
  

6
  

4
  1  1  0  0  

1
  

2
  

0
  

0
  

0

  

0

  

4

  

3

 

⎤

 ⎥ 
⎦

  ,

so that N  =  2 and

 A1 =  [ 1  3  
2
  

3
 ] ,  A2 =  [ 2  4  

6
  

4
 ] ,  A3 =  [ 1  1  

1
  

2
 ] ,  A4 = [4, 3]. 

In addition,

c1 = [4, 6],  c2 = [8, 5],

 x1 =  [ 
x1  
x2

 ] ,  x2 =  [ 
x3  
x4

 ] ,  b0 =  [ 20  
25

 ] ,  b1 =  [ 5  
8
 ] ,  b1 = [12]. 

 To prepare for demonstrating how this problem would be solved, we shall first 
examine its two subproblems individually and then construct the reformulation of the 
overall problem. Thus, subproblem 1 is

Maximize  Z1 = [4, 6]  [ 
x1  
x2

 ] , 

subject to

  [ 1  1  
1
  

2
 ]  [ 

x1  
x2

 ]  ≤  [ 5  
8
 ]   and   [ 

x1  
x2

 ]  ≥  [ 0  
0
 ] , 

so that its set of feasible solutions is as shown in Fig. 23.3.
 It can be seen that this subproblem has four extreme points (n1 = 4), namely, the 
four CPF solutions shown by dots in Fig. 23.3. One of these is the origin, considered 
the “first” of these extreme points, so

 x*11 =  [ 0  
0
 ] ,  x*12 =  [ 5  

0
 ] ,  x*13 =  [ 2  

3
 ] ,  x*14 =  [ 0  

4
 ] , 

where ρ11, ρ12, ρ13, ρ14 are the respective weights on these points.
 Similarly, subproblem 2 is

 Maximize  Z2 = [8, 5] [ 
x3  
x4

 ] , 

subject to

 [4, 3] [ 
x3  
x4

 ]  ≤ [12]  and   [ 
x3  
x4

 ]  ≥  [ 0  
0
 ] , 

hiL72998_ch23_001-027.indd   14 28/09/19   11:14 AM
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and its set of feasible solutions is shown in Fig. 23.4. Thus, its three extreme points are

 x*21 =  [ 0  
0
 ] , x*22 =  [ 3  

0
 ] , x*23 =  [ 0  

4
 ] , 

where ρ21, ρ22, ρ23 are the respective weights on these points.
 By performing the cj x*jk vector multiplications and the Ajx*jk matrix multiplications, 
the following reformulated version of the overall problem can be obtained:

Maximize  Z = 20ρ12 + 26ρ13 + 24ρ14 + 24ρ22 + 20ρ23,

subject to

 5ρ12 + 11ρ13 + 12ρ14 +  6ρ22 + 16ρ23 + xs1   = 20
10ρ12 + 13ρ13 + 12ρ14 + 18ρ22 + 16ρ23    + xs2 = 25
      ρ11 + ρ12 + ρ13 + ρ14 = 1
         ρ21 + ρ22 + ρ23 = 1

x2

x10 2 4 5 6

2

4

(2, 3)

Feasible region

■ FIGURE 23.3
Subproblem 1 for the example 
illustrating the decomposition 
principle.

■ FIGURE 23.4
Subproblem 2 for the example 
illustrating the decomposition 
principle.

x4

x30 2 3 4 5

2

4

Feasible region
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and

ρ1k ≥ 0, for k = 1, 2, 3, 4,
ρ2k ≥ 0, for k = 1, 2, 3,
 xsi ≥ 0, for i = 1, 2.

However, we should emphasize that the complete reformulation normally is not con-
structed explicitly; rather, just parts of it are generated as needed during the progress of 
the revised simplex method.
 To begin solving this problem, the initialization step selects xs1, xs2, ρ11, and ρ21 to 
be the initial basic variables, so that

 xB =  
⎡
 ⎢ 

⎣
 

xs1

  
xs2  ρ11

  
ρ21

 
⎤
 ⎥ 

⎦
 . 

Therefore, since A1x*11 = 0, A2x*21 = 0, c1x*11 = 0, and c2x*21 = 0, then

 B =  

⎡

 ⎢ 
⎣

 

1

  

0

  

0

  

0

  0  1  0  0  
0
  

0
  

1
  

0
  

0

  

0

  

0

  

1

 

⎤

 ⎥ 
⎦

  = B−1,  xB = b′=  

⎡

 ⎢ 
⎣

 

20

  25  
1
  

1

 

⎤

 ⎥ 
⎦

 ,  cB = [0, 0, 0, 0] 

for the initial BF solution.
 To begin testing for optimality, let j = 1, and solve the linear programming problem

Minimize W1 = (0 − c1)x1 + 0 = −4x1 − 6x2,

subject to

A3x1 ≤ b1  and  x1 ≥ 0,

so the feasible region is that shown in Fig. 23.3. Using Fig. 23.3 to solve graphically, 
the solution is

 x1 =  [ 2  
3
 ]  = x*13, 

so that W*1 = −26.

Next let j = 2, and solve the problem

Minimize  W2 = (0 − c2)x2 + 0 = −8x3 − 5x4,

subject to

A4x2 ≤ b2  and  x2 ≥ 0,

so Fig. 23.4 shows this feasible region. Using Fig. 23.4, the optimal solution is

 x2 =  [ 3  
0
 ]  = x*22, 

so W*2 = −24. Finally, since none of the slack variables are nonbasic, no more coefficients 
in the current Eq. (0) need to be calculated. It can now be concluded that because both 
W*1 < 0 and W*2 < 0, the current BF solution is not optimal. Furthermore, since W*1 is 
the smaller of these, ρ13 is the new entering basic variable.
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 For the revised simplex method to now determine the leaving basic variable, it is 
first necessary to calculate the column of A′ giving the original coefficients of ρ13. This 
column is

 A′k =  
⎡
 ⎢ 

⎣
 
A1x*13

  1  
0
  

⎤
 ⎥ 

⎦
  =  

⎡

 ⎢ 
⎣

 

11

  13  
1
  

0

 

⎤

 ⎥ 
⎦

 . 

Proceeding in the usual way to calculate the current coefficients of ρ13 and the right-side 
column,

 B−1A′k =  

⎡

 ⎢ 
⎣

 

11

  13  
1
  

0

 

⎤

 ⎥ 
⎦

 ,  B−1b′ =  

⎡

 ⎢ 
⎣

 

20

  25  
1
  

1

 

⎤

 ⎥ 
⎦

 . 

Considering just the strictly positive coefficients, the minimum ratio of the right side to 
the coefficient is the 1⁄1 in the third row, so that r = 3; that is, ρ11 is the new leaving 
basic variable. Thus, the new values of xB and cB are

 xB =  
⎡
 ⎢ 

⎣
 

xs1

  
xs2  ρ13

  
ρ21

 
⎤
 ⎥ 

⎦
 ,  cB = [0, 0, 26, 0]. 

To find the new value of B−1, set

 E =  

⎡

 ⎢ 
⎣

 

1

  

0

  

−11

  

0

   0  1  −13  0   
0
  

0
  

1
  

0
   

0

  

0

  

0

  

1

 

⎤

 ⎥ 
⎦

 , 

so

 B−1
new = EB−1

old =  

⎡

 ⎢ 
⎣

 

1

  

0

  

−11

  

0

   0  1  −13  0   
0
  

0
  

1
  

0
   

0

  

0

  

0

  

1

 

⎤

 ⎥ 
⎦

 . 

 The stage is now set for again testing whether the current BF solution is optimal. 
In this case

W1 = (0 − c1)x1 + 26 = −4x1 − 6x2 + 26,

so the minimum feasible solution from Fig. 23.3 is again

 x1 =  [ 2  
3
 ]  = x*13, 

with W*1 = 0. Similarly,

W2 = (0 − c2)x2 + 0 = −8x3 −5x4,

so the minimizing solution from Fig. 23.4 is again

x2 =   [ 3  
0
 ]   = x*22,
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with W *2 = −24. Finally, there are no nonbasic slack variables to be considered. 
Since W*2 < 0, the current solution is not optimal, and ρ22 is the new entering basic 
variable.
 Proceeding with the revised simplex method,

 A′k =  
⎡
 ⎢ 

⎣
 
A2x*22

  0  
1
  

⎤
 ⎥ 

⎦
  =  

⎡

 ⎢ 

⎣

  

6

  18  
0
  

1

 

⎤

 ⎥ 

⎦

 , 

so

 B−1A′k =  

⎡

 ⎢ 
⎣

  

6

  18  
0
  

1

 

⎤

 ⎥ 
⎦

 ,  B−1b′ =  

⎡

 ⎢ 

⎣

  

9

  12  
1
  

1

 

⎤

 ⎥ 

⎦

 . 

Therefore, the minimum positive ratio is    12 __ 18    from the second row, so r = 2; that is, xs2 
is the new leaving basic variable. Thus

 E =  

⎡

 ⎢ 
⎣

 

1

  

−  1 _ 3  

  

0

  

0

   0    1 __ 18    0  0   
0
  

0
  

1
  

0
   

0

  

−  1 __ 18  

  

0

  

1

 

⎤

 ⎥ 
⎦

 , 

 B−1
new = EB−1

old =  

⎡

 ⎢ 
⎣

 

1

  

−  1 _ 3  

  

−  20 __ 3  

  

0

   0    1 __ 18    −  13 __ 18    0   
0
  

0
  

1
  

0
   

0

  

−  1 __ 18  

  

  13 __ 18  

  

1

 

⎤

 ⎥ 
⎦

 ,  xB =  
⎡
 ⎢ 

⎣
 

xs1

  
ρ22  ρ13

  
ρ21

 
⎤
 ⎥ 

⎦
 , 

and cB = [0, 24, 26, 0].
 Now test whether the new BF solution is optimal. Since

W1 =  ([0, 24, 26, 0]  

⎡

 ⎢ 
⎣

 

1

  

−  1 _ 3  

  0    1 __ 18    
0
  

0
  

0

  

−  1 __ 18  

 

⎤

 ⎥ 
⎦

   [ 1  3  
2
  

3
 ]  − [4, 6])  [ 

x1  
x2

 ]  + [0, 24, 26, 0]  

⎡

 ⎢ 
⎣

 

−  20 __ 3  

  −  13 __ 18    
1
  

  13 __ 18  

 

⎤

 ⎥ 
⎦

 

 =  ([0,   4 _ 3  ]  [ 1  3  
2
  

3
 ]  − [4, 6])  [ 

x1  
x2

 ]  +   26 ___ 
3
   

= −  4 _ 3  x1 − 2x2 +   26 __ 3  .

Fig. 23.3 indicates that the minimum feasible solution is again

x1 =   [ 2  
3
 ]   = x*13,
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so W*1 =    2 _ 3   . Similarly,

W2 =   ([0,   4 _ 3  ] [ 2  4  
6
  

4
 ]  −[8, 5])     [ 

x3  
x4

 ]   + 0

= 0x3 +    1 _ 3   x4,

so the minimizing solution from Fig. 23.4 now is

x2 =   [ 0  
0
 ]   = x*21,

and W*2 = 0. Finally, cB(B−1)1;m0 = [−,    4 _ 3   ]. Therefore, since W*1 ≥ 0, W*2 ≥ 0, and  
cB(B−1)1;m0 ≥ 0, the current BF solution is optimal. To identify this solution, set

xB =   

⎡

 ⎢ 
⎣

  

xs1

  
ρ22  ρ13

  

ρ21

 

⎤

 ⎥ 
⎦

   = B−1b′ =   

⎡

 ⎢ 
⎣

 

1

  

−  1 _ 3  

  

−  20 __ 3  

  

0

   0    1 __ 18    −  13 __ 18    0   
0
  

0
  

1
  

0
   

0

  

−  1 __ 18  

  

  13 __ 18  

  

1

 

⎤

 ⎥ 
⎦

     

⎡

 ⎢ 
⎣

 

20

  25  
1
  

1

 

⎤

 ⎥ 
⎦

   =   

⎡

 ⎢ 
⎣

 

5

  
  2 _ 3    1  

  1 _ 3  

  

⎤

 ⎥ 
⎦

  ,

so

 x1 =  [ 
x1  
x2

 ]  =  ∑ 
k=1

  
4

   ρ1kx*1k = x*12  =  [ 2  
3
 ] ,

x2 =  [ 
x3  
x4

 ]  =  ∑ 
k=1

  
3

   ρ2kx*2k  =   1 _ 3   [ 0  
0
 ]  +   2 _ 3   [ 3  

0
 ]  =  [ 2  

0
 ] . 

Thus, an optimal solution for this problem is x1 = 2, x2 = 3, x3 = 2, x4 = 0, with Z = 42.

■ 23.4 MULTITIME PERIOD PROBLEMS
Any successful organization must plan ahead and take into account probable changes in 
its operating environment. For example, predicted future changes in sales because of 
seasonal variations or long-run trends in demand might affect how the firm should oper-
ate currently. Such situations frequently lead to the formulation of multitime period linear 
programming problems for planning several time periods (e.g., days, months, or years) 
into the future. Just as for multidivisional problems, multitime period problems are almost 
decomposable into separate subproblems, where each subproblem in this case is concerned 
with optimizing the operation of the organization during one of the time periods. However, 
some overall planning is required to coordinate the activities in the different time periods.
 The resulting special structure for multitime period problems is shown in Table 23.8. 
Each approximately square block gives the coefficients of the constraints for one sub-
roblem concerned with optimizing the operation of the organization during a particular 
time period considered by itself. Each oblong block then contains the coefficients of the 
linking variables for those activities that affect two or more time periods. For example, 
the linking variables may describe inventories that are retained at the end of one time 
period for use in some later time period, as we shall illustrate in the prototype example.
 As with multidivisional problems, the multiplicity of subproblems often causes mul-
titime period problems to have a very large number of constraints and variables, so again 
a method for exploiting the almost decomposable special structure of these problems is 
needed. Fortunately, the same method can be used for both types of problems! The idea 
is to reorder the variables in the multitime period problem to first list all the linking 
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variables, as shown in Table 23.9, and then to construct its dual problem. This dual 
problem exactly fits the block angular structure shown in Table 23.4. (For this reason 
the special structure in Table 23.9 is referred to as the dual angular structure.) There-
fore, the decomposition principle presented in the preceding section for multidivisional 
problems can be used to solve this dual problem. Since directly applying even this 
streamlined version of the simplex method to the dual problem automatically identifies 
an optimal solution for the primal problem as a by-product, this provides an efficient 
way of solving many large multitime period problems.

■ TABLE 23.8  Constraint coefficients for multitime period problems

A

Coe�cients of Activity Variables for:

emiTtsaLemiTdnoceSemiTtsriF
Period Period Period

Constraints
on resources
available
during first
time period

Constraints
on resources
available
during second
time period

Constraints
on resources
available
during last
time period

Li
nk

in
g

Li
nk

in
g

Li
nk

in
g

. . .

.
. .

. . .

A

Coe�cients of Activity Variables for:

First Time
Period

Second Time
Period

Last Time
Period

Constraints on resources
available during first time
period
Constraints on resources
available during second
time period

Constraints on resources
available during last time
period

Li
nk

in
g

. . .

.
. .. . .

■ TABLE 23.9  Table of constraint coefficients for multitime period problems after 
reordering the variables
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Prototype Example

The WOODSTOCK COMPANY operates a large warehouse that buys and sells lumber. 
Since the price of lumber changes during the different seasons of the year, the company 
sometimes builds up a large stock when prices are low and then stores the lumber for 
sale later at a higher price. The manager feels that there is considerable room for increas-
ing profits by improving the scheduling of purchases and sales, so he has hired a team 
of operations research consultants to develop the most profitable schedule.
 Since the company buys lumber in large quantities, its purchase price is slightly less 
than its selling price in each season. These prices are shown in Table 23.10, along with 
the maximum amount that can be sold during each season. The lumber would be pur-
chased at the beginning of a season and sold throughout the season. If the lumber pur-
chased is to be stored for sale in a later season, a handling cost of $7 per 1,000 board 
feet is incurred, as well as a storage cost (including interest on capital tied up) of $10 
per 1,000 board feet for each season stored. A maximum of 2 million board feet can be 
stored in the warehouse at any one time. (This includes lumber purchased for sale in the 
same period.) Since lumber should not age too long before sale, the manager wants it 
all sold by the end of autumn (before the low winter prices go into effect).
 The team of OR consultants concluded that this problem should be formulated as a 
linear programming problem of the multitime period type. Numbering the seasons (1 = 
winter, 2 = spring, 3 = summer, 4 = autumn) and letting xi be the number of 1,000 
board feet purchased in season i, yi be the number sold in season i, and zij be the num-
ber stored in season i for sale in season j, this formulation is

Maximize  Z = −410x1 + 425y1 − 17z12 − 27z13 − 37z14 − 430x2 + 440y2
−17z23 − 27z24 − 460x3 − 465y3 − 17z34 − 450x4 − 455y4,

subject to

x1 − y1 − z12 − z13 − z14 = 0
x1 ≤ 2000
  y1 ≤ 1000
     z12      + x2 − y2 − z23 − z24 = 0
     z12        − y2 ≤ 0
     z12 + z13 + z14 + x2 ≤ 2000
              y2 ≤ 1400
       z13       + z23   + x3 − y3 − z34 = 0
       z13         + z23      − y3 ≤ 0
       z13 + z14     + z23 + z24 + x3 ≤ 2000
                       y3 ≤ 2000
          z14       + z24     + z34 + x4 − y4 = 0
 y4 ≤ 1600

■ TABLE 23.10 Price data for the Woodstock Company

Season
Purchase 

Price*
Selling 
Price*

Maximum 
Sales†

Winter 410 425 1,000
Spring 430 440 1,400
Summer 460 465 2,000
Autumn 450 455 1,600

*Prices are in dollars per thousand board feet.
†Sales are in thousand board feet.
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and

xi ≥ 0,  yi ≥ 0,  zij ≥ 0,  for i = 1, 2, 3, 4, and j = 2, 3, 4.

Thus, this formulation contains four subproblems, where the subproblem for season i is 
obtained by deleting all variables except xi and yi from the overall problem. The storage 
variables (the zij) then provide the linking variables that interrelate these four time peri-
ods. Therefore, after reordering the variables to first list these linking variables, the 
corresponding table of constraint coefficients has the form shown in Table 23.11, where 
all blanks are zeros. Since this form fits the dual angular structure given in Table 23.9, 
the streamlined solution procedure for this kind of special structure can be used to solve 
the problem (or much larger versions of it).

Coe�cient of:

z12 z13 z14 z23 z24 z34 x1 y1 x2 y2 x3 y3 x4 y4

■ TABLE 23.11  Table of constraint coefficients for the Woodstock Company multitime 
period problem after reordering the variables

■ 23.5 MULTIDIVISIONAL MULTITIME PERIOD PROBLEMS
You saw in the preceding two sections how decentralized decision making can lead to 
multidivisional problems and how a changing operating environment can lead to multi-
time period problems. We discussed these two situations separately to focus on their 
individual special structure. However, we should now emphasize that it is fairly common 
for problems to possess both characteristics simultaneously. For example, because costs 
and market prices change frequently in the food industry, the Good Foods Corp. might 
want to expand their multidivisional problem to consider the effect of such predicted 
changes several time periods into the future. This would allow the model to indicate how 
to most profitably stock up on materials when costs are low and store portions of the 
food products until prices are more favorable. Similarly, if the Woodstock Co. also owns 
several other warehouses, it might be advisable to expand their model to include and 
coordinate the activities of these divisions of their organization. (Also see Prob. 23.5-2 
for another way in which the Woodstock Co. problem might expand to include the mul-
tidivisional structure.)
 The combined special structure for such multidivisional multitime period problems 
is shown in Table 23.12. It contains many subproblems (the approximately square blocks), 
each of which is concerned with optimizing the operation of one division during one of 
the time periods considered in isolation. However, it also includes both linking 
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constraints and linking variables (the oblong blocks). The linking constraints coordinate 
the divisions by making them share the organizational resources available during one or 
more time periods. The linking variables coordinate the time periods by representing 
activities that affect the operation of a particular division (or possibly different divisions) 
during two or more time periods.
 One way of exploiting the combined special structure of these problems is to apply 
an extended version of the decomposition principle for multidivisional problems. This 
involves treating everything but the linking constraints as one large subproblem and then 
using this decomposition principle to coordinate the solution for this subproblem with 
the master problem defined by the linking constraints. Since this large subproblem has 
the dual angular structure shown in Table 23.9, it would be solved by the special solution 
procedure for multitime period problems, which again involves using this decomposition 
principle.
 Other procedures for exploiting this combined special structure also have been developed.3

A

Linking
Variables

Linking
Constraints

. . .

■ TABLE 23.12  Constraint coefficients for multidivisional multitime period problems

3For further information, see Chap. 5 of Selected Reference 4 at the end of this chapter.

■ 23.6 CONCLUSIONS
The linear programming model encompasses a wide variety of specific types of prob-
lems. The general simplex method is a powerful algorithm that can solve surprisingly 
large versions of any of these problems. However, some of these problem types have 
such simple formulations that they can be solved much more efficiently by streamlined 
versions of the simplex method that exploit their special structure. These streamlined 
versions can cut down tremendously on the computer time required for large problems, 
and they sometimes make it computationally feasible to solve huge problems. Of the 
problems considered in this chapter, this is particularly true for transshipment problems 
and problems with many upper-bound or GUB constraints. For general multidivisional 
problems, multitime period problems, or combinations of the two, the setup times are 
sufficiently large for their streamlined procedures that they should be used selectively 
only on large problems.
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 Much research continues to be devoted to developing streamlined solution proce-
dures for special types of linear programming problems, including some not discussed 
here. At the same time there is widespread interest in applying linear programming to 
optimize the operation of complicated large-scale systems, including social systems. The 
resulting formulations usually have special structures that can be exploited. Recognizing 
and exploiting special structures has become a very important factor in the successful 
application of linear programming.
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■ PROBLEMS
(b) Reformulate this problem as an equivalent transportation prob-

lem by constructing the appropriate parameter table.
(c) Use the northwest corner rule to obtain an initial BF solution 

for the problem formulated in part (b). Describe the corre-
sponding shipping pattern.

C (d)  Use the computer to obtain an optimal solution for the prob-
lem formulated in part (b). Describe the corresponding opti-
mal shipping pattern.

23.1-2. Consider the airline company problem presented in 
Prob. 10.3-3.
(a) Describe how this problem can be fitted into the format of the 

transshipment problem.
(b) Reformulate this problem as an equivalent transportation prob-

lem by constructing the appropriate parameter table.
(c) Use Vogel’s approximation method (see Supplement 2 to 

Chap. 9) to obtain an initial BF solution for the problem formu-
lated in part (b).

(d) Use the transportation simplex method by hand to obtain an 
optimal solution for the problem formulated in part (b).

23.1-3. A student about to enter college away from home has de-
cided that she will need an automobile during the next four years. 
Since funds are going to be very limited, she wants to do this in the 
cheapest possible way. However, considering both the initial pur-
chase price and the operating maintenance costs, it is not clear 
whether she should purchase a very old car or just a moderately old 
car. Furthermore, it is not clear whether she should plan to trade in 
her car at least once during the four years, before the costs become 
too high.

To the left of each of the following problems (or their parts), we 
have inserted a C whenever you should use the computer with any 
of the software options available to you (or as instructed by your 
instructor) to solve the problem.

23.1-1. Suppose that the air freight charge per ton between seven 
particular locations is given by the following table (except where 
no direct air freight service is available):

Location 1 2 3 4 5 6 7

1 — 21 50 62 93 77 —
2 21 — 17 54 67 — 48
3 50 17 — 60 98 67 25
4 62 54 60 — 27 — 38
5 93 67 98 27 — 47 42
6 77 — 67 — 47 — 5
7 — 48 25 38 42 35 —

 A certain corporation must ship a certain perishable commod-
ity from locations 1–3 to locations 4–7. A total of 70, 80, and  
50 tons of this commodity is to be sent from locations 1, 2, and 3, 
respectively. A total of 30, 60, 50, and 60 tons is to be sent to loca-
tions 4, 5, 6, and 7, respectively. Shipments can be sent through 
intermediate locations (any of these seven locations other than the 
origin and the destination) at a cost equal to the sum of the costs for 
each of the legs of the journey. The problem is to determine the 
shipping plan that minimizes the total freight cost.
(a) Describe how this problem fits into the format of the general 

transshipment problem.
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If the student trades in a car during the next four years, she would 
do it at the end of a year (during the summer) on another car of one 
of these two kinds. She definitely plans to trade in her car at the end 
of the four years on a much newer model. However, she needs to 
determine which plan for purchasing and (perhaps) trading in cars 
during the four years would minimize the total net cost during the 
four years.
(a) Describe how this problem can be fitted into the format of the 

transshipment problem.
(b) Reformulate this problem as an equivalent transportation prob-

lem by constructing the appropriate parameter table.
C (c)  Use the computer to obtain an optimal solution for the prob-

lem formulated in part (b).

23.1-4. Without using xii variables to introduce fictional shipments 
from a location to itself, formulate the linear programming model 
for the general transshipment problem described at the end of 
Sec. 23.1. Identify the special structure of this model by construct-
ing its table of constraint coefficients (similar to Table 23.1) that 
shows the location and values of the nonzero coefficients.

23.2-1. Consider the following linear programming problem.

Maximize Z = 2x1 + 4x2 + 3x3 + 2x4 − 5x5 + 3x6.

subject to

 3x1 + 2x2 + 3x3 ≤ 30
 2x5 − x6 ≤ 20
 5x1 − 2x2 + 3x3 + 4x4 + 2x5 + x6 ≤ 20
 3 ≤ x4 ≤ 15
 2x5 + 3x6 ≤ 40
 5x1 − x3 ≤ 30
 2x1 + 4x2 + 2x4 + 3x6 ≤ 60
 −x1 + 2x2 + x3 ≥ 20

and

xj ≥ 0,  for j = 1, 2, . . . , 6.

(a) Rewrite this problem in a form that demonstrates that it pos-
sesses the special structure for multidivisional problems. Iden-
tify the variables and constraints for the master problem and 
each subproblem.

(b) Construct the corresponding table of constraint coefficients 
having the block angular structure shown in Table 23.4. 
 (Include only nonzero coefficients, and draw a box around each 
block of these coefficients to emphasize this structure.)

23.2-2. Consider the following table of constraint coefficients for 
a linear programming problem:

Coefficient of:

Constraint x1 x2 x3 x4 x5 x6 x7

1  

 

⎡

 

⎢ ⎣

 1   1  1
   1
4 3 −2 2 4  1
  2   4
1   1 
 5 3  1 −2 4
     1
 2   1  3
2   4

⎤

 

⎥ ⎦  

2
3
4
5
6
7
8
9

(a) Show how this table can be converted into the block angular 
structure for multidivisional linear programming as shown in 
Table 23.4 (with three subproblems in this case) by reordering 
the variables and constraints appropriately.

(b) Identify the upper-bound constraints and GUB constraints for 
this problem.

23.2-3. A corporation has two divisions (the Eastern Division and 
the Western Division) that operate semiautonomously, with each 
developing and marketing its own products. However, to coordi-
nate their product lines and to promote efficiency, the divisions 
compete at the corporate level for investment funds for new prod-
uct development projects. In particular, each division submits its 
proposals to corporate headquarters in September for new major 
projects to be undertaken the following year, and available funds 
are then allocated in such a way as to maximize the estimated total 
net discounted profits that will eventually result from the projects.
 For the upcoming year, each division is proposing three new 
major projects. Each project can be undertaken at any level, where 

The relevant data each time she purchases a car are as follows:

 Operating and Maintenance Trade-in Value at End
 Costs for Ownership Year of Ownership Year
 Purchase
 Price 1 2 3 4 1 2 3 4

Very old car $1,200 $1,900 $2,200 $2,500 $2,800 $  700 $  500 $  400 $  300
Moderately old car $4,500 $1,000 $1,300 $1,700 $2,300 $2,500 $1,800 $1,300 $1,000
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(a) Formulate this problem as a multidivisional linear program-
ming problem.

(b) Construct the corresponding table of constraint coefficients 
having the block angular structure shown in Table 23.4.

23.3-1. Use the decomposition principle to solve the Wyndor 
Glass Co. problem presented in Sec. 3.1.

23.3-2. Consider the following multidivisional problem:

Maximize Z = 10x1 + 5x2 + 8x3 + 7x4,

subject to

 6x1 + 5x2 + 4x3 + 6x4 ≤ 40
 3x1 + x2    ≤ 15
 x1 + x2    ≤ 10
     x3 + 2x4 ≤ 10
     2x3 + x4 ≤ 10

and

xj ≥ 0,  for  j = 1, 2, 3, 4.

(a) Explicitly construct the complete reformulated version of this 
problem in terms of the ρjk decision variables that would be 
generated (as needed) and used by the decomposition principle.

(b) Use the decomposition principle to solve this problem.

23.3-3. Using the decomposition principle, begin solving the Good 
Foods Corp. multidivisional problem presented in Sec. 23.2 by ex-
ecuting the first two iterations.

23.4-1. Consider the following table of constraint coefficients for 
a linear programming problem:

the estimated net discounted profit would be proportional to the 
level. The relevant data on the projects are summarized as follows:

 A total of $150,000,000 is budgeted for investment in these 
projects.

Show how this table can be converted into the dual angular struc-
ture for multitime period linear programming shown in Table 23.9 
(with three time periods in this case) by reordering the variables 
and constraints appropriately.

23.4-2. Consider the Wyndor Glass Co. problem described in 
Sec. 3.1 (see Table 3.1). Suppose that decisions have been made to 
discontinue additional products in the future and to initiate other 
new products. Therefore, for the two products being analyzed, the 
number of hours of production time available per week in each of 
the three plants will be different than shown in Table 3.1 after the 
first year. Furthermore, the profit per batch (exclusive of storage 
costs) that can be realized from the sale of these two products will 
vary from year to year as market conditions change. Therefore, it 
may be worthwhile to store some of the units produced in 1 year for 
sale in a later year. The storage costs involved would be approxi-
mately $2,000 per batch for either product.
 The relevant data for the next three years are summarized 
next.

 Eastern Division  Western Division  
 Project Project

 1 2 3 1 2 3

Level x1 x2 x3  x4 x5 x6

Required investment (in millions of dollars) 16x1 7x2 13x3  8x4 20x5 10x6

Net profitability 7x1 3x2 5x3  4x4 7x5 5x6

Facility restriction 10x1 + 3x2 + 7x3 ≤ 50 6x4 + 13x5 + 9x6 ≤ 45
Labor restriction 4x1 + 2x2 + 5x3 ≤ 30 3x4 +  8x5 + 2x6 ≤ 25

  

⎡

 

⎢ ⎣

3 1
1 2 −1
   1 5
  1 2 −1 −1 −1
    1
  1   1 1 1 3 2
       2 −1 1

⎤

 

⎥ ⎦  

Constraint x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1  

 

2
3
4
5
6
7

The production time per batch used by each product remains the 
same for each year as shown in Table 3.1. The objective is to deter-
mine how much of each product to produce in each year and what 
portion to store for sale in each subsequent year to maximize the 
total profit over the three years.
(a) Formulate this problem as a multitime period linear program-

ming problem.
(b) Construct the corresponding table of constraint coefficients 

having the dual angular structure shown in Table 23.9.

 Hours/Week Available 
 in Year

   1 2 3

  1 4 6 3
 Plant 2 12 12 10
  3 18 24 15

Profit per batch, Product 1 $3,000 $4,000 $5,000
Profit per batch, Product 2 $5,000 $4,000 $8,000
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23.5-1. Consider the following table of constraint coefficients for 
a linear programming problem.

Show how this table can be converted into the form for multidivi-
sional multitime period problems shown in Table 23.12 (with two 
linking constraints, two linking variables, and four subproblems in 
this case) by reordering the variables and constraints appropriately.

23.5-2. Consider the Woodstock Company multitime period prob-
lem described in Sec. 23.4 (see Table 23.10). Suppose that the 
company has decided to expand its operation to also buy, store, and 
sell plywood in this warehouse. For the upcoming year, the relevant 

Constraint x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1  

 

2
3
4
5
6
7
8
9
10   

⎡

 

⎢ ⎣

2   3    1
 1 1    2 2
5 −1 2 −1 −1  −3   4
     1  −1
 −1   2   −2 5 3
1   1
2 1  3  2  1 −1
 −1 2    1 −1
    1    2 1
 −1   4    1 5

⎤

 

⎥ ⎦  
For plywood stored for sale in a later season, the handling cost is 
$6 per 1,000 board feet, and the storage cost is $18 per 1,000 board 
feet for each season stored. The storage capacity of 2 million board 
feet now applies to the total for raw lumber and plywood. Every-
thing should still be sold by the end of autumn.
 The objective now is to determine the most profitable sched-
ule for buying and selling raw lumber and plywood.
(a) Formulate this problem as a multidivisional multitime period 

linear programming problem.
(b) Construct the corresponding table of constraint coefficients 

having the form shown in Table 23.12.

data for raw lumber are still as given in Sec. 23.4. The correspond-
ing price data for plywood are as follows:

 Purchase Selling Maximum 
Season Price* Price*  Sales†

Winter 680 705 800
Spring 715 730 1,200
Summer 760 770 1,500
Autumn 740 750 100

*Prices are in dollars per 1,000 board feet.
†Sales are in 1,000 board feet.

hiL72998_ch23_001-027.indd   27 28/09/19   11:14 AM




