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24C H A P T E R

Probability Theory

In decision-making problems, one is often faced with making decisions based upon 
phenomena that have uncertainty associated with them. This uncertainty is caused by 

inherent variation due to sources of variation that elude control or the inconsistency of 
natural phenomena. Rather than treat this variability qualitatively, one can incorporate it 
into the mathematical model and thus handle it quantitatively. This generally can be 
accomplished if the natural phenomena exhibit some degree of regularity, so that their 
variation can be described by a probability model. The ensuing sections are concerned 
with methods for characterizing these probability models.

Suppose the demand for a product over each successive period of time, say a month, is 
of interest. From a realistic point of view, demand is not generally constant but exhibits 
the type of variation alluded to in the introduction. Suppose an experiment that will result 
in observing the demand for the product during a month is run. Whereas the outcome 
of the experiment cannot be predicted exactly, each possible outcome can be described. 
The demand during the period can be any one of the values 0, 1, 2, . . . , that is, the 
entire set of nonnegative integers. The set of all possible outcomes of the experiment is 
called the sample space and will be denoted by Ω. Each outcome in the sample space 
is called a point and will be denoted by ω. Actually, in the experiment just described, 
the possible demands may be bounded from above by N, where N would represent the 
size of the population that has any use for one unit of the product. Hence, the sample 
space would then consist of the set of the integers 0, 1, 2, . . . , N. Strictly speaking, the 
sample space is much more complex than just described. In fact, it may be extremely 
difficult to characterize precisely. Associated with this experiment are such factors as the 
dates and times that the demands occur, the prevailing weather, the disposition of the 
personnel meeting the demand, and so on. Many more factors could be listed, most of 
which are irrelevant. Fortunately, as noted in the next section, it is not necessary to 
describe completely the sample space, but only to record those factors that appear to be 
necessary for the purpose of the experiment.
	 Another experiment may be concerned with the time until the first customer 
arrives at a store. Since the first customer may arrive at any time until the store closes 
(assuming an 8-hour day), for the purpose of this experiment, the sample space can 

■  24.1  SAMPLE SPACE
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be considered to be all points on the real line between zero and 8 hours. Thus, Ω 
consists of all points ω such that 0 ≤ ω ≤ 8.1
	 Now consider a third example. Suppose that a modification of the first experiment 
is made by observing the demands during the first 2 months. The sample space Ω con-
sists of all points (x1, x2), where x1 represents the demand during the first month, x1 = 0, 
1, 2, . . . , and x2 represents the demand during the second month, x2  =  0, 1, 2, . . . . 
Thus, Ω consists of the set of all possible points ω, where ω represents a pair of non-
negative integer values (x1, x2). The point ω = (3,6) represents a possible outcome of the 
experiment where the demand in the first month is 3 units and the demand in the second 
month is 6 units. In a similar manner, the experiment can be extended to observing the 
demands during the first n months. In this situation Ω consists of all possible points  
ω = (x1, x2, . . . , xn), where xi represents the demand during the ith month.
	 The experiment that is concerned with the time until the first arrival appears can 
also be modified. Suppose an experiment that measures the times of the arrival of the 
first customer on each of 2 days is performed. The set of all possible outcomes of the 
experiment Ω consists of all points (x1,x2), 0 ≤ x1, x2 ≤ 8, where x1 represents the time 
the first customer arrives on the first day, and x2 represents the time the first customer 
arrives on the second day. Thus, Ω consists of the set of all possible points ω, where ω 
represents a point in two space lying in the square shown in Fig. 24.1.
	 This experiment can also be extended to observing the times of the arrival of the first 
customer on each of n days. The sample space Ω consists of all points ω = (x1, x2, . . . , xn), 
such that 0 ≤ xi ≤ 8 (i = 1, 2, . . . , n), where xi represents the time the first customer 
arrives on the ith day.
	 An event is defined as a set of outcomes of the experiment. Thus, there are many 
events that can be of interest. For example, in the experiment concerned with observing 
the demand for a product in a given month, the set {ω = 0, ω = 1, ω = 2, . . . , ω = 10} 
is the event that the demand for the product does not exceed 10 units. Similarly, the set 
{ω  =  0} denotes the event of no demand for the product during the month. In the 
experiment which measures the times of the arrival of the first customer on each of 
2 days, the set {ω = (x1, x2); x1 < 1, x2 < 1} is the event that the first arrival on each 
day occurs before the first hour. It is evident that any subset of the sample space, e.g., 
any point, collection of points, or the entire sample space, is an event.
	 Events may be combined, thereby resulting in the formation of new events. For any 
two events E1 and E2, the new event E1 ∪ E2, referred to as the union of E1 and E2, is 
defined to contain all points in the sample space that are in either E1 or E2, or in both E1 

■  FIGURE 24.1
The sample space of the 
arrival time experiment over 
two days.

(8, 8)8

8

x2

x10

= (1, 2)˙

Ω

ω

1It is assumed that at least one customer arrives each day.
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and E2. Thus, the event E1 ∪ E2 will occur if either E1 or E2 occurs. For example, in the 
demand experiment, let E1 be the event of a demand in a single month of zero or 1 unit, 
and let E2 be the event of a demand in a single month of 1 or 2 units. The event E1 ∪ E2 
is just {ω = 0, ω = 1, ω = 2}, which is just the event of a demand of 0, 1, or 2 units.
	 The intersection of two events E1 and E2 is denoted by E1 ∩ E2 (or equivalently by 
E1E2). This new event E1 ∩ E2 is defined to contain all points in the sample space that 
are in both E1 and E2. Thus, the event E1 ∩ E2 will occur only if both E1 and E2 occur. 
In the aforementioned example, the event E1 ∩ E2 is {ω = 1}, which is just the event of 
a demand of 1 unit.
	 Finally, the events E1 and E2 are said to be mutually exclusive (or disjoint) if their 
intersection does not contain any points. In the current example, E1 and E2 are not dis-
joint. However, if the event E3 is defined to be the event of a demand of 2 or 3 units, 
then E1 ∩ E3 is disjoint. Events that do not contain any points, and therefore cannot 
occur, are called null events. (Or course, all these definitions can be extended to any 
finite number of events.)

■  24.2  RANDOM VARIABLES
It may occur frequently that in performing an experiment one is not interested directly 
in the entire sample space or in events defined over the sample space. For example, 
suppose that the experiment which measures the times of the first arrival on 2 days was 
performed to determine at what time to open the store. Prior to performing the experi-
ment, the store owner decides that if the average of the arrival times is greater than an 
hour, thereafter he will not open his store until 10 a.m. (9 a.m. being the previous open-
ing time). The average of x1 and x2 (the two arrival times) is not a point in the sample 
space, and hence he cannot make his decision by looking directly at the outcome of his 
experiment. Instead, he makes his decision according to the results of a rule that assigns 
the average of x1 and x2 to each point (x1,x2) in Ω. This resultant set is then partitioned 
into two parts: those points below 1 and those above 1. If the observed result of this rule 
(average of the two arrival times) lies in the partition with points greater than 1, the store 
will be opened at 10 a.m.; otherwise, the store will continue to open at 9 a.m. The rule 
that assigns the average of x1 and x2 to each point in the sample space is called a random 
variable. Thus, a random variable is a numerically valued function defined over the 
sample space. Note that a function is, in a mathematical sense, just a rule that assigns a 
number to each value in the domain of definition, in this context the sample space.
	 Random variables play an extremely important role in probability theory. Experi-
ments are usually very complex and contain information that may or may not be super-
fluous. For example, in measuring the arrival time of the first customer, the color of his 
shoes may be pertinent. Although this is unlikely, the prevailing weather may certainly 
be relevant. Hence, the choice of the random variable enables the experimenter to 
describe the factors of importance to him and permits him to discard the superfluous 
characteristics that may be extremely difficult to characterize.
	 There is a multitude of random variables associated with each experiment. In the 
experiment concerning the arrival of the first customer on each of 2 days, it has been 
pointed out already that the average of the arrival times ​​   X ​​ is a random variable. Notation-
ally, random variables will be characterized by capital letters, and the values the random 
variable takes on will be denoted by lowercase letters. Actually, to be precise, ​​   X ​​ should 
be written as ​​   X ​​(ω), where ω is any point shown in the square in Fig. 24.1 because ​​   X ​​ is 
a function. Thus, ​​   X ​​(1,2) = (1 + 2)/2 = 1.5, ​​   X ​​(1.6,1.8) = (1.6 + 1.8)/2 = 1.7, ​​   X ​​(1.5,1.5) =  
(1.5 + 1.5)/2 = 1.5, ​​   X ​​(8,8) = (8 + 8)/2 = 8. The values that the random variable ​​   X ​​ takes 
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on are the set of values ​​   x ​​ such that 0 ≤ ​​   x ​​ ≤ 8. Another random variable, X1, can be 
described as follows: For each ω in Ω, the random variable (numerically valued function) 
disregards the x2 coordinate and transforms the x1 coordinate into itself. This random 
variable, then, represents the arrival time of the first customer on the first day. Hence, 
X1(1,2)  =  1, X1(1.6,1.8)  =  1.6, X1(1.5,1.5)  =  1.5, X1(8,8)  =  8. The values the random 
variable X1 takes on are the set of values x1 such that 0 ≤ x1 ≤ 8. In a similar manner, 
the random variable X2 can be described as representing the arrival time of the first cus-
tomer on the second day. A third random variable, S2, can be described as follows: For 
each ω in Ω, the random variable computes the sum of squares of the deviations of the 
coordinates about their average; that is, S2(ω) = S2(x1, x2) = (x1 − ​​   x ​​)2 + (x2 − ​​   x ​​)2. Hence, 
S2(1,2) = (1 − 1.5)2 + (2 − 1.5)2 = 0.5, S2(1.6,1.8) = (1.6 − 1.7)2 + (1.8 − 1.7)2 = 0.02, 
S2(1.5,1.5)  =  (1.5 − 1.5)2  +  (1.5 − 1.5)2  =  0, S2(8,8)  =  (8 − 8)2  +  (8 − 8)2  =  0. It is 
evident that the values the random variable S2 takes on are the set of values s2 such that 
0 ≤ s2 ≤ 32.
	 All the random variables just described are called continuous random variables 
because they take on a continuum of values. Discrete random variables are those that 
take on a finite or countably infinite set of values.2 An example of a discrete random 
variable can be obtained by referring to the experiment dealing with the measurement 
of demand. Let the discrete random variable X be defined as the demand during the 
month. (The experiment consists of measuring the demand for 1 month). Thus, X(0) = 0, 
X(1) = 1, X(2) = 2, . . . , so that the random variable takes on the set of values consist-
ing of the integers. Note that Ω and the set of values the random variable takes on are 
identical, so that this random variable is just the identity function.
	 From the above paragraphs it is evident that any function of a random variable is 
itself a random variable because a function of a function is also a function. Thus, in 
the previous examples ​​   X ​​ =  (X1 + X2)/2 and S2 =  (X1 − ​​   X ​​)2 +  (X2 − ​​   X ​​)2 can also be 
recognized as random variables by noting that they are functions of the random variables 
X1 and X2.
	 This text is concerned with random variables that are real-valued functions defined 
over the real line or a subset of the real line.

2A countably infinite set of values is a set whose elements can be put into one-to-one correspondence with 
the set of positive integers. The set of odd integers is countably infinite. The 1 can be paired with 1, 3 with 
2, 5 with 3, . . . , 2n − 1 with n. The set of all real numbers between 0 and ½ is not countably infinite because 
there are too many numbers in the interval to pair with the integers.

■  24.3  PROBABILITY AND PROBABILITY DISTRIBUTIONS
Returning to the example of the demand for a product during a month, note that the 
actual demand is not a constant; instead, it can be expected to exhibit some “variation.” 
In particular, this variation can be described by introducing the concept of probability 
defined over events in the sample space. For example, let E be the event {ω = 0, ω = 1, 
ω = 2, . . . , ω = 10}. Then intuitively one can speak of P{E}, where P{E} is referred 
to as the probability of having a demand of 10 or less units. Note that P{E} can be 
thought of as a numerical value associated with the event E. If P{E} is known for all 
events E in the sample space, then some “information” is available about the demand 
that can be expected to occur. Usually these numerical values are difficult to obtain, but 
nevertheless their existence can be postulated. To define the concept of probability rigor-
ously is beyond the scope of this text. However, for most purposes it is sufficient to 
postulate the existence of numerical values P{E} associated with events E in the sample 
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space. The value P{E} is called the probability of the occurrence of the event E. Fur-
thermore, it will be assumed that P{E} satisfies the following reasonable properties:

1.	 0 ≤ P{E} ≤ 1. This implies that the probability of an event is always nonnegative 
and can never exceed 1.

2.	 If E0 is an event that cannot occur (a null event) in the sample space, then P{E0} = 0. For 
example, if E0 denotes the event of obtaining a demand of −7 units, then P{E0} = 0.

3.	 P{Ω} = 1. If the event consists of obtaining a demand between 0 and N, that is, the 
entire sample space, the probability of having some demand between 0 and N is certain.

4.	 If E1 and E2 are disjoint(mutually exclusive) events in Ω, then P{E1 ∪ E2}  =   
P{E1} + P{E2}. Thus, if E1 is the event of 0 or 1, and E2 is the event of a demand 
of 4 or 5, then the probability of having a demand of 0, 1, 4, or 5, that is, {E1 ∪ E2}, 
is given by P{E1} + P{E2}.

	 Although these properties are rather formal, they do conform to one’s intuitive notion 
about probability. Nevertheless, these properties cannot be used to obtain values for P{E}. 
Occasionally the determination of exact values, or at least approximate values, is desirable. 
Approximate values, together with an interpretation of probability, can be obtained through 
a frequency interpretation of probability. This may be stated precisely as follows. Denote 
by n the number of times an experiment is performed and by m the number of successful 
occurrences of the event E in the n trials. Then P{E} can be interpreted as

​P{E} =  ​ lim    n→∞​ ​ 
m __ n ​, 

​assuming the limit exists for such a phenomenon. The ratio m/n can be used to approx-
imate P{E}. Furthermore, m/n satisfies the properties required of probabilities; that is,

1.	 0 ≤ m/n ≤ 1.
2.	 0/n = 0. (If the event E cannot occur, then m = 0.)
3.	 n/n  =  1. (If the event E must occur every time the experiment is performed, then 

m = n.)
4.	 (m1 + m2)/n = m1/n + m2/n if E1 and E2 are disjoint events. (If the event E1 occurs 

m1 times in the n trials and the event E2 occurs m2 times in the n trials, and E1 and 
E2 are disjoint, then the total number of successful occurrences of the event E1 or E2 
is just m1 + m2.)

	 Since these properties are true for a finite n, it is reasonable to expect them to be 
true for

​P{E} =  ​ lim    n→∞​ ​ 
m __ n ​. 

​The trouble with the frequency interpretation as a definition of probability is that it is 
not possible to actually determine the probability of an event E because the question 
“How large must n be?” cannot be answered. Furthermore, such a definition does not 
permit a logical development of the theory of probability. However, a rigorous definition 
of probability, or finding methods for determining exact probabilities of events, is not of 
prime importance here.
	 The existence of probabilities, defined over events E in the sample space, has been 
described, and the concept of a random variable has been introduced. Finding the relation 
between probabilities associated with events in the sample space and “probabilities” 
associated with random variables is a topic of considerable interest.
	 Associated with every random variable is a cumulative distribution function (CDF). 
To define a CDF it is necessary to introduce some additional notation. Define the symbol ​​
E​ b​ X​​ = {ω|X(ω) ≤ b} (or equivalently, {X ≤ b}) as the set of outcomes ω in the sample space 
forming the event ​​E​ b​ X​​ such that the random variable X takes on values less than or equal 
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to b.3 Then P{​​E​ b​ X​​} is just the probability of this event. Note that this probability is well 
defined because ​​E​ b​ X​​ is an event in the sample space, and this event depends upon both 
the random variable that is of interest and the value of b chosen. For example, suppose 
the experiment that measures the demand for a product during a month is performed. 
Let N = 99, and assume that the events {0}, {1}, {2}, . . . , {99} each has probability 
equal to ​​  1 ___ 100 ​​; that is, P{0} = P{1} = P{2} =  . . . = P{99} =  ​​  1 ___ 100 ​​. Let the random vari-
able X be the square of the demand, and choose b equal to 150. Then

​​E​ 150​ X
  ​​ = {ω∣X(ω) ≤ 150} = {X ≤ 150}

is the set ​​E​ 150​ X
  ​​ = {0,1,2,3,4,5,6,7,8,9,10,11,12} (since the square of each of these numbers 

is less than 150). Furthermore,

P{​​E​ 150​ X
  ​​} =  ​​  1 ____ 

100
 ​​ +  ​​  1 ____ 

100
 ​​ +  ​​  1 ____ 

100
 ​​ +  ​​  1 ____ 

100
 ​​ +  ​​  1 ____ 

100
 ​​ +  ​​  1 ____ 

100
 ​​ +  ​​  1 ____ 

100
 ​​ +  ​​  1 ____ 

100
 ​​ +  ​​  1 ____ 

100
 ​​

 +  ​​  1 ____ 
100

 ​​ +  ​​  1 ____ 
100

 ​​ +  ​​  1 ____ 
100

 ​​ +  ​​  1 ____ 
100

 ​​ =  ​​ 13 ____ 
100

 ​​.

Thus, P{​​E​ 150​ X
  ​​} = P{X ≤ 150} =  ​​ 13 ___ 100 ​​.

	 For a given random variable X, P{X ≤ b}, denoted by FX(b), is called the CDF of 
the random variable X and is defined for all real values of b. Where there is no ambigu-
ity, the CDF will be denoted by F(b); that is,

F(b) = FX(b) = P{​​E​ b​ X​​} = P{ω∣X(ω) ≤ b} = P{X ≤ b}.

Although P{X ≤ b} is defined through the event ​​E​ b​ X​​ in the sample space, it will often be 
read as the “probability” that the random variable X takes on a value less than or equal 
to b. The reader should interpret this statement properly, i.e., in terms of the event ​​E​ b​ X​​.
	 As mentioned, each random variable has a cumulative distribution function associ-
ated with it. This is not an arbitrary function but is induced by the probabilities associ-
ated with events of the form ​​E​ b​ X​​ defined over the sample space Ω. Furthermore, the CDF 
of a random variable is a numerically valued function defined for all b, − ∞ ≤ b ≤ ∞, 
having the following properties:

1.	 FX(b) is a nondecreasing function of b,
2.	 ​  lim    b→−∞​ FX(b) = FX(−∞) = 0,
3.	 ​  lim    b→+∞​ FX(b) = FX(+∞) = 1.

	 The CDF is a versatile function. Events of the form

{ω∣a < X(ω) ≤ b},

that is, the set of outcomes ω in the sample space such that the random variable X takes 
on values greater than a but not exceeding b, can be expressed in terms of events of the 
form ​​E​ b​ X​​. In particular, ​​E​ b​ X​​ can be expressed as the union of two disjoint sets; that is,

​​E​ b​ X​​ =  ​​E​ a​ X​​ ∪ {ω∣a < X(ω) ≤ b}.

Thus, P{ω∣a < X(ω) ≤ b} = P{a < X ≤ b} can easily be seen to be

FX(b) − FX(a).

	 As another example, consider the experiment that measures the times of the arrival 
of the first customer on each of 2 days. Ω consists of all points (x1, x2) such that  

3The notation {X ≤ b} suppresses the fact that this is really an event in the sample space. However, it is 
simpler to write, and the reader is cautioned to interpret it properly, i.e., as the set of outcomes ω in the 
sample space, {ω∣X(ω) ≤ b}.

hiL72998_ch24_001-041.indd   6 28/09/19   11:53 AM
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0 ≤ x1, x2 ≤ 8, where x1 represents the time the first customer arrives on the first day, 
and x2 represents the time the first customer arrives on the second day. Consider all 
events associated with this experiment, and assume that the probabilities of such events 
can be obtained. Suppose ​​   X ​​, the average of the two arrival times, is chosen as the ran-
dom variable of interest and that ​​E​ b​ ​   X ​​​ is the set of outcomes ω in the sample space form-
ing the event ​​E​ b​ ​   X ​​​ such that ​​   X ​​ ≤ b. Hence, ​​F​​   X ​​​(b) = P{​​E​ b​ ​   X ​​​} = P{​​   X ​​ ≤ b}. To illustrate 
how this can be evaluated, suppose that b = 4 hours. All the values of x1, x2 are sought 
such that (x1 + x2)/2 ≤ 4 or x1 + x2 ≤ 8. This is shown by the shaded area in Fig. 24.2. 
Hence, ​​F​​   X ​​​(b) is just the probability of a successful occurrence of the event given by the 
shaded area in Fig. 24.2. Presumably ​​F​​   X ​​​(b) can be evaluated if probabilities of such 
events in the sample space are known.
	 Another random variable associated with this experiment is X1, the time of the 
arrival of the first customer on the first day. Thus, FX1(b)  =  P{X1 ≤ b}, which can be 
obtained simply if probabilities of events over the sample space are given.
	 There is a simple frequency interpretation for the cumulative distribution function of 
a random variable. Suppose an experiment is repeated n times, and the random variable 
X is observed each time. Denote by x1, x2, . . . , xn the outcomes of these n trials. Order 
these outcomes, letting x(1) be the smallest observation, x(2) the second smallest, . . . , x(n) 
the largest. Plot the following step function Fn(x):

​For x < x(1),	 let Fn(x) = 0.

For x(1) ≤ x < x(2),	 let Fn(x) =  ​ 1 __ n ​.

For x(2) ≤ x < x(3),	 let Fn(x) =  ​ 2 __ n ​.
.
.
.

For x(n − 1) ≤ x < x(n),	 let Fn(x) =  ​ n − 1 __ n  ​.

For x ≥ x(n),	 let Fn(x) =  ​ n __ n ​ = 1.

​Such a plot is given in Fig. 24.3 and is seen to “jump” at the values that the random 
variable takes on.
	 Fn(x) can be interpreted as the fraction of outcomes of the experiment less than or equal 
to x and is called the sample CDF. It can be shown that as the number of repetitions n of 
the experiment gets large, the sample CDF approaches the CDF of the random variable X.
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■  FIGURE 24.2
The shaded area represents 
the event ​​E​ b​ ​   X​ ​​ = {​​   X​​ ≤ 4}.
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	 In most problems encountered in practice, one is not concerned with events in the 
sample space and their associated probabilities. Instead, interest is focused on random 
variables and their associated cumulative distribution functions. Generally, a random 
variable (or random variables) is chosen, and some assumption is made about the form 
of the CDF or about the random variable. For example, the random variable X1, the time 
of the first arrival on the first day, may be of interest, and an assumption may be made 
about the form of its CDF. Similarly, the same assumption about X2, the time of the first 
arrival on the second day, may also be made. If these assumptions are valid, then the 
CDF of the random variable​ ​   X ​ ​ = (X1 + X2)/2 can be derived. Of course, these assump-
tions about the form of the CDF are not arbitrary and really imply assumptions about 
probabilities associated with events in the sample space. Hopefully, they can be substan-
tiated by either empirical evidence or theoretical considerations.

■  FIGURE 24.3
A sample cumulative 
distribution function.
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■  24.4  CONDITIONAL PROBABILITY AND INDEPENDENT EVENTS
Often experiments are performed so that some results are obtained early in time and 
some later in time. This is the case, for example, when the experiment consists of mea-
suring the demand for a product during each of 2 months; the demand during the first 
month is observed at the end of the first month. Similarly, the arrival times of the first 
two customers on each of 2 days are observed sequentially in time. This early informa-
tion can be useful in making predictions about the subsequent results of the experiment. 
Such information need not necessarily be associated with time. If the demand for two 
products during a month is investigated, knowing the demand of one may be useful in 
assessing the demand for the other. To utilize this information the concept of “conditional 
probability,” defined over events occurring in the sample space, is introduced.
	 Consider two events in the sample space E1 and E2, where E1 represents the event 
that has occurred, and E2 represents the event whose occurrence or nonoccurrence is of 
interest. Furthermore, assume that P{E1} > 0. The conditional probability of the occur-
rence of the event E2, given that the event E1 has occurred, P{E2 ∣ E1}, is defined to be

P{E2 ∣ E1} =  ​​ P{E1 ∩ E2}  ___________ 
P{E1}

 ​​ ,

where {E1 ∩ E2} represents the event consisting of all points ω in the sample space 
common to both E1 and E2. For example, consider the experiment that consists of 
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observing the demand for a product over each of 2 months. Suppose the sample space Ω 
consists of all points ω = (x1, x2), where x1 represents the demand during the first month, 
and x2 represents the demand during the second month, x1, x2 = 0, 1, 2, . . . , 99. Fur-
thermore, it is known that the demand during the first month has been 10. Hence, the 
event E1, which consists of the points (10,0), (10,1), (10,2), . . . , (10,99), has occurred. 
Consider the event E2, which represents a demand for the product in the second month 
that does not exceed 1 unit. This event consists of the points (0,0), (1,0), (2,0), . . . , 
(10,0), . . . , (99,0), (0,1), (1,1), (2,1), . . . , (10,1), . . . , (99,1). The event {E1 ∩ E2} 
consists of the points (10,0) and (10,1). Hence, the probability of a demand which does 
not exceed 1 unit in the second month, given that a demand of 10 units occurred during 
the first month, that is, P{E2 ∣ E1}, is given by

P{E2 ∣ E1} =  ​ P{E1 ∩ E2}  __________ 
P{E1}

 ​

	​  =  ​  P{ω = (10,0), ω = (10,1)}    _______________________________________     
P{ω = (10,0), ω = (10,1), . . . , ω = (10,99)}

 ​.​

	 The definition of conditional probability can be given a frequency interpretation. 
Denote by n the number of times an experiment is performed, and let n1 be the number 
of times the event E1 has occurred. Let n12 be the number of times that the event {E1 ∩ E2} 
has occurred in the n trials, The ratio n12/n1 is the proportion of times that the event E2 
occurs when E1 has also occurred; that is, n12/n1 is the conditional relative frequency of 
E2, given that E1 has occurred. This relative frequency n12/n1 is then equivalent to (n12/n)/
(n1/n). Using the frequency interpretation of probability for large n, n12/n is approximately 
P{E1 ∩ E2}, and n1/n is approximately P{E1}, so that the conditional relative frequency 
of E2, given E1, is approximately P{E1 ∩ E2}/P{E1}.
	 In essence, if one is interested in conditional probability, he is working with a 
reduced sample space, i.e., from Ω to E1, modifying other events accordingly. Also note 
that conditional probability has the four properties described in Sec. 24.3; that is,

1.	 0 ≤ P{E2 ∣ E1} ≤ 1.
2.	 If E2 is an event that cannot occur, then P{E2 ∣ E1} = 0.
3.	 If the event E2 is the entire sample space Ω, then P{E2 ∣ E1} = 1.
4.	 If E2 and E3 are disjoint events in Ω, then

P{(E2 ∪ E3) ∣ E1} = P{E2 ∣ E1} + P{E3 ∣ E1}.

In a similar manner, the conditional probability of the occurrence of the event E1, given 
that the event E2 has occurred, can be defined. If P{E2} > 0, then

P{E1 ∣ E2} = P{E1 ∩ E2}/P{E2}.

	 The concept of conditional probability was introduced so that advantage could be 
taken of information about the occurrence or nonoccurrence of events. It is conceivable 
that information about the occurrence of the event E1 yields no information about the 
occurrence or nonoccurrence of the event E2. If P{E2 ∣ E1} = P{E2}, or P{E1 ∣ E2} = P{E1}, 
then E1 and E2 are said to be independent events. It then follows that if E1 and E2 are 
independent and P{E1} > 0, then P{E2 ∣ E1} = P{E1 ∩ E2}/P{E1} = P{E2}, so that P{E1 
∩ E2} = P{E1}P{E2}. This can be taken as an alternative definition of independence of 
the events E1 and E2. It is usually difficult to show that events are independent by using 
the definition of independence. Instead, it is generally simpler to use the information 
available about the experiment to postulate whether events are independent. This is usu-
ally based upon physical considerations. For example, if the demand for a product during 
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a month is “known” not to affect the demand in subsequent months, then the events E1 
and E2 defined previously can be said to be independent, in which case

P{E2 ∣ E1} =  ​ P{E1 ∩ E2}  __________ 
P{E1}

 ​

  ​=  ​  P(ω = (10,0), ω = (10,1)}    _______________________________________     
P{ω = (10,0), ω = (10,1), . . . , ω = (10,99)}

 ​,​

 =  ​ P{E1}P{E2}  ___________ 
P{E1}

 ​  = P{E2}

 = P{ω = (0,0), ω = (1,0), . . . , ω = (99,0), ω = (0,1),

ω = (1,1),  .  .  .  , ω = (99,1)}.

	 The definition of independence can be extended to any number of events. E1, E2, . . . , 
En are said to be independent events if for every subset of these events ​​E​ 1​ *​​, ​​E​ 2​ *​​, .  .  .  , ​​E​ k​ *​​,

​P{​E​ 1​ *​ ∩ ​E​ 2​ *​ ∩ ⋅  ⋅  ⋅ ∩ ​E​ k​ *​} = P{​E​ 1​ *​}P{​E​ 2​ *​} ⋅  ⋅  ⋅ P{​E​ k​ *​}.​

Intuitively, this implies that knowledge of the occurrence of any of these events has no 
effect on the probability of occurrence of any other event.

■  24.5  DISCRETE PROBABILITY DISTRIBUTIONS
It was pointed out in Sec. 24.2 that one is usually concerned with random variables and 
their associated probability distributions, and discrete random variables are those which 
take on a finite or countably infinite set of values. Furthermore, Sec. 24.3 indicates that 
the CDF for a random variable is given by

FX(b) = P{ω ∣ X(ω) ≤ b}.

For a discrete random variable X, the event {ω ∣ X(ω) ≤ b} can be expressed as the union 
of disjoint sets; that is,

{ω ∣ X(ω) ≤ b} = {ω ∣ X(ω) = x1} ∪ {ω ∣ X(ω) = x2} ∪  ⋅  ⋅  ⋅ ∪ {ω ∣ X(ω) = x[b]},

where x[b] denotes the largest integer value of the x’s less than or equal to b. It then fol-
lows that for the discrete random variable X, the CDF can be expressed as

FX(b) = P{ω ∣ X(ω) = x1} + P{ω ∣ X(ω) = x2} +  ⋅  ⋅  ⋅ + P{ω ∣ X(ω) = x[b]}

 = P{X = x1} + P{X = x2} +  ⋅  ⋅  ⋅ + P{X =   x[b]}.

This last expression can also be expressed as

FX(b) =  ​​∑ 
all k ≤ b

​ 
 

​   ​​P{X = k},

where k is an index that ranges over all the possible x values which the random variable 
X can take on.
	 Let PX(k) for a specific value of k denote the probability P{X = k}, so that

FX(b) =  ​​∑ 
all k ≤ b

​ 
 

​   ​​PX(k).

This PX(k) for all possible values of k are called the probability distribution of the discrete 
random variable X. When no ambiguity exists, PX(k) may be denoted by P(k).
	 As an example, consider the discrete random variable that represents the demand for 
a product in a given month. Let N = 99. If it is assumed that PX(k) = P{X = k} = ​​1 ⁄ 100​​ 
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for all k  =  0, 1, . . . , 99, then the CDF for this discrete random variable is given in 
Fig. 24.4. The probability distribution of this discrete random variable is shown in 
Fig. 24.5. Of course, the heights of the vertical lines in Fig. 24.5 are all equal because 
PX(0) = PX(1) = PX(2) =  ⋅  ⋅  ⋅ = PX(99) in this case. For other random variables X, the 
PX(k) need not be equal, and hence the vertical lines will not be constant. In fact, all that 
is required for the PX(k) to form a probability distribution is that PX(k) for each k be 
nonnegative and

​​∑ 
all k

​ 
 

​   ​​PX(k) = 1.

	 There are several important discrete probability distributions used in operations 
research work. The remainder of this section is devoted to a study of these distributions.

Binomial Distribution

A random variable X is said to have a binomial distribution if its probability distribution 
can be written as

P{X = k} = PX(k) =  ​​  n! ________ 
k!(n − k)!

 ​​ Pk(1 − P)n−k,

where p is a constant lying between zero and 1, n is any positive integer, and k is also 
an integer such that 0 ≤ k ≤ n. It is evident that Px(k) is always nonnegative, and it is 
easily proven that

​​∑ 
k=0

​ 
n

​   ​​PX(k) = 1.

1
100

2
100

99
100

F
X
(b

)

0 1 2 3 4 97 98 99

1■  FIGURE 24.4
CDF of the discrete random 
variable for the example.

1
100

P
X
(k

)

0 1 2 3 4 97 98 99
k

■  FIGURE 24.5
Probability distribution of the 
discrete random variable for 
the example.
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Note that this distribution is a function of the two parameters n and p. The probability 
distribution of this random variable is shown in Fig. 24.6. An interesting interpretation 
of the binomial distribution is obtained when n = 1:

P{X = 0} = PX(0) = 1 − p,

and

P{X = 1} = PX(1) = p.

Such a random variable is said to have a Bernoulli distribution. Thus, if a random vari-
able takes on two values, say, 0 or 1, with probability 1 − p or p, respectively, a Bernoulli 
random variable is obtained. The upturned face of a flipped coin is such an example: If 
a tail is denoted by assigning it the number 0 and a head by assigning it a 1, and if the 
coin is “fair” (the probability that a head will appear is ​​1 ⁄ 2​​), the upturned face is a  
Bernoulli random variable with parameter p =  ​​1 ⁄ 2​​. Another example of a Bernoulli ran-
dom variable is the quality of an item. If a defective item is denoted by 1 and a nonde-
fective item by 0, and if p represents the probability of an item being defective, and 1 − p 
represents the probability of an item being nondefective, then the “quality” of an item 
(defective or nondefective) is a Bernoulli random variable.
	 If X1, X2, . . . , Xn are independent4 Bernoulli random variables, each with param-
eter p, then it can be shown that the random variable

X = X1 + X2 +  ⋅  ⋅  ⋅ + Xn

is a binomial random variable with parameters n and p. Thus, if a fair coin is flipped 
10 times, with the random variable X denoting the total number of heads (which is 
equivalent to X1 + X2 + ⋅ ⋅ ⋅ + X10), then X has a binomial distribution with parameters 
10 and ​​1 ⁄ 2​​; that is,

​P{X = k} =  ​  10! ___________ 
k!(10 − k)!

 ​ ​(​ 1 __ 
2
 ​)​k​(​ 1 __ 

2
 ​)​

10−k.​

Similarly, if the quality characteristics (defective or nondefective) of 50 items are inde-
pendent Bernoulli random variables with parameter p, denoting the probability that an 
item is defective, the total number of defective items in the 50 sampled, that is, 
X = X1 + X2 + ⋅ ⋅ ⋅ + X50, has a binomial distribution with parameters 50 and p, so that

​P{X = k} =  ​  50! __________ 
k!(50 − k)!

 ​ pk(1 − p)50−k.​

■  FIGURE 24.6
Binomial distribution with 
parameters n and p.

P
{X

 =
 k

}
0 1 2 3 4 (n −1) n

k

4The concept of independent random variables is introduced in Sec. 24.12. For the present purpose, random 
variables can be considered independent if their outcomes do not affect the outcomes of the other random 
variables.
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Poisson Distribution

A random variable X is said to have a Poisson distribution if its probability distribution 
can be written as

​P{X = k} = PX(k) =  ​ λ
ke−λ

 _____ 
k!

 ​ ,​

where λ is a positive constant (the parameter of this distribution), and k is any non-
negative integer. It is evident that PX(k) is nonnegative, and it is easily shown that

​​∑ 
k=0

​ 
∞

​   ​​  ​​ λ
ke−λ

 _____ 
k!

 ​​  = 1.

An example of a probability distribution of a Poisson random variable is shown in Fig. 24.7.
	 The Poisson distribution is often used in operations research. Heuristically speaking, 
this distribution is appropriate in many situations where an “event” occurs over a period 
of time when it is as likely that this “event” will occur in one interval as in any other  
interval of the same length and the occurrence of an event has no effect on when the 
next one will occur. As discussed in Sec. 17.4, the number of customer arrivals in a 
fixed time is often assumed to have a Poisson distribution. Similarly, the demand for a 
given product is also often assumed to have this distribution.

Geometric Distribution

A random variable X is said to have a geometric distribution if its probability distribution 
can be written as

P{X = k} = PX(k) = p(1 − p)k−1,

where the parameter p is a constant lying between 0 and 1, and k takes on the values 
1, 2, 3, . . . . It is clear that PX(k) is nonnegative, and it is easy to show that

​​∑ 
k=1

​ 
∞

​   ​= p(1 − p)k−1 = 1.​

	 The geometric distribution is useful in the following situation. Suppose an experi-
ment is performed that leads to a sequence of independent5 Bernoulli random variables, 
each with parameter p; that is, P{X1  =  1}  =  p and P(X1  =  0)  =  1 − p, for all i. The 
random variable X, which is the number of trials occurring until the first Bernoulli ran-
dom variable takes on the value 1, has a geometric distribution with parameter p.

■  FIGURE 24.7
Poisson distribution.

P
(X

 =
 k

)

0 1 2 3 4
k

5The concept of independent random variables is introduced in Sec. 24.12. For now, random variables can be 
considered independent if their outcomes do not affect the outcomes of the other random variables.
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■  24.6  CONTINUOUS PROBABILITY DISTRIBUTIONS
Section 24.2 defined continuous random variables as those random variables that take 
on a continuum of values. The CDF for a continuous random variable FX(b) can usually 
be written as

​FX(b) = P{X(ω) ≤ b} =  ​  ∫ 
−∞

​ 
b
  ​​ fX(y) dy,​

where fX(y) is known as the density function of the random variable X. From a notational 
standpoint, the subscript X is used to indicate the random variable that is under consid-
eration. When there is no ambiguity, this subscript may be deleted, and fX(y) will be 
denoted by f(y). It is evident that the CDF can be obtained if the density function is 
known. Furthermore, a knowledge of the density function enables one to calculate all 
sorts of probabilities, for example,

​P{a < X ≤ b} = F(b) − F(a) =  ​ ∫ 
a
​ 

b
​​ fX(y) dy.​

Note that strictly speaking the symbol P{a < X ≤ b} relates to the probability that the 
outcome ω of the experiment belongs to a particular event in the sample space, namely, 
that event such that X(ω) is between a and b whenever ω belongs to the event. However, 
the reference to the event will be suppressed, and the symbol P will be used to refer to 
the probability that X falls between a and b. It becomes evident from the previous expres-
sion for P{a < X ≤ b} that this probability can be evaluated by obtaining the area under 
the density function between a and b, as illustrated by the shaded area under the density 
function shown in Fig. 24.8. Finally, if the density function is known, it will be said that 
the probability distribution of the random variable is determined.
	 Naturally, the density function can be obtained from the CDF by using the relation

​​ 
dFX(y)

 ______ 
dy

 ​  =  ​ d ___ 
dy

 ​ ​ ∫ 
−∞

​ 
y

  ​​ fX(t) dt =  fX(y).​

	 For a given value c, P{X = c} has not been defined in terms of the density function. 
However, because probability has been interpreted as an area under the density function, 
P{X = c} will be taken to be zero for all values of c. Having P{X = c} = 0 does not mean 
that the appropriate event E in the sample space (E contains those ω such that X(ω) = c) 
is an impossible event. Rather, the event E can occur, but it occurs with probability zero. 
Since X is a continuous random variable, it takes on a continuum of possible values, so 
that selecting correctly the actual outcome before experimentation would be rather startling. 
Nevertheless, some outcome is obtained, so that it is not unreasonable to assume that the 
preselected outcome has probability zero of occurring. It then follows from P{X = c} being 
equal to zero for all values c that for continuous random variables, and any a and b,

P{a ≤ X ≤ b} = P{a < X ≤ b} = P{a ≤ X < b} = P{a < X < b}.

Of course, this is not true for discrete random variables.

a b
y

fX(y)■  FIGURE 24.8
An example of a density 
function of a random variable.
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	 In defining the CDF for continuous random variables, it was implied that fX(y) was 
defined for values of y from minus infinity to plus infinity because

FX(b) =​​  ∫ 
−∞

​ 
b
  ​​​ fX(y) dy.

This causes no difficulty, even for random variables that cannot take on negative values 
(e.g., the arrival time of the first customer) or are restricted to other regions, because 
fX(y) can be defined to be zero over the inadmissible segment of the real line. In fact, 
the only requirements of a density function are that

1.	 fX(y) be nonnegative,

2.�​​  ∫ 
−∞

​ 
 ∞

 ​​​  fX(y) dy = 1.

	 It has already been pointed out that fX(y) cannot be interpreted as P{X = y} because 
this probability is always zero. However, fX(y) dy can be interpreted as the probability that 
the random variable X lies in the infinitesimal interval (y, y + dy), so that, loosely speaking, 
fX(y) is a measure of the frequency with which the random variable will fall into a “small” 
interval near y.
	 There are several important continuous probability distributions that are used in opera-
tions research work. The remainder of this section is devoted to a study of these distributions.

The Exponential Distribution

As was discussed in Sec. 17.4, a continuous random variable whose density is given by

​fX(y) = ​
{

​
​ 1 __ 
θ
 ​​e​−y/θ

,​​ 
for y ≥ 0

​  
0,

​ 
for y < 0

​​

​is known as an exponentially distributed random variable. The exponential distribution is a 
function of the single parameter θ, where θ is any positive constant. (In Sec. 17.4, we used 
α = 1/θ as the parameter instead, but it will be convenient to use θ as the parameter in this 
chapter.) fX(y) is a density function because it is nonnegative and integrates to 1; that is,

​​  ∫ 
−∞

​ 
  ∞

  ​​ fX(y) dy = ​ ∫ 
0
​ 

∞
​​ ​ 1 __ 
θ
 ​ ​e​−y/θ​ dy = −​e​−y/θ​​ ∫ 

0
​ 

∞
​​= 1.

​The exponential density function is shown in Fig. 24.9.
	 The CDF of an exponentially distributed random variable fX(b) is given by

FX(b) =​​  ∫ 
−∞

​ 
b
 ​​​  fX(y) dy

​= ​
{

​
0,

​ 
  for b < 0

​    
​ ∫ 

0
​ 

b
​​ ​ 1 __ 
θ
 ​ ​e​−y/θ​ dy = 1 −​e​−b/θ​,

​ 
  for b ≥ 0,

 ​​

​and is shown in Fig. 24.10.

1

f X
(y

)

0 + ∞

■  FIGURE 24.9
Density function of the 
exponential distribution.
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	 The exponential distribution has had widespread use in operations research. For 
example, the time between customer arrivals, the length of time of telephone conversa-
tions, and the life of electronic components are often assumed to have an exponential 
distribution. Such an assumption has the important implication that the random variable 
does not “age.” For example, suppose that the life of a vacuum tube is assumed to have 
an exponential distribution. If the tube has lasted 1,000 hours, the probability of lasting 
an additional 50 hours is the same as the probability of lasting an additional 50 hours, 
given that the tube has lasted 2,000 hours. In other words, a brand new tube is no “bet-
ter” than one that has lasted 1,000 hours. This implication of the exponential distribution 
is quite important and is often overlooked in practice.

The Gamma Distribution

A continuous random variable whose density is given by

​fX(y) = ​
⎧

 
⎪

 ⎨ 
⎪

 

⎩
​
​  1 ______ 
Γ(α)βα ​ ​y​(α−1)​ ​e​−y/β​,

​ 
for y ≥ 0

​   
0,

​ 
for y < 0

​​

​is known as a gamma-distributed random variable. This density is a function of the two 
parameters α and β, both of which are positive constants. Γ(α) is defined as

​Γ(α) =​ ∫ 
0
​ 

 ∞
​​tα−1e−t dt, for all α > 0.

​If α is an integer, then repeated integration by parts yields

Γ(α) = (α − 1)! = (α − 1)(α − 2)(α − 3) . . . 3 · 2 · 1.

With α an integer, the gamma distribution is known in queueing theory as the Erlang dis-
tribution (as discussed in Sec. 17.7), in which case α is referred to as the shape parameter.
	 A graph of a typical gamma density function is given in Fig. 24.11.

■  FIGURE 24.10
CDF of the exponential 
distribution.

F
X
(b

)

0
b

1
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■  FIGURE 24.11
Gamma density function.
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	 A random variable having a gamma density is useful in its own right as a mathe-
matical representation of physical phenomena, or it may arise as follows: Suppose a 
customer’s service time has an exponential distribution with parameter θ. The random 
variable T, the total time to service n (independent) customers, then has a gamma dis-
tribution with parameters n and θ (replacing α and β, respectively); that is,

​P{T < t} = ​ ∫ 
0
​ 
t
​​  ​  1 ______ 

Γ(n)θn ​ y
(n−1)e−y/θ dy.

​Note that when n = 1 (or α = 1) the gamma density becomes the density function of an 
exponential random variable. Thus, sums of independent, exponentially distributed ran-
dom variables have a gamma distribution.
	 Another important distribution, the chi square, is related to the gamma distribution. 
If X is a random variable having a gamma distribution with parameters β = 1 and α = 
v/2 (v is a positive integer), then a new random variable Z = 2X is said to have a chi-
square distribution with v degrees of freedom. The expression for the density function 
is given in Table 24.1 near the beginning of Sec. 24.9.

The Beta Distribution

A continuous random variable whose density function is given by

​fX(y) = ​

⎧

 
⎪

 ⎨ 
⎪

 

⎩
​
​ 
Γ(α + β)

 ________ 
Γ(α)Γ(β)

 ​ y(α −1) (1 − y)(β−1),
​ 

 for 0 ≤ y ≤ 1
​     

0,
​ 

 elsewhere
 ​​

​is known as a beta-distributed random variable. This density is a function of the two 
parameters α and β, both of which are positive constants. A graph of a typical beta 
density function is given in Fig. 24.12.
	 Beta distributions form a useful class of distributions when a random variable is 
restricted to the unit interval. In particular, when α = β = 1, the beta distribution is 
called the uniform distribution over the unit interval. Its density function is shown in 
Fig. 24.13, and it can be interpreted as having all the values between zero and 1 equally 
likely to occur. The CDF for this random variable is given by

​FX(b) = ​
⎧

 
⎪

 ⎨ 
⎪

 

⎩
​
0,

​ 
for b < 0

​  b,​  for 0 ≤ b ≤ 1​  
1,

​ 
for b > 1.

 ​​

f X
(y

)

0
y

1

■  FIGURE 24.12
Beta density function.
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​	 If the density function is to be constant over some other interval, such as the inter-
val [c, d], a uniform distribution over this interval can also be obtained.6 The density 
function is given by

​fX(y) = ​
{

​
​  1 _____ 
d − c

 ​, 
​ 

for c ≤ y ≤ d
​   

0,
​ 

otherwise.
 ​​

​Although such a random variable is said to have a uniform distribution over the interval 
[c, d], it is no longer a special case of the beta distribution.
	 Another important distribution, Students t, is related to the beta distribution. If X 
is a random variable having a beta distribution with parameters α = ​​1 ⁄ 2​​ and β = v/2 (v 
is a positive integer), then a new random variable Z = ​​√

_________
 vX/(1−X) ​​ is said to have a 

Students t distribution (or simply a t distribution) with v degrees of freedom. The per-
centage points of the t distribution are given in Table 27.4 in Sec. 27.9. (Percentage 
points of the distribution of a random variable Z are the values zα such that

P{Z > zα} = α,

where zα is said to be the 100α percentage point of the distribution of the random variable Z.)
	 A final distribution related to the beta distribution is the F distribution. If X is a 
random variable having a beta distribution with parameters α = v1/2 and β = v2/2 (v1 
and v2 are positive integers), then a new random variable Z = v2 X/v1(1 − X) is said to 
have an F distribution with v1 and v2 degrees of freedom.

The Normal Distribution

One of the most important distributions in operations research is the normal distribution. 
A continuous random variable whose density function is given by

​fX(y) = ​  1 ______ 
​√

___
 2π ​σ
 ​ e−(y−μ)2/2σ2,	 for −∞ < y < ∞

​is known as a normally distributed random variable. The density is a function of the two 
parameters μ and σ, where μ is any constant, and σ is positive. A graph of a typical normal 
density function is given in Fig. 24.14. This density function is a bell-shaped curve that is 

■  FIGURE 24.13
Uniform distribution over the 
unit interval.

1

1

f X
(y

)

y
0

6The beta distribution can also be generalized by defining the density function over some fixed interval other 
than the unit interval.
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symmetric around μ. The CDF for a normally distributed random variable is given by

FX(b) =​​  ∫ 
−∞

​ 
b
 ​​​  ​  1 ______ 

​√
___

 2π ​σ
 ​ e−(y−μ)2/2σ2 dy.

By making the transformation z = (y − μ)/σ, the CDF can be written as

FX(b) =​​  ∫ 
−∞

​ 
(b−µ)/σ

​​​​  1 ______ 
​√

___
 2π ​
 ​ e−z2/2 dz.

Hence, although this function is not integrable, it is easily tabulated. Table A5.1 pre-
sented in Appendix 5 is a tabulation of

α =​​ ∫ 
 Kα

​ 
 ∞

​​​ ​  1 ______ 
​√

___
 2π ​
 ​ e−z2/2 dz

as a function of Kα. Hence, to find FX(b) (and any probability derived from it),  
Table A5.1 is entered with Kα = (b − μ)/σ, and

α =​​ ∫ 
 Kα

​ 
 ∞

​​​ ​  1 ______ 
​√

___
 2π ​
 ​ e−z2/2 dz

is read from it. FX(b) is then just 1 − α. Thus, if P{14 < X ≤ 18} = FX(18) − FX(14) 
is desired, where X has a normal distribution with μ = 10 and σ = 4, Table A5.1 is 
entered with (18 − 10)/4 = 2, and 1 − FX(18) = 0.0228 is obtained. The table is then 
entered with (14 − 10)/4 = 1, and 1 − FX(14) = 0.1587 is read. From these figures, 
FX(18) − FX(14) = 0.1359 is found. If Kα is negative, use can be made of the symmetry 
of the normal distribution because

FX(b) =​​  ∫ 
−∞

​ 
(b−µ)/σ

​​​​  1 ______ 
​√

___
 2π ​
 ​ e−z2/2 dz =​​  ∫ 

−(b−µ)/σ
​ 

∞
  ​​​ ​  1 ______ 

​√
___

 2π ​
 ​ e−z2/2 dz.

In this case −(b − μ)/σ is positive, and FX(b) = α is thereby read from the table by 
entering it with −(b − μ)/σ. Thus, suppose it is desired to evaluate the expression

P{2 < X ≤ 18} = FX(18) − FX(2).

FX(18) has already been shown to be equal to 1 − 0.0228 = 0.9772. To find FX(2) it is 
first noted that (2 − 10)/4 = −2 is negative. Hence, Table A5.1 is entered with Kα = +2, 
and FX(2) = 0.0228 is obtained. Thus,

FX(18) − FX(2) = 0.9772 − 0.0228 = 0.9544.

	 As indicated previously, the normal distribution is a very important one. In particu-
lar, it can be shown that if X1, X2, . . . , Xn are independent,7 normally distributed random 

■  FIGURE 24.14
Normal density function.

f X
(y

)

y

+ ∞− ∞ m

7The concept of independent random variables is introduced in Sec. 24.12. For now, random variables can be 
considered independent if their outcomes do not affect the outcomes of the other random variables.
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variables with parameters (μ1, σ1), (μ2, σ2), . . . , (μn, σn), respectively, then X = X1 +  
X2 + . . . + Xn is also a normally distributed random variable with parameters

​​∑ 
i=1

​ 
n

​   μi​​

and

​​√ 
_______

 ​∑ 
i=1

​ 
n

​   ​σ​ i​ 2​.​ ​​

In fact, even if X1, X2, . . . , Xn are not normal, then under very weak conditions

X = ​​∑ 
i=1

​ 
n

​   Xi​​

tends to be normally distributed as n gets large. This is discussed further in Sec. 24.14.
	 Finally, if C is any constant and X is normal with parameters μ and σ, then the 
random variable CX is also normal with parameters Cμ and Cσ. Hence, it follows that 
if X1, X2, . . . , Xn are independent, normally distributed random variables, each with 
parameters μ and σ, the random variable

​​   X ​​ = ​​∑ 
i=1

​ 
n

​   ​ 
Xi __ n ​​​

is also normally distributed with parameters μ and σ/​​√
__

 n. ​​

■  24.7  EXPECTATION
Although knowledge of the probability distribution of a random variable enables one to 
make all sorts of probability statements, a single value that may characterize the random 
variable and its probability distribution is often desirable. Such a quantity is the expected 
value of the random variable. One may speak of the expected value of the demand for 
a product or the expected value of the time of the first customer arrival. In the experi-
ment where the arrival time of the first customer on two successive days was measured, 
the expected value of the average arrival time of the first customers on two successive 
days may be of interest.
	 Formally, the expected value of a random variable X is denoted by E(X) and is 
given by

E(X) = ​​

⎧

 
⎪

 ⎨ 
⎪

 

⎩
​
​∑ 
all k

​ 
 

​  kP{X = k}​ = ​∑ 
all k

​ 
 

​  kPX(k)​,
​ 

if X is a discrete random variable
​      

​  ∫ 
−∞

​ 
∞

  ​​ y fX(y) dy.
​ 

      if X is a continuous random variable.
​​​

	 For a discrete random variable it is seen that E(X) is just the sum of the products 
of the possible values the random variable X takes on and their respective associated 
probabilities. In the example of the demand for a product, where k = 0, 1, 2, . . . , 98, 
99 and PX(k) = ​​1 ⁄ 100​​ for all k, the expected value of the demand is

E(X) = ​​∑ 
k=0

​ 
99

​   ​​kPX(k) = ​​∑ 
k=0

​ 
99

​   ​​k ​​  1 ____ 
100

 ​​ = 49.5.

Note that E(X) need not be a value that the random variable can take on.
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	 If X is a binomial random variable with parameters n and p, the expected value of 
X is given by

​E(X) =  ​∑ 
k=0

​ 
n

​   ​k​  n! ________ 
k!(n − k)!

 ​ pk(1 − p)n−k​

and can be shown to equal np.
	 If the random variable X has a Poisson distribution with parameter λ,

​E(X) =  ​∑ 
k=0

​ 
∞

​   ​k​ λ
ke−λ

 _____ 
k!

 ​ ​

and can be shown to equal λ.
	 Finally, if the random variable X has a geometric distribution with parameter p,

​E(X) =  ​∑ 
k=1

​ 
∞

​   ​kp(1 − p)k−1​

and can be shown to equal 1/p.
	 For continuous random variables, the expected value can also be obtained easily. If 
X has an exponential distribution with parameter θ, the expected value is given by

​E(X) =​  ∫ 
−∞

​ 
∞

  ​​ yfX(y) dy =  ​ ∫ 
0
​ 

∞
​​ y ​ 1 __ 

θ
 ​ e−y/θ dy.​

This integral is easily evaluated to be

E(X) = θ.

	 If the random variable X has a gamma distribution with parameter α and β, the 
expected value of X is given by

​​  ∫ 
−∞

​ 
∞

  ​​ yfX(y) dy =  ​ ∫ 
0
​ 

∞
​​ y ​  1 ______ 

Γ(α)βα ​ y(α−1)e−y/β dy = αβ.​

	 If the random variable X has a beta distribution with parameters α and β, the expected 
value of X is given by

​​  ∫ 
−∞

​ 
∞

 ​​  yfX(y) dy =  ​ ∫ 
0
​ 

1
​​ y​ 

Γ(α + β)
 _________ 

Γ(α)Γβ
 ​  y(α−1)(1 − y)(β−1) dy =  ​  α _____ 

α + β
 ​.​

	 Finally, if the random variable X has a normal distribution with parameters μ and 
σ, the expected value of X is given by

​​  ∫ 
−∞

​ 
∞

  ​​ yfX(y) dy =  ​  ∫ 
−∞

​ 
∞

  ​​ y ​  1 ______ 
​√ 

___
 2π ​σ
 ​ e−(y−μ)2/2σ2 dy = μ.​

	 The expectation of a random variable is quite useful in that it not only provides 
some characterization of the distribution, but it also has meaning in terms of the aver-
age of a sample. In particular, if a random variable is observed again and again and the 
arithmetic mean ​​   X ​​ is computed, then ​​   X ​​ tends to the expectation of the random variable 
X as the number of trials becomes large. A precise statement of this property is given 
in Sec. 24.13. Thus, if the demand for a product takes on the values k = 0, 1, 2, . . . , 
98, 99, each with PX(k) =  ​​1 ⁄ 100​​ for all k, and if demands of x1, x2, . . . , xn are observed 
on successive days, then the average of these values, (x1 + x2 +  ·  ·  · + xn)/n, should be 
close to E(X) = 49.5 if n is sufficiently large.
	 It is not necessary to confine the discussion of expectation to discussion of the 
expectation of a random variable X. If Z is some function of X, say, Z = g(X), then g(X) 
is also a random variable. The expectation of g(X) can be defined as
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E[g(X)] =  ​​

⎧

 
⎪

 ⎨ 
⎪

 

⎩
​
​∑ 
all k

​ 
 

​   ​g(k)P{X = k} =  ​∑ 
all k

​ 
 

​   ​g(k)PX(k),
​ 

if X is a discrete random variable
​       

​  ∫ 
−∞

​ 
∞

  ​​ g(y)fX(y) dy,
​ 

if X is a continuous random variable.
​

​​	 An interesting theorem, known as the “theorem of the unconscious statistician,”8 
states that if X is a continuous random variable having density fX(y) and Z = g(X) is a 
function of X having density hZ(y), then

​E(Z) =​  ∫ 
−∞

​ 
∞

  ​​ yhZ(y) dy =​  ∫ 
−∞

​ 
∞

  ​​ g(y)fX(y) dy.​

Thus, the expectation of Z can be found by using its definition in terms of the density 
of Z or, alternatively, by using its definition as the expectation of a function of X with 
respect to the density function of X. The identical theorem is true for discrete random 
variables.

8The name for this theorem is motivated by the fact that a statistician often uses its conclusions without con-
sciously worrying about whether the theorem is true.

■  24.8  MOMENTS
If the function g described at the end of the preceding section is given by

Z = g(X) = Xj,

where j is a positive integer, then the expectation of Xj is called the jth moment about 
the origin of the random variable X and is given by

​E(Xj) =  ​

⎧

 
⎪

 ⎨ 
⎪

 

⎩
​
​∑ 
all k

​ 
 

​   ​kjPX(k),
​ 

if X is a discrete random variable
​     

​  ∫ 
−∞

​ 
∞

  ​​ yjfX(y) dy,
​ 

if X is a continuous random variable.
​​​

Note that when j = 1 the first moment coincides with the expectation of X. This is usu-
ally denoted by the symbol μ and is often called the mean or average of the distribution.
	 Using the theorem of the unconscious statistician, the expectation of Z = g(X) = CX 
can easily be found, where C is a constant. If X is a continuous random variable, then

​E(CX) =  ​  ∫ 
−∞

​ 
∞

  ​​ CyfX(y) dy = C​  ∫ 
−∞

​ 
∞

  ​​ yfX(y) dy = CE(X).​

Thus, the expectation of a constant times a random variable is just the constant times 
the expectation of the random variable. This is also true for discrete random variables.
	 If the function g described at the end of the preceding section is given by Z = g(X) =  
(X − E(X))j = (X − μ)j, where j is a positive integer, then the expectation of (X − μ)j is 
called the jth moment about the mean of the random variable X and is given by

​E(X − E(X))j = E(X − μ)j = 

​

⎧

 

⎪

 

⎨

 
⎪

 ⎩

​​∑ 
all k

​ 
 

​   ​​(k − μ�)jPX(k), 
if X is a discrete random variable

 ​​  ∫ 
−∞

​ 
∞

  ​​​ (y − μ�)jfX(y) dy, 
if X is a continuous random variable. ​​
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	 Note that if j = 1, then E(X − μ) = 0. If j = 2, then E(X − μ)2 is called the vari-
ance of the random variable X and is often denoted by σ2. The square root σ  of the 
variance is called the standard deviation of the random variable X. It is easily shown, 
in terms of definitions, that

σ2 = E(X − μ)2 = E(X2) − μ2;

that is, the variance can be written as the second moment about the origin minus the 
square of the mean.
	 It has already been shown that if Z = g(X) = CX, then E(CX) = CE(X) = Cμ, where 
C is any constant and μ is E(X). The variance of the random variable Z = g(X) = CX is 
also easily obtained. By definition, if X is a continuous random variable, the variance of 
Z is given by

​E(Z − E(Z))2 = E(CX − CE(X))2 =  ​  ∫ 
−∞

​ 
∞

  ​​ (Cy − Cμ)2fX(y) dy

	 = C2​  ∫ 
−∞

​ 
∞

  ​​ (y − μ)2fX(y) dy = C2σ2.​

Thus, the variance of a constant times a random variable is just the square of the constant 
times the variance of the random variable. This is also true for discrete random variables. 
Finally, the variance of a constant is easily seen to be zero.
	 It has already been shown that if the demand for a product takes on the values 0, 1, 
2, . . . , 99, each with probability ​​1 ⁄ 100​​, then E(X) = μ = 49.5. Similarly,

σ2 =  ​​∑ 
k=0

​ 
99

​   ​​(k − μ)2PX(k) =  ​​∑ 
k=0

​ 
99

​   ​​k2PX(k) − μ2

	  =  ​​∑ 
k=0

​ 
99

​   ​​​​  k2
 ____ 

100
 ​​ − (49.5)2 = 833.25.

	 Table 24.1 gives the means and variances of the random variables that are often 
useful in operations research. Note that for some random variables a single moment, 
the mean, provides a complete characterization of the distribution, e.g., the Poisson 
random variable. For some random variables the mean and variance provide a complete 
characterization of the distribution, e.g., the normal. In fact, if all the moments of a 
probability distribution are known, this is usually equivalent to specifying the entire 
distribution.
	 It was seen that the mean and variance may be sufficient to completely characterize 
a distribution, e.g., the normal. However, what can be said, in general, about a random 
variable whose mean μ and variance σ2 are known, but nothing else about the form of 
the distribution is specified? This can be expressed in terms of Chebyshev’s inequality, 
which states that for any positive number C,

P{μ − Cσ ≤ X ≤ μ + Cσ} > 1 − ​​ 1 ___ 
C2

 ​​,

where X is any random variable having mean μ and variance σ2. For example, if C = 3, 
if follows that P{μ − 3σ ≤ X ≤ μ + 3σ} > 1 − ​​1 ⁄ 9​​ = 0.8889. However, if X is known 
to have a normal distribution, then P{μ − 3σ ≤ X ≤ μ + 3σ}  =  0.9973. Note that the 
Chebyshev inequality only gives a lower bound on the probability (usually a very con-
servative one), so there is no contradiction here.
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■  24.9  BIVARIATE PROBABILITY DISTRIBUTION
Thus far the discussion has been concerned with the probability distribution of a single 
random variable, e.g., the demand for a product during the first month or the demand 
for a product during the second month. In an experiment that measures the demand dur-
ing the first 2 months, it may well be important to look at the probability distribution of 
the vector random variable (X1, X2), the demand during the first month, and the demand 
during the second month, respectively,
	 Define the symbol

​​E​ b1, b2
​ X1, X2​​ = {ω ∣ X1(ω) ≤ b1, X2(ω) ≤ b2},

or equivalently,

​​E​ b1, b2
​ X1, X2​ = {X1 ≤ b1, X2 ≤ b2},​

as the set of outcomes ω in the sample space forming the event ​​E​ b1, b2
​ X1, X2​,​ such that the 

random variable X1 taken on values less than or equal to b1, and X2 takes on values less 
than or equal to b2. Then ​P{​E​ b1, b2

​ X1, X2​}​ denotes the probability of this event. In the above 
example of the demand for a product during the first 2 months, suppose that the sample 
space Ω consists of the set of all possible points ω, where ω represents a pair of non-
negative integer values (x1,x2). Assume that x1 and x2 are bounded by 99. Thus, there are 
(100)2ω points in Ω. Suppose further that each point ω has associated with it a probabil-
ity equal to 1/(100)2, except for the points ω = (0,0) and ω = (99,99). The probability 
associated with the event {0,0} will be 1.5/(100)2, that is, P{0,0} = 1.5/(100)2, and the 
probability associated with the event {99,99} will be 0.5/(100)2; that is, P{99,99}  =   
0.5/(100)2. Thus, if there is interest in the “bivariate” random variable (X1, X2), the 
demand during the first and second months, respectively, then the event

{X1 ≤ 1, X2 ≤ 3}

is the set

​​E​ 1, 3​ X1, X2​ = {(0,0), (0,1), (0,2), (0,3), (1,0), (1,1), (1,2), (1,3)}.​

Furthermore,

P{​​E​ 1, 3​ 
X1, X2​​} = ​​  1.5 ______ 

(100)2
 ​​ + ​​  1 ______ 

(100)2
 ​​ + ​​  1 ______ 

(100)2
 ​​ + ​​  1 ______ 

(100)2
 ​​ + ​​  1 ______ 

(100)2
 ​​ + ​​  1 ______ 

(100)2
 ​​ + ​​  1 ______ 

(100)2
 ​​ + ​​  1 ______ 

(100)2
 ​​

	 =  ​​  8.5 ______ 
(100)2

 ​​,

so that

p{X1 ≤ 1, X2 ≤ 3} = P{​​E​ 1, 3​ X1, X2​​} =  ​​  8.5 ______ 
(100)2

 ​​.

A similar calculation can be made for any value of b1 and b2.
	 For any given bivariate random variable (X1, X2), P{X1 ≤ b1, X2 ≤ b2} is denoted 
by ​​F​X1X2

​​(b1,b2) and is called the joint cumulative distribution function (CDF) of the 
bivariate random variable (X1, X2) and is defined for all real values of b1 and b2. Where 
there is no ambiguity, the joint CDF may be denoted by F(b1, b2). Thus, attached to every 
bivariate random variable is a joint CDF. This is not an arbitrary function but is induced 
by the probabilities associated with events defined over the sample space Ω such that 
{ω ∣ X1(ω) ≤ b1, X2 (ω) ≤ b2}.
	 The joint CDF of a random variable is a numerically valued function, defined for 
all b1, b2 such that −∞ ≤ b1, b2 ≤ ∞, having the following properties:

hiL72998_ch24_001-041.indd   25 28/09/19   11:53 AM



24-26	 CHAPTER 24  PROBABILITY THEORY

C
op

yr
ig

ht
 ©

 2
0

21
 T

he
 M

cG
ra

w
-H

ill
 C

om
pa

ni
es

​1.	 ​F​X1X2
​(b1,∞) = P{X1 ≤ b1, X2 ≤ ∞} = P{X1 ≤ b1} = ​F​X1

​(b1), where ​F​X1
​(b1) is just the 

CDF of the univariate random variable X1.
2.	 ​F​X1X2

​ (∞,b2) = P{X1 ≤ ∞, X2 ≤ b2} = P{X2 ≤ b2} = ​F​X2
​(b2), where ​F​X2

​(b2) is just the 
CDF of the univariate random variable X2.

3.	​ F​X1X2
​(b1,−∞) = P{X1 ≤ b1, X2 ≤ −∞} = 0,

	 ​F​X1X2
​(−∞, b2) = P{X1 ≤ −∞, X2 ≤ b2} = 0.

4.	 ​F​X1X2
​ (b1 + Δ1, b2 + Δ2) − ​F​X1X2

​(b1 + Δ1, b2) − ​F​X1X2
​(b1, b2 + Δ2) + ​F​X1X2

​(b1, b2) ≥ 0, 
for every Δ1, Δ2 ≥ 0, and b1, b2.​

	 Using the definition of the event ​​E​ b1, b2
​ X1, X2​​, events of the form

{a1 < X1 ≤ b1, a2 < X2 ≤ b2}

can be described as the set of outcomes ω in the sample space such that the bivariate random 
variable (X1, X2) takes on values such that X1 is greater than a1 but does not exceed b1 and X2 is 
greater than a2 but does not exceed b2. P{a1 < X1 ≤ b1, a2 < X2 ≤ b2} can easily be seen to be

​​F​X1X2
​(b1, b2) − ​F​X1X2

​(b1, a2) − ​F​X1X2
​(a1, b2) + ​F​X1X2

​(a1, a2).​

	 It was noted that single random variables are generally characterized as discrete or 
continuous random variables. A bivariate random variable can be characterized in a 
similar manner. A bivariate random variable (X1, X2) is called a discrete bivariate random 
variable if both X1 and X2 are discrete random variables. Similarly, a bivariate random 
variable (X1, X2) is called a continuous bivariate random variable if both X1 and X2 are 
continuous random variables. Of course, bivariate random variables that are neither dis-
crete nor continuous can exist, but these will not be important in this book.
	 The joint CDF for a discrete random variable FX1X2(b1, b2) is given by

​​F​X1X2
​​(b1, b2) = P{ω ∣ X1(ω) ≤ b1, X2(ω) ≤ b2}

	 =  ​​∑ 
all k ≤ b1

​ 
 

​   ​​ ​​ ∑ 
all l ≤ b2

​ 
 

​   ​​P{ω ∣ X1(ω) = k, X2(ω) =  l}

	 =  ​​∑ 
all k ≤ b1

​ 
 

​   ​​ ​​ ∑ 
all l ≤ b2

​ 
 

​   ​​​​P​X1X2
​​(k, l),

where {ω ∣ X1(ω) = k, X2(ω) = l) is the set of outcomes ω in the sample space such that 
the random variable X1 taken on the value k and the variable X2 takes on the value l; 
and P{ω ∣ X1(ω) = k, X2(ω) =  l} =  ​​P​X1X2

​​(k, l) denotes the probability of this event. The ​​
P​X1X2

​​(k, l) are called the joint probability distribution of the discrete bivariate random 
variable (X1, X2). Thus, in the example considered at the beginning of this section,

	​​ P​X1X2​​
(k, l) = 1/(100)2 for all k, l that are integers between 0 and 99,

except for ​​P​X1X2
​​(0, 0) = 1.5/(100)2 and ​​P​X1X2

​​(99,99) = 0.5/(100)2.
	 For a continuous random variable, the joint CDF ​​F​X1X2

​​(b1, b2) can usually be written as

​​F​X1X2
​​(b1,b2) = P{ω ∣ X1(ω) ≤ b1, X2(ω) ≤ b2} =  ​​  ∫ 

−∞
​ 

b1

  ​​​ ​​ ∫ 
−∞

​ 
b2

  ​​​ ​​f​X1X2
​​(s, t) ds dt,

where ​​f​X1X2
​​(s, t) is known as the joint density function of the bivariate random variable 

(X1, X2). A knowledge of the joint density function enables one to calculate all sorts of 
probabilities, for example.

P{a1 < X1 ≤ b1, a2 < X2 ≤ b2} =  ​​ ∫ 
a1

​ 
b1

​​​ ​​ ∫ 
a2

​ 
b2

​​​ ​​f​X1X2
​​(s, t) ds dt.

Finally, if the density function is known, it is said that the probability distribution of the 
random variable is determined.
	 The joint density function can be viewed as a surface in three dimensions, where 
the volume under this surface over regions in the s, t plane correspond to probabilities. 
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Naturally, the density function can be obtained from the CDF by using the relation

​​ 
∂2​F​X1X2

​(s, t)
 __________ 

∂s ∂t
 ​  =  ​  ∂2

 ____ 
∂s ∂t

 ​ ​  ∫ 
−∞

​ 
s
  ​​ ​  ∫ 

−∞
​ 

t
  ​​ ​f​X1X2

​(u, v) du dv =  ​f​X1X2
​(s, t).​

	 In defining the joint CDF for a bivariate random variable, it was implied that ​​f​X1X2
​​(s, t) 

was defined over the entire plane because

​​F​X1X2
​​(b1, b2) =  ​​  ∫ 

−∞
​ 

b1

  ​​​ ​​  ∫ 
−∞

​ 
b2

  ​​​ ​​f​X1X2
​​(s, t) ds dt

(which is analogous to what was done for a univariate random variable). This causes no 
difficulty, even for bivariate random variables having one or more components that can-
not take on negative values or are restricted to other regions. In this case, ​​f​X1X2

​​(s, t) can 
be defined to be zero over the inadmissible part of the plane. In fact, the only require-
ments for a function to be a bivariate density function are that
1.	​​ f​X1X2

​​(s, t) be nonnegative, and

2.	  ​​  ∫ 
−∞

​ 
∞

  ​​​ ​​  ∫ 
−∞

​ 
∞

  ​​​ ​​f​X1X2
​​(s, t) ds dt = 1.

■  24.10  MARGINAL AND CONDITIONAL PROBABILITY DISTRIBUTIONS
In Sec. 24.9 the discussion was concerned with the joint probability distribution of a 
bivariate random variable (X1, X2). However, there may also be interest in the probability 
distribution of the random variables X1 and X2 considered separately. It was shown that if 
FX1X2(b1, b2) represents the joint CDF of (X1, X2), then FX1(b1) = FX1X2(b1, ∞) = P{X1 ≤ 
b1, X2 ≤ ∞} = P{X1 ≤ b1} is the CDF for the univariate random variable X1, and FX2(b2) =  
FX1X2(∞, b2) = P{X1 ≤ ∞, X2 ≤ b2} = P{X2 ≤ b2} is the CDF for the univariate random 
variable X2.
	 If the bivariate random variable (X1, X2) is discrete, it was noted that the expression 

PX1X2(k, l) = P{X1 = k, X2 = l}

describes its joint probability distribution. The probability distribution of X1 individually, 
PX1(k), now called the marginal probability distribution of the discrete random variable 
X1, can be obtained from the PX1X2(k, l). In particular,

FX1(b1) = FX1X2(b1, ∞) =  ​​∑ 
all k ≤ b1

​ 
 

​    ​​ ​​∑ 
all l

​ 
 

​  PX1 X2(k, l)​​ =  ​​∑ 
all k ≤ b1

​ 
 

​  PX1(k),​​

so that

PX2(k) = P{X1 = k} = ​​∑ 
 all l

​ 
 

​  PX1X2(k, l).​​

Similarly, the marginal probability distribution of the discrete random variable X2 is given by

PX1(l) = P{X2 = l} = ​​∑ 
 all k

​ 
 

​  PX1X2(k, l).​​

	 Consider the experiment described in Sec. 24.1 which measures the demand for a 
product during the first 2 months, but where the probabilities are those given at the 
beginning of Sec. 24.9. The marginal distribution of X1 is given by

PX1(0) = ​​∑ 
 all l

​ 
 

​  PX1X2(0, l).​​

= PX1X2(0,0) + PX1X2(0,1) + . . . + PX1X2(0,99)

= ​​  1.5 ______ 
(100)2

 ​​ + ​​  1 ______ 
(100)2

 ​​ + . . . +  ​​  1 ______ 
(100)2

 ​​ = ​​ 100.5 ______ 
(100)2

 ​​ ,
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PX1(1) = PX1(2) = . . . = PX1(98) = ​​∑ 
 all l

​ 
 

​  PX1X2(k, l).​​

= ​​  100 ______ 
(100)2

 ​​, for k = 1, 2, . . . , 98.

PX1(99) = ​​∑ 
 all l

​ 
 

​  PX1X2(99, l).​​

= PX1X2(99,0) + PX1X2(99,1) + . . . + PX1X2(99,99)

= ​​  1 ______ 
(100)2

 ​​ + ​​  1 ______ 
(100)2

 ​​ + . . . +  ​​  0.5 ______ 
(100)2

 ​​ = ​​  99.5 ______ 
(100)2

 ​​,

Note that this is indeed a probability distribution in that

PX1(0) + PX1(1) + . . . + PX1(99) = ​​ 100.5 ______ 
(100)2

 ​​ + ​​ 
100
 ______ 

(100)2 ​​
 + . . . + ​​  99.5 ______ 

(100)2
 ​​ = 1.

	 Similarly, the marginal distribution of X2 is given by

PX2(0) = ​​∑ 
 all l

​ 
 

​  PX1X2(k, 0)​​

= PX1X2(0,0) + PX1X2(1,0) + . . . + PX1X2(99,0)

= ​​  1.5 ______ 
(100)2

 ​​ + ​​  1 ______ 
(100)2

 ​​ + . . . +  ​​  1 ______ 
(100)2

 ​​ = ​​ 100.5 ______ 
(100)2

 ​​,

PX2(1) = PX2(2) = . . . = PX2(98) = ​​∑ 
 all k

​ 
 

​  PX1X2(k, l)​​ = ​​  100 ______ 
(100)2

 ​​, for l = 1, 2, . . . , 98,

PX2(99) = ​​∑ 
 all k

​ 
 

​  PX1X2(k, 99).​​

= PX1X2(0,99) + PX1X2(1,99) + . . . + PX1X2(99,99)

= ​​  1 ______ 
(100)2

 ​​ + ​​  1 ______ 
(100)2

 ​​ + . . . +  ​​  0.5 ______ 
(100)2

 ​​ = ​​  99.5 ______ 
(100)2

 ​​,

	 If the bivariate random variable (X1, X2) is continuous, then fX1X2(s, t) represents the 
joint density. The density function of X1 individually, fX1(s), now called the marginal 
density function of the continuous random variable X1, can be obtained from the fX1X2(s, t).
In particular,

FX1(b1) = FX1X2(b1, ∞) =​​  ∫ 
−∞

​ 
b1

 ​​​​​   ∫ 
−∞

​ 
∞

 ​​​  fX1X2(s, t) dt ds = ​​  ∫ 
−∞

​ 
b1

 ​​​  fX1(s) ds,

so that

fX1(s) =​​  ∫ 
−∞

​ 
∞

 ​​​  fX1X2(s, t) dt.

Similarly, the marginal density function of the continuous random variable X2 is given by

fX2(t) =​​  ∫ 
−∞

​ 
∞

 ​​​  fX1X2(s, t) ds.

	 As indicated in Section 24.4, experiments are often performed where some results 
are obtained early in time and further results later in time. For example, in the previously 
described experiment that measures the demand for a product during the first two months, 
the demand for the product during the first month is observed at the end of the first 
month. This information can be utilized in making probability statements about the 
demand during the second month.
	 In particular, if the bivariate random variable (X1, X2) is discrete, the conditional 
probability distribution of X2, given X1, can be defined as
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PX2∣X1=k(l) = P{X2 = l∣X1 = k}= ​​ 
PX1X2(k, l)

 ________ 
PX1(k)

 ​​ , if PX1(k) > 0,

and the conditional probability distribution of X1, given X2, as

PX1∣X2=l(k) = P{X1 = k∣X2 = l}= ​​ 
PX1X2(k, l)

 ________ 
PX2(l)

 ​​ , if PX2(l) > 0.

Note that for a given X2 = l, PX1∣X2=l(k) satisfies all the conditions for a probability dis-
tribution for a discrete random variable. PX1∣X2=l(k) is nonnegative, and furthermore,

​​∑ 
 all k

​ 
 

​   ​PX1∣X2=l(k) = ​∑ 
 all k

​ 
 

​   ​= ​ 
PX1X2(k, l)

 ________ 
PX2(l)

 ​  = ​ 
PX2(l) ________ 
PX2(l)

 ​ = 1.​

Again, returning to the above example of the demand for a product during the first  
2 months, if it were known that there was no demand during the first month, then

​PX2∣X1=0(l) = P{X2 = l∣X1 = 0}= ​ 
PX1X2(0, l)

 ________ 
PX1(0)

 ​  = ​ 
PX1X2(0, l)

 __________  
100.5/(100)2

 ​.​

Hence,

​PX2∣X1=0(0) = ​ 
PX1X2(0,0)

  __________  
(100.5)/(100)2

 ​ = ​  1.5 _____ 
100.5

 ​,​

and

​PX2∣X1=0(l) = ​  1 _____ 
100.5

 ​,  for l = 1, 2, . . . , 99.​

	 If the bivariate random variable (X1, X2) is continuous with joint density function 
fX1X2(s, t), and the marginal density function of X1 is given by fX1(s), then the conditional 
density function of X2, given X1 = s, is defined as

​fX2∣X1=s(t) = ​ 
fX1X2(s, t)

 ________ 
fX1(s)

 ​ ,    if fX1(s) > 0.​

Similarly, if the marginal density function of X2 is given by fX2(t), then the conditional 
density function of X1, given X2 = t, is defined as

​fX1∣X2=t(s) = ​ 
fX1X2(s, t)

 ________ 
fX2(t)

 ​ ,    if fX2(t) > 0.​

Note that, given X1 = s and X2 = t, the conditional density functions, fX2∣X1=s(t) and 
fX1∣X2=t(s), respectively, satisfy all the conditions for a density function. They are non-
negative, and furthermore,

​​  ∫ 
−∞

​ 
∞

 ​​​  fX2∣X1=s(t) dt =​​  ∫ 
−∞

​ 
∞

 ​​​  ​​ 
fX1X2(s, t) dt

  ________ 
fX1(s)

 ​​

​= ​  1 _____ 
fX1(s)

 ​​  ∫ 
−∞

​ 
∞

 ​​  fX1X2(s, t) dt = ​ 
fX1(s)

 ________ 
fX1(s)

 ​ = 1​

and

​​  ∫ 
−∞

​ 
∞

 ​​​  fX1∣X2=l(s) ds =​​  ∫ 
−∞

​ 
∞

 ​​​  ​​ 
fX1X2(s, t) ds

  ________ 
fX2(t)

 ​​

​= ​  1 _____ 
fX2(t)

 ​​  ∫ 
−∞

​ 
∞

 ​​  fX1X2(s, t) ds = ​ 
fX2(t) ________ 
fX2(t)

 ​ = 1​

	 As an example of the use of these concepts for a continuous bivariate random variable, 
consider an experiment that measures the time of the first arrival at a store on each of two 
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successive days. Suppose that the joint density function for the random variable (X1, X2), 
which represents the arrival time on the first and second days, respectively, is given by

​fX1X2(s, t) = ​

⎧

 
⎪

 ⎨ 
⎪

 

⎩
​
​ 1 __ 
θ2

 ​ e−(s+t)/θ,
​ 

for s, t ≥ 0
​   

0,
​ 

otherwise
 ​​​

	 The marginal density function of X1 is given by

​fX1(s) = ​

⎧

 
⎪

 ⎨ 
⎪

 

⎩
​
​ ∫ 

0
​ 

∞
​​​ 1 __ 
θ2

 ​ e−(s+t)/θdt = ​ 1 __ 
θ
 ​e−s/θ,

​ 
for s ≥ 0

​    
0,

​ 
otherwise.

​​

​and the marginal density function of X2 is given by

​fX2(t) = ​

⎧

 
⎪

 ⎨ 
⎪

 
⎩

​
​ ∫ 

0
​ 

∞
​​​ 1 __ 
θ2

 ​ e−(s+t)/θds = ​ 1 __ 
θ
 ​e−t/θ,

​ 
for t ≥ 0

​    
0,

​ 
otherwise.

​​​

	 If it is announced that the arrival time of the first customer on the first day occurred 
at time s, the conditional density of X2, given X1 = s, is given by

​fX2∣X1=s(t) = ​ 
fX1X2(s, t)

 ________ 
fX1(s)

 ​  = ​ (1/θ 2)e−(s+t)/θ
  ______________ 

(1/θ)e−s/θ 
 ​  = ​ 1 __ 

θ
 ​ e−t/θ.​

	 It is interesting to note at this point that the conditional density of X2, given X1 = s, 
is independent of s and, furthermore, is the same as the marginal density of X2.

■  24.11  EXPECTATIONS FOR BIVARIATE DISTRIBUTIONS
Section 24.7 defined the expectation of a function of a univariate random variable. The 
expectation of a function of a bivariate random variable (X1, X2) may be defined in a 
similar manner. Let g(X1, X2) be a function of the bivariate random variable (X1, X2). Let

PX1X2(k, l) = P{X1 = k, X2 = l}

denote the joint probability distribution if (X1, X2) is a discrete random variable, and let 
fX1X2(s, t) denote the joint density function if (X1, X2) is a continuous random variable. 
The expectation of g(X1, X2) is now defined as

An alternate definition can be obtained by recognizing that Z = g(X1, X2) is itself a 
univariate random variable and hence has a density function if Z is continuous and a 
probability distribution if Z is discrete. The expectation of Z for these cases has already 
been defined in Sec. 24.7. Of particular interest here is the extension of the theorem of 
the unconscious statistician, which states that if (X1, X2) is a continuous random variable 
and if Z has a density function hZ(y), then

E[g(X1, X2)] = ​​
⎧

 
⎪

 ⎨ 
⎪

 

⎩

​
 ​∑ 
 all k,l

​ 
 

​   ​g(k, l)PX1X2(k, l),
​ 

 if X1, X2 is a discrete random variable
​       

​  ∫ 
−∞

​ 
∞

 ​​​   ∫ 
−∞

​ 
∞

 ​​  g(s, t)fX1X2(s, t) ds dt,
​ 

 if X1, X2 is a continuous random variable.
​​​
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E(Z) =​​  ∫ 
−∞

​ 
∞

  ​​​yhz(y) dy =​​  ∫ 
−∞

​ 
∞

 ​​​​​  ∫ 
−∞

​ 
∞

  ​​​g(s, t)fX1X2(s, t) ds dt.

Thus, the expectation of Z can be found by using its definition in terms of the density 
of the univariate random variable Z or, alternatively, by use of its definition as the 
expectation of a function of the bivariate random variable (X1, X2) with respect to its 
joint density function. The identical theorem is true for a discrete bivariate random vari-
able, and, of course, both results are easily extended to n-variate random variables.
	 There are several important functions g that should be considered. All the results 
will be stated for continuous random variables, but equivalent results also hold for dis-
crete random variables.
	 If g(X1, X2) = X1, it is easily seen that

E(X1) =​​  ∫ 
−∞

​ 
∞

 ​​​​​  ∫ 
−∞

​ 
∞

  ​​​sfX1X2(s, t) ds dt =​​  ∫ 
−∞

​ 
∞

  ​​​sfX1(s) ds.

Note that this is just the expectation of the univariate random variable X1 with respect 
to its marginal density.
	 In a similar manner, if g(X1, X2) = [X1 − E(X1)]2, then

E[X1 − E(X1)]2 =​​  ∫ 
−∞

​ 
∞

 ​​​​​  ∫ 
−∞

​ 
∞

  ​​​[s − E(X1)]2 fX1X2 (s, t) ds dt

=​​  ∫ 
−∞

​ 
∞

  ​​​[s − E(X1)]2 fX1(s) ds,

which is just the variance of the univariate random variable X1 with respect to its  
marginal density.
	 If g(X1, X2) = [X1 − E(X1)] [X2 − E(X2)], then E[g(X1, X2)] is called the covariance 
of the random variable (X1, X2); that is,

E[X1 − E(X1)][X2 − E(X2)] =​​  ∫ 
−∞

​ 
∞

 ​​​​​  ∫ 
−∞

​ 
∞

  ​​​[s − E(X1)][t − E(X2)]fX1X2(s, t) ds dt.

An easy computational formula is provided by the identity

E[X1 − E(X1)][X2 − E(X2)] = E(X1X2) − E(X1)E(X2).

The correlation coefficient between X1 and X2 is defined to be

ρ =​​ 
E[X1 − E(X1)][X2 − E(X2)]   ___________________________   

​√ 
_________________________

   E[X1 − E(X1)]2E[X2 − E(X2)]2  ​
 ​​.

It is easily shown that − 1 ≤ ρ ≤ +1.
	 The final results pertain to a linear combination of random variables. Let g(X1, X2) = 
C1X1 + C2X2, where C1 and C2 are constants. Then

E[g(X1, X2)] =​​  ∫ 
−∞

​ 
∞

 ​​​​​  ∫ 
−∞

​ 
∞

  ​​​(C1s + C2 t)fX1X2(s, t) ds dt

= C1​​  ∫ 
−∞

​ 
∞

  ​​​sfX1(s) ds + C2​​  ∫ 
−∞

​ 
∞

  ​​​tfX2(t) dt

= C1E(X1) + C2E(X2).

Thus, the expectation of a linear combination of univariate random variables is just

E[C1X1 + C2X2 + . . . + CnXn] = C1E(X1) + C2E(X2) + . . . + CnE(Xn).

If

g(X1, X2) = [C1X1 + C2X2 − {C1E(X1) + C2E(X2)}]2,
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then

E[g(X1, X2)] = variance (C1X1 + C2 X2)

= ​​C​ 1​ 2​​E[X1 − E(X1)]2 + ​​C​ 2​ 2​​E[X2 − E(X2)]2

+ 2C1C2E[X1 − E(X1)][X2 − E(X2)]

= ​​C​ 1​ 2​​ variance (X1) + ​​C​ 2​ 2​​ variance (X2)

+ 2C1C2 covariance (X1X2).

	 For n univariate random variables, the variance of a linear combination C1X1 +  
C2X2 + . . . + CnXn is given by

​​∑ 
i=1

​ 
n

​   ​​​​C​ i​ 2​​ variance (Xi) + 2 ​​∑ 
j=2

​ 
n

​   ​​​​∑ 
i=1

​ 
j−1

​  ​​CiCj covariance (XiXj).

■  24.12  INDEPENDENT RANDOM VARIABLES AND RANDOM SAMPLES
The concept of independent events has already been defined; that is, E1 and E2 are inde-
pendent events if, and only if,

P{E1 ∩ E2} = P{E1}P{E2}.

From this definition the very important concept of independent random variables can be 
introduced. For a bivariate random variable (X1,X2) and constants b1 and b2, denote by 
E1 the event containing those ω such that X1(ω) ≤ b1, X2(ω) is anything; that is,

E1 = {ω∣X1(ω) ≤ b1, X2(ω) ≤ ∞}.

Similarly, denote by E2 the event containing those ω such that X1(ω) is anything and 
X2(ω) ≤ b2; that is,

E2 = {ω∣X1(ω) ≤ ∞, X2(ω) ≤ b2}.

Furthermore, the event E1 ∩ E2 is given by

E1 ∩ E2 = {ω∣X1(ω) ≤ b1, X2(ω) ≤ b2}.

The random variables X1 and X2 are said to be independent if events of the form given by 
E1 and E2 are independent events for all b1 and b2. Using the definition of independent 
events, then, the random variables X1 and X2 are called independent random variables if

P{X1 ≤ b1, X2 ≤ b2} = P{X1 ≤ b1}P{X2 ≤ b2}

for all b1 and b2. Therefore, X1 and X2 are independent if

FX1X2(b1, b2) = P{X1 ≤ b1, X2 ≤ b2} = P{X1 ≤ b1}P{X2 ≤ b2}

= FX1(b1)FX2(b2).

Thus, the independence of the random variables X1 and X2 implies that the joint CDF factors 
into the product of the CDF’s of the individual random variables. Furthermore, it is easily 
shown that if (X1,X2) is a discrete bivariate random variable, then X1 and X2 are independent 
random variables if, and only if, PX1X2(k, l) = PX1(k)PX2(l); in other words, P{X1 = k, X2 = l} = 
P{X1 = k}P{X2 = l}, for all k and l. Similarly, if (X1, X2) is a continuous bivariate random 
variable, then X1 and X2 are independent random variables if, and only if,

fX1X2(s, t) = fX1(s)fX2(t)
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for all s ant t. Thus, if X1, X2 are to be independent random variables, the joint density 
(or probability) function must factor into the product of the marginal density functions 
of the random variables. Using this result, it is easily seen that if X1, X2 are independent 
random variables, then the covariance of X1, X2 must be zero. Hence, the results on the 
variance of linear combinations of random variables given in Sec. 24.11 can be simpli-
fied when the random variables are independent; that is,

​Variance ​
(

​∑ 
i=1

​ 
n

​   ​CiXi)
​ = ​∑ 

i=1

​ 
n

​   ​​C​ i​ 2​ variance (Xi)​

when the Xi are independent.
	 Another interesting property of independent random variables can be deduced from 
the factorization property. If (X1, X2) is a discrete bivariate random variable, then X1 and 
X2 are independent if, and only if,

PX1∣X2=l(k) = PX1(k) for all k and l.

Similarly, if (X1, X2) is a continuous bivariate random variable, then X1 and X2 are inde-
pendent if, and only if,

fX1∣X2=t(s) = fX1(s) for all s and t.

In other words, if X1 and X2 are independent, a knowledge of the outcome of one, say, 
X2, gives no information about the probability distribution of the other, say, X1. It was 
noted in the example in Sec. 24.10 on the time of first arrivals that the conditional den-
sity of the arrival time of the first customer on the second day, given that the first 
customer on the first day arrived at time s, was equal to the marginal density of the 
arrival time of the first customer on the second day. Hence, X1 and X2 were independent 
random variables. In the example of the demand for a product during two consecutive 
months with the probabilities given in Sec. 24.9, it was seen in Sec. 24.10 that

​PX2∣X1=0(0) = ​  1.5 _____ 
100.5

 ​ ≠ PX2(0) = ​ 100.5 ______ 
(100)2

 ​.​

Hence, the demands during each month were dependent (not independent) random variables.
	 The definition of independent random variables generally does not lend itself to 
determining whether or not random variables are independent in a probabilistic sense by 
looking at their outcomes. Instead, by analyzing the physical situation the experimenter 
usually is able to make a judgment about whether the random variables are independent 
by ascertaining if the outcome of one will affect the probability distribution of the other.
	 The definition of independent random variables is easily extended to three or more 
random variables. For example, if the joint CDF of the n-dimensional random variable 
(X1, X2, . . . , Xn) is given by FX1X2 . . . Xn

(b1, b2, . . . , bn) and FX1(b1), FX2(b2), . . . , 
FXn

(b
n
) represents the CDF’s of the univariate random variables X1, X2, . . . , Xn, respec-

tively, then X1, X2, . . . , Xn are independent random variables if, and only if,

FX1X2 . . . Xn
(b1, b2, . . . , bn) = FX1(b1)FX2(b2) . . . FXn

(b
n
) for all b1, b2, . . . , bn.

	 Having defined the concept of independent random variables, we can now introduce the 
term random sample. A random sample simply means a sequence of independent and iden-
tically distributed random variables. Thus, X1, X2, . . . , Xn constitute a random sample of size 
n if the Xi are independent and identically distributed random variables. For example, in Sec. 
24.5 it was pointed out that if X1, X2, . . . , Xn are independent Bernoulli random variables, 
each with parameter p (that is, if the X’s are a random sample), then the random variable

​X = ​∑ 
i=1

​ 
n

​   ​Xi​

has a binomial distribution with parameters n and p.
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■  24.13  LAW OF LARGE NUMBERS
Section 24.7 pointed out that the mean of a random sample tends to converge to the 
expectation of the random variables as the sample size increases. In particular, suppose 
the random variable X, the demand for a product, may take on one of the possible values 
k = 0, 1, 2, . . . , 98, 99, each with PX(k) = ​​1 ⁄ 100​​ for all k. Then E(X) is easily seen to 
be 49.5. If a random sample of size n is taken, i.e., the demands are observed for n days, 
with the demand in the respective days being independent and identically distributed 
random variables, it was noted that the random variable ​​   X ​​ (the arithmetic mean of the 
sample observations) should take on a value close to 49.5 if n is large. This result can 
be stated precisely as the law of large numbers.

Law of Large Numbers

Let the random variables X1, X2, . . . , Xn be independent, identically distributed random 
variables (a random sample of size n), each having mean μ. Consider the random variable 
that is the sample mean ​​   X ​​:

​​   X ​ = ​ X1 + X2 +  ·  ·  · + Xn  _________________ n ​ .​

Then for any constant ε > 0,

​​ lim    n→∞​ P{ ∣ ​   X ​ − μ ∣ > ε} = 0.​

The interpretation of the law of large numbers is that as the sample size increases, the 
probability is “close” to 1 that ​​   X ​ ​is “close” to μ. Assuming that the variance of each Xi 
is σ2 < ∞, this result is easily proved by using Chebyshev’s inequality (stated in Sec. 24.8). 
Since each Xi has mean μ and variance σ2,​ ​   X ​ ​also has mean μ, but its variance is σ2/n. 
Hence, applying Chebyshev’s inequality to the random variable​ ​   X ​​, it is evident that

​P​{μ − ​ Cσ ____ ​√ 
__

 n ​
 ​ ≤ ​   X ​ ≤ μ + ​ Cσ ____ ​√ 

__
 n ​
 ​}​ > 1 − ​ 1 ___ 

C2
 ​​.

This is equivalent to

​P ​{∣​   X ​ − μ∣  > ​ Cσ ____ ​√
__

 n ​
 ​}​ < ​ 1 ___ 

C2
 ​.​

Let ​Cσ/​√
__

 n ​ = ε​, so that ​C = ε​√
__

 n ​/σ​. Thus,

​P{ ∣​   X ​ − μ∣ > ε} < ​ σ
2
 ___ 

ε2n
 ​,​

so that

​​ lim    n→∞​ P{∣ ​   X ​ − μ ∣ > ε} = 0,​

as was to be proved.

■  24.14  CENTRAL LIMIT THEOREM
Section 24.6 pointed out that sums of independent normally distributed random variables 
are themselves normally distributed, and that even if the random variables are not nor-
mally distributed, the distribution of their sum still tends toward normality. This latter 
statement can be made precise by means of the central limit theorem.
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Central Limit Theorem

Let the random variables X1, X2, . . . , Xn be independent with means μ1, μ2, . . . , μn, 
respectively, and variance σ2

1, σ2
2, . . . , σ2

n, respectively. Consider the random variable Zn,

Zn = ​​ 
​∑ i=1​ n

  ​​ Xi − ​∑ i=1​ n
  ​​ μi
  ________________  

​√
_______

 ​∑ i=1​ n
  ​​ ​σ​ i​ 2​ ​

 ​​ .

Then, under certain regularity conditions, Zn is approximately normally distributed with 
zero mean and unit variance in the sense that

​​ lim    n→∞​ P{Zn ≤ b} = ​  ∫ 
−∞

​ 
b
  ​​ ​  1 _____ 

​√
___

 2π ​
 ​ ​e​−y2/2​ dy.​

Note that if the Xi form a random sample, with each Xi having mean μ and variance σ2, 
then ​Zn = (​   X ​ − μ)​√

__
 n ​/σ.​9 Hence, sample means from random samples tend toward nor-

mality in the sense just described by the central limit theorem even if the Xi are not 
normally distributed.
	 It is difficult to give sample sizes beyond which the central limit theorem applies 
and approximate normality can be assumed for sample means. This, of course, does 
depend upon the form of the underlying distribution. From a practical point of view, 
moderate sample sizes, like 10, are often sufficient.

■  24.15  FUNCTIONS OF RANDOM VARIABLES
Section 24.7 introduced the theorem of the unconscious statistician and pointed out that 
if a function Z = g(X) of a continuous random variable is considered, its expectation can 
be taken with respect to the density function fX(y) of X or the density function hZ(y) of Z. 
In discussing this choice, it was implied that the density function of Z was known. In 
general, then, given the cumulative distribution function FX(b) of a random variable X, 
there may be interest in obtaining the cumulative distribution function HZ(b) of a random 
variable Z = g(X). Of course, it is always possible to go back to the sample space and 
determine HZ(b) directly from probabilities associated with the sample space. However, 
alternate methods for doing this are desirable.
	 If X is a discrete random variable, assume that the values k that the random variable 
X takes on and the associated PX(k) are known. If Z = g(X) is also discrete, denote by 
m any values that Z takes on. The probabilities QZ(m) = P{Z = m} for all m are required. 
The general procedure is to enumerate for each m all the values of k such that

g(k) = m.

QZ(m) is then determined as

QZ(m) = ​​∑ 
all k

​ 
 

​   ​​PX(k).

	 such that
	 g(k) = m

To illustrate, consider again the example involving the demand for a product in a single 
month. Let this random variable be noted by X, and let k = 0, 1, . . . , 99 with PX(k) = ​​1 ⁄ 100​​, 
for all k. Consider a new random variable Z that takes on the value of 0 if there is no 

9Under these conditions the central limit theorem actually holds without assuming any other regularity conditions.
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demand and 1 if there is any demand. This random variable may be useful for determin-
ing whether any shipping is needed. The probabilities

QZ(0) and QZ(1)

are required. If m = 0, the only value of k such that g(k) = 0 is k = 0. Hence,

QZ(0) = ​​∑ 
all k

​ 
 

​   ​​PX(k) = PX(0) = ​​  1 ____ 
100

 ​​.

	 such that
	 g(k) = 0

If m = 1, the values of k such that g(k) = 1 are k = 1, 2, 3, . . . , 98, 99. Hence,

QZ(1) = ​​∑ 
all k

​ 
 

​   ​​PX(k)

	 such that
	 g(k) = 1

= PX(1) + PX(2) + PX(3) +  ⋅  ⋅  ⋅ + PX(98) + PX(99) = ​​ 99 ____ 
100

 ​​.

	 If X is a continuous random variable, assume that both the CDF FX(b) and the den-
sity function fX(y) are known. If Z = g(X) is also a continuous random variable, either 
the CDF HZ(b) or the density function hZ(y) is sought. To find HZ(b), note that

HZ(b) = P{Z ≤ b} = P{g(X) ≤ b} = P{A},

where A consists of all points such that g(X) ≤ b. Thus, P{A} can be determined from 
the density function or CDF of the random variable X. For example, suppose that the 
CDF for the time of the first arrival in a store is given by

​FX(b) = ​{​1 − e−b/θ,​  for b ≥ 0​   
0,

​ 
for b < 0,

​​

​where θ > 0. Suppose further that the random variable Z = g(X) = X + 1, which repre- 
sents an hour after the first customer arrives, is of interest, and the CDF of Z, HZ(b), is 
desired. To find this CDF note that

HZ(b) = P{Z ≤ b} = P{X + 1 ≤ b} = P{X ≤ b − 1}

​= ​{​1 − e−(b−1)/θ,​  for b ≥ 1​   
0,

​ 
for b < 1.

​​

​Furthermore, the density can be obtained by differentiating the CDF; that is,

​hZ(y) = ​
{

​
​ 1 __ 
θ
 ​ e −(y−1)/θ,

​ 
for y ≥ 1.

​   
0,

​ 
for y < 1.

​​​

	 Another technique can be used to find the density function directly if g(X) is mono-
tone and differentiable; it can be shown that

hZ(y) = fX(s) ​​|​ ds ___ 
dy

 ​|​​,
where s is expressed in terms of y. In the example, Z = g(X) = X + 1, so that y, the 
value the random variable Z takes on, can be expressed in terms of s, the value the 
random variable X takes on; that is, y = g(s) = s + 1. Thus,

s = y − 1,  fX(s) = ​​ 1 __ 
θ
 ​​ e−s/θ = ​​ 1 __ 

θ
 ​​ e−(y−1)/θ,  and ​​ ds ___ 

dy
 ​​ = 1.
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Hence,

​hZ(y) = ​ 1 __ 
θ
 ​ e−(y−1)/θ ∣ 1 ∣ = ​ 1 __ 

θ
 ​ e−(y−1)/θ,​

which is the result previously obtained.
	 All the discussion in this section concerned functions of a single random variable. If 
(X1, X2) is a bivariate random variable, there may be interest in the probability distribution 
of such functions as X1 + X2, X1X2, X1/X2, and so on. If (X1, X2) is discrete, the technique 
for single random variables is easily extended. A detailed discussion of the techniques 
available for continuous bivariate random variables is beyond the scope of this text; how-
ever, a few notions related to independent random variables will be discussed.
	 If (X1, X2) is a continuous bivariate random variable, and X1 and X2 are independent, 
then its joint density is given by

​​f​X1X2
​(s, t) = ​f​X1

​(s)​f​X2
​(t).​

Consider the function

Z = g(X1, X2) = X1 + X2.

The CDF for Z can be expressed as HZ(b) = P{Z ≤ b} = P{X1 + X2 ≤ b}. This can be 
evaluated by integrating the bivariate density over the region such that s + t ≤ b; that is

HZ(b) = ​​  ∫ 
s+t ≤ b

​ 

 

 ​​​∫    ​​f​X1​​
(s)​​f​X2​​

(t) ds dt

	 =​​  ∫ 
−∞

​ 
∞

  ​​​​​  ∫ 
−∞

​ 
b−t

 ​​​ ​​f​X1
​​(s)​​f​X2

​​(t) ds dt.

Differentiating with respect to b yields the density function

	hZ(y) =​​  ∫ 
−∞

​ 
∞

 ​​​  ​​f​X2
​​(t)​​f​X1

​​(y − t) dt.

This can be written alternately as

	hZ(y) =​​  ∫ 
−∞

​ 
∞

 ​​​  ​​f​X1
​​(s)​​f​X2

​​(y − s) ds.

Note that the integrand may be zero over part of the range of the variable, as shown in 
the following example.
	 Suppose that the times of the first arrival on two successive days, X1 and X2, are 
independent, identically distributed random variables having density

​​f​X1
​(s) = ​

{
​
​ 1 __ 
θ
 ​e−s/θ,

​ 
for s ≥ 0

​  
0,

​ 
otherwise.

​​​

​​f​X2
​​(t) = ​

{
​
​ 1 __ 
θ
 ​e−t/θ,

​ 
for t ≥ 0

​  
0,

​ 
otherwise.

​​

To find the density of Z = X1 + X2, note that

​​f​X1
​(s) = ​

{
​
​ 1 __ 
θ
 ​e−s/θ,

​ 
for s ≥ 0

​  
0,

​ 
for s < 0,

​​​

and

​​f​X2
​​(y − s) = ​

{
​
​ 1 __ 
θ
 ​e−(y−s)/θ,

​ 
if y − s ≥ 0 so that s ≤ y

​    
0,

​ 
if y − s < 0 so that s > y.

​​
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Hence,

​​f​X1
​(s) ​f​X2

​(y − s) = ​
{

​
​ 1 __ 
θ
 ​e−s/θ ​ 1 __ 

θ
 ​e−(y−s)/θ = ​ 1 __ 

θ2
 ​ e−y/θ,

​ 
if 0 ≤ s ≤ y

​    
0,

​ 
otherwise.

 ​​

​Hence,

hZ(y) = ​​  ∫ 
−∞

​ 
∞

  ​​​ ​​f​X1
​​(s)​​f​X2

​​(y − s) ds = ​​ ∫ 
0
​ 

y

​​​ ​​ 1 __ 
θ2

 ​​ e−y/θ ds

	 = ​​ 
y
 __ 

θ2
 ​​ e−y/θ.

	 Note that this is just a gamma distribution, with parameters α = 2 and β = θ. Hence, 
as indicated in Sec. 24.6, the sum of two independent, exponentially distributed random 
variables has a gamma distribution. This example illustrates how to find the density 
function for finite sums of independent random variables. Combining this result with 
those for univariate random variables leads to easily finding the density function of 
linear combinations of independent random variables.
	 A final result on the distribution of functions of random variables concerns functions 
of normally distributed random variables. The chi-square, t, and F distributions, intro-
duced in Sec. 24.6, can be generated from functions of normally distributed random 
variables. These distributions are particularly useful in the study of statistics. In particu-
lar, let X1, X2, . . . , Xv be independent, normally distributed random variables having 
zero mean and unit variance. The random variable

​χ2 = ​X​ 1​ 2​ + ​X​ 2​ 2​ + ⋅  ⋅  ⋅ + ​X​ v​ 2​​

can be shown to have a chi-square distribution with v degrees of freedom. A random vari-
able having a t distribution may be generated as follows. Let X be a normally distributed 
random variable having zero mean and unit variance and let χ2 be a chi-square random 
variable (independent of X) with v degrees of freedom. The random variable

​t = ​ ​√
__

 v ​X _____ 
​√ 

__
 χ2 ​
​

can be shown to have a t distribution with v degrees of freedom. Finally, a random variable 
having an F distribution can be generated from a function of two independent chisquare 
random variables. Let χ2

1 and χ2
2 be independent chi-square random variables, with v1 and v2 

degrees of freedom, respectively. The random variable

​F = ​ 
​χ​ 1​ 2​/v1 _____ 
​χ​ 2​ 2​/v1

 ​​

can be shown to have an F distribution with v1 and v2 degrees of freedom.
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24-1.  A cube has its six sides colored red, white, blue, green, yel-
low, and violet. It is assumed that these six sides are equally likely 
to show when the cube is tossed. The cube is tossed once.
(a)	 Describe the sample space.
(b)	 Consider the random variable that assigns the number 0 to red 

and white, the number 1 to green and blue, and the number 2 to 
yellow and violet. What is the distribution of this random 
variable?

(c)	 Let Y = (X + 1)2, where X is the random variable in part (b). 
Find E(Y).

24-2.  Suppose the sample space Ω consists of the four points

ω1, ω2, ω3, ω4,

and the associated probabilities over the events are given by

​P{ω1} = ​ 1 __ 
3
 ​, P{ω2} = ​ 1 __ 

5
 ​, P{ω3} = ​ 3 ___ 

10
 ​, P{ω4} = ​ 1 __ 

6
 ​.​

Define the random variable X1 by

X1(ω1) = 1,
X1(ω2) = 1,
X1(ω3) = 4,
X1(ω4) = 5,

and the random variable X2 by

X1(ω1) = 1,
X2(ω2) = 1,
X2(ω3) = 1,
X2(ω4) = 5.

(a)	 Find the probability distribution of X1, that is, ​​P​X1
​(i).​

(b)	 Find E(X1).
(c)	 Find the probability distribution of the random variable X1 + X2, 

that is, ​​P​X1 + X2
​​(i).

(d)	 Find E(X1 + X2) and E(X2).
(e)	 Find ​​F​X1X2

​​(b1, b2).
(f)	 Compute the correlation coefficient between X1 and X2.
(g)	 Compute E[2X1 − 3X2].

24-3.  During the course of a day a machine turns out two items, 
one in the morning and one in the afternoon. The quality of each 
item is measured as good (G), mediocre (M), or bad (B). The long-
run fraction of good items the machine produces is ​​1 ⁄ 2​​, the fraction 
of mediocre items is ​​1 ⁄ 3​​, and the fraction of bad items is ​​1 ⁄ 6​​.
(a)	 In a column, write the sample space for the experiment that 

consists of observing the day’s production.

■  PROBLEMS
(b)	 Assume a good item returns a profit of $2, a mediocre item a 

profit of $1, and a bad item yields nothing. Let X be the random 
variable describing the total profit for the day. In a column ad-
jacent to the column in part (a), write the value of this random 
variable corresponding to each point in the sample space.

(c)	 Assuming that the qualities of the morning and afternoon items 
are independent, in a third column associate with every point in 
the sample space a probability for that point.

(d)	 Write the set of all possible outcomes for the random variable 
X. Give the probability distribution function for the random 
variable.

(e)	 What is the expected value of the day’s profit?

24-4.  The random variable X has density function f given by

​​f​X​​(y) = ​
⎧

 
⎪

 ⎨ 
⎪

 

⎩
​
θ,

​ 
for 0 ≤ y ≤ θ

​  K,​  for θ < y ≤ 1​  
0,

​ 
elsewhere.

 ​​

(a)	 Determine K in terms of θ.
(b)	 Find FX(b), the CDF of X.
(c)	 Find E(X).

(d)	 Suppose θ = ​​ 1 __ 
3
 ​​. Is P​​{X − ​ 1 __ 

3
 ​ < a}​​ = P​​{− ​(X − ​ 1 __ 

3
 ​)​ < a}​​?

24-5.  Let X be a discrete random variable, with probability 
distribution

P{X = x1} = ​​ 1 __ 
4

 ​​

and

P{X = x2} = ​​ 3 __ 
4

 ​​.

(a)	 Determine x1 and x2, such that

E(X) = 0 and variance (X) = 10.

(b)	 Sketch the CDF of X.

24-6.  The life X, in hours, of a certain kind of radio tube has a 
probability density function given by

​​f​X​​(y) = ​
⎧

 
⎪

 ⎨ 
⎪

 

⎩
​
​ 100 ____ 
y2

 ​ ,
​ 

for y ≥ 100
​  

0,
​ 

for y < 100.
​​

(a)	 What is the probability that a tube will survive 250 hours of 
operation?

(b)	 Find the expected value of the random variable.
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the values 2n for n = 1, 2, . . . and whose probability distribution is 
given by (​​1 ⁄ 2​​)n for n = 1, 2, . . . , that is, if X denotes the payoff to 
player B,

P(X = 2n) = ​​(​ 1 __ 
2
 ​)​​

n

 for n = 1, 2, . . .

The usual definition of a fair game between two players is for each 
player to have equal expectation for the amount to be won.
(a)	 How much should player B pay to player A so that this game 

will be fair?
(b)	 What is the variance of X?
(c)	 What is the probability of player B winning no more than $8 in 

one play of the game?

24-12.  The demand D for a product in a week is a random variable 
taking on the values of −1, 0, 1 with probabilities​ ​1 ⁄ 8​, ​5 ⁄ 8​, ​and C/8, 
respectively. A demand of −1 implies that an item is returned.
(a)	 Find C, E(D), and variance D.
(b)	 Find ​E(​e​D

2

​).​
(c)	 Sketch the CDF of the random variable D, labeling all the nec-

essary values.

24-13.  In a certain chemical process three bottles of a standard 
fluid are emptied into a larger container. A study of the individual 
bottles shows that the mean value of the contents is 15 ounces and 
the standard deviation is 0.08 ounces. If three bottles form a ran-
dom sample,
(a)	 Find the expected value and the standard deviation of the vol-

ume of liquid emptied into the larger container.
(b)	 If the content of the individual bottles is normally distributed, 

what is the probability that the volume of liquid emptied into 
the larger container will be in excess of 45.2 ounces?

24-14.  Consider the density function of a random variable X de-
fined by

​​f​X​​(y) = ​​{ ​0,
​ 

for y < 0
​  6y(1 − y),​  for 0 ≤ y ≤ 1​   

0,
​ 

for 1 < y.
 ​

​

 ​​

(a)	 Find the CDF corresponding to this density function. (Be sure 
you describe it completely.)

(b)	 Calculate the mean and variance.
(c)	 What is the probability that a random variable having this den-

sity will exceed 0.5?
(d)	 Consider the experiment where six independent random vari-

ables are observed, where each random variable has the density 
function given above. What is the expected value of the sample 
mean of these observations?

(e)	 What is the variance of the sample mean described in part (d)?

24-15.  A transistor radio operates on two ​1​1 ⁄ 2​​ volt batteries, so that 
nominally it operates on 3 volts. Suppose the actual voltage of a 
single new battery is normally distributed with mean ​1​1 ⁄ 2​ ​volts and 
variance 0.0625. The radio will not operate “properly” at the outset 
if the voltage falls outside the range ​2​3 ⁄ 4​​ to ​3​1 ⁄ 4​ ​volts.

24-7.  The random variable X can take on only the values 0, ±1, 
±2, where

​​
P{−1 < X < 2} = 0.4,

​ 
P{X = 0} = 0.3,

​    
P{∣ X ∣ ≤ 1} = 0.6,

​ 
P{X ≥ 2} = P{X = 1 or −1}.

​​

(a)	 Find the probability distribution of X.
(b)	 Graph the CDF of X.
(c)	 Compute E(X).

24-8.  Let X be a random variable with density

​​f​X​​(y) = ​​{ ​K(1 − y2),​  for −1 < y < 1​   
0,

​ 
otherwise

 ​
​
 ​​

(a)	 What value of K will make fX(y) a true density?
(b)	 What is the CDF of X?
(c)	 Find E(2X − 1).
(d)	 Find variance (X).
(e)	 Find the approximate value of P{​​   X ​​ > 0}, where ​​   X ​​ is the sam-

ple mean from a random sample of size n = 100 from the above 
distribution. (Hint: Note that n is “large.”)

24-9.  The distribution of X, the life of a transistor, in hours, is ap-
proximated by a triangular distribution as follows:

(a)	 What is the value of a?
(b)	 Find the expected value of the life of transistors.
(c)	 Find the CDF, FX(b), for this density. Note that this must be 

defined for all b between plus and minus infinity.
(d)	 If X represents the random variable, the life of a transistor, let 

Z = 3X be a new random variable. Using the results of (c), find 
the CDF of Z.

24-10.  The number of orders per week, X, for radios can be as-
sumed to have a Poisson distribution with parameter λ = 25.
(a)	 Find P{X ≥ 25} and P{X = 20}.
(b)	 If the number of radios in the inventory is 35, what is the prob-

ability of a shortage occurring in a week?

24-11.  Consider the following game. Player A flips a fair coin until 
a head appears. She pays player B 2n dollars, where n is the number 
of tosses required until a head appears. For example, if a head ap-
pears on the first trial, player A pays player B $2. If the game results 
in 4 tails followed by a head, player A pays player B 25 = $32. 
Therefore, the payoff to player B is a random variable that takes on 

1,0000

fX (y) = a
1,000 y

1,000

1−
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(a)	 What is the probability that the radio will not operate 
“properly”?

(b)	 Suppose that the assumption of normality is not valid. Give  
a bound on the probability that the radio will not operate 
“properly.”

24-16.  The life of electric lightbulbs is known to be a normally 
distributed random variable X with unknown mean μ and standard 
deviation 200 hours. The value of a lot of 1,000 bulbs is (1,000)
(1/5,000) μ dollars. A random sample of n bulbs is to be drawn by 
a prospective buyer, and 1,000(1/5,000) ​​   X ​​ dollars paid to the man-
ufacturer. How large should n be so that the probability is 0.90 that 
the buyer does not overpay or underpay the manufacturer by more 
than $15?

24-17.  A joint random variable (X1, X2) is said to have a bivariate 
normal distribution if its joint density is given by

​​f​X1, X2
​​(s, t) = ​​  1 ______________  

2π​σ​X1
​​σ​X2

​​√
______

 1 − ρ2 ​
 ​​ exp ​​{− ​  1 ________ 

2(1 − ρ2)
 ​

​[​(​ 
s − ​μ​X1

​
 ______ ​σ​X1

​ ​ )​
2
 −2ρ ​ 

(s − ​μ​X1
​)(t − ​μ​X2

​)
  ______________ ​σ​X1

​​σ​X2
​ ​

+ ​(​ 
t − ​μ​X2

​
 ______ ​σ​X2

​ ​ )​
2

]​}​​

for −∞ < s < ∞ and −∞ < t < ∞.
(a)	 Show that E(X1) = μX1

 and E(X2) = ​​μ​X2
​​.

(b)	 Show that variance (X1) = ​​σ​ X1
​ 2
 ​​, variance (X2) = ​​σ​ X2​ 

2
 ​​, and the cor-

relation coefficient is ρ.
(c)	 Show that marginal distributions of X1 and X2 are normal.
(d)	 Show that the conditional distribution of X1, given X2 = x2, is 

normal with mean

​​μ​X1
​ + ρ​ 

​σ​X1
​
 ____ ​σ​X2
​ ​ (x2 − μx2)​

and variance ​​σ​ X1​ 
2
 ​​(1 − ρ2).

24-18.  The joint demand for a product in each of 2 months is a 
continuous random variable (X1, X2) having a joint density given by

​​f​X1, X2
​(s, t) = ​{​

c,
​ 

if 100 ≤ s ≤ 150, and 50 ≤ t ≤ 100
​    

0,
​ 

otherwise.
 ​​ ​

(a)	 Find c.
(b)	 Find​ ​F​X1X2

​(b1, b2), ​F​X1
​(b1), and ​F​X2

​(b2).​
(c)	 Find ​F​X2

​ ∣X1=s(t).

24-19.  Two machines produce a certain item. The maximum produc-
tion capacity per day of machine 1 is 1 unit and that of machine 2 is 
2 units. Let (X1, X2) be the discrete random variable that measures the 
actual production on each machine per day. Each entry in the table 
below represents the joint probability, for example, ​​P​X1X2

​​(0,0) = ​​1 ⁄ 8​​.

10Recall that FE1 is the same as F ∩ E1, that is, the intersection of the two events F and E1.

(a)	 Find the marginal distributions of X1 and X2.
(b)	 Find the conditional distribution of X1, given X2 = 1.
(c)	 Are X1 and X2 independent random variables?
(d)	 Find E(X1), E(X2), variance (X1), and variance (X2).
(e)	 Find the probability distribution of (X1 + X2).

24-20.  Suppose that E1, E2, . . . , Em are mutually exclusive events 
such that ​E1 ∪ E2 ∪ ⋅  ⋅  ⋅ ∪ ​E​m​ = Ω;​ that is, exactly one of the E 
events will occur. Denote by F any event in the sample space. Note 
that

F = FE1 ∪ FE2 ∪ ⋅ ⋅ ⋅ ∪ FEm,10

and that FEi, i = 1, 2, . . . , m, are also mutually exclusive.

(a)	 Show that P{F} = ​​∑ 
i=1

​ 
m

​   ​​P{​​FE​i​​} = ​​∑ 
i=1

​ 
m

​   ​​P{F ∣​​E​i ​​}P{​​E​i​​}.

(b)	 Show that P{​​E​i​​ ∣F} = P{F ∣ ​​E​i ​}​P{​​E​i​​∕​​∑ 
i=1

​ 
m

​   ​​P{F ∣ ​​E​i​​}P{​​E​i​​}.

(This result is called Bayes’ formula and is useful when it is known 
that the event F has occurred and there is interest in determining 
which one of the Et also occurred.)

	 X1

X2	 0	 1

0	​​  1 __ 8 ​​	 0

1	​​  1 __ 4 ​​	​​  1 __ 8 ​​

2	​​  1 __ 8 ​​	​​  3 __ 8 ​​
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