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The many definitions of reliability that exist depend upon the viewpoint of the user. 
However, they all have a common core that contains the statement that reliability, 

R(t), is the probability that a device performs adequately over the interval [0, t]. In gen-
eral, it is assumed that unless repair or replacement occurs, adequate performance at time 
t implies adequate performance during the interval [0, t]. The device under consideration 
may be an entire system, a subsystem, or a component.1 Although this definition is 
simple, the systems to which it is applied are generally very complex. In principle, it is 
possible to break down the system into black boxes, with each black box being in one 
of two states: good or bad. Mathematical models of the system can then be abstracted 
from the physical processes and the theory of combinatorial probability used to predict 
the reliability of the system. The black boxes may be independent of, or be very depen-
dent upon, each other. For any reasonable system, such a probability analysis generally 
becomes so cumbersome that it must be considered impractical. Hence, we seek other 
methods that either simplify the calculations or provide bounds on the reliability of the 
entire complex system.
	 As an example, consider an automobile. There are a large number of functional parts, 
wiring, and joints. These may be broken into subsystems, with each subsystem having a 
reliability associated with it. Possible subsystems are the engine, transmission, exhaust, 
body, carburetor, and brakes. A mathematical model of the automobile system can be 
abstracted and the theory of combinatorial probability used to predict the reliability of 
the automobile.

Reliability

25C H A P T E R

Suppose an automobile can be divided into n components (subsystems). The performance 
of each component can be denoted by a random variable, Xi, that takes on the value xi = 1 
if the component performs satisfactorily for the desired time and xi = 0 if the component 
fails during this time. In general, then, Xi is a binary random variable defined by

​Xi = ​{​1,​ 0,​​  ​ 
if component i performs satisfactorily during time [0, t]

​     if component i fails during time [0, t]. ​​

■  25.1  STRUCTURE FUNCTION OF A SYSTEM

1A subsystem can be viewed as containing one or more components.

hiL72998_ch25_001-015.indd   1 28/09/19   11:16 AM



25-2	 CHAPTER 25  RELIABILITY

C
op

yr
ig

ht
 ©

 2
0

21
 T

he
 M

cG
ra

w
-H

ill
 C

om
pa

ni
es

The performance of the system is measured by the binary random variable2 ϕ(X1, X2, .  .  .  , 
Xn), where

​ϕ(X1, X2, .  .  .  , Xn) = ​{​1,​ 0,​​  ​ 
if system performs satisfactorily during time [0, t]

​     if system fails during time [0, t]. ​​

The function ϕ is called the structure function of the system and is just a function of 
the n-component random variables. Thus, the performance of the automobile is a func-
tion of its n components and takes on the value 1 if the automobile functions properly 
for the desired time and 0 if it does not. Because the performance of each component 
in the automobile takes on the value 1 or 0, the function ϕ is defined over 2n points, 
with each point resulting in a 1 if the automobile performs satisfactorily and a 0 if the 
automobile fails.
	 There are several important structure functions to consider, depending upon how the 
components are assembled. Three structure functions will be discussed in detail.

Series System

The series system is the simplest and most common of all the configurations. For a series 
system, the system fails if any component of the system fails; i.e., it performs satisfac-
torily if and only if all the components perform satisfactorily. The structure function for 
a series system is given by

ϕ(X1, X2, .  .  .  , Xn) = X1 X2 .  .  . Xn = min{X1, X2, .  .  .  , Xn}.

This equation holds because each Xi is either 1 or 0. Hence, the structure function takes 
on the value 1 if each Xi equals 1 or, equivalently, if the minimum of the Xi equals 1. 
For example, suppose the automobile is divided into only two components: the engine 
(X1) and the transmission (X2). Then it is reasonable to assume that the automobile will 
perform satisfactorily for the desired time period if and only if the engine and the trans-
mission both perform satisfactorily. Hence,

ϕ(X1, X2) = X1X2,

and

ϕ(1, 1) = 1,    ϕ(1, 0) = ϕ(0, 1) = ϕ(0, 0) = 0.

Parallel System

A parallel system of n components is defined to be a system that fails if all compo-
nents fail, or alternatively, a system that performs satisfactorily if at least one of the 
n components performs satisfactorily (with all n components operating simultane-
ously). This property of parallel systems is often called redundancy (i.e, there are 
alternative components, existing within the system, to help the system operate success-
fully in case of failure of one or more components). The structure function for a 
parallel system is given by

ϕ(X1, X2, .  .  .  , Xn) = 1 − (1 − X1)(1 − X2) .  .  . (1 − Xn)
	 = max{X1, X2, .  .  .  , Xn}.

This equation again follows because each Xi is either 1 or 0. The structure function takes 
on the value 1 if at least one of the Xi equals 1 or, equivalently, if the largest Xi equals 1. 
In the automobile example, the car is equipped with front disk (X1) and rear drum (X2) 

2Note that Xi and ϕ are functions of the time t, but t will be suppressed for ease of notation.
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brakes. The automobile will perform successfully if either the front or rear brakes operate 
properly.3 If one is concerned with the structure function of the brake subsystem, then

ϕ(X1X2) = 1 − (1 − X1)(1 − X2) = X1 + X2 − X1X2,

and

ϕ(1, 1) = ϕ(1, 0) = ϕ(0, 1) = 1,    ϕ(0, 0) = 0.

k Out of n System

Some systems are assembled such that the system operates if k out of n components 
function properly. Note that the series system is a k out of n system, with k = n, and the 
parallel system is a k out of n system, with k = 1. The structure function for a k out of 
n system is given by

ϕ(X1, X2, .  .  .  , Xn) = ​​

⎧

 
⎪

 ⎨ 
⎪

 

⎩

​
1,

​ 

0,

​  ​  
if ​∑ 

i=1

​ 
n

​   Xi ≥ k​
​  

if ​∑ 
i=1

​ 
n

​   Xi < k.​

​​​

In the automobile example, consider a large truck equipped with eight tires. The structure 
function for the tire system is an example of a four-out-of-eight system. (Although the 
system's performance may be degraded if fewer than eight tires are operating, rearrange-
ment of the tire configuration will result in adequate performance as long as at least four 
tires are usable.)
	 It is reasonable to expect the performance of an automobile to improve if the per-
formance of one or more components is improved. This improvement can be reflected 
in the characterization of the structure function, where, for example, one would expect 
ϕ(1, 0, 0, 1) to be no less than ϕ(1, 0, 0, 0). Hence, it will be assumed that if xi ≤ yi, 
for i = 1, 2, .  .  . n, then

ϕ(y1, y2, .  .  .  , yn) ≥ ϕ(x1, x2, .  .  .  , xn).

A system possessing this property (ϕ is an increasing function of x) is called a coherent 
(or monotone) system.

3It is evident that the loss of the front or rear brakes will affect the braking capability of the automobile, but 
the definition of “perform successfully” may allow for either set working.
4The time t is now suppressed in the notation. Recall that the time is implicitly included in determining whether 
or not the ith component performs satisfactorily.

The structure function of a system containing n components is a binary random variable that 
takes on the value 1 or 0. Furthermore, the reliability of this system can be expressed as4

R = P{ϕ(X1, X2, .  .  .  , Xn) = 1}.

Thus, for a series system, the reliability is given by

R = P{X1X2 .  .  . Xn = 1} = P{X1 = 1, X2 = 1, .  .  .  , Xn = 1}.

When the usual terms for conditional probability are employed,

R = P{X1 = 1}P{X2 = 1∣X1 = 1}P{X3 = 1∣X1 = 1, X2 = 1}
.  .  . P{Xn = 1∣X1 = 1, .  .  .  , Xn−1 = 1}.

■  25.2  SYSTEM RELIABILITY
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In general, such conditional probabilities require careful analysis. For example,  
P{X2 = 1∣X1 = 1} is the probability that component 2 will perform successfully, 
given that component 1 performs successfully. Consider a system where the heat 
from component 1 affects the temperature of component 2 and thereby its probabil-
ity of success. The performance of these components is then dependent, and the 
evaluation of the conditional probability is extremely difficult. If, on the other hand, 
the performance characteristics of these components do not interact, e.g., the tem-
perature of one component does not affect the performance of the other component, 
then the components can be said to be independent. The expression for the reliabil-
ity then simplifies and becomes

R = P{X1 = 1}P{X2 = 1} .  .  . P{Xn = 1}.

When the components of a series system are assumed to be independent, it should be 
noted that the reliability is a function of the probability distribution of the Xi. This phe-
nomenon is true for any system structure.
	 Unless otherwise specified, it will be assumed throughout the remainder of this 
chapter that the component performances are independent. Hence, the probability distri-
bution of the binary random variables Xi can be expressed as

P{Xi = 1} = pi,

and

P{Xi = 0} = 1 − pi,

Thus, for systems composed of independent components, the reliability becomes a func-
tion of the pi; that is.

R = R(p1, p2, .  .  .  , pn).

Reliability of Series Systems

As previously indicated, for a series structure,

R(p1, p2, .  .  .  , pn) = P{ϕ(X1, X2, .  .  .  , Xn) = 1}
	 = P{X1 X2 .  .  . Xn = 1}
	 = P{X1 = 1, X2 = 1, .  .  .  , Xn = 1}
	 = P{X1 = 1} P{X2 = 1} .  .  . P{Xn = 1}
	 = p1p2 .  .  . pn.

Thus, returning to the automobile example, if the probability that the engine performs 
satisfactorily is 0.95 and the probability that the transmission performs satisfactorily 
is 0.99, then the reliability of this automobile series subsystem is given by R = (0.95)
(0.99) = 0.94.

Reliability of Parallel Systems

The structure function for a parallel system is

ϕ(X1, X2, .  .  .  , Xn) = max(X1, X2, .  .  .  , Xn),

and the reliability is given by

R(p1, p2, .  .  .  , pn) = P{max(X1, X2, .  .  .  , Xn) = 1}
	 = 1 − P{all Xi = 0}
	 = 1 − P{X1 = 0, X2 = 0, .  .  .  , Xn = 0}
	 = 1 − (1 − p1)(1 − p2) .  .  . (1 − pn).

hiL72998_ch25_001-015.indd   4 28/09/19   11:16 AM
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Thus, if the probability that the front disk brakes and the rear drum brakes perform 
satisfactorily is 0.99 for each, the subsystem reliability is given by

R = 1 − (0.01)(0.01) = 0.9999.

Reliability of k Out of n Systems

The structure function for a k out of n system is

ϕ(X1, X2, .  .  .  , Xn) = ​​

⎧

 
⎪

 ⎨ 
⎪

 

⎩

​
1,

​ 
0,

​  ​  
if ​∑ 

i=1

​ 
n

​   Xi ≥ k​
​  

if ​∑ 
i=1

​ 
n

​   Xi < k,​

​​​

and the reliability is given by

​R(p1, p2, .  .  .  , pn) = P​
{

​∑ 
i=1

​ 
n

​   Xi ≥ k​
}

​.​

	 The evaluation of this expression is, in general, quite difficult except for the case of 
p1 = p2 = .  .  . = pn = p. Under this assumption, ​​Σ​ i=1​ n

  ​​ Xi has a binomial distribution with 
parameters n and p, so that

​R(p, p, .  .  .  , p) = ​∑ 
i=k

​ 
n

​   ​​(​n​ i​)​ = pi(1 − p)n−i.​

For the truck tire example, if each tire has a probability of 0.95 of performing satisfac-
torily, then the reliability of a four-out-of-eight system is given by

​R = ​∑ 
i=4

​ 
8

​   ​​(​8​ 
i
​) ​(0.95)i(0.05)8−i = 0.9999.​

	 For general structures, the system reliability calculations can become quite tedious. 
A technique for computing reliabilities for this general case will be presented in the next 
section. However, the final result of this section is to indicate that the reliability function 
of a system of independent components can be shown to be an increasing function of 
the pi; that is, if pi ≤ qi for i = 1, 2, .  .  .  , n, then

R(q1, q2, .  .  .  , qn) ≥ R(p1, p2, .  .  .  , pn).

This result is analogous to, and dependent upon, the assumption that the structure 
function of the system is coherent. The implication of this intuitive result is that the 
reliability of the automobile will improve if the reliability of one or more components 
is improved.

A representation of the structure of a system can be expressed in terms of a network, and 
some of the material presented in Chap. 10 is relevant. For example, consider the system 
that can be represented by the network in Fig. 25.1, where the arcs represent the components. 
This system consists of five components, connected in a somewhat complex manner. Accord-
ing to the network diagram, the system will operate successfully if there exists a flow from 
A (the source) to D (the sink) through the directed graph, i.e., if components 1 and 4 oper-
ate successfully, or components 2 and 5 operate successfully, or components 1, 3, and 5 

■  25.3  CALCULATION OF EXACT SYSTEM RELIABILITY
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operate successfully. In fact, each arc can be viewed as having capacity 1 or 0, depending 
upon whether or not the component is operating. If an arc has a 0 attached to it (the com-
ponent fails), then the network would lose that arc, and the system would operate success-
fully if and only if there is a path from the source to the sink in the resultant network. This 
situation is illustrated in Fig. 25.2, where the system still operates if components 3 and 4 
fail but becomes inoperable if components 2, 3, and 4 fail. This suggests a possible method 
for computing the exact system reliability. Again, denote the performance of the ith com-
ponent by the binary random variable Xi. Then Xi takes on the value 1 with probability pi 
and 0 with probability (1 − pi). For each realization, X1 = x1, X2 = x2, X3 = x3, X4 = x4 and 
X5 = x5 (there are 25 such realizations), it is determined whether or not the system will 
operate, i.e., whether or not the structure function equals 1. The network consisting of those 
arcs with Xi equal to 1 contains at least one path if and only if the corresponding structure 
function equals 1. If a path is formed, the probability of obtaining this configuration is 
obtained. For the realization in Fig. 21.2a. a path is formed, and

P{X1 = 1, X2 = 1, X3 = 0, X4 = 0, X5 = 1} = p1p2(1 − p3)(1 − p4)p5.

Because each realization is disjoint, the system reliability is just the sum of the proba-
bilities of those realizations that contain a path. Unfortunately, even for this simple 
system, 32 different realizations must be evaluated, and other techniques are desirable.
	 Another possible procedure for finding the exact reliability is to note that the reli-
ability R(p1, p2, .  .  .  , pn) can be expressed as

R(p1, p2, . . . , pn) = P{maximum flow from source to sink ≥ 1}.

This identity allows the concept of paths and cuts presented in Chap. 10 to be used. In 
reliability theory, the terminology of minimal paths and minimal cuts is introduced. A 
minimal path is a minimal set of components that, by functioning, ensures the success-
ful operation of the system. For the example in Fig. 25.1. components 2 and 5 are a 
minimal path. A minimal cut is a minimal set of components that, by failing, ensures 
the failure of the system. In Fig. 25.1, components 1 and 2 are a minimal cut. For the 
system given in Fig. 25.1, the minimal paths and cuts are shown in the following table.

■  FIGURE 25.1
A five-component system.

B

DA

C

41

2 5

3

■  FIGURE 25.2
(a) System with components 3 
and 4 failed; (b) system with 
components 2, 3, and 4 failed.
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2 5

A

B

C

D

1

5

A

B

C

D

(a () b)
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Minimal Paths Minimal Cuts

X1X4 X1X2

X1X3X5 X4X5

X2X5 X2X3X4

X1X5

	 If we use all the minimal paths, there are two ways to obtain the exact system reli-
ability. Because the system will operate if all the components in at least one of the 
minimal paths operate, the system reliability can be expressed as

R(p1, p2, p3, p4, p5) = P{ϕ(X1, X2, X3, X4, X5) = 1}
	 = P{(X1X4 = 1) ∪ (X1X3X5 = 1) ∪ (X2X5 = 1)}.

Using the algebra of sets,

R(p1, p2, p3, p4, p5) = P{X1X4 = 1} + P{(X1X3X5 = 1}
	 + P{X2X5 = 1} − P{X1X3X4X5 = 1}
	 − P{X1X2X4X5 = 1} − P{X1X2X3X5 = 1}
	 + P{X1X2X3X4X5 = 1)

	 = p1p4 + p1p3p5 + p2p5 − p1p3p4p5
	 − p1p2p4p5 − p1p2p3p5 + p1p2p3p4p5

	 = 2p2 + p3 − 3p4 + p5,    when pi = p.

Notice that there are 23 − 1 = 7 terms in the expansion of the reliability function (in 
general, if there are r paths, then there are 2r − 1 terms in the expansion), so that this 
calculation is not simple.
	 The second method of determining the system reliability from paths is as follows: 
For the minimal path containing components 1 and 4, X1X4 = 1 if and only if both 
components function. This fact is similarly true for the other two minimal paths. How-
ever, the system will operate if all the components in at least one of the minimal paths 
operate. Hence, paths operate as a parallel system, so that

ϕ(X1, X2, X3, X4, X5) = max[X1X4, X1X3X5, X2X5]
	 = 1 − (1 − X1X4)(1 − X1X3X5)(1 − X2X5).

Because ​​X​ i​ 2​​ = Xi, then

ϕ(X1, X2, X3, X4, X5) = X1X4 + X1X3X5 + X2X5 − X1X3X4X5 − X1X2X4X5
	 − X1X2X3X5 + X1X2X3X4X5.

Noting that ϕ is a binary random variable taking on the value 1 and 0,

E[ϕ(X1, X2, X3, X4, X5)] = P{ϕ(X1, X2, X3, X4, X5) = 1}
	   = R(p1, p2, p3, p4, p5).

Therefore,

R(p1, p2, p3, p4, p5)
	 = E[X1X4 + X1X3X5 + X2X5 − X1X3X4X5 − X1X2X4X5
	 − X1X2X3X5 + X1X2X3X4X5]

	 = p1p4 + p1p3p5 + p2p5 − p1p3p4p5 − p1p2p4p5 − p1p2p3p5
	 + p1p2p3p4p5.

This result is the same as the one obtained earlier and requires essentially the same 
amount of calculation.

hiL72998_ch25_001-015.indd   7 28/09/19   11:16 AM
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	 If we use all the minimal cuts, there are also two ways to obtain the exact system 
reliability. Because the system will fail if and only if all the components in at least one 
of the minimal cuts fail, the system reliability can be expressed as

R(p1, p2, p3, p4, p5) = 1 − P{ϕ(X1, X2, X3, X4, X5) = 0}

	 = 1 − P{X1 = 0, X2 = 0) ∪ (X4 = 0, X5 = 0)
		  ∪ (X2 = 0, X3 = 0, X4 = 0) ∪ (X1 = 0, X5 = 0)

	 = 1 − P{X1 = 0, X2 = 0} − P{X4 = 0, X5 = 0}
		  − P{X2 = 0, X3 = 0, X4 = 0} − P{X1 = 0, X5 = 0}
		  + P{X1 = 0, X2 = 0, X4 = 0, X5 = 0}
		  + P{X1 = 0, X2 = 0, X3 = 0, X4 = 0}
		  + P{X1 = 0, X2 = 0, X5 = 0}
		  + P{X2 = 0, X3 = 0, X4 = 0, X5 = 0}
		  + P{X1 = 0, X4 = 0, X5 = 0}
		  + P{X1 = 0, X2 = 0, X3 = 0, X4 = 0, X5 = 0}
		  − P{X1 = 0, X2 = 0, X3 = 0, X4 = 0, X5 = 0}
		  − P{X1 = 0, X2 = 0, X4 = 0, X5 = 0}
		  − P{X1 = 0, X2 = 0, X3 = 0, X4 = 0, X5 = 0}
		  − P{X1 = 0, X2 = 0, X3 = 0, X4 = 0, X5 = 0}
		  + P{X1 = 0, X2 = 0, X3 = 0, X4 = 0, X5 = 0}

	 = 1 − q1q2 − q4q5 − q2q3q4 − q1q5 + q1q2q3q4
		  + q1q2q5 + q2q3q4q5 + q1q4q5 − q1q2q3q4q5,

where

qi = 1 − pi.

This result is, of course, algebraically equivalent to the one obtained previously, and it 
involves 24 − 1 = 15 terms in the expansion of the reliability function. In general, if 
there are s cuts, there are 2s − 1 terms in the expansion.
	 The second method of determining the system reliability from cuts is: For the min-
imal cut containing components 1 and 2, 1 − (1 − X1)(1 − X2) = 0 if and only if both 
components fail. This fact is similarly true for the other three cuts. However, the system 
will operate if at least one of the components in each cut operates. Hence, cuts operate 
as a series system, so that

ϕ(X1, X2, X3, X4, X5)
	 = min[1 − (1 − X1)(1 − X2), 1 − (1 − X4)(1 − X5),
		  1 − (1 − X2)(1 − X3)(1 − X4), 1 − (1 − X1)(1 − X5)]

	 = ([1 − (1 − X1)(1 − X2)][1 − (1 − X4)(1 − X5)]
	 [1 − (1 − X2)(1 − X3)(1 − X4)][1 − (1 − X1)(1 − X5)])

	 = 1 − (1 − X1)(1 − X2) − (1 − X4)(1 − X5)
		  − (1 − X2)(1 − X3)(1 − X4) − (1 − X1)(1 − X5)
		  + (1 − X1)(1 − X2)(1 − X3)(1 − X4)
		  + (1 − X1)(1 − X2)(1 − X5)
		  + (1 − X2)(1 − X3)(1 − X4)(1 − X5)
		  + (1 − X1)(1 − X4)(1 − X5)
		  − (1 − X1)(1 − X2)(1 − X3)(1 − X4)(1 − X5).

	 Taking expectations on both sides leads to the desired expression for the reliability. 
Again, this method requires essentially the same amount of calculation as required for 
the first procedure using cuts.

hiL72998_ch25_001-015.indd   8 28/09/19   11:16 AM
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	 Although the results presented in this section were based upon the example, an 
extension to any system can be easily obtained. All minimal paths and/or cuts must be 
found and one of the four methods presented chosen.
	 As previously mentioned, if there are r paths and s cuts in the network, then calculat-
ing the exact reliability using paths will involve summing 2r − 1 terms, and using cuts will 
involve 2s − 1 terms. Hence, the method using paths should be used if and only if r ≤ s. 
Generally, however, it is simpler to find minimal paths rather than minimal cuts, so that 
the method using paths may have to be used because finding all cuts may be computation-
ally infeasible. It is evident that finding the exact reliability of a system is quite difficult 
and that bounds are desirable, provided that the calculations are substantially reduced.

It is evident that the calculations required to compute exact system reliability are numer-
ous, and that other methods, such as obtaining upper and lower bounds, are desirable.
	 To obtain bounds, the following result concerning binary random variables is very 
useful.

If X1, X2, . . . , Xn are independent binary random variables that take on the 
value 1 or 0, and Yi = Πj∈Ji

 Xj, where the product ranges over all j that are 
elements in the set Ji, i = 1, 2, . . . , r, then

P{Y1 = 0, Y2 = 0, . . . , Yi = 0} ≥ P{Y1 = 0}P{Y2 = 0} . . . P{Yi = 0}.

Returning to the example of Sec. 25.3, it was pointed out that the system will operate if 
all the components in at least one of the minimal paths operate, so that

R(p1, p2, p3, p4, p5) = P{ϕ(X1, X2, X3, X4, X5) = 1}
	 = 1 − P{all paths fail}
	 = 1 − P{X1X4 = 0, X1X3X5 = 0, X2X5 = 0}.

From the result on binary random variables,

R(p1, p2, p3, p4, p5) ≤ 1 − P{X1X4 = 0}P{X1X3X5 = 0}P{X2X5 = 0}
	 = 1 − (1 − p1p4)(1 − p1p3p5)(1 − p2p5)
	 = 1 − (1 − p2)2(1 − p3).

when

pi = p,

so that an upper bound is obtained.
	 Similarly, in Sec. 25.3, it was pointed out that the system will operate if at least one 
of the components in each cut operates, so that

R(p1, p2, p3, p4, p5)
= �P{ϕ(X1, X2, X3, X4, X5) = 1} = P {at least one of X1, X2 operates; at least one 

of X4, X5 operates; at least one of X2, X3, X4 operates; at least one of X1, X5 
operates}

= �P{[1 − (1 − X1)(1 − X2)] = 1, [1 − (1 − X4)(1 − X5)] = 1, 
[1 − (1 − X2)(1 − X3)(1 − X4)] = 1, [1 − (1 − X1)(1 − X5)] = 1}

= �P{[1 − X1)(1 − X2) = 0, (1 − X4)(1 − X5) = 0, 
(1 − X2)(1 − X3)(1 − X4) = 0, (1 − X1)(1 − X5) = 0}.

■  25.4  BOUNDS ON SYSTEM RELIABILITY
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Now (1 − Xi) are independent binary random variables that take on the values 1 and 0, 
so that the result on binary random variables is again applicable; that is.

R(p1, p2, p3, p4, p5)
≥ (P{(1 − X1)(1 − X2) = 0}P{(1 − X4)(1 − X5) = 0}
             P{(1 − X2)(1 − X3)(1 − X4) = 0}P(1 − X1)(1 − X5) = 0})
= ([1 − (1 − p1)(1 − p2)][1 − (1 − p4)(1 − p5)]
               [1 − (1 − p2)(1 − p3)(1 − p4)][1 − (1 − p1)(1 − p5)])
= [1 − (1 − p)2]3[1 − (1 − p)3],

when

pi = p,

so that a lower bound is obtained.
	 Thus, we obtain an upper bound on the reliability based upon paths and a lower 
bound based upon cuts. For example, if pi = p = 0.9, then

0.9693 �= [1 − (0.1)2]3[1 − (0.1)3] ≤ R(0.9, 0.9, 0.9, 0.9, 0.9) 
≤ 1 − [1 − (0.9)2]2[1 − (0.9)3] = 0.9902.

Furthermore, the exact reliability obtained from the expressions in Sec. 25.3 is given by

R(0.9, 0.9, 0.9, 0.9, 0.9) = (0.9)2 + (0.9)3 − 3(0.9)4 + (0.9)5 = 0.9712.

In general, this technique provides useful results in that the bounds are frequently quite 
narrow.

The previous sections considered systems that performed successfully during a designated 
period or failed during this same period. An alternative way of viewing systems is to view 
their performance as a function of time.
	 Consider a component (or system) and its associated random variable, the time to 
failure, T. Denote the cumulative distribution function of the time to failure of the com-
ponent by F and its density function by f. In terms of the previous discussion, the random 
variables X and T are related in that X takes on the values

1,    if T ≥ t
0,    if T < t.

Then

​R(t) = P{X = 1} = 1 − F(t) = ​ ∫ 
t
​ 
∞

​​f (y) dy.​

	 An appealing intuitive property in reliability is the failure rate. For those values of 
t for which F(t) < 1, the failure rate r(t) is defined by

​r(t) = ​ 
f (t)

 ____ 
R(t)

 ​.​

This function has a useful probabilistic interpretation, namely, r(t) dt represents the con-
ditional probability that an object surviving to age t will fail in the interval [t, t + dt]. 
This function is sometimes called the hazard rate.
	 In many applications, there is every reason to believe that the failure rate tends to 
increase because of the inevitable deterioration that occurs. Such a failure rate that 
remains constant or increases with age is said to have an increasing failure rate (IFR).

■  25.5  BOUNDS ON RELIABILITY BASED UPON FAILURE TIMES
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	 In some applications, the failure rate tends to decrease. It would be expected to 
decrease initially, for instance, for materials that exhibit the phenomenon of work hard-
ening. Certain solid-state electronic devices are also believed to have a decreasing failure 
rate. Thus, a failure rate that remains constant or decreases with age is said to have a 
decreasing failure rate (DFR).
	 The failure rate possesses some interesting properties. The time to failure distribution 
is completely determined by the failure rate. In particular, it is easily shown that

​R(t) = 1 − F(t) = exp ​[−​ ∫ 
0
​ 
t
​​r(ξ) dξ)]​.​

Thus, an assumption made about the failure rate has direct implications on the time to 
failure distribution. As an example, consider a component whose failure distribution is 
given by the exponential distribution, i.e.,

F(t) = P{T ≤ t} = 1 − e−t/θ.

Thus, R(t) is given by e−t/θ, and the failure rate is given by

​r(t) = ​ (1/θ)e−t/θ

 _______ 
e−t/θ

  ​ = ​ 1 __ 
θ
 ​.​

Note that the exponential distribution has a constant failure rate and hence has both IFR 
and DFR. In fact, using the expression relating the time to failure distribution and the 
failure rate, it is evident that a component having a constant failure rate must have a time 
to failure distribution that is exponential.

Bounds for IFR Distributions

Under either the IFR or DFR assumption, it is possible to obtain sharp bounds on the 
reliability in terms of moments and percentiles: In particular, such bounds can be derived 
from statements based upon the mean time to failure. This fact is particularly important 
because many design engineers present specifications in terms of mean time to failure.
	 Because the exponential distribution with constant failure rate is the boundary dis-
tribution between IFR and DFR distributions, it provides natural bounds on the survival 
probability of IFR and DFR distributions. In particular, it can be shown that if all that 
is known about the failure distribution is that it is IFR and has mean μ, then the greatest 
lower bound on the reliability that can be given is

​R(t) ≥ ​{​
e−t/μ,

​ 
for t < μ

​  
0,

​ 
for t ≥ μ,

​

​​and the inequality is sharp; i.e., the exponential distribution with mean μ attains the lower 
bound for t < μ, and the value 0 attains the lower bound for t ≥ μ,. This situation can 
be represented graphically as shown in Fig. 25.3.

■  FIGURE 25.3
The lower curve to the left of 
the dashed vertical line shows 
a lower bound on reliability for 
IFR distributions and then 0 
becomes the lower bound for 
larger values of t.

μ

t

R(t)

e−t/μ
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	 The least upper bound on R(t) that can be obtained if we know only that F is IFR 
with mean μ is given by

R(t) ≤ ​​{​
1,

​ 
for t ≤ μ

​  
e−ωt,

​ 
for t > μ,

​​​

where ω depends on t and satisfies 1 − ωμ = e−ωt. It is important to note that the ω in 
the term e−ωt is a function of t, so that a different ω must be found for each t. For fixed 
t and μ, this ω is obtained by finding the intersection of the linear function (1 − ωμ) 
and the exponential function e−ωt. It can be shown that for t > μ, such an intersection 
always exists.
	 Thus, R(t) for an IFR distribution with mean μ can be bounded above and below, as 
shown in Fig. 25.4. Note that the lower bound is the only one of consequence for t < μ, 
and that the upper bound is the only one of consequence for t > μ.

Increasing Failure Rate Average

Now that bounds on the reliability of a component have been obtained, what can be 
said about the preservation of monotone failure rate; i.e., what structures have the 
IFR property when their individual components have this property? Series structures 
of independent IFR (DFR) components are also IFR (DFR). In addition, k out of n 
structures consisting of n identical independent components, each having an IFR fail-
ure distribution, are also IFR. However, parallel structures of independent IFR com-
ponents are not IFR unless they are composed of identical components. Thus, it is 
evident that, even for some simple systems, there may not be a preservation of the 
monotone failure rate.
	 Instead of using the failure rate as a means for characterizing the reliability,

​R(t) = exp ​[−​ ∫ 
0
​ 
t
​​ r(ξ) dξ]​,​

a somewhat less appealing characterization can be obtained from the failure-rate average 
function,

​​ ∫ 
0
​ 
t
​​ ​ 
r(ξ) dξ

 ______ 
t
  ​ = −​ 

log R(t)
 _______ 

t
  ​.​

A time-to-failure distribution such that F (0) = 0 is called increasing failure rate aver-
age (IFRA) if and only if 

​​ ∫ 
0
​ 
t
​​​ ​​ 
r(ξ) dξ

 ______ 
t
  ​​

■  FIGURE 25.4
Upper and lower bounds on 
reliability for IFR distributions.

μ

t

R
(t
)

e−t/μ e−ωt
1

Upper
bound

Lower
bound

0

hiL72998_ch25_001-015.indd   12 28/09/19   11:16 AM



	 Selected References	 25-13
C

op
yr

ig
ht

 ©
 2

0
21

 T
he

 M
cG

ra
w

-H
ill

 C
om

pa
ni

es

is nondecreasing in t ≥ 0. A similar definition is given for DFRA. It can be shown that 
a coherent system of independent components, each of which has an IFRA failure dis-
tribution, has a system failure distribution that is also IFRA.
	 As with IFR systems, there are bounds for IFRA systems. It can be easily shown 
that IFR distributions are also IFRA distributions (but not the reverse), and the same 
upper bound as given for IFR distributions is applicable here. A sharp lower bound for 
IFRA distributions with mean μ is given by

R(t) ≥ ​​
{

​
0,

​ 
for t ≥ μ

​  
e−bt,

​ 
for  t < μ,

​​​

where b depends upon t and is defined by e−bt = b(μ − t).
	 As an example, a monotone system containing only independent components, each 
of which is exponential (thereby IFRA), is itself IFRA, and the aforementioned bounds 
are applicable. Furthermore, these bounds are dependent only upon the system mean time 
to failure.

In recent decades, the delivery of systems that perform adequately for a specified period 
of time in a given environment has become an important goal for both industry and 
government. In the space program, higher system reliability means the difference between 
life and death. In general, the cost of maintaining and/or repairing electronic equipment 
during the first year of operation often exceeds the purchase cost, giving impetus to the 
study and development of reliability techniques.
	 This chapter has been concerned with determining system reliability (or bounds) 
from a knowledge of component reliability or characteristics of components, such as 
failure rate or mean time to failure. Even the desirable state of knowing these values may 
lead to cumbersome and sometimes crude results. However, it must be emphasized that 
these values, e.g., component reliability or mean time to failure, may not be known and 
are of-ten just the design engineers' educated guesses. Furthermore, except in the case 
of the exponential distribution, knowledge of the mean time to failure leads to nothing 
but bounds. Also, it is evident that the reliability of components or systems depends 
heavily upon the failure rate, and the assumption of constant failure rate, which appears 
to be used frequently in practice, should not be made without careful analysis.
	 The contents of the chapter have not been concerned with the statistical aspects of 
reliability, i.e., estimating reliability from test data. This subject was omitted because the 
book's emphasis is on probability models, but this is not a reflection on its importance. 
The statistical aspects of reliability may very well be the important problem. Statistical 
estimation of component reliability is well in hand, but estimation of system reliability 
from component data is virtually an unsolved problem.

■  25.6  CONCLUSIONS
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25.1-1.  Show that the structure function for a three-component 
system that functions if and only if component 1 functions and at 
least one of components 2 or 3 functions is given by

ϕ(X1X2X3) = X1 max(X2, X3)
	 = X1 [1 − (1 − X2)(1 − X3)].

25.1-2.  Show that the structure function for a four-component sys-
tem that functions if and only if components 1 and 2 function and 
at least one of components 3 or 4 functions is given by

ϕ(X1, X2, X3, X4) = X1X2 max(X3, X4).

25.2-1.  Find the reliability of the structure function given in  
Prob. 25.1-1 when each component has probability pi of perform-
ing successfully and the components are independent.

25.2-2.  Find the reliability of the structure function given in  
Prob. 25.1-2 when each component has probability pi of perform-
ing successfully and the components are independent.

25.3-1.  Consider a system consisting of three components (labeled 
1, 2, 3) that operate simultaneously. The system is able to function 
satisfactorily as long as any two of the three components are still 
functioning satisfactorily. The goal is for the system to function 
satisfactorily for a length of time t, so the system’s reliability, R(t), 
is the probability that this will occur. The times until failure of the 
individual components are independently (but not identically) dis-
tributed, where pi is the probability that the time until failure of 
component i exceeds t, for i = 1, 2, 3.
(a)	 Is this a k out of n system? If so, what are k and n?
(b)	 Draw a network representation of this system.
(c)	 Develop an explicit expression for the structure function of this 

system.
(d)	 Find R(t) as a function of the pi’s.

25.3-2.  Consider a system consisting of five components, labeled 
1, 2, 3, 4, 5. The system is able to function satisfactorily as long as 
at least one of the following three combinations of components has 
every component in that combination functioning satisfactorily:
(1)	 Components 1 and 4;
(2)	 Components 2 and 5;
(3)	 Components 2, 3, and 4.

■  PROBLEMS
For a given amount of time t, let Ri(t) be the known reliability of 
component i (i = 1, 2, 3, 4, 5), that is, the probability that this com-
ponent will function satisfactorily for this length of time. Assume 
that the times until failure of the individual components are inde-
pendently distributed. Let R(t) be the unknown reliability of the 
overall system.
(a)	 Draw a network representation of this system.
(b)	 Develop an explicit expression for the structure function of this 

system.
(c)	 Find R(t) as a function of the Ri(t).

25.3-3.  Suppose that there exist three different types of compo-
nents, with two units of each type. Each unit operates indepen-
dently, and each type has probability pi of performing 
successfully. Either one or two systems can be built. One system 
can be assembled as follows: The two units of each type of com-
ponent are put together in parallel, and the three types are then 
assembled to operate in series. Alternatively, two subsystems are 
assembled, each consisting of the three different types of compo-
nents assembled in series. The final system is obtained by putting 
the two subsystems together in parallel. Which system has higher 
reliability?

25.4-1.  Consider the following network.

1

2 4

3

Assume that each component is independent with probability pi of 
performing satisfactorily.
(a)	 Find all the minimal paths and cuts.
(b)	 Compute the exact system reliability, and evaluate it when pi = 

p = 0.90.
(c)	 Find upper and lower bounds on the reliability, and evaluate 

them when pi = p = 0.90.
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25.4-2.  Follow the instructions of Prob. 25.4-1 when using the fol-
lowing network.

51

2 4

3

Note that component 3 flows in both directions.

25.4-3.  Follow the instructions of Prob. 25.4-1 when using the 
following network.

2

1

1

1

2 2

3

25.4-4.  Follow the instructions of Prob. 25.4-1 when using the 
following network.

51

2 6

3 4

25.5-1.  Suppose F is IFR, with μ = 0.5. Find upper and lower 
bounds on R(t) for (a) ​t = ​ 1 _ 4 ​​ and (b) t = 1.

25.5-2.  A time-to-failure distribution is said to have a Weibull dis-
tribution if the cumulative distribution function is given by

F(t) = 1 − e−tβ/η,    where η, β > 0.

Find the failure rate, and show that the Weibull distribution is IFR 
when β ≥ 1 and DFR when 0 < β ≤ 1.

25.5-3.  Suppose that a system consists of two different, but inde-
pendent, components, arranged into a series system. Further as-
sume that the time to failure for each component has an exponential 
distribution with parameter θi, i = 1, 2. Show that the distribution 
of the time to failure of the system is IFR.

25.5-4.  Consider a parallel system consisting of two independent 
components whose time to failure distributions are exponential 
with parameters μ1 and μ2, respectively (μ1 ≠ μ2). Show that the 
time to failure distribution of the system is not IFR.

R(t) = P{T1 > t or T2 > t} = 1 − P{T1 ≤ t and T2 ≤ t}
     = 1 − (1 − e−t/μ1)(1 − e−t/μ2).

25.5-5.  For Prob. 25.5-4, show that the time to failure distribution 
is IFRA.
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