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As described in Chap. 17, queueing theory has enjoyed a prominent place among the 
modern analytical techniques of OR. However, the emphasis has been on developing 

a descriptive mathematical theory. Thus, queueing theory is not directly concerned with 
achieving the goal of OR: optimal decision making. Rather, it develops information on 
the behavior of queueing systems. This theory provides part of the information needed 
to conduct an OR study attempting to find the best design for a queueing system.
	 Section 17.10 discusses the application of queueing theory in the broader context 
of an overall OR study. This chapter expands considerably further on this same topic. It 
begins by introducing three examples that will be used for illustration throughout the 
chapter. Section 26.2 discusses the basic considerations for decision making in this con-
text. The following two sections then develop decision models for the optimal design of 
queueing systems. The last model requires the incorporation of travel-time models, which 
are presented in Sec. 26.5.

The Application of Queueing Theory

26C H A P T E R

Example 1—How Many Repairers?

SIMULATION, INC., a small company that makes gidgets for analog computers, has  
10 gidget-making machines. However, because these machines break down and require 
repair frequently, the company has only enough operators to operate eight machines at 
a time, so two machines are available on a standby basis for use while other machines 
are down. Thus, eight machines are always operating whenever no more than two 
machines are waiting to be repaired, but the number of operating machines is reduced 
by 1 for each additional machine waiting to be repaired.
	 The time until any given operating machine breaks down has an exponential distri-
bution, with a mean of 20 days. (A machine that is idle on a standby basis cannot break 
down.) The time required to repair a machine also has an exponential distribution, with 
a mean of 2 days. Until now the company has had just one repairer to repair these 
machines, which has frequently resulted in reduced productivity because fewer than eight 
machines are operating. Therefore, the company is considering hiring a second repairer, 
so that two machines can be repaired simultaneously.
	 Thus, the queueing system to be studied has the repairers as its servers and the 
machines requiring repair as its customers, where the problem is to choose between having 

■  26.1  EXAMPLES
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one or two servers. (Notice the analogy between this problem and the County Hospital 
emergency room problem described in Sec. 17.1.) With one slight exception, this system 
fits the finite calling population variation of the M/M/s model presented in Sec. 17.6, 
where N = 10 machines, ​λ = ​ 1 __ 20 ​​ customer per day (for each operating machine), and  
​μ = ​ 1 _ 2 ​​ customer per day. The exception is that the λ0 and λ1 parameters of the birth-and-
death process are changed from λ0 = 10λ and λ1 = 9λ to λ0 = 8λ and λ1 = 8λ. (All the 
other parameters are the same as those given in Sec. 17.6.) Therefore, the Cn factors for 
calculating the Pn probabilities change accordingly (see Sec. 17.5).
	 Each repairer costs the company approximately $280 per day. However, the estimated 
lost profit from having fewer than eight machines operating to produce gidgets is $400 
per day for each machine down. (The company can sell the full output from eight oper-
ating machines, but not much more.)
	 The analysis of this problem will be pursued in Secs. 26.3 and 26.4.

Example 2—Which Computer?

EMERALD UNIVERSITY is making plans to lease a supercomputer to be used for 
scientific research by the faculty and students. Two models are being considered: one 
from the MBI Corporation and the other from the CRAB Company. The MBI computer 
costs more but is somewhat faster than the CRAB computer. In particular, if a sequence 
of typical jobs were run continuously for one 24-hour day, the number completed would 
have a Poisson distribution with a mean of 30 and 25 for the MBI and the CRAB com-
puters, respectively. It is estimated that an average of 20 jobs will be submitted per day 
and that the time from one submission to the next will have an exponential distribution 
with a mean of 0.05 day. The leasing cost per day would be $5,000 for the MBI computer 
and $3,750 for the CRAB computer.
	 Thus, the queueing system of concern has the computer as its (single) server and 
the jobs to be run as its customers. Furthermore, this system fits the M/M/1 model pre-
sented at the beginning of Sec. 17.6. With 1 day as the unit of time, λ = 20 customers 
per day, and μ = 30 and 25 customers per day with the MBI and the CRAB computers, 
respectively. You will see in Secs. 26.3 and 26.4 how the decision was made between 
the two computers.

Example 3—How Many Tool Cribs?

The MECHANICAL COMPANY is designing a new plant. This plant will need to include 
one or more tool cribs in the factory area to store tools required by the shop mechanics. 
The tools will be handed out by clerks as the mechanics arrive and request them and will 
be returned to the clerks when they are no longer needed. In existing plants, there have 
been frequent complaints from supervisors that their mechanics have had to waste too much 
time traveling to tool cribs and waiting to be served, so it appears that there should be 
more tool cribs and more clerks in the new plant. On the other hand, management is exert-
ing pressure to reduce overhead in the new plant, and this reduction would lead to fewer 
tool cribs and fewer clerks. To resolve these conflicting pressures, an OR study is to be 
conducted to determine just how many tool cribs and clerks the new plant should have.
	 Each tool crib constitutes a queueing system, with the clerks as its servers and the 
mechanics as its customers. Based on previous experience, it is estimated that the time 
required by a tool crib clerk to service a mechanic has an exponential distribution, with 
a mean of ​​ 1 _ 2 ​​ minute. Judging from the anticipated number of mechanics in the entire 
factory area for the new plant, it is also predicted that they would require this service 
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randomly but at a mean rate of 2 mechanics per minute. Therefore, it was decided to use 
the M/M/s model of Sec. 17.6 to represent each queueing system. With 1 hour as the 
unit of time, μ = 120. If only one tool crib were to be provided, λ also would be 120. 
With more than one tool crib, this mean arrival rate would be divided among the differ-
ent queueing systems.
	 The total cost to the company of each tool crib clerk is about $20 per hour. The 
capital recovery costs, upkeep costs, and so forth associated with each tool crib provided 
are estimated to be $16 per working hour. While a mechanic is busy, the value to the 
company of his or her output averages about $48 per hour.
	 Sections 26.3 and 26.4 include discussions of how this (and additional) information 
was used to make the required decisions.

Queueing-type situations that require decision making arise in a wide variety of contexts. 
For this reason, it is not possible to present a meaningful decision-making procedure that 
is applicable to all these situations. Instead, this section attempts to give a broad con-
ceptual picture of a typical approach.
	 Designing a queueing system often involves making one or a combination of the 
following decisions:

1.	 Number of servers at a service facility.
2.	 Efficiency of the servers.
3.	 Number of service facilities.

When such problems are formulated in terms of a queueing model, the corresponding 
decision variables usually are s (number of servers at each facility), μ (mean service rate 
per busy server), and λ (mean arrival rate at each facility). The number of service facilities 
is directly related to λ because, assuming a uniform workload among the facilities, λ equals 
the total mean arrival rate to all facilities divided by the number of facilities. (Section 17.10 
also mentions two other possible decisions when designing a queueing system, namely, the 
amount of waiting space in the queue and any priorities for different categories of custom-
ers, but we will focus in this chapter on the three types of decisions listed above.)
	 Refer to Sec. 26.1 and note how the three examples there respectively illustrate 
situations involving these three decisions. In particular, the decision facing Simulation, 
Inc., in Example 1 is how many repairers (servers) to provide. The problem for Emerald 
University in Example 2 is how fast a computer (server) is needed. The problem facing 
Mechanical Company in Example 3 is how many tool cribs (service facilities) to install 
as well as how many clerks (servers) to provide at each facility.
	 The first kind of decision is particularly common in practice. However, the other 
two also arise frequently, particularly for the internal service systems described in  
Sec. 17.3. One example illustrating a decision on the efficiency of the servers is the 
selection of the type of materials-handling equipment (the servers) to purchase to trans-
port certain kinds of loads (the customers). Another such example is the determination 
of the size of a maintenance crew (where the entire crew is one server). Other decisions 
concern the number of service facilities, such as copy centers, computer facilities, tool 
cribs, storage areas, and so on, to distribute throughout an area.
	 All the specific decisions discussed here involve the general question of the appropriate 
level of service to provide in a queueing system. As mentioned at the beginning of Chap. 17 
and in Sec. 17.10, decisions regarding the amount of service capacity to provide usually are 
based primarily on two considerations: (1) the cost incurred by providing the service, as 

■  26.2  DECISION MAKING
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shown in Fig. 26.1, and (2) the amount of waiting time for that service, as suggested in 
Fig. 26.2. Figure 26.2 can be obtained by using the appropriate waiting-time equation 
from queueing theory. (For better conceptualization, we have drawn these figures and 
the subsequent two figures as smooth curves even though the level of service may be a 
discrete variable.)
	 These two considerations create conflicting pressures on the decision maker. The 
objective of reducing service costs recommends a minimal level of service. On the other 
hand, long waiting times are undesirable, which recommends a high level of service. 
Therefore, it is necessary to strive for some type of compromise. To assist in finding this 
compromise, Figs. 26.1 and 26.2 may be combined, as shown in Fig. 26.3. The problem 
is thereby reduced to selecting the point on the curve of Fig. 26.3 that gives the best 
balance between the average delay in being serviced and the cost of providing that ser-
vice. Reference to Figs. 26.1 and 26.2 indicates the corresponding level of service.

■  FIGURE 26.1
Service cost as a function of 
service level.
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■  FIGURE 26.2
Expected waiting time as a 
function of service level.
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■  FIGURE 26.3
Relationship between average 
delay and service cost.
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	 Obtaining the proper balance between delays and service costs requires answers to 
such questions as, How much expenditure on service is equivalent (in its detrimental 
impact) to a customer’s being delayed 1 unit of time? Thus, to compare service costs 
and waiting times, it is necessary to adopt (explicitly or implicitly) a common measure 
of their impact. The natural choice for this common measure is cost, which then requires 
estimation of the cost of waiting.
	 Because of the diversity of waiting-line situations, no single process for estimating 
the cost of waiting is generally applicable. However, we shall discuss the basic consid-
erations involved for several types of situations.
	 One broad category is where the customers are external to the organization providing 
the service; i.e., they are outsiders bringing their business to the organization. Consider first 
the case of profit-making organizations (typified by the commercial service systems described 
in Sec. 17.3). From the viewpoint of the decision maker, the cost of waiting probably consists 
primarily of the lost profit from lost business. This loss of business may occur immediately 
(because the customer grows impatient and leaves) or in the future (because the customer is 
sufficiently irritated that he or she does not come again). This kind of cost is quite difficult 
to estimate, and it may be necessary to revert to other criteria, such as a tolerable probability 
distribution of waiting times. When the customer is not a human being, but a job being 
performed on order, there may be more readily identifiable costs incurred, such as those 
caused by idle in-process inventories or increased expediting and administrative effort.
	 Now consider the type of situation where service is provided on a nonprofit basis 
to customers external to the organization (typical of social service systems and some 
transportation service systems described in Sec. 17.3). In this case, the cost of waiting 
usually is a social cost of some kind. Thus, it is necessary to evaluate the consequences 
of the waiting for the individuals involved and/or for society as a whole and to try to 
impute a monetary value to avoiding these consequences. Once again, this kind of cost 
is quite difficult to estimate, and it may be necessary to revert to other criteria.
	 A situation may be more amenable to estimating waiting costs if the customers are 
internal to the organization providing the service (as for the internal service systems 
discussed in Sec. 17.3). For example, the customers may be machines (as in Example 1 
in Sec. 26.1) or employees (as in Example 3) of a firm. Therefore, it may be possible 
to identify directly some of or all the costs associated with the idleness of these custom-
ers. Typically, what is being wasted by this idleness is productive output, in which case 
the waiting cost becomes the lost profit from all lost productivity.
	 Given that the cost of waiting has been evaluated explicitly, the remainder of the 
analysis is conceptually straightforward. The objective is to determine the level of service 
that minimizes the total of the expected cost of service and the expected cost of waiting 
for that service. This concept is depicted in Fig. 26.4, where WC denotes waiting cost, 
SC denotes service cost, and TC denotes total cost. Thus, the mathematical statement of 
the objective is to

Minimize    E(TC) = E(SC) + E(WC).

	 The next three sections are concerned with the application of this concept to various 
types of problems. Thus, Sec. 26.3 describes how E(WC) can be expressed mathemati-
cally. Section 26.4 then focuses on E(SC) to formulate the overall objective function 
E(TC) for several basic design problems (including some with multiple decision vari-
ables, so that the level-of-service axis in Fig. 26.4 then requires more than one dimen-
sion). Section 26.4 also introduces the fact that when a decision on the number of service 
facilities is required, time spent in traveling to and from a facility should be included in 
the analysis (as part of the total time waiting for service). Section 26.5 discusses how to 
determine the expected value of this travel time.
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■  FIGURE 26.4
Conceptual solution 
procedure for many waiting-
line problems.
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To express E(WC) mathematically, we must first formulate a waiting-cost function that 
describes how the actual waiting cost being incurred varies with the current behavior of the 
queueing system. The form of this function depends on the context of the individual problem. 
However, most situations can be represented by one of the two basic forms described next.

The g(N) Form

Consider first the situation discussed in the preceding section where the queueing system 
customers are internal to the organization providing the service, and so the primary cost of 
waiting may be the lost profit from lost productivity. The rate at which productive output is 
lost sometimes is essentially proportional to the number of customers in the queueing sys-
tem. However, in many cases there is not enough productive work available to keep all the 
members of the calling population continuously busy. Therefore, little productive output may 
be lost by having just a few members idle, waiting for service in the queueing system, 
whereas the loss may increase greatly if a few more members are made idle because they 
require service. Consequently, the primary property of the queueing system that determines 
the current rate at which waiting costs are being incurred is N, the number of customers in 
the system. Thus, the form of the waiting-cost function for this kind of situation is that 
illustrated in Fig. 26.5, namely, a function of N. We shall denote this form by g(N).
	 The g(N) function is constructed for a particular situation by estimating g(n), the 
waiting-cost rate incurred when N = n, for n = 1, 2, . . . , where g(0) = 0. After com-
puting the Pn probabilities for a given design of the queueing system, we can calculate

E(WC) = E(g(N)).

Because N is a random variable, this calculation is made by using the expression for the 
expected value of a function of a discrete random variable

​E(WC) = ​∑ 
n=0

​ 
∞

​   g(n)Pn.​​

The Linear Case.  For the special case where g(N) is a linear function (i.e., when the 
waiting cost is proportional to N), then

g(N) = CwN,

■  26.3  FORMULATION OF WAITING-COST FUNCTIONS
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where Cw is the cost of waiting per unit time for each customer. In this case, E(WC) 
reduces to

​W(WC) = Cw ​∑ 
n=0

​ 
∞

​   nPn = CwL.​​

Example 1—How Many Repairers?  For Example 1 of Sec. 26.1, Simulation, Inc., 
has two standby widget-making machines, so there is no lost productivity as long as the 
number of customers (machines requiring repair) in the system does not exceed 2. How-
ever, for each additional customer (up to the maximum of 10 total), the estimated lost 
profit is $400 per day. Therefore,

g(n) = ​{​
0
​ 

for n = 0, 1, 2
​   

400(n − 2)
​ 

for n = 3, 4, . . . , 10,
​

​as shown in Table 26.1. Consequently, after calculating the Pn probabilities as described in 
Sec. 26.1, E(WC) is calculated by summing the rightmost column of Table 26.1 for each 
of the two cases of interest, namely, having one repairer (s = 1) or two repairers (s = 2).

■  FIGURE 26.5
The waiting-cost function as a 
function of N.
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■  TABLE 26.1  Calculation of E(WC) for Example 1

s = 1 s = 2

N = n g(n) Pn g(n)Pn Pn g(n)Pn

  0 0 0.271   0 0.433   0
  1 0 0.217   0 0.346   0
  2 0 0.173   0 0.139   0
  3 400 0.139 56 0.055 24
  4 800 0.097 78 0.019 16
  5 1,200 0.058 70 0.006   8
  6 1,600 0.029 46 0.001   0
  7 2,000 0.012 24 3 × 10−4   0
  8 2,400 0.003   7 4 × 10−5   0
  9 2,800 7 × 10−4   0 4 × 10−6   0
10 3,200 7 × 10−5   0 2 × 10−7   0

E(WC) $281 per day $48 per day
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The h(𝒲) Form

Now consider the cases discussed in Sec. 26.2 where the queueing system customers are 
external to the organization providing the service. Three major types of queueing systems 
described in Sec. 17.3—commercial service systems, transportation service systems, and 
social service systems—typically fall into this category. In the case of commercial service 
systems, the primary cost of waiting may be the lost profit from lost future business. For 
transportation service systems and social systems, the primary cost of waiting may be in 
the form of a social cost. However, for either type of cost, its magnitude tends to be affected 
greatly by the size of the waiting times experienced by the customers. Thus, the primary 
property of the queueing system that determines the waiting cost currently being incurred 
is 𝒲, the waiting time in the system for the individual customers. Consequently, the form 
of the waiting-cost function for this kind of situation is that illustrated in Fig. 26.6, namely, 
a function of 𝒲. We shall denote this form by h(𝒲).
	 Note that the example of a h(𝒲) function shown in Fig. 26.6 is a nonlinear function 
where the slope keeps increasing as 𝒲 increases. Although h(𝒲) sometimes is a simple 
linear function instead, it is fairly common to have this kind of nonlinear function. An 
increasing slope reflects a situation where the marginal cost of extending the waiting 
time keeps increasing. A customer may not mind a “normal” wait of reasonable length, 
in which case there may be virtually no negative consequences for the organization 
providing the service in terms of lost profit from lost future business, a social cost, etc. 
However, if the wait extends even further, the customer may become increasingly exas-
perated, perhaps even missing deadlines. In such a situation, the negative consequences 
to the organization may rapidly become relatively severe.
	 One way of constructing the h(𝒲) function is to estimate h(w) (the waiting cost 
incurred when a customer’s waiting time 𝒲 = w) for several values of w and then to fit 
a polynomial to these points. The expectation of this function of a continuous random 
variable is then defined as

​E(h(𝒲)) = ​ ∫ 
0
​ 
∞

​​ h(w) f𝒲(w) dw,​

where f𝒲(w) is the probability density function of 𝒲. However, because E(h(𝒲)) is the 
expected waiting cost per customer and E(WC) is the expected waiting cost per unit 
time, these two quantities are not equal in this case. To relate them, it is necessary to 

■  FIGURE 26.6
The waiting-cost function as a 
function of 𝒲.
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multiply E(h(𝒲)) by the expected number of customers per unit time entering the queue-
ing system. In particular, if the mean arrival rate is a constant λ, then

​E(WC) = λE(h(𝒲)) = λ ​ ∫ 
0
​ 
∞

​​ h(w) f𝒲(w) dw​.

Example 2—Which Computer?  Because the faculty and students of Emerald Univer-
sity would experience different turnaround times with the two computers under consid-
eration (see Sec. 26.1), the choice between the computers required an evaluation of the 
consequences of making them wait for their jobs to be run. Therefore, several leading 
scientists on the faculty were asked to evaluate these consequences.
	 The scientists agreed that one major consequence is a delay in getting research done. 
Little effective progress can be made while one is awaiting the results from a computer 
run. The scientists estimated that it would be worth $500 to reduce this delay by a day. 
Therefore, this component of waiting cost was estimated to be $500 per day, that is, 
500𝒲, where 𝒲 is expressed in days.
	 The scientists also pointed out that a second major consequence of waiting is a break 
in the continuity of the research. Although a short delay (a fraction of a day) causes 
little problem in this regard, a longer delay causes significant wasted time in having to 
gear up to resume the research. The scientists estimated that this wasted time would be 
roughly proportional to the square of the delay time. Dollar figures of $100 and $400 
were then imputed to the value of being able to avoid this consequence entirely rather 
than having a wait of ​​ 1 _ 2 ​​ day and 1 day, respectively. Therefore, this component of the 
waiting cost was estimated to be 400𝒲2.
	 This analysis yields

h(𝒲) = 500𝒲 + 400𝒲2.

Because

f𝒲(w) = μ(1 − ρ)e−μ(1−ρ)w

for the M/M/1 model (see Sec. 17.6) fitting this single-server queueing system,

E(h(𝒲)) = ​​ ∫ 
0
​ 
∞

​​​(500w + 400w2)μ(1 − ρ)e−μ(1−ρ)w dw,

where ρ = λ/μ for a single-server system. Since μ(1 − ρ) = (μ − λ), the values of μ and 
λ presented in Sec. 26.1 give

​μ(1 − ρ) = ​{​
10

​ 
for MBI computer

​   
  5

​ 
for CRAB computer.

​​​

Evaluating the integral for these two cases yields

​E(h(𝒲)) = ​{​
  58

​ 
for MBI computer

​   
132

​ 
for CRAB computer.

​​​

The result represents the expected waiting cost (in dollars) for each person arriving with 
a job to be run. Because λ = 20, the total expected waiting cost per day becomes

​E(WC) = ​{​
$1,160 per day

​ 
for MBI computer

​    
$2,640 per day

​ 
for CRAB computer.

​​​

The Linear Case.  In preparation for considering the next example, consider now the 
special case where h(𝒲) is a linear function,

h(𝒲) = Cw𝒲,

hiL72998_ch26_001-025.indd   9 28/09/19   11:16 AM
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where Cw is the cost of waiting per unit time for each customer. In this case, E(WC) 
reduces to

E(WC) = λE(Cw𝒲) = Cw(λW) = CwL.

Note that this result is identical to the result when g(N) is a linear function. Consequently, 
when the total waiting cost incurred by the queueing system is simply proportional to 
the total waiting time, it does not matter whether the g(N) or the h(𝒲) form is used for 
the waiting-cost function.

Example 3—How Many Tool Cribs?  As indicated in Sec. 26.1, the value to the 
Mechanical Company of a busy mechanic’s output averages about $48 per hour. Thus, 
Cw = 48. Consequently, for each tool crib the expected waiting cost per hour is

E(WC) = 48L,

where L represents the expected number of mechanics waiting (or being served) at the 
tool crib.

We mentioned in Sec. 26.2 that three common decision variables in designing queueing 
systems are s (number of servers), μ (mean service rate for each server), and λ (mean 
arrival rate at each service facility). We shall now formulate models for making some of 
these decisions.

Model 1—Unknown s

Model 1 is designed for the case where both μ and λ are fixed at a particular service  
facility, but where a decision must be made on the number of servers to have on duty 
at the facility.

Formulation of Model 1.

Definition:	 Cs = marginal cost of a server per unit time.
Given:	 μ, λ, Cs.
To find:	 s.
Objective:	 Minimize    E(TC) = Css + E(WC).

	 Because only a few alternative values of s normally need to be considered, the usual 
way of solving this model is to calculate E(TC) for these values of s and select the 
minimizing one. Section 17.10 describes and illustrates this approach for the linear case 
where E(WC) = CwL. The example presented there uses an Excel template that has been 
provided in your OR Courseware for performing these calculations when the queueing 
system fits the M/M/s queueing model. However, as long as the queueing model is trac-
table, it often is not very difficult to perform these calculations yourself for other cases, 
as illustrated by the following example.

Example 1—How Many Repairers?  For Example 1 of Sec. 26.1, each repairer (server) 
costs SIMULATION, INC. approximately $280 per day. Thus, with 1 day as the unit of 
time, Cs = 280. Using the values of E(WC) calculated in Table 26.1 then yields the 
results shown in Table 26.2, which indicate that the company should continue having 
just one repairer.

■  26.4  DECISION MODELS
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Model 2—Unknown μ and s

Model 2 is designed for the case where both the efficiency of service, measured by μ, 
and the number of servers s at a service facility need to be selected.
	 Alternative values of μ may be available because there is a choice on the quality of 
the servers. For example, when the servers will be materials-handling units, the quality 
of the units to be purchased affects their service rate for moving loads.
	 Another possibility is that the speed of the servers can be adjusted mechanically. 
For example, the speed of machines frequently can be adjusted by changing the amount 
of power consumed, which also changes the cost of operation.
	 Still another type of example is the selection of the number of crews (the servers) 
and the size of each crew (which determines μ) for jointly performing a certain task. The 
task might be maintenance work, or loading and unloading operations, or inspection 
work, or setup of machines, and so forth.
	 In many cases, only a few alternative values of μ are available, e.g., the efficiency 
of the alternative types of materials-handling equipment or the efficiency of the alterna-
tive crew sizes.

Formulation of Model 2.

Definitions:	 f (μ) = �marginal cost of server per unit time when mean service 
rate is μ.

	 A = set of feasible values of μ.
Given:	 λ, f (μ), A.
To find:	 μ, s.
Objective:	 Minimize    E(TC) = f (μ)s + E(WC),    subject to μ ∈ A.

Example 2—Which Computer?  For Example 2 in Sec. 26.1, EMERALD UNIVERSITY 
needs to make a decision about which supercomputer to lease. It is known that μ = 30 
for the MBI computer and μ = 25 for the CRAB computer, where 1 day is the unit of 
time. These computers are the only two being considered by Emerald University, so

A = {25, 30}.

Because the leasing cost per day is $3,750 for the CRAB computer (μ = 25) and $5,000 
for the MBI computer (μ = 30),

​f (μ) = ​{​
3,750

​ 
for μ =25

​  
5,000

​ 
for μ =30.

​​​

The supercomputer chosen will be the only one available to the faculty and students, so 
the number of servers (supercomputers) for this queueing system is restricted to s = 1. 
Hence,

E(TC) = f (μ) + E(WC),

■  TABLE 26.2  Calculation of E(TC) in dollars per day for Example 1

s Css E(WC) E(TC)

1 $280 $281   $561 per day ← minimum
2 $560 $  48   $608 per day

≥3 ≥$840 ≥$    0 ≥$840 per day
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where E(WC) is given in Sec. 26.3 for the two alternatives. Thus,

E(TC) = ​​{​
3,750 + 2,640 = $6,390 per day

​ 
for CRAB computer

​      
5,000 + 1,160 = $6,160 per day

​ 
for MBI computer.

 ​​​

Consequently, the decision was made to lease the MBI supercomputer.

The Application of Model 2 to Other Situations.  This example illustrates a case 
where the number of feasible values of μ is finite but the value of s is fixed. If s were 
not fixed, a two-stage approach could be used to solve such a problem. First, for each 
individual value of μ, set Cs = f (μ), and solve for the value of s that minimizes E(TC) 
for model 1. Second, compare these minimum E(TC) for the alternative values of μ, and 
select the one giving the overall minimum.
	 When the number of feasible values of μ is infinite (such as when the speed of a 
machine or piece of equipment is set mechanically within some feasible interval), another 
two-stage approach sometimes can be used to solve the problem. First, for each indi-
vidual value of s, analytically solve for the value of μ that minimizes E(TC). [This 
approach requires setting to zero the derivative of E(TC) with respect to μ and then 
solving this equation for μ, which can be readily done only when analytical expressions 
are available for both f (μ) and E(WC).] Second, compare these minimum E(TC) for the 
alternative values of s, and select the one giving the overall minimum.
	 This analytical approach frequently is relatively straightforward for the case of s = 1 (see 
Prob. 26.4-11). However, because far fewer and less convenient analytical results are avail-
able for multiple-server versions of queueing models, this approach is either difficult (requir-
ing computer calculations with numerical methods to solve the equation for μ) or completely 
impossible when s > 1. Therefore, a more practical approach is to consider only a relatively 
small number of representative values of μ and to use available tabulated results for the 
appropriate queueing model to obtain (or approximate) E(TC) for these μ values.

A Special Result with Model 2.  Fortunately, under certain fairly common circum-
stances described next, s = 1 (and its minimizing value of μ) must yield the overall 
minimum E(TC) for model 2, so s > 1 cases need not be considered at all.

Optimality of a Single Server.  Under certain conditions, s = 1 necessarily is 
optimal for model 2.

	 The primary conditions1 are that

1.	 The value of μ minimizing E(TC) for s = 1 is feasible.
2.	 Function f (μ) is either linear or concave (as defined in Appendix 2).

In effect, this optimality result indicates that it is better to concentrate service capacity 
into one fast server rather than dispersing it among several slow servers. Condition 2 
says that this concentrating of a given amount of service capacity can be done without 
increasing the cost of service. Condition 1 says that it must be possible to make μ suf-
ficiently large that a single server can be used to full advantage.
	 To understand why this result holds, consider any other solution to model 2,  
(s, μ) = (s*, μ*), where s* > 1. The service capacity of this system (as measured by the 
mean rate of service completions when all servers are working) is s*μ*. We shall now 
compare this solution with the corresponding single-server solution (s, μ) = (1, s*μ*) 
having the same service capacity. In particular, Table 26.3 compares the mean rate at 

1There also are minor restrictions on the queueing model and the waiting-cost function. However, any of the 
constant service-rate queueing models presented in Chap. 17 for s ≥ 1 are allowed. If the g(N) form is used 
for the waiting-cost function, it can be any increasing function. If the h(𝒲) form is used, it can be any linear 
function or any convex function (as defined in Appendix 2), which fits most cases of interest.
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which service completions occur for each given number of customers in the system N = 
n. This table shows that the service efficiency of the (s*, μ*) solution sometimes is worse 
but never is better than for the (1, s*μ*) solution because it can use the full service 
capacity only when there are at least s* customers in the system, whereas the single-
server solution uses the full capacity whenever there are any customers in the system. 
Because this lower service efficiency can only increase waiting in the system, E(WC) 
must be larger for (s*, μ*) than for (1, s*μ*). Furthermore, the expected service cost 
must be at least as large because condition 2 [and f (0) = 0] implies that

f (μ*)s ≥ f (s*μ*).

Therefore, E(TC) is larger for (s*, μ*) than (1, s*μ*). Finally, note that condition 1 
implies that there is a feasible solution with s = 1 that is at least as good as (1, s*μ*). 
The conclusion is that any s > 1 solution cannot be optimal for model 2, so s = 1 must 
be optimal.2
	 This result is still of some use even when one or both conditions fail to hold. If μ 
cannot be made sufficiently large to permit a single server, it still suggests that a few 
fast servers should be preferred to many slow ones. If condition 2 does not hold, we still 
know that E(WC) is minimized by concentrating any given amount of service capacity 
into a single server, so the best s = 1 solution must be at least nearly optimal unless it 
causes a substantial increase in service cost.

Model 3—Unknown λ and s

Model 3 is designed especially for the case where it is necessary to select both the 
number of service facilities and the number of servers s at each facility. In the typical 
situation, a population (such as the employees in an industrial building) must be provided 
with a certain service, so a decision must be made as to what proportion of the popula-
tion (and therefore what value of λ) should be assigned to each service facility. Examples 
of such facilities include employee facilities (drinking fountains, vending machines, and 
restrooms), storage facilities, and reproduction equipment facilities. It may sometimes be 
clear that only a single server should be provided at each facility (e.g., one drinking 
fountain or one copy machine), but s often is also a decision variable.

■  TABLE 26.3  Comparison of service efficiency for Model 2 solutions

Mean Rate of Service Completions

N = n (s, μ) = (s*, μ*) versus (s, μ) = (1, s*μ*)

n = 0 0 = 0
n = 1, 2, . . . , s* − 1 nμ* < s*μ*
n ≥ s* s*μ* = s*μ*

2For a rigorous proof of this result, see S. Stidham, Jr., “On the Optimality of Single-Server Queueing Systems,” 
Operations Research, 18: 708–732, 1970. This result focuses on minimizing E(TC) when E(WC) is based on 
waiting time in the system. However, if waiting costs are incurred only while waiting in the queue, markedly 
different results occur. For example, see X. Chao and C. Scott, “Several Results on the Design of Queueing 
Systems,” Operations Research, 48: 965–970, 2000. Furthermore, even when waiting time in the system is the 
relevant quantity, if the concern is to avoid extremely long waiting times as much as possible rather than mini-
mizing E(TC), then several slow servers become superior to one fast server when the service-time distribution is 
so highly variable that it possesses some infinite higher moments. For an analysis of this alternative viewpoint, 
see A. Scheller-Wolf, “Necessary and Sufficient Conditions for Delay Moments in FIFO Multiserver Queues 
with an Application Comparing s Slow Servers with One Fast One,” Operations Research, 51: 748–758, 2003.
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	 To simplify our presentation, we shall require in model 3 that λ and s be the same 
for all service facilities. However, it should be recognized that a slight improvement in 
the indicated solution might be achieved by permitting minor deviations in these param-
eters at individual facilities. This should be investigated as part of the detailed analysis 
that generally follows the application of the mathematical model.

Formulation of Model 3.

Definitions:	 Cs = marginal cost of server per unit time.
	 Cf = fixed cost of service per service facility per unit time.
	 λp = mean arrival rate for entire calling population.
	 n = number of service facilities = λp/λ.
Given:	 μ, Cs, Cf, λp.
To find:	 λ, s.
Objective:	 Minimize E(TC), subject to λ = λp/n, where n = 1, 2, . . . .

Finding E(TC).  It might appear at first glance that the appropriate expression for the 
expected total cost per unit time of all the facilities should be

E(TC) ≟ n[(Cf + Css) + E(WC)],

where E(WC) here represents the expected waiting cost per unit time for each facility. 
However, if this expression actually were valid, it would imply that n = 1 necessarily is 
optimal for model 3. The reasoning is completely analogous to that for the optimality of 
a single-server result for model 2; namely, any solution (n, s) = (n*, s*) with n* > 1 
has higher service costs than the (n, s) = (1, n*s*) solution, and it also has a higher 
expected waiting cost because it sometimes makes less effective use of the available 
service capacity. In particular, it sometimes has idle servers at one facility while custom-
ers are waiting at another facility, so the mean rate of service completions would be less 
than if the customers had access to all the servers at one common facility.
	 Because there are many situations where it obviously would not be optimal to have just 
one service facility (e.g., the number of restrooms in a 50-story building), something must 
be wrong with this expression. Its deficiency is that it considers only the cost of service and 
the cost of waiting at the service facilities while totally ignoring the cost of the time wasted 
in traveling to and from the facilities. Because travel time would be prohibitive with only 
one service facility for a large population, enough separate facilities must be distributed 
throughout the calling population to hold travel time down to a reasonable level.
	 Thus, letting the random variable T be the round-trip travel time for a customer com-
ing to and going back from one of the service facilities, we see that the total time lost by 
the customer actually is 𝒲 + T. (Recall from Chap. 17 that 𝒲 is the waiting time in the 
queueing system after the customer arrives.) Therefore, a customer’s total cost for time 
lost should be based on 𝒲 + T rather than just 𝒲. To simplify the analysis, let us sepa-
rate this total cost into the sum of the waiting-time cost based on 𝒲 (or N) and the 
travel-time cost based on T. We shall also assume that the travel-time cost is proportional 
to T, where Ct is the cost of each unit of travel time for each customer. For ease of pre-
sentation, suppose that the probability distribution of T is the same for each service facil-
ity, so that CtE(T) is the expected travel cost for each arrival at any of the service 
facilities. The resulting expression for E(TC) is

E(TC) = n[(Cf + Css) + E(WC) + λCtE(T)]

because λ is the expected number of arrivals per unit time at each facility. Consequently, 
by evaluating (or estimating) E(T) for each case of interest, model 3 can be solved by 
calculating E(TC) for various values of s for each n and then selecting the solution giving 
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the overall minimum. The next section discusses how to evaluate E(T) and also solves 
an example (Example 3 of Sec. 26.1) fitting model 3.

As discussed in Sec. 26.4, one of the important considerations for deciding how many 
service facilities to provide is the amount of time that customers must spend traveling 
to and from a facility. Therefore, the expected round-trip travel time E(T) for a customer 
is one of the components of the objective function for model 3, the decision model that 
is concerned with deciding on the number of service facilities. We now shall elaborate 
on how to determine E(T).
	 E(T) can be interpreted as the average travel time spent by customers in coming 
both to and from a given service facility. Therefore, the value of E(T) depends very much 
upon the characteristics of the individual situation. However, we shall illustrate a rather 
general approach to evaluating E(T) by developing a basic travel-time model and then 
calculating E(T) for the more complicated situation involved in Example 3. In both cases 
it is assumed that the portion of the population assigned to the service facility under 
consideration is distributed uniformly throughout the assigned area, that each arrival 
returns to its original location after receiving service, and that the average speed of travel 
does not depend upon the distance traveled. Another basic assumption is that all travel 
is rectilinear, i.e., it progresses along a system of orthogonal paths (aisles, streets, high-
ways, and so on) that are parallel to the main sides of the area under consideration.

A Basic Travel-Time Model

Description: Rectangular area and rectilinear travel, as shown in Fig. 26.7.

Definitions:	 T = travel time (round trip) for an arrival.
	 v = �average velocity (speed) of customers in traveling to 

and from a facility.
	 a, b, c, d = �respective distances from a facility to a boundary of the 

area assigned to the facility, as shown in Fig. 26.7.
Given:	 v, a, b, c, d.
To find:	 Expected value of T, E(T).

	 Using an orthogonal (x, y) coordinate system, Fig. 26.7 shows the coordinates (x, y) 
of the location of a particular customer. The x and y coordinates of the location from 
which a random arrival comes actually are random variables X and Y, where X ranges 
from −a to c and Y ranges from −b to d. Because the total round-trip distance traveled 
by the random arrival is

D = 2(∣X∣ + ∣Y∣)

■  26.5  THE EVALUATION OF TRAVEL TIME

■  FIGURE 26.7
Graphical representation of a 
basic travel-time model, 
where the service facility is at 
(0, 0) and a random arrival 
comes from (and returns to) 
some location (x, y).

(−a, −b)

(0, 0)

(c, d) 
(x, y)
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and

​T = ​ D __ v ​,​

it follows that

​E(T) = ​ 2 __ v ​ (E{∣X∣} + E{∣Y∣})​,

Thus, the problem is reduced to identifying the probability distributions of ∣X∣ and ∣Y∣ 
and then calculating their means.
	 First consider ∣X∣. Its probability distribution can be obtained directly from the dis-
tribution of X. Because the customers are assumed to be distributed uniformly through-
out the assigned area, and because the height of the rectangular area is the same for all 
possible values of X = x, X must have a uniform distribution between −a and c, as shown 
in Fig. 26.8a. Because ∣x∣ = ∣−x∣, adding the probability density function values at x and 
−x then yields the probability distribution of ∣X∣ shown in Fig. 26.8b.
	 Therefore, noting that ∣x∣ = x for x ≥ 0,

E{∣X∣} = ​  ∫ 
0
​ 
max{a, c}

​​xf∣x∣(x) dx

	 =​  ∫ 
0
​ 
min{a, c}

​​​  2x _____ 
a + c ​ dx +​​  ∫ 

min{a, c}
​ 

max{a, c}
​​​​​  x _____ 
a + c ​​ dx

	 = ​ 1 __ 
2
 ​ ​  1 _____ 
a + c ​ [(min{a, c})2 + (max{a, c})2]

	 = ​ a
2 + c2

 _______ 
2(a + c)

 ​.

	 The analysis for ∣Y∣ is completely analogous, where the width of the rectangular area 
for possible values of Y = y now determines the probability distribution of Y.
	 The result is that

​E{∣Y∣} = ​ b
2 + d2

 _______ 
2(b + d)

 ​.​

Consequently,

E(T) = ​​ 1 __ v ​​​​(​ a
2 + c2

 ______ 
a + c  ​ + ​ b

2 + d2
 ______ 

b + d
  ​)​​.

■  FIGURE 26.8
Probability density functions 
of (a) X; (b) ∣X∣.

1
a + c

1
a + c

2
a + c 

fx (x)

−a 0 0c xx

f∣x∣ (x)

min∣a, c∣

max∣a, c∣

(a) (b)
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Example 3—How Many Tool Cribs?  For the new plant being designed for the 
MECHANICAL COMPANY (see Sec. 26.1), the layout of the portion of the factory 
area where the mechanics will work is shown in Fig. 26.9. The three possible locations 
for tool cribs are identified as Locations 1, 2, and 3, where access to these locations will 
be provided by a system of orthogonal aisles parallel to the sides of the indicated area. 
The coordinates are given in units of feet. The mechanics will be distributed quite uni-
formly throughout the area shown, and each mechanic will be assigned to the nearest 
tool crib. It is estimated that the mechanics will walk to and from a tool crib at an aver-
age speed of slightly less than 3 miles/hour, so v is set at v = 15,000 feet/hour.
	 The three basic alternatives being considered are

Alternative 1: Have three tool cribs—use Locations 1, 2, and 3;
Alternative 2: Have one tool crib—use Location 2;
Alternative 3: Have two tool cribs—use Locations 1 and 3.

The calculation of E(T) for each alternative is given next, followed by the use of model 3 
to make the choice among them.

Alternative 1 (n = 3): If all three locations were used, each tool crib would service a 
300 × 300 foot square area. Therefore, this case is just a special case of the basic travel-
time model just presented, where a = c = 150 and b = d = 150. Consequently,

E(T) = ​​  1 __________  
15,000 ft/hr

 ​​ ​​(​ 1502 + 1502
  __________  

150 + 150
 ​  + ​ 1502 + 1502

  __________  
150 + 150

 ​ )​​ ft

	 = ​​  1 __________  
15,000 ft/hr

 ​​ (300 ft)

	 = 0.02 hr.

■  FIGURE 26.9
Layout for Example 3.

(0, 300) (300, 300)

(300, 600) (600, 600)

Location 3

(450, 450)

Location 2

(450, 150)

Location 1

(150, 150)

(0, 0) (600, 0)
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Alternative 2 (n = 1): With just one tool crib (in Location 2) to service the entire area 
shown in Fig. 26.9, the derivation of E(T) is a little more complicated than it is for the 
basic traveltime model. The first step is to relabel Location 2 as the original (0, 0) for 
an (x, y) coordinate system, so that 450 would be subtracted from the first coordinates 
shown and 150 would be subtracted from the second coordinates. The probability density 
function for X is then obtained by dividing the height for each possible value of X = x 
by the total area (so that the area under the probability density function curve equals 1), 
as given in Fig. 26.10a. Combining the values for x and −x then yields the probability 
distribution of ∣X∣ shown in Fig. 26.10b.
	 Hence,

E{∣X∣} = ​ ∫ 
0
​ 

450
​​x f∣X∣(x) dx

	 = ​ ∫ 
0
​ 

150
​​x ​(​  1 ____ 

225
 ​)​ dx + ​ ∫ 

150
​ 

450
​​x​( ​  1 ____ 

900
 ​)​dx

	 = ​ 1502
 ____ 

450 
 ​+ ​ 4502 − 1502

  __________ 
1,800

 ​  = 150.

	 We suggest that you now try the same approach (using the width of the area rather 
than the height) to derive E{∣Y∣}. You will find that the probability distribution of ∣Y∣ is 
identical to that for ∣X∣, so E{∣Y∣} = 150. As a result,

​E(T) = ​  2 ______ 
15,000

 ​ (150 + 150)

	 = 0.04 hr.​

Alternative 3 (n = 2): With tool cribs in just Locations 1 and 3, the areas assigned to 
them would be divided by a line segment between (300, 300) and (600, 0) in Fig. 26.9. 
Notice that the two areas and their tool cribs are located symmetrically with respect to 
this line segment. Therefore, E(T) is the same for both, so we shall derive it just for 
the tool crib in Location 1. (You might try it for the other tool crib for practice—see 
Prob. 26.5-3.)
	 Proceeding just as for Alternative 2, relabel Location 1 as the origin (0, 0) for an 
(x, y) coordinate system, so that 150 would be subtracted from all coordinates shown in 
Fig. 26.9. This relabeling leads directly to the probability density function of X, and then 
of ∣X∣, shown in Fig. 26.11. As a result,

■  FIGURE 26.10
Probability density functions 
of (a) X and (b) ∣X∣ for a tool 
crib at Location 2 of Fig. 26.9 
under Alternative 2 (no other 
tool cribs).

1
450

1
900fX(x)

−450 −150 xx

(a)
0 150

1
225

1
900

450

f ∣X∣ (x)

(b)
0 150
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E{∣X∣} = ​​  1 ____ 
225

 ​​ ​​ ∫ 
0
​ 

150
​​​ x dx + ​​  1 ____ 

300
 ​​ ​​ ∫ 

150
​ 

450
​​​​​(1 − ​  x ____ 

450
 ​)​​ x dx

	 = ​​  1 ____ 
225

 ​​ ​​​[​ x
2
 __ 

2
 ​]​​ 

0
​ 

150 

​​+ ​​  1 ____ 
300

 ​​ ​​​[​ x
2
 __ 

2
 ​ − ​  x3

 ______ 
1,350

 ​]​​ 
150

​ 
450

​​	 = ​​  1 ____ 
225

 ​​ ​​ 1502
 ____ 

2
 ​​  + ​​  1 ____ 

300
 ​​ ​​(​ 4502

 ____ 
2
 ​  − ​ 4503

 _____ 
1,350

 ​)​​ − ​​  1 ____ 
300

 ​​ ​​(​ 1502
 ____ 

2
 ​  − ​ 1503

 _____ 
1,350

 ​)​​

	 = 133​​ 1 _ 3 ​​.

	 Next, the probability density function of Y is obtained by using the width of the area 
assigned to the tool crib at Location 1 for each possible value of Y = y and then divid-
ing by the size of the area, as given in Fig. 26.12a. This result then yields the uniform 
distribution of ∣Y∣ shown in Fig. 26.12b. Thus,

E{∣Y∣} = ​​  1 ____ 
150

 ​​ ​​ ∫ 
0
​ 

150
​​​y dy

	 = 75.

■  FIGURE 26.12
Probability density functions of 
(a) Y and (b) ∣Y∣ for a tool crib 
at Location 1 of Fig. 26.9 under 
Alternative 3 (the only other 
tool crib is at Location 3).
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■  FIGURE 26.11
Probability density functions of 
(a) X and (b) ∣X∣ for a tool crib 
at Location 1 of Fig. 26.9 under 
Alternative 3 (the only other 
tool crib is at Location 3).
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Consequently,

​E(T) = ​  2 _______ 
15,000 

 ​(133​ 1 _ 3 ​ + 75)​

	 = 0.0278 hr.

Applying Model 3: Because E(T) now has been evaluated for the three alternatives under 
consideration, the stage is set for using model 3 from Sec. 26.4 to choose among these 
alternatives. Most of the data required for this model are given in Sec. 26.1, namely,

	 μ = 120 per hour,	 Cf = $16 per hour,
		  Cs = $20 per hour,
	λp = 120 per hour,	 Ct = $48 per hour,

where the M/M/s model given in Sec. 17.6 is used to calculate L and so on. In addition, 
the end of Sec. 26.3 gives E(WC) = 48L in dollars per hour. Therefore,

​E(TC) = n​[(16 + 20s) + 48L + ​ 120 ____ n  ​ 48E(T)]​.​

The resulting calculation of E(TC) for various s values for each n is given in Table 26.4, 
which indicates that the overall minimum E(TC) of $295.20 per hour is obtained by 
having three tool cribs (so λ = 40 for each), with one clerk at each tool crib.

■  TABLE 26.4  Calculation of E(TC), in dollars per hour for Example 3

n λ s L E(T) Cf + Css E(WC) λCtE(T) E(TC)

1 120 1 ∞ 0.04 $36 ∞ $230.40 ∞
1 120 2 1.333 0.04 $56 $64.00 $230.40 $350.40
1 120 3 1.044 0.04 $76 $50.11 $230.40 $356.51

2 60 1 1.000 0.0278 $36 $48.00 $  80.00 $328.00
2 60 2 0.534 0.0278 $56 $25.63 $  80.00 $323.26

3 40 1 0.500 0.02 $36 $24.00 $  38.40 $295.20
3 40 2 0.344 0.02 $56 $16.51 $  38.40 $332.73

This chapter has discussed the application of queueing theory for designing queueing 
systems. Every individual problem has its own special characteristics, so no standard 
procedure can be prescribed to fit every situation. Therefore, the emphasis has been on 
introducing fundamental considerations and approaches that can be adapted to most 
cases. We have focused on three particularly common decision variables (s, μ, and λ) as 
a vehicle for introducing and illustrating these concepts. However, there are many other 
possible decision variables (e.g., the size of a waiting room for a queueing system) and 
many more complicated situations (e.g., designing a priority queueing system) that can 
also be analyzed in a similar way.
	 The time required to travel to and from a service facility sometimes is an important 
consideration. A rather general approach to evaluating expected travel time has been 
introduced by applying it to some relatively simple cases. However, once again, many 
more complicated situations can also be analyzed quite similarly. We have discussed the 
incorporation of travel-time information into the overall analysis only in the context of 

■  26.6  CONCLUSIONS
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determining the number of service facilities to provide when customers must travel to 
the nearest facility. But travel-time models also can be very useful when the servers must 
travel to the customer from the service facility (e.g., fire trucks and ambulances), as well 
as in other contexts.
	 Another useful area for the application of queueing theory is the development of 
policies for controlling queueing systems, e.g., for dynamically adjusting the number of 
servers or the service rate to compensate for changes in the number of customers in the 
system. Considerable research has been conducted in this area.
	 Queueing theory has proved to be a very useful tool, and its use is continuing to 
grow as recognition of the many guises of queueing systems grows.
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■  LEARNING AIDS FOR THIS CHAPTER ON OUR WEBSITE
Excel Files:

Same templates as provided for Chap. 17

“Ch. 26—Application of QT” LINGO File for Selected Examples

	 See Appendix 1 for documentation of the software.

To the left of each of the following problems (or their parts), we 
have inserted a T whenever one of the templates for this chapter 
(and Chap. 17) can be useful.

26.2-1.  For each kind of queueing system listed in Prob. 17.3-1, 
briefly describe the nature of the cost of service and the cost of 
waiting that would need to be considered in designing the system.

26.3-1.  Suppose that a queueing system fits the M/M/1 model de-
scribed in Sec. 17.6, with λ = 2 and μ = 4. Evaluate the expected 
waiting cost per unit time E(WC) for this system when its waiting-
cost function has the form

■  PROBLEMS
(a)	 g(N) = 10N + 2N2.
(b)	 h(𝒲) = 25𝒲 + 𝒲3.

26.3-2.  Follow the instructions of Prob. 26.3-1 for the following 
waiting-cost functions.

(a)	 g(N) = ​​

⎧
 

⎪
 ⎨ 

⎪
 

⎩
​
10N

​ 
for N = 1, 2

​  6N2​  for N = 3, 4, 5​  

N3

​ 

for N > 5.

 ​​​

(b)	 h(𝒲) =​​{ ​
𝒲

​ 
for 0 ≤ 𝒲 ≤ 1

​  
𝒲2​  for 𝒲 ≥1.

 ​​​
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26.4-1.  A certain queueing system has a Poisson input, with a 
mean arrival rate of 4 customers per hour. The service-time distri-
bution is exponential, with a mean of 0.2 hour. The marginal cost 
of providing each server is $20 per hour, where it is estimated that 
the cost that is incurred by having each customer idle (i.e., in the 
queueing system) is $120 per hour for the first customer and  
$180 per hour for each additional customer. Determine the number 
of servers that should be assigned to the system to minimize the 
expected total cost per hour. [Hint: Express E(WC) in terms of L, 
P0, and ρ, and then use the template for the M/M/s model in your 
OR Courseware.]

26.4-2.  Reconsider Prob. 17.6-10. The total compensation for the 
new employee would be $16 per hour, which is just half that for the 
cashier. It is estimated that the grocery store incurs lost profit due 
to lost future business of $0.16 for each minute that each customer 
has to wait (including service time). The manager now wants to 
determine on an expected total cost basis whether it would be 
worthwhile to hire the new person.
(a)	 Which decision model presented in Sec. 26.4 applies to this 

problem? Why?
(b)	 Use this model to determine whether to continue the status quo 

or to adopt the proposal.

26.4-3.  The Southern Railroad Company has been subcontracting 
for the painting of its railroad cars as needed. However, manage-
ment has decided that the company can save money by doing this 
work itself. A decision now needs to be made to choose between 
two alternative ways of doing this.
	 Alternative 1 is to provide two paint shops, where painting is 
done by hand (one car at a time in each shop), for a total hourly cost 
of $70. The painting time for a car would be 6 hours. Alternative 2 
is to provide one spray shop involving an hourly cost of $100. In 
this case, the painting time for a car (again done one at a time) 
would be 3 hours. For both alternatives, the cars arrive according to 
a Poisson process with a mean rate of 1 every 5 hours. The cost of 
idle time per car is $100 per hour.
(a)	 Use Fig. 17.8 to estimate L, Lq, W, and Wq for Alternative 1.
(b)	 Find these same measures of performance for Alternative 2.
(c)	 Determine and compare the expected total cost per hour for 

these alternatives.

26.4-4.  The production of tractors at the Jim Buck Company in-
volves producing several subassemblies and then using an assem-
bly line to assemble the subassemblies and other parts into finished 
tractors. Approximately three tractors per day are produced in this 
way. An in-process inspection station is used to inspect the subas-
semblies before they enter the assembly line. At present there are 
two inspectors at the station, and they work together to inspect each 
subassembly. The inspection time has an exponential distribution, 
with a mean of 15 minutes. The cost of providing this inspection 
system is $40 per hour.
	 A proposal has been made to streamline the inspection proce-
dure so that it can be handled by only one inspector. This inspector 
would begin by visually inspecting the exterior of the subassembly, 
and she would then use new efficient equipment to complete the 
inspection. Although this process with just one inspector would 

slightly increase the mean of the distribution of inspection times from 
15 minutes to 16 minutes, it also would reduce the variance of this 
distribution to only 40 percent of its original value. Because of the 
expense involved with purchasing and operating the new inspection 
equipment, the capitalized cost of this proposed inspection system 
would be $40 per hour, just as for the current inspection system.
	 The subassemblies arrive at the inspection station according to 
a Poisson process at a mean rate of 3 per hour. The cost of having 
the subassemblies wait to begin inspection at the inspection station 
(thereby increasing in-process inventory and possibly disrupting 
subsequent production) is estimated to be $20 per hour for each 
subassembly.
	 Management now needs to make a decision about whether to 
continue the status quo or adopt the proposal.
T  (a) � Find the main measures of performance—L, Lq, W, Wq—for 

the current queueing system.
(b)	 Repeat part (a) for the proposed queueing system.
(c)	 What conclusions can you draw about what management 

should do from the results in parts (a) and (b)?
(d)	 Determine and compare the expected total cost per hour for the 

status quo and the proposal.

26.4-5.  The car rental company, Try Harder, has been subcontract-
ing for the maintenance of its cars in St. Louis. However, due to 
long delays in getting its cars back, the company has decided to 
open its own maintenance shop to do this work more quickly. This 
shop will operate 42 hours per week.
	 Alternative 1 is to hire two mechanics (at a cost of $1,500 per 
week each), so that two cars can be worked on at a time. The time 
required by a mechanic to service a car has an Erlang distribution, 
with a mean of 5 hours and a shape parameter of k = 8.
	 Alternative 2 is to hire just one mechanic (for $1,500 per 
week) but to provide some additional special equipment (at a capi-
talized cost of $1,250 per week) to speed up the work. In this case, 
the maintenance work on each car is done in two stages, where the 
time required for each stage has an Erlang distribution with the 
shape parameter k = 4, where the mean is 2 hours for the first stage 
and 1 hour for the second stage.
	 For both alternatives, the cars arrive according to a Poisson 
process at a mean rate of 0.3 car per hour (during work hours). The 
company estimates that its net lost revenue due to having its cars 
unavailable for rental is $150 per week per car.
(a)	 Use Fig. 17.10 to estimate L, Lq, W, and Wq for alternative 1.
(b)	 Find these same measures of performance for alternative 2.
(c)	 Determine and compare the expected total cost per week for 

these alternatives.

26.4-6.  A certain small car-wash business is currently being ana-
lyzed to see if costs can be reduced. Customers arrive according to 
a Poisson process at a mean rate of 15 per hour, and only one car 
can be washed at a time. At present the time required to wash a car 
has an exponential distribution, with a mean of 4 minutes. It also 
has been noticed that if there are already 4 cars waiting (including 
the one being washed), then any additional arriving customers 
leave and take their business elsewhere. The lost incremental profit 
from each such lost customer is $6.
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	 Two proposals have been made. Proposal 1 is to add certain 
equipment, at a capitalized cost of $6 per hour, which would reduce 
the expected washing time to 3 minutes. In addition, each arriving 
customer would be given a guarantee that if she had to wait longer 
than ​​ 1 _ 2 ​​ hour (according to a time slip she receives upon arrival) be-
fore her car is ready, then she receives a free car wash (at a mar-
ginal cost of $4 for the company). This guarantee would be well 
posted and advertised, so it is believed that no arriving customers 
would be lost.
	 Proposal 2 is to obtain the most advanced equipment avail-
able, at an increased cost of $20 per hour, and each car would be 
sent through two cycles of the process in succession. The time 
required for a cycle has an exponential distribution, with a mean of 
1 minute, so total expected washing time would be 2 minutes. 
Because of the increased speed and effectiveness, it is believed that 
essentially no arriving customers would be lost.
	 The owner also feels that because of the loss of customer 
goodwill (and consequent lost future business) when customers 
have to wait, a cost of $0.20 for each minute that a customer has to 
wait before her car wash begins should be included in the analysis 
of all alternatives.
	 Evaluate the expected total cost per hour E(TC) of the status 
quo, proposal 1, and proposal 2 to determine which one should be 
chosen.

26.4-7.  The Seabuck and Roper Company has a large warehouse 
in southern California to store its inventory of goods until they are 
needed by the company’s many furniture stores in that area. A sin-
gle crew with four members is used to unload and/or load each 
truck that arrives at the loading dock of the warehouse. Manage-
ment currently is downsizing to cut costs, so a decision needs to be 
made about the future size of this crew.
	 Trucks arrive at the loading dock according to a Poisson pro-
cess at a mean rate of 1 per hour. The time required by a crew to 
unload and/or load a truck has an exponential distribution (regard-
less of crew size). The mean of this distribution with the four-
member crew is 15 minutes. If the size of the crew were to be 
changed, it is estimated that the mean service rate of the crew (now 
μ = 4 customers per hour) would be proportional to its size.
	 The cost of providing each member of the crew is $20 per 
hour. The cost that is attributable to having a truck not in use (i.e., 
a truck standing at the loading dock) is estimated to be $30 per 
hour.
(a)	 Identify the customers and servers for this queueing system. 

How many servers does it currently have?
T  (b) � Use the appropriate Excel template to find the various mea-

sures of performance for this queueing system with four 
members on the crew. (Set t = 1 hour in the Excel template 
for the waiting-time probabilities.)

T  (c)  Repeat (b) with three members.
T  (d)  Repeat part (b) with two members.
(e)	 Should a one-member crew also be considered? Explain.
(f)	 Given the previous results, which crew size do you think 

management should choose?
(g)	 Use the cost figures to determine which crew size would 

minimize the expected total cost per hour.

(h)	 Assume now that the mean service rate of the crew is propor-
tional to the square root of its size. What should the size be to 
minimize expected total cost per hour?

26.4-8.  Trucks arrive at a warehouse according to a Poisson pro-
cess with a mean rate of 4 per hour. Only one truck can be loaded 
at a time. The time required to load a truck has an exponential dis-
tribution with a mean of 10/n minutes, where n is the number of 
loaders (n = 1, 2, 3, . . .). The costs are (i) $18 per hour for each 
loader and (ii) $20 per hour for each truck being loaded or waiting 
in line to be loaded. Determine the number of loaders that mini-
mizes the expected hourly cost.

26.4-9.  A company’s machines break down according to a Poisson 
process at a mean rate of 3 per hour. Nonproductive time on any 
machine costs the company $60 per hour. The company employs a 
maintenance person who repairs machines at a mean rate of μ 
machines per hour (when continuously busy) if the company pays 
that person a wage of $5μ per hour. The repair time has an 
exponential distribution.
	 Determine the hourly wage that minimizes the company’s 
total expected cost.

26.4-10.  Jake’s Machine Shop contains a grinder for sharpening 
the machine cutting tools. A decision must now be made on the 
speed at which to set the grinder.
	 The grinding time required by a machine operator to sharpen 
the cutting tool has an exponential distribution, where the mean 
1/μ. can be set at 0.5 minute, 1 minute, or 1.5 minutes, depending 
upon the speed of the grinder. The running and maintenance costs 
go up rapidly with the speed of the grinder, so the estimated cost 
per minute is $1.60 for providing a mean of 0.5 minute, $0.40 for a 
mean of 1.0 minute, and $0.20 for a mean of 1.5 minutes.
	 The machine operators arrive randomly to sharpen their tools at 
a mean rate of 1 every 2 minutes. The estimated cost of an operator 
being away from his or her machine to the grinder is $0.80 per minute.
T  (a) � Obtain the various measures of performance for this queue-

ing system for each of the three alternative speeds for the 
grinder. (Set t = 5 minutes in the Excel template for the 
waiting time probabilities.)

(b)	 Use the cost figures to determine which grinder speed 
minimizes the expected total cost per minute.

26.4-11.  Consider the special case of model 2 where (1) any  
μ > λ /s is feasible and (2) both f (μ.) and the waiting-cost function 
are linear functions, so that

E(TC) = Crsμ + CwL,

where Cr is the marginal cost per unit time for each unit of a server’s 
mean service rate and Cw is the cost of waiting per unit time for 
each customer. The optimal solution is s = 1 (by the optimality of 
a single-server result), and

μ = λ + ​​√
____

 ​ 
λCw ____ 
Cr

  ​ ​​

for any queueing system fitting the M/M/1 model presented in  
Sec. 17.6.
	 Show that this μ is indeed optimal for the M/M/1 model.
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26.4-12.  Consider a harbor with a single dock for unloading ships. 
The ships arrive according to a Poisson process at a mean rate of λ 
ships per week, and the service-time distribution is exponential 
with a mean rate of μ unloadings per week. Assume that harbor 
facilities are owned by the shipping company, so that the objective 
is to balance the cost associated with idle ships with the cost of run-
ning the dock. The shipping company has no control over the ar-
rival rate λ (that is, λ is fixed); however, by changing the size of the 
unloading crew, and so on, the shipping company can adjust the 
value of μ as desired.
	 Suppose that the expected cost per unit time of running the 
unloading dock is Dμ. The waiting cost for each idle ship is some 
constant (C) times the square of the total waiting time (including 
loading time). The shipping company wishes to adjust μ so that 
the expected total cost (including the waiting cost for idle ships) 
per unit time is minimized. Derive this optimal value of μ in 
terms of D and C.

26.4-13.  Consider a queueing system with two types of custom-
ers. Type 1 customers arrive according to a Poisson process with 
a mean rate of 5 per hour. Type 2 customers also arrive according 
to a Poisson process with a mean rate of 5 per hour. The system 
has two servers, and both serve both types of customers. For 
types 1 and 2, service times have an exponential distribution with 
a mean of 10 minutes. Service is provided on a first-come-first-
served basis.
	 Management now wants you to compare this system’s design 
of having both servers serve both types of customers with the alter-
native design of having one server serve just type 1 customers and 
the other server serve just type 2 customers. Assume that this alter-
native design would not change the probability distribution of 
service times.
(a)	 Without doing any calculations, indicate which design would 

give a smaller expected total number of customers in the sys-
tem. What result are you using to draw this conclusion?

T  (b) � Verify your conclusion in part (a) by finding the expected 
total number of customers in the system under the original 
design and then under the alternative design.

26.4-14.  Reconsider Prob. 17.6-32.
(a)	 Formulate part (a) to fit as closely as possible a special case 

of one of the decision models presented in Sec. 26.4. (Do not 
solve.)

(b)	 Describe Alternatives 2 and 3 in queueing theory terms, includ-
ing their relationship (if any) to the decision models presented 
in Sec. 26.4. Briefly indicate why, in comparison with Alterna-
tive 1, each of these other alternatives might decrease the total 
number of operators (thereby increasing their utilization) 
needed to achieve the required production rate. Also point out 
any dangers that might prevent this decrease.

26.4-15.  Consider the formulation of the County Hospital emer-
gency room problem as a preemptive priority queueing system, as 
presented in Sec. 17.8. Suppose that the following inputted costs 
are assigned to making patients wait (excluding treatment time): 

$10 per hour for stable cases, $1,000 per hour for serious cases, and 
$100,000 per hour for critical cases. The cost associated with hav-
ing an additional doctor on duty would be $40 per hour. Referring 
to Table 17.3, determine on an expected-total-cost basis whether 
there should be one or two doctors on duty.

26.5-1.  Consider a factory whose floor area is a square with  
600 feet on each side. Suppose that one service facility of a certain 
kind is provided in the center of the factory. The employees are 
distributed uniformly throughout the factory, and they walk to and 
from the facility at an average speed of 3 miles per hour along a 
system of orthogonal aisles.
	 Find the expected travel time E(T) per arrival.

26.5-2.  A certain large shop doing light fabrication work uses a 
single central storage facility (dispatch station) for material in in-
process storage. The typical procedure is that each employee per-
sonally delivers his finished work (by hand, tote box, or hand cart) 
and receives new work and materials at the facility. Although this 
procedure worked well in earlier years when the shop was smaller, 
it appears that it may now be advisable to divide the shop into two 
semi-independent parts, with a separate storage facility for each 
one. You have been assigned the job of comparing the use of two 
facilities and of one facility from a cost standpoint.
	 The factory has the shape of a rectangle 150 by 100 yards. 
Thus, by letting 1 yard be the unit of distance, the (x, y) coordinates 
of the corners are (0, 0), (150, 0), (150, 100), and (0, 100). With this 
coordinate system, the existing facility is located at (50, 50), and 
the location available for the second facility is (100, 50).
	 Each facility would be operated by a single clerk. The time 
required by a clerk to service a caller has an exponential distribu-
tion, with a mean of 2 minutes. Employees arrive at the present 
facility according to a Poisson input process at a mean rate of 24 
per hour. The employees are rather uniformly distributed through-
out the shop, and if the second facility were installed, each em-
ployee would normally use the nearer of the two facilities. 
Employees walk at an average speed of about 5,000 yards per 
hour. All aisles are parallel to the outer walls of the shop. The net 
cost of providing each facility is estimated to be about $40 per 
hour, plus $30 per hour for the clerk. The estimated total cost of 
an employee being idled by traveling or waiting at the facility is 
$50 per hour.
	 Given the preceding cost factors, which alternative minimizes 
the expected total cost?

26.5-3.  Consider Alternative 3 (tool cribs in Locations 1 and 3) for 
the example illustrated in Fig. 26.9. Derive E(T) for the tool crib in 
Location 3 by using the probability density functions of X and Y 
directly for this tool crib.

26.5-4.  Suppose that the calling population for a particular service 
facility is uniformly distributed over each area shown, where the 
service facility is located at (0, 0). Making the same assumptions as 
in Sec. 26.5, derive the expected round-trip travel time per arrival 
E(T) in terms of the average velocity v and the distance r.
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(−r, −r)

(−r, r)

(0, 0)

(r, 2r)

(r, −2r)
(5r, −2r) 

(5r, 2r) (a)

(0, 0)

(−r, 3r)

(−3r, r)

(−3r, −r) (3r, −r)

(−r, −3r) (r, −3r)

(r, 3r)

(3r, r)

(b)

(−r, −2r)

(−r, 0) (0, 0)

(0, r)

(r, −2r)

(r, r)

(2r, −r) 

(2r, 0) 

(c)

(d)

(−2r, r)

(0, 3r) 

(0, r)

(0, 0)

(−4r, 3r)
(−2r, 3r)

(−4r, −r)

(0, −3r)

(0, −r)

(2r, −3r)

(2r, 3r)

26.5-5.  A job shop is being laid out in a square area with 600 feet 
on a side, and one of the decisions to be made is the number of fa-
cilities for the storage and shipping of final inventory. The capital-
ized cost associated with providing each facility would be  
$20/hour. There are just four potential locations available for these 
facilities, one in the middle of each of the four sides of the square 
area as shown in the figure.

	 The loads to be moved to a storage and shipping facility would 
be distributed uniformly throughout the shop area and they become 
available according to a Poisson process at a mean rate of 90 per 
hour. Each time a load becomes available, an appropriate materi-
als-handling vehicle would be sent from the nearest facility to pick 
it up (with an expected loading time of 3 minutes) and bring it 
there, where the cost would be $80/hour for time spent in traveling, 
loading, and waiting to be unloaded. The vehicles would travel at a 
speed of 20,000 feet per hour along a system of orthogonal aisles 
parallel to the sides of the shop area.
	 Another decision to be made is the number of employees (m) 
to provide at each storage and shipping facility for unloading arriv-
ing vehicles. These m employees would work together on each ve-
hicle, and the time required to unload it would have an exponential 
distribution, with a mean of 2/m minutes. The cost of providing 
each employee is $30/hour.
	 Determine the number of facilities and the value of m at each 
that will minimize expected total cost per hour.
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