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Chapter 16 focused on decision making in the face of uncertainty about one future 
event (learning the true state of nature). However, some decisions need to take into 

account uncertainty about many future events. We now begin laying the groundwork for 
decision making in this broader context.
	 In particular, this chapter presents probability models for processes that evolve over 
time in a probabilistic manner. Such processes are called stochastic processes. After 
briefly introducing general stochastic processes in the first section, the remainder of the 
chapter focuses on a special kind called a Markov chain. Markov chains have the special 
property that probabilities involving how the process will evolve in the future depend 
only on the present state of the process, and so are independent of events in the past. 
Many processes fit this description, so Markov chains provide an especially important 
kind of probability model.
	 For example, Chap. 17 mentioned that continuous-time Markov chains (described in 
Sec. 28.8) are used to formulate most of the basic models of queueing theory. Markov 
chains also provided the foundation for the study of Markov decision models in Chap. 19. 
There are a wide variety of other applications of Markov chains as well. A considerable 
number of books and articles present some of these applications. One is Selected Refer-
ence 2, which describes applications in such diverse areas as the classification of custom-
ers, DNA sequencing, the analysis of genetic networks, the estimation of sales demand 
over time, and credit rating. Selected Reference 6 focuses on applications in finance and 
Selected Reference 1 describes applications for analyzing baseball strategy. The list goes 
on and on, but let us turn now to a description of stochastic processes in general and 
then Markov chains in particular.

Markov Chains

28C H A P T E R

■  28.1  STOCHASTIC PROCESSES
A stochastic process is defined as an indexed collection of random variables {Xt}, where 
the index t runs through a given set T. Often T is taken to be the set of nonnegative 
integers, and Xt represents a measurable characteristic of interest at time t. For example, 
Xt might represent the inventory level of a particular product at the end of week t.
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	 Stochastic processes are of interest for describing the behavior of a system operating 
over some period of time. A stochastic process often has the following structure:

The current status of the system can fall into any one of M + 1 mutually exclusive 
categories called states. For notational convenience, these states are labeled 0, 1, . . . , M. 
The random variable Xt represents the state of the system at time t, so its only possible 
values are 0, 1, . . . , M. The system is observed at particular points of time, labeled  
t = 0, 1, 2, . . . . Thus, the stochastic process {Xt} = {X0, X1, X2, . . .} provides a math-
ematical representation of how the status of the physical system evolves over time.

This kind of process is referred to as being a discrete time stochastic process with a finite 
state space. Except for Sec. 28.8, this will be the only kind of stochastic process con-
sidered in this chapter. (Section 28.8 describes a certain continuous time stochastic 
process.)

A Weather Example

The weather in the town of Centerville can change rather quickly from day to day. How-
ever, the chances of being dry (no rain) tomorrow are somewhat larger if it is dry today 
than if it rains today. In particular, the probability of being dry tomorrow is 0.8 if it is 
dry today, but is only 0.6 if it rains today. These probabilities do not change if informa-
tion about the weather before today is also taken into account.
	 The evolution of the weather from day to day in Centerville is a stochastic process. 
Starting on some initial day (labeled as day 0), the weather is observed on each day t, 
for t = 0, 1, 2, . . . The state of the system on day t can be either

State 0 = Day t is dry

or

State 1 = Day t has rain.

Thus, for t = 0, 1, 2, . . . , the random variable Xt takes on the values,

Xt = ​​{ ​0​ 
if day t is dry

​  
1
​ 

if day t has rain.
​
​
 ​​

The stochastic process {Xt} = {X0, X1, X2, . . .} provides a mathematical representation 
of how the status of the weather in Centerville evolves over time.

An Inventory Example

Dave’s Photography Store has the following inventory problem. The store stocks a par-
ticular model camera that can be ordered weekly. Let D1, D2, . . . represent the demand 
for this camera (the number of units that would be sold if the inventory is not depleted) 
during the first week, second week, . . . , respectively, so the random variable Dt (for 
t = 1, 2, . . .) is

Dt = �number of cameras that would be sold in week t if the inventory is not 
depleted. (This number includes lost sales when the inventory is depleted.)

It is assumed that the Dt are independent and identically distributed random variables 
having a Poisson distribution with a mean of 1. Let X0 represent the number of cameras 
on hand at the outset, X1 the number of cameras on hand at the end of week 1, X2 the 
number of cameras on hand at the end of week 2, and so on, so the random variable Xt 
(for t = 0, 1, 2, . . .) is

Xt = number of cameras on hand at the end of week t.
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Assume that X0 = 3, so that week 1 begins with three cameras on hand.

{Xt} = {X0, X1, X2, . . .}

is a stochastic process where the random variable Xt represents the state of the system 
at time t, namely,

State at time t = number of cameras on hand at the end of week t.

As the owner of the store, Dave would like to learn more about how the status of this sto-
chastic process evolves over time while using the current ordering policy described below. 
	 At the end of each week t (Saturday night), the store places an order that is delivered 
in time for the next opening of the store on Monday. The store uses the following order 
policy:

If Xt = 0, order 3 cameras.
If Xt > 0, do not order any cameras.

Thus, the inventory level fluctuates between a minimum of zero cameras and a maximum 
of three cameras, so the possible states of the system at time t (the end of week t) are

Possible states = 0, 1, 2, or 3 cameras on hand.

Since each random variable Xt (t = 0, 1, 2, . . .) represents the state of the system at the 
end of week t, its only possible values are 0, 1, 2, or 3. The random variables Xt are 
dependent and may be evaluated iteratively by the expression

​​X​t+1​​ = ​​{ ​
max{3 − ​D​t+1​, 0}

​ 
if    Xt = 0

​    
max{Xt − ​D​t+1​, 0}

​ 
if    Xt ≥ 1,

 ​
​
 ​​

for t = 0, 1, 2, . . . .

	 These examples are used for illustrative purposes throughout many of the following 
sections. Section 28.2 further defines the particular type of stochastic process considered 
in this chapter.

■  28.2  MARKOV CHAINS
Assumptions regarding the joint distribution of X0, X1, . . . are necessary to obtain ana-
lytical results. One assumption that leads to analytical tractability is that the stochastic 
process is a Markov chain, which has the following key property:

A stochastic process {Xt} is said to have the Markovian property if P{Xt+1 = j ∣ X0 = k0, 
X1 = k1, . . . , Xt−1 = kt−1, Xt = i} = P{Xt+1 = j ∣ Xt = i}, for t = 0, 1, . . . and every 
sequence i, j, k0, k1, . . . , kt−1.

In words, this Markovian property says that the conditional probability of any future 
“event,” given any past “events” and the present state Xt = i, is independent of the past 
events and depends only upon the present state.

A stochastic process {Xt} (t = 0, 1, . . .) is a Markov chain if it has the Markovian 
property.

	 The conditional probabilities P{Xt+1 = j ∣ Xt = i} for a Markov chain are called (one-
step) transition probabilities. If, for each i and j,

P{Xt+1 = j ∣ Xt = i} = P{X1 = j ∣ X0 = i},    for all t = 1, 2, . . . ,

then the (one-step) transition probabilities are said to be stationary. Thus, having stationary 
transition probabilities implies that the transition probabilities do not change over time. 
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The existence of stationary (one-step) transition probabilities also implies that, for each 
i, j, and n (n = 0, 1, 2, . . .),

P{Xt+n = j ∣ Xt = i} = P{Xn = j ∣ X0 = i}

for all t = 0, 1, . . . . These conditional probabilities are called n-step transition probabilities.
	 To simplify notation with stationary transition probabilities, let

pij = P{Xt+1 = j ∣ Xt = i},
​​p​ ij​ (n)​​ = P{​​X​t+n​​ = j ∣ Xt = i}.

Thus, the n-step transition probability ​​p​ ij​ (n)​​ is just the conditional probability that the 
system will be in state j after exactly n steps (time units), given that it starts in state i 
at any time t. When n = 1, note that ​​p​ ij​ (1)​​ =​​ p​ij​​.

1

	 Because the ​​p​ ij​ (n)​​ are conditional probabilities, they must be nonnegative, and since 
the process must make a transition into some state, they must satisfy the properties

​​p​ ij​ (n)​​ ≥ 0,    for all i and j; n = 0, 1, 2, . . . ,

and

​​∑ 
j=0

​ 
M

​   ​​​​p​ ij​ (n)​​ = 1    for all i; n = 0, 1, 2, . . . .

	 A convenient way of showing all the n-step transition probabilities is the n-step 
transition matrix

	 State	 0	 1	 ⋯	 M

P(n) =   ​ 

0

​ 1​ 
⋮

​ 

M

​   ​​

⎡

 ⎢ 
⎣

​ 

​p​ 00​ (n)​

​ 

​p​ 01​ (n)​

​ 

⋯

​ 

​p​ 0M​ (n)
 ​

​  ​p​ 10​ (n)​​  ​p​ 11​ (n)​​  ⋯​  ​p​ 1M​ (n)
 ​​  

⋯
​ 

⋯
​ 

⋯
​ 

⋯
​  

​p​ M0​ (n)
 ​

​ 

​p​ M1​ (n)
 ​

​ 

⋯

​ 

​p​ MM​ (n)
  ​

​

⎤

 ⎥ 
⎦

​​

Note that the transition probability in a particular row and column is for the transition 
from the row state to the column state. When n = 1, we drop the superscript n and 
simply refer to this as the transition matrix.
	 The Markov chains to be considered in this chapter have the following properties:

1.	 A finite number of states.
2.	 Stationary transition probabilities.

We also will assume that we know the initial probabilities P{X0 = i} for all i.

Formulating the Weather Example as a Markov Chain

For the weather example introduced in the preceding section, recall that the evolution of 
the weather in Centerville from day to day has been formulated as a stochastic process 
{Xt} (t = 0, 1, 2, . . .) where

Xt = ​​{ ​0​ 
if day t is dry

​  
1
​ 

if day t has rain.
​
​
 ​​

1For n = 0, ​​p​ ij​ (0)​​ is just P{X0 = j ∣ X0 = i} and hence is 1 when i = j and is 0 when i ≠ j.
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​P{​X​t+1​ = 0 ∣ Xt = 0} = 0.8,

P{​X​t+1​ = 0 ∣ Xt = 1} = 0.6.​

Furthermore, because these probabilities do not change if information about the weather 
before today (day t) is also taken into account,

​P{​X​t+1​ = 0 ∣ ​X​0​ = k0, X1 = k1, . . . , ​X​t−1​ = ​k​t−1​, Xt = 0} = P{​X​t+1​ = 0 ∣ Xt = 0}

P​{X​t+1​ = 0 ∣ ​X​0​ = ​k​0​, ​X​1​ = ​k​1​, . . . , ​X​t−1​ = ​k​t−1​, Xt = 1} = P{​X​t+1​ = 0 ∣ Xt = 1}​

for t = 0, 1, . . . and every sequence k0, k1, . . . , kt−1. These equations also must hold 
if Xt+1 = 0 is replaced by Xt+1 = 1. (The reason is that states 0 and 1 are mutually 
exclusive and the only possible states, so the probabilities of the two states must sum to 1.) 
Therefore, the stochastic process has the Markovian property, so the process is a Markov 
chain.
	 Using the notation introduced in this section, the (one-step) transition probabilities are

​​p​00​ = P{​X​t+1​ = 0 ∣ Xt = 0} = 0.8,

​p​10​ = P{​X​t+1​ = 0 ∣ Xt = 1} = 0.6​

for all t = 1, 2, . . . , so these are stationary transition probabilities. Furthermore,

​​p​00​ + ​p​01​ = 1,    so  ​  p​01​ = 1 − 0.8 = 0.2,

​p​10​ + ​p​11​ = 1,    so  ​  p​11​ = 1 − 0.6 = 0.4.​

Therefore, the (one-step) transition matrix is

	 State	 0	 1	 State	 0	 1

​P =   ​0​ 1​ ​[​
​p​00​ ​ p​01​​ ​p​10​ ​ p​11​

​]​=  ​  0​ 1​ ​[​0.8  0.2​ 0.6  0.4​]​​

where these transition probabilities are for the transition from the row state to the column 
state. Keep in mind that state 0 means that the day is dry, whereas state 1 signifies that 
the day has rain, so these transition probabilities give the probability of the state the 
weather will be in tomorrow, given the state of the weather today.
	 The state transition diagram in Fig. 28.1 graphically depicts the same information 
provided by the transition matrix. The two nodes (circle) represent the two possible states 
for the weather, and the arrows show the possible transitions (including back to the same 
state) from one day to the next. Each of the transition probabilities is given next to the 
corresponding arrow.
	 The n-step transition matrices for this example will be shown in the next section.

10

0.2

0.6

0.8 0.4

■  FIGURE 28.1
The state transition diagram 
for the weather example.
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Formulating the Inventory Example as a Markov Chain

Returning to the inventory example developed in the preceding section, recall that Xt is 
the number of cameras in stock at the end of week t (before ordering any more), so Xt 
represents the state of the system at time t (the end of week t). Given that the current 
state is Xt = i, the expression at the end of Sec. 28.1 indicates that Xt+1 depends only on 
Dt+1 (the demand in week t + 1) and Xt. Since Xt+1 is independent of any past history 
of the inventory system prior to time t, the stochastic process {Xt} (t = 0, 1, . . .) has 
the Markovian property and so is a Markov chain.
	 Now consider how to obtain the (one-step) transition probabilities, i.e., the elements 
of the (one-step) transition matrix

	 State	 0	 1	 2	 3

​P = ​

0

​ 1​ 
2
​ 

3

​ ​

⎡

 ⎢ 
⎣

​

p00

​ 

p01

​ 

p02

​ 

p03

​  
p10

​ 
p11

​ 
p12

​ 
p13

​  
p20

​  p21
​  p22

​  p23
​  

p30

​ 

p31

​ 

p32

​ 

p33

​

⎤

 ⎥ 
⎦

​​

given that Dt+1 has a Poisson distribution with a mean of 1. Thus,

P{Dt+1 = n} = ​​ (1)ne−1

 ______ 
n!

 ​​ ,    for n = 0, 1, . . . ,

so (to three significant digits)

P{Dt+1 = 0} = e−1 = 0.368,
P{Dt+1 = 1} = e−1 = 0.368,
P{Dt+1 = 2} = ​​ 1 __ 

2
 ​​e−1 = 0.184,

P{Dt+1 ≥ 3} = 1 − P{Dt+1 ≤ 2} = 1 − (0.368 + 0.368 + 0.184) = 0.080.

	 For the first row of P, we are dealing with a transition from state Xt = 0 to some 
state Xt+1. As indicated at the end of Sec. 28.1,

Xt+1 = max{3 − Dt+1, 0}    if    Xt = 0.

Therefore, for the transition to Xt+1 = 3 or Xt+1 = 2 or Xt+1 = 1,

p03 = P{Dt+1 = 0} = 0.368,
p02 = P{Dt+1 = 1} = 0.368,
p01 = P{Dt+1 = 2} = 0.184.

A transition from Xt = 0 to Xt+1 = 0 implies that the demand for cameras in week t + 1 is 3 
or more after 3 cameras are added to the depleted inventory at the beginning of the week, so

p00 = P{Dt+1 ≥ 3} = 0.080.

	 For the other rows of P, the formula at the end of Sec. 28.1 for the next state is

Xt+1 = max {Xt − Dt+1, 0}    if    Xt ≥ 1.

This implies that Xt+1 ≤ Xt, so p12 = 0, p13 = 0, and p23 = 0. For the other transitions,

p11 = P{Dt+1 = 0} = 0.368,
p10 = P{Dt+1 ≥ 1} = 1 − P{Dt+1 = 0} = 0.632,
p22 = P{Dt+1 = 0} = 0.368,
p21 = P{Dt+1 = 1} = 0.368,
p20 = P{Dt+1 ≥ 2} = 1 − P{Dt+1 ≤ 1} = 1 − (0.368 + 0.368) = 0.264.
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For the last row of P, week t + 1 begins with 3 cameras in inventory, so the calculations 
for the transition probabilities are exactly the same as for the first row. Consequently, the 
complete transition matrix (to three significant digits) is

	 State	 0	 1	 2	 3

P =  ​​ 

0

​ 1​ 
2
​ 

3

​​ ​​

⎡

 ⎢ 

⎣

​

0.080

​ 

0.184

​ 

0.368

​ 

0.368

​   0.632​  0.368​  0​  0​   
0.264

​ 
0.368

​ 
0.368

​ 
0
​   

0.080

​ 

0.184

​ 

0.368

​ 

0.368

 ​

⎤

 ⎥ 

⎦

​​

	 The information given by this transition matrix can also be depicted graphically with 
the state transition diagram in Fig. 28.2. The four possible states for the number of cameras 
on hand at the end of a week are represented by the four nodes (circles) in the diagram. 
The arrows show the possible transitions from one state to another, or sometimes from a 
state back to itself, when the camera store goes from the end of one week to the end of 
the next week. The number next to each arrow gives the probability of that particular 
transition occurring next when the camera store is in the state at the base of the arrow.

Additional Examples of Markov Chains

A Stock Example.  Consider the following model for the value of a stock. At the end 
of a given day, the price is recorded. If the stock has gone up, the probability that it will 
go up tomorrow is 0.7. If the stock has gone down, the probability that it will go up 
tomorrow is only 0.5. (For simplicity, we will count the stock staying the same as a 
decrease.) This is a Markov chain, where the possible states for each day are as follows:

	 State 0: The stock increased on this day.
	 State 1: The stock decreased on this day.

The transition matrix that shows each probability of going from a particular state today 
to a particular state tomorrow is given by

	 State	 0	 1

P =  ​​  0​ 1​​​​[​0.7​ 0.5​ ​ 0.3​ 0.5​]​​

■  FIGURE 28.2
The state transition diagram 
for the inventory example.
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	 The form of the state transition diagram for this example is exactly the same as for 
the weather example shown in Fig. 28.1, so we will not repeat it here. The only differ-
ence is that the transition probabilities in the diagram are slightly different (0.7 replaces 
0.8, 0.3 replaces 0.2, and 0.5 replaces both 0.6 and 0.4 in Fig. 28.1).

A Second Stock Example.  Suppose now that the stock market model is changed so 
that the stock’s going up tomorrow depends upon whether it increased today and yes-
terday. In particular, if the stock has increased for the past two days, it will increase 
tomorrow with probability 0.9. If the stock increased today but decreased yesterday, then 
it will increase tomorrow with probability 0.6. If the stock decreased today but increased 
yesterday, then it will increase tomorrow with probability 0.5. Finally, if the stock 
decreased for the past two days, then it will increase tomorrow with probability 0.3. If 
we define the state as representing whether the stock goes up or down today, the system 
is no longer a Markov chain. However, we can transform the system to a Markov chain 
by defining the states as follows:2

State 0: The stock increased both today and yesterday.
State 1: The stock increased today and decreased yesterday.
State 2: The stock decreased today and increased yesterday.
State 3: The stock decreased both today and yesterday.

This leads to a four-state Markov chain with the following transition matrix:

	 State	 0	 1	 2	 3

P =  ​​ 

0

​ 1​ 
2
​ 

3

​​ ​​

⎡

 ⎢ 
⎣

​

0.9

​ 

0

​ 

0.1

​ 

0

​  0.6​  0​  0.4​  0​  
0
​ 

0.5
​ 

0
​ 

0.5
​  

0

​ 

0.3

​ 

0

​ 

0.7

​

⎤

 ⎥ 
⎦

​​

	 Figure 28.3 shows the state transition diagram for this example. An interesting fea-
ture of the example revealed by both this diagram and all the values of 0 in the transition 
matrix is that so many of the transitions from state i to state j are impossible in one step. 
In other words, pij = 0 for 8 of the 16 entries in the transition matrix. However, check 
out how it always is possible to go from any state i to any state j (including j = i) in 
two steps. The same holds true for three steps, four steps, and so forth. Thus, ​​p​ij​ 

(n)​​ > 0 for  
n = 2, 3, . . . for all i and j.

A Gambling Example.  Another example involves gambling. Suppose that a player has 
$1 and with each play of the game wins $1 with probability p > 0 or loses $1 with 
probability 1 − p > 0. The game ends when the player either accumulates $3 or goes 
broke. This game is a Markov chain with the states representing the player’s current 
holding of money, that is, 0, $1, $2, or $3, and with the transition matrix given by

	 State	 0	 1	 2	 3

P =    

0
1
2
3 ​​

⎡

 
⎢
 ⎣

1
1 − p

0
0

0
0

1 − p
0

0
p
0
0

0
0
p
1

⎤

 
⎥
 ⎦​​

2We again are counting the stock staying the same as a decrease. This example demonstrates that Markov 
chains are able to incorporate arbitrary amounts of history, but at the cost of significantly increasing the num-
ber of states.
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	 The state transition diagram for this example is shown in Fig. 28.4. This diagram 
demonstrates that once the process enters either state 0 or state 3, it will stay in that state 
forever after, since p00 = 1 and p33 = 1. States 0 and 3 are examples of what are called 
an absorbing state (a state that is never left once the process enters that state). We will 
focus on analyzing absorbing states in Sec. 28.7.
	 Note that in both the inventory and gambling examples, the numeric labeling of the 
states that the process reaches coincides with the physical expression of the system—i.e., 
actual inventory levels and the player’s holding of money, respectively—whereas the numeric 
labeling of the states in the weather and stock examples has no physical significance.

■  FIGURE 28.3
The state transition diagram 
for the second stock example.
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0 10.6
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■  FIGURE 28.4
The state transition diagram 
for the gambling example.
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■  28.3  CHAPMAN-KOLMOGOROV EQUATIONS
Section 28.2 introduced the n-step transition probability ​​p​ij​ 

(n)​​. The following Chapman-
Kolmogorov equations provide a method for computing these n-step transition probabilities:

​​p​ij​ 
(n)​​ = ​​∑ 

k=0

​ 
M

​  ​ p​
ik
​ (m)​ ​p​

kj
​ (n−m)​,​​	 for all i = 0, 1, . . . , M,

	 j = 0, 1, . . . , M,
	 and any m = 1, 2, . . . , n − 1,
	 n = m + 1, m + 2, . . . .3

3These equations also hold in a trivial sense when m = 0 or m = n, but m = 1, 2, . . . , n − 1 are the only 
interesting cases.
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	 These equations point out that in going from state i to state j in n steps, the process 
will be in some state k after exactly m (less than n) steps. Thus, ​​p​

ik
​ (m) ​​​​p​

kj
​ (n−m)​​ is just the con-

ditional probability that, given a starting point of state i, the process goes to state k after 
m steps and then to state j in n − m steps. Therefore, summing these conditional proba-
bilities over all possible k must yield ​​p​ij​ 

(n)​​. The special cases of m = 1 and m = n − 1 lead 
to the expressions

​​p​ij​ 
(n)​​ = ​​∑ 

k=0

​ 
M

​   pik​p​
kj
​ (n−1)​​​

and

​​p​ij​ 
(n)​​ = ​​∑ 

k=0

​ 
M

​  ​  p​ik​ 
(n−1)​pkj,​​

for all states i and j. These expressions enable the n-step transition probabilities to be 
obtained from the one-step transition probabilities recursively. This recursive relationship 
is best explained in matrix notation (see Appendix 4). For n = 2, these expressions become

​​p​ij​ 
(2)​​ = ​​∑ 

k=0

​ 
M

​   pikpkj,​​    for all states i and j,

where the ​​p​ij​ 
(2)​​ are the elements of a matrix P(2). Also note that these elements are obtained 

by multiplying the matrix of one-step transition probabilities by itself; i.e.,

P(2) = P · P = P2.

In the same manner, the above expressions for​ ​p​ij​ 
(n)​ ​when m = 1 and m = n − 1 indicate 

that the matrix of n-step transition probabilities is

​Pn = ​PP​(n−1)​ = ​P​(n−1)​P
	 = ​PP​n−1​ = ​P​n−1​P
	 = ​P​n​.​

Thus, the n-step transition probability matrix Pn can be obtained by computing the nth 
power of the one-step transition matrix P.

n-Step Transition Matrices for the Weather Example

For the weather example introduced in Sec. 28.1, we now will use the above formulas 
to calculate various n-step transition matrices from the (one-step) transition matrix P that 
was obtained in Sec. 28.2. To start, the two-step transition matrix is

​P(2) = P · P = ​[​
0.8

​ 
0.2

​ 
0.6

​ 
0.4

​]​ ​ [​
0.8

​ 
0.2

​ 
0.6

​ 
0.4

​]​ = ​[​
0.76

​ 
0.24

​ 
0.72

​ 
0.28

​]​.​

Thus, if the weather is in state 0 (dry) on a particular day, the probability of being in 
state 0 two days later is 0.76 and the probability of being in state 1 (rain) then is 0.24. 
Similarly, if the weather is in state 1 now, the probability of being in state 0 two days 
later is 0.72 whereas the probability of being in state 1 then is 0.28.
	 The probabilities of the state of the weather three, four, or five days into the future 
also can be read in the same way from the three-step, four-step, and five-step transition 
matrices calculated to three significant digits below.
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​P(3) = P3 = P · P2 = ​[​
0.8

​ 
0.2

​ 
0.6

​ 
0.4

​]​ ​[​
0.76

​ 
0.24

​ 
0.72

​ 
0.28

​]​ = ​[​
0.752

​ 
0.248

​  
0.744

​ 
0.256

​]​

P(4) = P4 = P · P3 = ​[​
0.8

​ 
0.2

​ 
0.6

​ 
0.4

​]​ ​[ ​
0.752

​ 
0.248

​  
0.744

​ 
0.256

​]​ = ​[​
0.75

​ 
0.25

​  
0.749

​ 
0.251

​]​

P(5) = P5 = P · P4 = ​[​
0.8

​ 
0.2

​ 
0.6

​ 
0.4

​]​ ​[​
0.75

​ 
0.25

​  
0.749

​ 
0.251

​]​ = ​[​
0.75

​ 
0.25

​ 
0.75

​ 
0.25

​]​​

	 Note that the five-step transition matrix has the interesting feature that the two rows 
have identical entries (after rounding to three significant digits). This reflects the fact 
that the probability of the weather being in a particular state is essentially independent 
of the state of the weather five days before. Thus, the probabilities in either row of this 
five-step transition matrix are referred to as the steady-state probabilities of this Markov 
chain.
	 We will expand further on the subject of the steady-state probabilities of a Markov 
chain, including how to derive them more directly, at the beginning of Sec. 28.5.

n-Step Transition Matrices for the Inventory Example

Returning to the inventory example included in Sec. 28.1, we now will calculate its n-step 
transition matrices to three decimal places for n = 2, 4, and 8. To start, its one-step 
transition matrix P obtained in Sec. 28.2 can be used to calculate the two-step transition 
matrix P(2) as follows:

P(2) = P2 = ​​

⎡

 ⎢ 

⎣

​

0.080

​ 

0.184

​ 

0.368

​ 

0.368

​   0.632​  0.368​  0​  0​   
0.264

​ 
0.368

​ 
0.368

​ 
0
​   

0.080

​ 

0.184

​ 

0.368

​ 

0.368

​

⎤

 ⎥ 

⎦

​​ ​​

⎡

 ⎢ 

⎣

​

0.080

​ 

0.184

​ 

0.368

​ 

0.368

​   0.632​  0.368​  0​  0​   
0.264

​ 
0.368

​ 
0.368

​ 
0

​   

0.080

​ 

0.184

​ 

0.368

​ 

0.368

​

⎤

 ⎥ 

⎦

​​

	 = ​​

⎡

 ⎢ 
⎣

​

0.249

​ 

0.286

​ 

0.300

​ 

0.165

​   0.283​  0.252​  0.233​  0.233​   
0.351

​ 
0.319

​ 
0.233

​ 
0.097

​   

0.249

​ 

0.286

​ 

0.300

​ 

0.165

​

⎤

 ⎥ 
⎦

​​.

For example, given that there is one camera left in stock at the end of a week, the prob-
ability is 0.283 that there will be no cameras in stock 2 weeks later, that is, ​​p​10​ 

(2)​​ = 0.283. 
Similarly, given that there are two cameras left in stock at the end of a week, the 
probability is 0.097 that there will be three cameras in stock 2 weeks later, that is,  
​​p​23​ 

(2)​​ = 0.097.
	 The four-step transition matrix can also be obtained as follows:

P(4) = P4 = P(2) · P(2)

= ​​

⎡

 ⎢ 
⎣

​

0.249

​ 

0.286

​ 

0.300

​ 

0.165

​   0.283​  0.252​  0.233​  0.233​   
0.351

​ 
0.319

​ 
0.233

​ 
0.097

​   

0.249

​ 

0.286

​ 

0.300

​ 

0.165

​

⎤

 ⎥ 
⎦

​​ ​​

⎡

 ⎢ 
⎣

​

0.249

​ 

0.286

​ 

0.300

​ 

0.165

​   0.283​  0.252​  0.233​  0.233​   
0.351

​ 
0.319

​ 
0.233

​ 
0.097

​   

0.249

​ 

0.286

​ 

0.300

​ 

0.165

​

⎤

 ⎥ 
⎦

​​

= ​​

⎡

 ⎢ 
⎣

​

0.289

​ 

0.286

​ 

0.261

​ 

0.164

​   0.282​  0.285​  0.268​  0.166​   
0.284

​ 
0.283

​ 
0.263

​ 
0.171

​   

0.289

​ 

0.286

​ 

0.261

​ 

0.164

​

⎤

 ⎥ 
⎦

​​.
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For example, given that there is one camera left in stock at the end of a week, the prob-
ability is 0.282 that there will be no cameras in stock 4 weeks later, that is, ​​p​10​ 

(4)​​ = 0.282. 
Similarly, given that there are two cameras left in stock at the end of a week, the prob-
ability is 0.171 that there will be three cameras in stock 4 weeks later, that is, ​​p​23​ 

(4) ​​= 0.171.
	 The transition probabilities for the number of cameras in stock 8 weeks from now 
can be read in the same way from the eight-step transition matrix calculated below.

P(8) = P8 = P(4) · P(4)

​= ​

⎡

 ⎢ 

⎣

​

0.289

​ 

0.286

​ 

0.261

​ 

0.164

​   0.282​  0.285​  0.268​  0.166​   
0.284

​ 
0.283

​ 
0.263

​ 
0.171

​   

0.289

​ 

0.286

​ 

0.261

​ 

0.164

​

⎤

 ⎥ 

⎦

​  ​

⎡

 ⎢ 

⎣

​

0.289

​ 

0.286

​ 

0.261

​ 

0.164

​   0.282​  0.285​  0.268​  0.166​   
0.284

​ 
0.283

​ 
0.263

​ 
0.171

​   

0.289

​ 

0.286

​ 

0.261

​ 

0.164

​

⎤

 ⎥ 

⎦

​​

	 State	 0	 1	 2	 3

=    ​

0

​ 1​ 
2
​ 

3

​ ​

⎡

 ⎢ 
⎣

​

0.286

​ 

0.285

​ 

0.264

​ 

0.166

​   0.286​  0.285​  0.264​  0.166​   
0.286

​ 
0.285

​ 
0.264

​ 
0.166

​   

0.286

​ 

0.285

​ 

0.264

​ 

0.166

​

⎤

 ⎥ 
⎦

​

Like the five-step transition matrix for the weather example, this matrix has the interest-
ing feature that its rows have identical entries (after rounding). The reason once again is 
that probabilities in any row are the steady-state probabilities for this Markov chain, i.e., 
the probabilities of the state of the system after enough time has elapsed that the initial 
state is no longer relevant.
	 Your IOR Tutorial includes a procedure for calculating P(n) = P n for any positive 
integer n ≤ 99.

Unconditional State Probabilities

Recall that one- or n-step transition probabilities are conditional probabilities; for exam-
ple, ​P{Xn = j ∣ X0 = i} = ​p​ij​ 

(n)​. ​Assume that n is small enough that these conditional 
probabilities are not yet steady-state probabilities. In this case, if the unconditional prob-
ability P{Xn = j} is desired, it is necessary to specify the probability distribution of the 
initial state, namely, P{X0 = i} for i = 0, 1, . . . , M. Then

​P{Xn = j} = P{X0 = 0}​p​0j​ 
(n)​ + P{X0 = 1}​p​1j​ 

(n)​ + ·  ·  · + P{X0 = M}​p​Mj​ 
(n)​.​

	 In the inventory example, it was assumed that initially there were 3 units in stock, 
that is, X0 = 3. Thus, P{X0 = 0} = P{X0 = 1} = P{X0 = 2} = 0 and P{X0 = 3} = 1. 
Hence, the (unconditional) probability that there will be three cameras in stock 2 weeks 
after the inventory system began is P{X2 = 3} = (1)​​p​33​ 

(2)​​ = 0.165.

■  28.4  CLASSIFICATION OF STATES OF A MARKOV CHAIN
We have just seen near the end of the preceding section that the n-step transition prob-
abilities for the inventory example converge to steady-state probabilities after a sufficient 
number of steps. However, this is not true for all Markov chains. The long-run properties 
of a Markov chain depend greatly on the characteristics of its states and transition matrix. 
To further describe the properties of Markov chains, it is necessary to present some 
concepts and definitions concerning these states.
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	 State j is said to be accessible from state i if ​​p​ij​ 
(n)​​ > 0 for some n ≥ 0. (Recall that ​​

p​ij​ 
(n)​ ​is just the conditional probability of being in state j after n steps, starting in state i.) 

Thus, state j being accessible from state i means that it is possible for the system to enter 
state j eventually when it starts from state i. This is clearly true for the weather example 
(see Fig. 28.1) since pij > 0 for all i and j. In the inventory example (see Fig. 28.2), ​​p​ij​ 

(2)​​ > 0 
for all i and j, so every state is accessible from every other state. In general, a sufficient 
condition for all states to be accessible is that there exists a value of n for which ​​p​ij​ 

(n)​​ > 0 for 
all i and j.
	 In the gambling example given at the end of Sec. 28.2 (see Fig. 28.4), state 2 is not 
accessible from state 3. This can be deduced from the context of the game (once the 
player reaches state 3, the player never leaves this state), which implies that​​ p​32​ 

(n)​​ = 0 for 
all n ≥ 0. However, even though state 2 is not accessible from state 3, state 3 is acces-
sible from state 2 since, for n = 1, the transition matrix given at the end of Sec. 28.2 
indicates that p23 = p > 0.
	 If state j is accessible from state i and state i is accessible from state j, then states 
i and j are said to communicate. In both the weather and inventory examples, all states 
communicate. In the gambling example, states 2 and 3 do not. (The same is true of states 
1 and 3, states 1 and 0, and states 2 and 0.) In general,

1.	 Any state communicates with itself (because ​​p​ii​ 
(0)​​ = P{X0 = i ∣ X0 = i} = 1).

2.	 If state i communicates with state j, then state j communicates with state i.
3.	 If state i communicates with state j and state j communicates with state k, then state i 

communicates with state k.

Properties 1 and 2 follow from the definition of states communicating, whereas property 
3 follows from the Chapman-Kolmogorov equations.
	 As a result of these three properties of communication, the states may be partitioned 
into one or more separate classes such that those states that communicate with each other 
are in the same class. (A class may consist of a single state.) If there is only one class, 
i.e., all the states communicate, the Markov chain is said to be irreducible. In both the 
weather and inventory examples, the Markov chain is irreducible. In both of the stock 
examples in Sec. 28.2, the Markov chain also is irreducible. However, the gambling 
example contains three classes. Observe in Fig. 28.4 how state 0 forms a class, state 3 
forms a class, and states 1 and 2 form a class.

Recurrent States and Transient States

It is often useful to talk about whether a process entering a state will ever return to this 
state. Here is one possibility.

A state is said to be a transient state if, upon entering this state, the process might never 
return to this state again. Therefore, state i is transient if and only if there exists a state 
j ( j ≠ i) that is accessible from state i but not vice versa, that is, state i is not accessible 
from state j.

Thus, if state i is transient and the process visits this state, there is a positive probability 
(perhaps even a probability of 1) that the process will later move to state j and so will 
never return to state i. Consequently, a transient state will be visited only a finite number 
of times. To illustrate, consider the gambling example presented at the end of Sec. 28.2. 
Its state transition diagram shown in Fig. 28.4 indicates that both states 1 and 2 are 
transient states since the process will leave these states sooner or later to enter either 
state 0 or state 3 and then will remain in that state forever.
	 When starting in state i, another possibility is that the process definitely will return 
to this state.
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A state is said to be a recurrent state if, upon entering this state, the process definitely 
will return to this state again. Therefore, a state is recurrent if and only if it is not 
transient.

Since a recurrent state definitely will be revisited after each visit, it will be visited infi-
nitely often if the process continues forever. For example, all the states in the state 
transition diagrams shown in Figs. 28.1, 28.2, and 28.3 are recurrent states because the 
process always will return to each of these states. Even for the gambling example, states 
0 and 3 are recurrent states because the process will keep returning immediately to one 
of these states forever once the process enters that state. Note in Fig. 28.4 how the pro-
cess eventually will enter either state 0 or state 3 and then will never leave that state 
again.
	 If the process enters a certain state and then stays in this state at the next step, this 
is considered a return to this state. Hence, the following kind of state is a special type 
of recurrent state.

A state is said to be an absorbing state if, upon entering this state, the process never 
will leave this state again. Therefore, state i is an absorbing state if and only if pii = 1.

As just noted, both states 0 and 3 for the gambling example fit this definition, so they 
both are absorbing states as well as a special type of recurrent state. We will discuss 
absorbing states further in Sec. 28.7.
	 Recurrence is a class property. That is, all states in a class are either recurrent or 
transient. Furthermore, in a finite-state Markov chain, not all states can be transient. 
Therefore, all states in an irreducible finite-state Markov chain are recurrent. Indeed, one 
can identify an irreducible finite-state Markov chain (and therefore conclude that all 
states are recurrent) by showing that all states of the process communicate. It has already 
been pointed out that a sufficient condition for all states to be accessible (and therefore 
communicate with each other) is that there exists a value of n for which​​ p​ij​ 

(n)​ > 0​ for all 
i and j. Thus, all states in the inventory example (see Fig. 28.2) are recurrent, since​ ​p​ij​ 

(2)​​ 
is positive for all i and j. Similarly, both the weather example and the first stock exam-
ple contain only recurrent states, since pij is positive for all i and j. By calculating​ ​p​ij​ 

(2)​​ 
for all i and j in the second stock example in Sec. 28.2 (see Fig. 28.3), it follows that 
all states are recurrent since ​​p​ij​ 

(2)​​ > 0 for all i and j.
	 As another example, suppose that a Markov chain has the following transition matrix:

	 State	 0	 1	 2	 3	 4

P =     ​​

0

​ 
1
​ 2​ 

3

​ 

4

​​  ​​

⎡

 ⎢ 
⎣

​ 

​ 1 _ 4 ​

​ 

​ 3 _ 4 ​

​ 

0

​ 

0

​ 

0

​  
​ 1 _ 2 ​
​ 

​ 1 _ 2 ​
​ 

0
​ 

0
​ 

0
​  0​  0​  1​  0​  0​  

0

​ 

0

​ 

​ 1 _ 3 ​

​ 

​ 2 _ 3 ​

​ 

0

​  

1

​ 

0

​ 

0

​ 

0

​ 

0

​

⎤

 ⎥ 
⎦

​​

Note that state 2 is an absorbing state (and hence a recurrent state) because if the process 
enters state 2 (row 3 of the matrix), it will never leave. State 3 is a transient state because 
if the process is in state 3, there is a positive probability that it will never return. The 
probability is ​​ 1 _ 3 ​​ that the process will go from state 3 to state 2 on the first step. Once 
the process is in state 2, it remains in state 2. State 4 also is a transient state because if 
the process starts in state 4, it immediately leaves and can never return. States 0 and 1 
are recurrent states. To see this, observe from P that if the process starts in either of 
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these states, it can never leave these two states. Furthermore, whenever the process moves 
from one of these states to the other one, it always will return to the original state 
eventually.

Periodicity Properties

Another useful property of Markov chains is periodicities. The period of state i is 
defined to be the integer t (t > 1) such that ​​p​ii​ 

(n)​​ = 0 for all values of n other than t, 2t, 
3t, . . . and t is the smallest integer with this property. In the gambling example (end of 
Section 28.2), starting in state 1, it is possible for the process to enter state 1 only at 
times 2, 4, . . . , so state 1 has period 2. The reason is that the player can break even 
(be neither winning nor losing) only at times 2, 4, . . . , which can be verified by cal-
culating ​​p​11​ 

(n)​​ for all n and noting that ​​p​11​ 
(n)​​ = 0 for n odd. You also can see in Fig. 28.4 

that the process always takes two steps to return to state 1 until the process gets absorbed 
in either state 0 or state 3. (The same conclusion also applies to state 2.)
	 If there are two consecutive numbers s and s + 1 such that the process can be in 
state i at times s and s + 1, the state is said to have period 1 and is called an aperiodic 
state.
	 Just as recurrence is a class property, it can be shown that periodicity is a class 
property. That is, if state i in a class has period t, then all states in that class have period t. 
In the gambling example, state 2 also has period 2 because it is in the same class as 
state 1 and we noted above that state 1 has period 2.
	 It is possible for a Markov chain to have both a recurrent class of states and a tran-
sient class of states where the two classes have different periods greater than 1.
	 In a finite-state Markov chain, recurrent states that are aperiodic are called ergodic 
states. A Markov chain is said to be ergodic if all its states are ergodic states. You will 
see next that a key long-run property of a Markov chain that is both irreducible and 
ergodic is that its n-step transition probabilities will converge to steady-state probabilities 
as n grows large.

■  28.5  LONG-RUN PROPERTIES OF MARKOV CHAINS
Steady-State Probabilities

While calculating the n-step transition probabilities for both the weather and inventory 
examples in Sec. 28.3, we noted an interesting feature of these matrices. If n is large 
enough (n = 5 for the weather example and n = 8 for the inventory example), all the 
rows of the matrix have identical entries, so the probability that the system is in each 
state j no longer depends on the initial state of the system. In other words, there is a 
limiting probability that the system will be in each state j after a large number of transi-
tions, and this probability is independent of the initial state. These properties of the 
long-run behavior of finite-state Markov chains do, in fact, hold under relatively general 
conditions, as summarized below.

For any irreducible ergodic Markov chain, ​​ lim    
n→∞

​​ ​​p​
ij
​ (n)​​ exists and is independent of i.

Furthermore,

​​ lim    
n→∞

​​ ​​p​
ij
​ (n)​​ = πj > 0,

where the πj uniquely satisfy the following steady-state equations
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​πj = ​∑ 
i=0

​ 
M

​   ​πipij ,    for j = 0, 1,  .  .  .  , M,​

​​∑ 
j=0

​ 
M

​   ​πj = 1.​

If you prefer to work with a system of equations in matrix form, this system (excluding 
the sum = 1 equation) also can be expressed as

π = πP,

where π = (π0, π1,  .  .  .  , πM).
	 The πj are called the steady-state probabilities of the Markov chain. The term 
steady-state probability means that the probability of finding the process in a certain 
state, say j, after a large number of transitions tends to the value πj, independent of the 
probability distribution of the initial state. It is important to note that the steady-state 
probability does not imply that the process settles down into one state. On the contrary, 
the process continues to make transitions from state to state, and at any step n the tran-
sition probability from state i to state j is still pij.
	 The πj can also be interpreted as stationary probabilities (not to be confused with 
stationary transition probabilities) in the following sense. If the initial probability of 
being in state j is given by πj (that is, P{X0 = j} = πj) for all j, then the probability of 
finding the process in state j at time n = 1, 2, . . . is also given by πj (that is, P{Xn = j} = πj).
	 Note that the steady-state equations consist of M + 2 equations in M + 1 unknowns. 
Because it has a unique solution, at least one equation must be redundant and can, there-
fore, be deleted. It cannot be the equation

​​∑ 
j=0

​ 
M

​   ​​πj = 1,

because πj = 0 for all j will satisfy the other M + 1 equations. Furthermore, the solu-
tions to the other M + 1 steady-state equations have a unique solution up to a multipli-
cative constant, and it is the final equation that forces the solution to be a probability 
distribution.

Application to the Weather Example.  The weather example introduced in Sec. 28.1 
and formulated in Sec. 28.2 has only two states (dry and rain), so the above steady-state 
equations become

π0 = π0p00 + π1p10,
π1 = π0p01 + π1p11,
 1 = π0     + π1.

The intuition behind the first equation is that, in steady state, the probability of being in 
state 0 after the next transition must equal (1) the probability of being in state 0 now 
and then staying in state 0 after the next transition plus (2) the probability of being in 
state 1 now and next making the transition to state 0. The logic for the second equation 
is the same, except in terms of state 1. The third equation simply expresses the fact that 
the probabilities of these mutually exclusive states must sum to 1.
	 Referring to the transition probabilities given in Sec. 28.2 for this example, these 
equations become
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	π0 = 0.8π0	+ 0.6π1,	 so	 0.2π0 = 0.6π1,
	π1 = 0.2π0	+ 0.4π1,	 so	 0.6π1 = 0.2π0,
	1 = π0	 + π1.

Note that one of the first two equations is redundant since both equations reduce to  
π0 = 3π1. Combining this result with the third equation immediately yields the following 
steady-state probabilities:

π0 = 0.75,    π1 = 0.25

These are the same probabilities as obtained in each row of the five-step transition matrix 
calculated in Sec. 28.3 because five transitions proved enough to make the state proba-
bilities essentially independent of the initial state.

Application to the Inventory Example.  The inventory example introduced in Sec. 28.1 
and formulated in Sec. 28.2 has four states. Therefore, in this case, the steady-state equa-
tions can be expressed as

π0 = π0p00 + π1p10 + π2p20 + π3p30,
π1 = π0p01 + π1p11 + π2p21 + π3p31,
π2 = π0p02 + π1p12 + π2p22 + π3p32,
π3 = π0p03 + π1p13 + π2p23 + π3p33,
 1 = π0    + π1    + π2    + π3.

Substituting values for pij (see the transition matrix in Sec. 28.2) into these equations 
leads to the equations

π0 = 0.080π0 + 0.632π1 + 0.264π2 + 0.080π3,
π1 = 0.184π0 + 0.368π1 + 0.368π2 + 0.184π3,
π2 = 0.368π0          + 0.368π2 + 0.368π3,
π3 = 0.368π0                   + 0.368π3,
 1 =      π0 +      π1 +      π2 +      π3.

Solving the last four equations simultaneously provides the solution

π0 = 0.286,    π1 = 0.285,    π2 = 0.263,    π3 = 0.166,

which is essentially the result that appears in matrix P(8) in Sec. 28.3. Thus, after many 
weeks the probability of finding zero, one, two, and three cameras in stock at the end 
of a week tends to 0.286, 0.285, 0.263, and 0.166, respectively.

More about Steady-State Probabilities.  Your IOR Tutorial includes a procedure for 
solving the steady-state equations to obtain the steady-state probabilities.
	 There are other important results concerning steady-state probabilities. In particular, 
if i and j are recurrent states belonging to different classes, then

​​p​ij​ 
(n)​​ = 0,    for all n.

This result follows from the definition of a class.
	 Similarly, if j is a transient state, then

​​ lim    
n→∞

​​ ​​p​ij​ 
(n)​​ = 0,    for all i.
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Thus, the probability of finding the process in a transient state after a large number of 
transitions tends to zero.

Expected Average Cost per Unit Time

The preceding subsection dealt with irreducible finite-state Markov chains whose states 
were ergodic (recurrent and aperiodic). If the requirement that the states be aperiodic is 
relaxed, then the limit

​​ lim    
n→∞

​​ ​​p​ij​ 
(n)​​ 

may not exist. To illustrate this point, consider the two-state transition matrix

	 State     0  1

P =  ​​  0​ 1​​ ​​ [​0​  1​ 1​  0​]​​.

If the process starts in state 0 at time 0, it will be in state 0 at times 2, 4, 6, . . . and in 
state 1 at times 1, 3, 5, . . . . Thus, ​​p​00​ 

(n)​​ = 1 if n is even and ​​p​00​ 
(n)​​ = 0 if n is odd, so that

​​ lim    
n→∞

​​ ​​p​00​ 
(n)​​

does not exist. However, the following limit always exists for an irreducible (finite-state) 
Markov chain:

​​ lim    
n→∞

​ ​
(

​ 1 __ n ​ ​∑ 
k=1

​ 
n

​   ​p​ij​ 
(k)​​

)
​ = πj ,​

where the πj satisfy the steady-state equations given in the preceding subsection.
	 This result is important in computing the long-run average cost per unit time asso-
ciated with a Markov chain. Suppose that a cost (or other penalty function) C(Xt) is 
incurred when the process is in state Xt at time t, for t = 0, 1, 2, . . . Note that C(Xt) is 
a random variable that takes on any one of the values C(0), C(1), . . . , C(M) and that 
the function C(·) is independent of t. The expected average cost incurred over the first 
n periods is given by

E​​
[

​ 1 __ n ​ ​∑ 
t=1

​ 
n

​   C(Xt)​]
​​.

By using the result that

​​ lim    
n→∞

​ ​
(

​ 1 __ n ​ ​∑ 
k=1

​ 
n

​   ​p​ij​ 
(k)​​

)
​ = πj ,​

it can be shown that the (long-run) expected average cost per unit time is given by

​​ lim    
n→∞

​​ E​​
[

​ 1 __ n ​ ​∑ 
t=1

​ 
n

​   C(Xt)​]
​​ = ​​∑ 

j=0

​ 
M

​   πjC( j).​​

Application to the Inventory Example.  To illustrate, consider the inventory exam-
ple introduced in Sec. 28.1, where the solution for the πj was obtained in an earlier 
subsection. Suppose the camera store finds that a storage charge is being allocated 
for each camera remaining on the shelf at the end of the week. The cost is charged 
as follows:
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C(xt) = ​​

⎧

 
⎪

 ⎨ 
⎪

 

⎩

​ 

0

​ 

if

​ 

xt = 0

​    2​  if​ 
xt = 1

​  
  8

​ 
if

​ 
xt = 2​  

18

​ 

if

​ 

xt = 3

​​​

Using the steady-state probabilities found earlier in this section, the long-run expected 
average storage cost per week can then be obtained from the preceding equation, i.e.,

​​ lim    
n→∞

​​ E​​
[

​ 1 __ n ​ ​∑ 
t=1

​ 
n

​   C(Xt)​]
​​ = 0.286(0) + 0.285(2) + 0.263(8) + 0.166(18) = 5.662.

	 Note that an alternative measure to the (long-run) expected average cost per unit 
time is the (long-run) actual average cost per unit time. It can be shown that this latter 
measure also is given by

​​ lim    
n→∞

​​ ​​
[

​ 1 __ n ​ ​∑ 
t=1

​ 
n

​   C(Xt)​]
​​ = ​​∑ 

j=0

​ 
M

​   πjC( j)​​

for essentially all paths of the process. Thus, either measure leads to the same result. 
These results can also be used to interpret the meaning of the πj. To do so, let

C(Xt) = ​​{​
1
​ 

if
​ 

Xt =  j
​  0​  if​  Xt ≠  j.​​​

The (long-run) expected fraction of times the system is in state j is then given by

​​ lim    
n→∞

​​ E​​
[

​ 1 __ n ​ ​∑ 
t=1

​ 
n

​   C(Xt)​]
​​ = ​​ lim    

n→∞
​​ E(fraction of times system is in state j) = πj.

Similarly, πj can also be interpreted as the (long-run) actual fraction of times that the 
system is in state j.

Expected Average Cost per Unit Time for Complex Cost Functions

In the preceding subsection, the cost function was based solely on the state that the 
process is in at time t. In many important problems encountered in practice, the cost may 
also depend upon some other random variable.
	 For example, in the inventory example introduced in Sec. 28.1, suppose that the 
costs to be considered are the ordering cost and the penalty cost for unsatisfied 
demand (storage costs are so small they will be ignored). It is reasonable to assume 
that the number of cameras ordered to arrive at the beginning of week t depends 
only upon the state of the process Xt−1 (the number of cameras in stock) when the 
order is placed at the end of week t − 1. However, the cost of unsatisfied demand 
in week t will also depend upon the demand Dt. Therefore, the total cost (ordering 
cost plus cost of unsatisfied demand) for week t is a function of Xt−1 and Dt, that is, 
C(Xt−1, Dt).
	 Under the assumptions of this example, it can be shown that the (long-run) expected 
average cost per unit time is given by

​​ lim    
n→∞

​​ E​​
[

​ 1 __ n ​ ​∑ 
t=1

​ 
n

​   C(Xt−1, Dt)​]
​​ = ​​∑ 

j=0

​ 
M

​   k( j) πj ,​​
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where

k( j) = E[C( j, Dt)],

and where this latter (conditional) expectation is taken with respect to the probability 
distribution of the random variable Dt, given the state j. Similarly, the (long-run) actual 
average cost per unit time is given by

​​ lim    
n→∞

​​​​
[

​ 1 __ n ​ ​∑ 
t=1

​ 
n

​   C(Xt−1, Dt)​]
​​ = ​​∑ 

j=0

​ 
M

​   k( j)πj.​​

	 Now let us assign numerical values to the two components of C(Xt−1, Dt) in this 
example, namely, the ordering cost and the penalty cost for unsatisfied demand. If z > 0 
cameras are ordered, the cost incurred is (10 + 25z) dollars. If no cameras are ordered, 
no ordering cost is incurred. For each unit of unsatisfied demand (lost sales), there is a 
penalty of $50. Therefore, given the ordering policy described in Sec. 28.1, the cost in 
week t is given by

C(Xt−1, Dt) = ​​{​
10 + (25)(3) + 50 max{Dt − 3, 0}

​ 
if

​ 
Xt−1 = 0

​     50 max {Dt − Xt−1, 0}​  if​  Xt−1 ≥ 1,​​​

for t = 1, 2, . . . . Hence,

C(0, Dt) = 85 + 50 max{Dt − 3, 0},

so that

k(0) = E[C(0, Dt)] = 85 + 50E(max{Dt − 3, 0})
     = 85 + 50[PD(4) + 2PD(5) + 3PD(6) + ⋯],

where PD(i) is the probability that the demand equals i, as given by a Poisson distribution 
with a mean of 1, so that PD(i) becomes negligible for i larger than about 6. Since  
PD(4) = 0.015, PD(5) = 0.003, and PD(6) = 0.001, we obtain k(0) = 86.2. Also using 
PD(2) = 0.184 and PD(3) = 0.061, similar calculations lead to the results

k(1) = E[C(1, Dt)] �= 50E(max{Dt − 1, 0}) 
= 50[PD(2) + 2PD(3) + 3PD(4) + ⋯] 
= 18.4,

k(2) = E[C(2, Dt)]� = 50E(max{Dt − 2, 0}) 
 = 50[PD(3) + 2PD(4) + 3PD(5) + ⋯] 
 = 5.2,

and

k(3) = E[C(3, Dt)]� = 50E(max{Dt − 3, 0}) 
 = 50[PD(4) + 2PD(5) + 3PD(6) + ⋯] 
 = 1.2.

Thus, the (long-run) expected average cost per week is given by

​​∑ 
j=0

​ 
3

​   k( j)πj = 86.2(0.286) + 18.4(0.285) + 5.2(0.263) + 1.2(0.166) = $31.46.​​

	 This is the cost associated with the particular ordering policy described in Sec. 28.1. 
The cost of other ordering policies can be evaluated in a similar way to identify the 
policy that minimizes the expected average cost per week.
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	 The results of this subsection were presented only in terms of the inventory example. 
However, the (nonnumerical) results still hold for other problems as long as the follow-
ing conditions are satisfied:

1.	 {Xt} is an irreducible (finite-state) Markov chain.
2.	 Associated with this Markov chain is a sequence of random variables {Dt} which are 

independent and identically distributed.
3.	 For a fixed m = 0, ± 1, ±2, . . . , a cost C(Xt, Dt+m) is incurred at time t, for t = 0, 

1, 2, . . . .
4.	 The sequence X0, X1, X2, . . . , Xt must be independent of Dt+m.

In particular, if these conditions are satisfied, then

​​ lim    
n→∞

​​ E​​
[

​ 1 __ n ​ ​∑ 
t=1

​ 
n

​   C(Xt, Dt+m)​
]

​​ = ​​∑ 
j=0

​ 
M

​   k( j)πj ,​​

where

k( j) = E[C( j, Dt+m)],

and where this latter conditional expectation is taken with respect to the probability 
distribution of the random variable Dt, given the state j. Furthermore,

​​ lim    
n→∞

​​ ​​
[

​ 1 __ n ​ ​∑ 
t=1

​ 
n

​   C(Xt, Dt+m)​
]

​​ = ​​∑ 
j=0

​ 
M

​   k( j)πj​​

for essentially all paths of the process.

■  28.6  FIRST PASSAGE TIMES
Section 28.3 dealt with finding n-step transition probabilities from state i to state j. It is 
often desirable to also make probability statements about the number of transitions made 
by the process in going from state i to state j for the first time. This length of time is 
called the first passage time in going from state i to state j. When j = i, this first pas-
sage time is just the number of transitions until the process returns to the initial state i. 
In this case, the first passage time is called the recurrence time for state i.
	 To illustrate these definitions, reconsider the inventory example introduced in Sec. 28.1, 
where Xt is the number of cameras on hand at the end of week t, where we start with 
X0 = 3. Suppose that it turns out that

X0 = 3,  X1 = 2,  X2 = 1,  X3 = 0,  X4 = 3,  X5 = 1.

In this case, the first passage time in going from state 3 to state 1 is 2 weeks, the first passage 
time in going from state 3 to state 0 is 3 weeks, and the recurrence time for state 3 is 4 weeks.
	 In general, the first passage times are random variables. The probability distributions 
associated with them depend upon the transition probabilities of the process. In particu-
lar, let ​​f​  ij​ 

  (n)​​ denote the probability that the first passage time from state i to j is equal to 
n. For n > 1, this first passage time is n if the first transition is from state i to some 
state k (k ≠ j) and then the first passage time from state k to state j is n − 1. Therefore, 
these probabilities satisfy the following recursive relationships:

​​f​  ij​ 
  (1)​​ = ​​p​ij​ 

(1)​​ = pij,

​​f​  ij​ 
  (2)​​ = ​​∑ 

k≠j

​ 
 

​   pik ​f​kj
​   (1)​,​​

​​f​  ij​ 
  (n)​​ = ​​∑ 

k≠j

​ 
 

​   pik ​f​kj
​   (n−1)​.​​
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Thus, the probability of a first passage time from state i to state j in n steps can be 
computed recursively from the one-step transition probabilities.
	 In the inventory example, the probability distribution of the first passage time in 
going from state 3 to state 0 is obtained from these recursive relationships as follows:

​​f​ 30​ 
 (1)​​ = p30 = 0.080,

​​f​ 30​ 
 (2)​​ = p31 ​​f​ 10​ 

 (1)​​ + p32 ​​f​ 20​ 
 (1)​​ + p33 ​​f​ 30​ 

 (1)​​
    = 0.184(0.632) + 0.368(0.264) + 0.368(0.080) = 0.243,
⋮

where the p3k and​ ​f ​
k0​ 
(1)​ = ​p​

k0​ ​are obtained from the (one-step) transition matrix given in 
Sec. 28.2.
	 For fixed i and j, the​​ f ​ij​ 

(n)​​ are nonnegative numbers such that

​​∑ 
n=1

​ 
∞

​   ​​​​f ​ij​ 
(n)​​ ≤ 1.

Unfortunately, this sum may be strictly less than 1, which implies that a process initially 
in state i may never reach state j. When the sum does equal 1, ​​f ​ij​ 

(n)​​ (for n = 1, 2, . . .) 
can be considered as a probability distribution for the random variable, the first passage 
time.
	 Although obtaining ​​f ​ij​ 

(n)​​ for all n may be tedious, it is relatively simple to obtain the 
expected first passage time from state i to state j. Denote this expectation by μij, which 
is defined by

​μij = ​{ ​∞​ 
if ​∑ 

n=1

​ 
∞

​   ​​f ​ij​ 
(n)​ < 1

​   

​∑ 
n=1

​ 
∞

​   ​n​f ​ij​ 
(n)​

​ 

if ​∑ 
n=1

​ 
∞

​   ​​f ​ij​ 
(n)​ = 1.

​

​

 ​​

Whenever

​​∑ 
n=1

​ 
∞

​   ​​​​f ​ij​ 
(n)​​ = 1,

μij uniquely satisfies the equation

μij = 1 + ​​∑ 
k≠j

​ 
 

​   ​​pikμkj.

This equation recognizes that the first transition from state i can be to either state j or 
to some other state k. If it is to state j, the first passage time is 1. Given that the first 
transition is to some state k (k ≠ j) instead, which occurs with probability pik, the con-
ditional expected first passage time from state i to state j is 1 + μkj. Combining these 
facts, and summing over all the possibilities for the first transition, leads directly to this 
equation.
	 For the inventory example, these equations for the μij can be used to compute the 
expected time until the cameras are out of stock, given that the process is started when 
three cameras are available. This expected time is just the expected first passage time 
μ30. Since all the states are recurrent, the system of equations leads to the expressions

μ30 = 1 + p31μ10 + p32μ20 + p33μ30,
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μ20 = 1 + p21μ10 + p22μ20 + p23μ30,
μ10 = 1 + p11μ10 + p12μ20 + p13μ30,

or

μ30 = 1 + 0.184μ10 + 0.368μ20 + 0.368μ30,
μ20 = 1 + 0.368μ10 + 0.368μ20,
μ10 = 1 + 0.368μ10.

The simultaneous solution to this system of equations is

μ10 = 1.58 weeks,
μ20 = 2.51 weeks,
μ30 = 3.50 weeks,

so that the expected time until the cameras are out of stock is 3.50 weeks. Thus, in mak-
ing these calculations for μ30, we also obtain μ20 and μ10.
	 For the case of μij where j = i, μii is the expected number of transitions until the 
process returns to the initial state i, and so is called the expected recurrence time for 
state i. After obtaining the steady-state probabilities (π0, π1, . . . , πM) as described in the 
preceding section, these expected recurrence times can be calculated immediately as

μii = ​​ 1 __ πi
 ​​,    for i = 0, 1,  .  .  .  , M.

Thus, for the inventory example, where π0 = 0.286, π1 = 0.285, π2 = 0.263, and π3 = 
0.166, the corresponding expected recurrence times are

μ00 = ​​ 1 __ π0
 ​​ = 3.50 weeks,    μ22 = ​​ 1 __ π2

 ​​ = 3.80 weeks.

■  28.7  ABSORBING STATES
It was pointed out in Sec. 28.4 that a state k is called an absorbing state if pkk = 1, so 
that once the chain visits k it remains there forever. If k is an absorbing state, and the 
process starts in state i, the probability of ever going to state k is called the probability 
of absorption into state k, given that the system started in state i. This probability is 
denoted by fik.
	 When there are two or more absorbing states in a Markov chain, and it is evident 
that the process will be absorbed into one of these states, it is desirable to find these 
probabilities of absorption. These probabilities can be obtained by solving a system of 
linear equations that considers all the possibilities for the first transition and then, given 
the first transition, considers the conditional probability of absorption into state k. In 
particular, if the state k is an absorbing state, then the set of absorption probabilities fik 
satisfies the system of equations

​fik = ​∑ 
j=0

​ 
M

​  pijfjk​,    for i = 0, 1, . . . , M,​

subject to the conditions
fkk = 1,
fik = 0,    if state i is recurrent and i ≠ k.
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	 Absorption probabilities are important in random walks. A random walk is a Markov 
chain with the property that if the system is in a state i, then in a single transition the 
system either remains at i or moves to one of the two states immediately adjacent to i. For 
example, a random walk often is used as a model for situations involving gambling.

A Second Gambling Example.  To illustrate the use of absorption probabilities in a 
random walk, consider a gambling example similar to that presented in Sec. 28.2. However, 
suppose now that two players (A and B), each having $2, agree to keep playing the game 
and betting $1 at a time until one player is broke. The probability of A winning a single 
bet is ​​ 1 _ 3 ​​, so B wins the bet with probability ​​ 2 _ 3 ​​. The number of dollars that player A has 
before each bet (0, 1, 2, 3, or 4) provides the states of a Markov chain with transition matrix

	 State	 0	 1	 2	 3	 4

​P =  ​

0

​ 

1

​ 2​ 

3

​ 

4

​ ​

⎡

 ⎢ 
⎣

​

1

​ 

0

​ 

0

​ 

0

​ 

0

​  

​ 2 _ 3 ​

​ 

0

​ 

​ 1 _ 3 ​

​ 

0

​ 

0

​  0​  ​ 2 _ 3 ​​  0​  ​ 1 _ 3 ​​  0​  

0

​ 

0

​ 

​ 2 _ 3 ​

​ 

0

​ 

​ 1 _ 3 ​

​  

0

​ 

0

​ 

0

​ 

0

​ 

1

​

⎤

 ⎥ 
⎦

​​.

	 Starting from state 2, the probability of absorption into state 0 (A losing all her 
money) can be obtained by solving for f20 from the system of equations given at the 
beginning of this section,

f00 = 1    (since state 0 is an absorbing state),

f10 = ​​ 2 __ 
3
 ​​f00      + ​​ 1 __ 

3
 ​​f20,

f20 =      ​​ 2 __ 
3

 ​​f10        + ​​ 1 __ 
3
 ​​f30,

f30 =      ​​       2 __ 
3
 ​​f20        + ​​ 1 __ 

3
 ​​f40,

f40 = 0    (since state 4 is an absorbing state).

This system of equations yields

f20 = ​​ 2 __ 
3
 ​​​​(​ 2 __ 

3
 ​ + ​ 1 __ 

3
 ​f20)​​ + ​​ 1 __ 

3
 ​​(​ 2 __ 

3
 ​f20)​​ = ​​ 4 __ 

9
 ​​ + ​​ 4 __ 

9
 ​​f20,

which reduces to f20 = ​​ 4 _ 5 ​​ as the probability of absorption into state 0.
	 Similarly, the probability of A finishing with $4 (B going broke) when starting with 
$2 (state 2) is obtained by solving for f24 from the system of equations,

f04 = 0    (since state 0 is an absorbing state),

f14 = ​​ 2 __ 
3
 ​​f04      + ​​ 1 __ 

3
 ​​f24,

f24 =   ​​    2 __ 
3
 ​​f14         + ​​ 1 __ 

3
 ​​f34,

f34 =               ​​ 2 __ 
3
 ​​f24        + ​​ 1 __ 

3
 ​​f44,

f44 = 1    (since state 0 is an absorbing state).

This yields

​f24 = ​ 2 __ 
3
 ​​(​ 1 __ 

3
 ​f24)​ + ​ 1 __ 

3
 ​​(​ 2 __ 

3
 ​f24 + ​ 1 __ 

3
 ​)​ = ​ 4 __ 

9
 ​f24 + ​ 1 __ 

9
 ​​,

so f24 = ​​ 1 _ 5 ​​ is the probability of absorption into state 4.
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A Credit Evaluation Example.  There are many other situations where absorbing states 
play an important role. Consider a department store that classifies the balance of a cus-
tomer’s bill as fully paid (state 0), 1 to 30 days in arrears (state 1), 31 to 60 days in 
arrears (state 2), or bad debt (state 3). The accounts are checked monthly to determine 
the state of each customer. In general, credit is not extended and customers are expected 
to pay their bills promptly. Occasionally, customers miss the deadline for paying their 
bill. If this occurs when the balance is within 30 days in arrears, the store views the 
customer as being in state 1. If this occurs when the balance is between 31 and 60 days 
in arrears, the store views the customer as being in state 2. Customers that are more than 
60 days in arrears are put into the bad-debt category (state 3), and then bills are sent to 
a collection agency.
	 After examining data over the past several years on the month-by-month progression 
of individual customers from state to state, the store has developed the following transi-
tion matrix:4

State
State 0: Fully Paid

1: 1 to 30 Days 
in Arrears

2: 31 to 60 
Days in Arrears 3: Bad Debt

0: fully paid 1 0 0 0
1: 1 to 30 days 
in arrears

0.7 0.2 0.1 0

2: 31 to 60 
days in arrears

0.5 0.1 0.2 0.2

3: bad debt 0 0 0 1

Although each customer ends up in state 0 or 3, the store is interested in determining 
the probability that a customer will end up as a bad debt given that the account belongs 
to the 1 to 30 days in arrears state, and similarly, given that the account belongs to the 
31 to 60 days in arrears state.
	 To obtain this information, the set of equations presented at the beginning of this 
section must be solved to obtain f13 and f23. By substituting, the following two equations 
are obtained:

f13 = p10 f03 + p11 f13 + p12 f23 + p13 f33,
f23 = p20 f03 + p21 f13 + p22 f23 + p23 f33.

Noting that f03 = 0 and f33 = 1, we now have two equations in two unknowns, namely,

(1 − p11)f13 = p13 + p12 f23,
(1 − p22) f23 = p23 + p21 f13.

Substituting the values from the transition matrix leads to

0.8 f13 = 0.1 f23,
0.8 f23 = 0.2 + 0.1f13,

and the solution is

f13 = 0.032,
f23 = 0.254.

4Customers who are fully paid (in state 0) and then subsequently fall into arrears on new purchases are viewed 
as “new” customers who start in state 1.
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Thus, approximately 3 percent of the customers whose accounts are 1 to 30 days in 
arrears end up as bad debts, whereas about 25 percent of the customers whose accounts 
are 31 to 60 days in arrears end up as bad debts.

■  28.8  CONTINUOUS TIME MARKOV CHAINS
In all the previous sections, we assumed that the time parameter t was discrete (that is, 
t = 0, 1, 2, . . .). Such an assumption is suitable for many problems, but there are certain 
cases (such as for some queueing models considered in Chap. 17) where a continuous 
time parameter (call it t′) is required, because the evolution of the process is being 
observed continuously over time. The definition of a Markov chain given in Sec. 28.2 
also extends to such continuous processes. This section focuses on describing these 
“continuous time Markov chains” and their properties.

Formulation

As before, we label the possible states of the system as 0, 1, . . . , M. Starting at time 
0 and letting the time parameter t′ run continuously for t′ ≥ 0, we let the random vari-
able X(t′) be the state of the system at time t′. Thus, X(t′) will take on one of its pos-
sible (M + 1) values over some interval, 0 ≤ t′ < t1, then will jump to another value 
over the next interval, t1 ≤ t′ < t2, etc., where these transit points (t1, t2, . . .) are random 
points in time (not necessarily integer).
	 Now consider the three points in time (1) t′ = r (where r ≥ 0), (2) t′ = s (where 
s > r), and (3) t′ = s + t (where t > 0), interpreted as follows:

	 t′ = r  is a past time,
	 t′ = s  is the current time,
	 t′ = s + t  is t time units into the future.

Therefore, the state of the system now has been observed at times t′ = s and t′ = r. 
Label these states as

X(s) = i    and    X(r) = x(r).

Given this information, it now would be natural to seek the probability distribution of 
the state of the system at time t′ = s + t. In other words, what is

P{X(s + t) = j ∣ X(s) = i and X(r) = x(r)},    for j = 0, 1, . . . , M?

	 Deriving this conditional probability often is very difficult. However, this task is 
considerably simplified if the stochastic process involved possesses the following key 
property.

	 A continuous time stochastic process {X(t′); t′ ≥ 0} has the Markovian property if
	 P{X(t + s) = j ∣ X(s) = i and X(r) = x(r)} = P{X(t + s) = j ∣ X(s) = i},
	 for all i, j = 0, 1, . . . , M and for all r ≥ 0, s > r, and t > 0.

	 Note that P{X(t + s) = j ∣ X(s) = i} is a transition probability, just like the transi-
tion probabilities for discrete time Markov chains considered in the preceding sections, 
where the only difference is that t now need not be an integer.

If the transition probabilities are independent of s, so that

P{X(t + s) = j ∣ X(s) = i} = P{X(t) = j ∣ X(0) = i} for all s > 0, 

they are called stationary transition probabilities.
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To simplify notation, we shall denote these stationary transition probabilities by

pij(t) = P{X(t) = j ∣ X(0) = i},

where pij(t) is referred to as the continuous time transition probability function. We 
assume that

​​lim    
t→0 ​ pij(t) = ​{ ​1​ 0​  ​  if​ if​  ​  i = j​ 

i ≠ j.​​
 ​

​	 Now we are ready to define the continuous time Markov chains to be considered in 
this section.

A continuous time stochastic process {X(t′); t′ ≥ 0} is a continuous time Markov chain 
if it has the Markovian property.

We shall restrict our consideration to continuous time Markov chains with the following 
properties:

1.	 A finite number of states.
2.	 Stationary transition probabilities.

Some Key Random Variables

In the analysis of continuous time Markov chains, one key set of random variables is the 
following:

Each time the process enters state i, the amount of time it spends in that state before 
moving to a different state is a random variable Ti, where i = 0, 1, . . . , M.

Suppose that the process enters state i at time t′ = s. Then, for any fixed amount of time 
t > 0, note that Ti > t if and only if X(t′) = i for all t′ over the interval s ≤ t′ ≤ s + t. 
Therefore, the Markovian property (with stationary transition probabilities) implies that

P{Ti > t + s ∣ Ti > s} = P{Ti > t}.

This is a rather unusual property for a probability distribution to possess. It says that the 
probability distribution of the remaining time until the process transits out of a given 
state always is the same, regardless of how much time the process has already spent in 
that state. In effect, the random variable is memoryless; the process forgets its history. 
There is only one (continuous) probability distribution that possesses this property—the 
exponential distribution. The exponential distribution has a single parameter, call it q, 
where the mean is 1/q and the cumulative distribution function is

P{Ti ≤ t} = 1 − e−qt,    for t ≥ 0.

(We described the properties of the exponential distribution in detail in Sec. 17.4.)
	 This result leads to an equivalent way of describing a continuous time Markov chain:

1.	 The random variable Ti has an exponential distribution with a mean of 1/qi.
2.	 When leaving state i, the process moves to a state j with probability pij, where the pij 

satisfy the conditions

pii = 0    for all i, 

	 and

​​∑ 
j=0

​ 
M

​  pij = 1​​    for all i.

3.	 The next state visited after state i is independent of the time spent in state i.
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	 Just as the one-step transition probabilities played a major role in describing discrete 
time Markov chains, the analogous role for a continuous time Markov chain is played 
by the transition intensities.

	 The transition intensities are

qi = −​​ d __ 
dt

 ​​pii(0) = ​​lim    
t→0 ​​​​ 

1 − pii(t) ________ 
t
 ​​ ,    for i = 0, 1, 2, . . . , M,

	 and

qij = ​​ d __ 
dt

 ​​pij(0) = ​​lim    
t→0 ​​​​ 

pij(t) ____ 
t
 ​​  = qipij ,    for all j ≠ i,

where pij(t) is the continuous time transition probability function introduced near the 
beginning of the section and pij is the probability described in property 2 of the 
preceding paragraph. Furthermore, qi as defined here turns out to still be the param-
eter of the exponential distribution for Ti as well (see property 1 of the preceding 
paragraph).

	 The intuitive interpretation of the qi and qij is that they are transition rates. In par-
ticular, qi is the transition rate out of state i in the sense that qi is the expected number 
of times that the process leaves state i per unit of time spent in state i. (Thus, qi is the 
reciprocal of the expected time that the process spends in state i per visit to state i; that 
is, qi = 1/E[Ti].) Similarly, qij is the transition rate from state i to state j in the sense 
that qij is the expected number of times that the process transits from state i to state 
j per unit of time spent in state i. Thus,

qi = ​​∑ 
j≠i

​ 
 

​   ​​qij.

	 Just as qi is the parameter of the exponential distribution for Ti, each qij is the 
parameter of an exponential distribution for a related random variable described 
below:

Each time the process enters state i, the amount of time it will spend in state i before 
a transition to state j occurs (if a transition to some other state does not occur first) is 
a random variable Tij , where i, j = 0, 1, . . . , M and j ≠ i. The Tij are independent 
random variables, where each Tij has an exponential distribution with parameter qij , so 
E[Tij] = 1/qij. The time spent in state i until a transition occurs (Ti) is the minimum 
(over j ≠ i) of the Tij. When the transition occurs, the probability that it is to state j is 
pij = qij/qi.

Steady-State Probabilities

Just as the transition probabilities for a discrete time Markov chain satisfy the Chapman-
Kolmogorov equations, the continuous time transition probability function also satisfies 
these equations. Therefore, for any states i and j and nonnegative numbers t and s 
(0 ≤ s ≤ t),

​pij(t) = ​∑ 
k=0

​ 
M

​   ​pik(s)pkj(t − s).​

A pair of states i and j are said to communicate if there are times t1 and t2 such that 
pij(t1) > 0 and pji(t2) > 0. All states that communicate are said to form a class. If all 
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states form a single class, i.e., if the Markov chain is irreducible (hereafter assumed), 
then

pij(t) > 0,    for all t > 0 and all states i and j.

Furthermore,

​​ lim    
t→∞

​​ pij(t) = πj

always exists and is independent of the initial state of the Markov chain, for j = 0, 1, . . . , M. 
These limiting probabilities are commonly referred to as the steady-state probabilities 
(or stationary probabilities) of the Markov chain.
	 The πj satisfy the equations

πj = ​​∑ 
i=0

​ 
M

​   ​​πipij(t),    for j = 0, 1,  .  .  .  , M and every t ≥ 0.

However, the following steady-state equations provide a more useful system of equa-
tions for solving for the steady-state probabilities:

πjqj = ​​∑ 
i≠j

​ 
 

​   ​​πiqij,    for j = 0, 1,  .  .  .  , M.

and

​​∑ 
j=0

​ 
M

​   ​​πj = 1.

	 The steady-state equation for state j has an intuitive interpretation. The left-hand 
side (πjqj) is the rate at which the process leaves state j, since πj is the (steady-state) 
probability that the process is in state j and qj is the transition rate out of state j given 
that the process is in state j. Similarly, each term on the right-hand side (πiqij) is the 
rate at which the process enters state j from state i, since qij is the transition rate from 
state i to state j given that the process is in state i. By summing over all i ≠ j, the 
entire right-hand side then gives the rate at which the process enters state j from any 
other state. The overall equation thereby states that the rate at which the process leaves 
state j must equal the rate at which the process enters state j. Thus, this equation is 
analogous to the conservation of flow equations encountered in many engineering and 
science courses.
	 Because each of the first M + 1 steady-state equations requires that two rates be in 
balance (equal), these equations sometimes are called the balance equations.

Example.  A certain shop has two identical machines that are operated continuously 
except when they are broken down. Because they break down fairly frequently, the 
top-priority assignment for a full-time maintenance person is to repair them whenever 
needed.
	 The time required to repair a machine has an exponential distribution with a mean 
of ​​ 1 _ 2 ​​ day. Once the repair of a machine is completed, the time until the next breakdown 
of that machine has an exponential distribution with a mean of 1 day. These distributions 
are independent.

Define the random variable X(t′) as

X(t′) = number of machines broken down at time t′,
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so the possible values of X(t′) are 0, 1, 2. Therefore, by letting the time parameter t′ run 
continuously from time 0, the continuous time stochastic process {X(t′); t′ ≥ 0} gives 
the evolution of the number of machines broken down.
	 Because both the repair time and the time until a breakdown have exponential 
distributions, {X(t′); t′ ≥ 0} is a continuous time Markov chain5 with states 0, 1, 2. 
Consequently, we can use the steady-state equations given in the preceding subsection 
to find the steady-state probability distribution of the number of machines broken 
down. To do this, we need to determine all the transition rates, i.e., the qi and qij for 
i, j = 0, 1, 2.
	 The state (number of machines broken down) increases by 1 when a breakdown 
occurs and decreases by 1 when a repair occurs. Since both breakdowns and repairs 
occur one at a time, q02 = 0 and q20 = 0. The expected repair time is ​​ 1 _ 2 ​​ day, so the 
rate at which repairs are completed (when any machines are broken down) is 2 per 
day, which implies that q21 = 2 and q10 = 2. Similarly, the expected time until a 
particular operational machine breaks down is 1 day, so the rate at which it breaks 
down (when operational) is 1 per day, which implies that q12 = 1. During times when 
both machines are operational, breakdowns occur at the rate of 1 + 1 = 2 per day, 
so q01 = 2.
	 These transition rates are summarized in the rate diagram shown in Fig. 28.5. These 
rates now can be used to calculate the total transition rate out of each state.

q0 = q01 = 2
q1 = q10 + q12 = 3
q2 = q21 = 2

Plugging all the rates into the steady-state equations given in the preceding subsection 
then yields

Balance equation for state 0:	 2π0 = 2π1
Balance equation for state 1:	 3π1 = 2π0 + 2π2
Balance equation for state 2:	 2π2 = π1
Probabilities sum to 1:	 π0 + π1 + π2 = 1

Any one of the balance equations (say, the second) can be deleted as redundant, and the 
simultaneous solution of the remaining equations gives the steady-state distribution as

(π0, π1, π2) = ​​(​ 2 __ 
5
 ​, ​ 2 __ 

5
 ​, ​ 1 __ 

5
 ​)​.​

Thus, in the long run, both machines will be broken down simultaneously 20 percent of 
the time, and one machine will be broken down another 40 percent of the time.

5Proving this fact requires the use of two properties of the exponential distribution discussed in Sec. 17.4 (lack 
of memory and the minimum of exponentials is exponential), since these properties imply that the Tij random 
variables introduced earlier do indeed have exponential distributions.
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	 Chapter 17 (on queueing theory) features many more examples of continuous time 
Markov chains. In fact, most of the basic models of queueing theory fall into this cate-
gory. The current example actually fits one of these models (the finite calling population 
variation of the M/M/s model included in Sec. 17.6).

■  FIGURE 28.5
The rate diagram for the 
example of a continuous time 
Markov chain.

210State:

q01 2 q12 1

q10 2 q21 2
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The symbol C to the left of some of the problems (or their parts) has 
the following meaning.

C: � Use the computer with the corresponding automatic procedures 
just listed (or other equivalent routines) to solve the problem.

28.2-1.  Assume that the probability of rain tomorrow is 0.5 if it is 
raining today, and assume that the probability of its being clear (no 
rain) tomorrow is 0.9 if it is clear today. Also assume that these 
probabilities do not change if information is also provided about 
the weather before today.
(a)	 Explain why the stated assumptions imply that the Markovian 

property holds for the evolution of the weather.
(b)	Formulate the evolution of the weather as a Markov chain 

by defining its states and giving its (one-step) transition 
matrix.

28.2-2.  Consider the second version of the stock market model 
presented as an example in Sec. 28.2. Whether the stock goes up 
tomorrow depends upon whether it increased today and yester-
day. If the stock increased today and yesterday, it will increase 
tomorrow with probability α1. If the stock increased today and 
decreased yesterday, it will increase tomorrow with probability 
α2. If the stock decreased today and increased yesterday, it will 
increase tomorrow with probability α3. Finally, if the stock 
decreased today and yesterday, it will increase tomorrow with 
probability α4.
(a)	 Construct the (one-step) transition matrix of the Markov 

chain.
(b)	 Explain why the states used for this Markov chain cause the 

mathematical definition of the Markovian property to hold 
even though what happens in the future (tomorrow) depends 
upon what happened in the past (yesterday) as well as the pres-
ent (today).

28.2-3.  Reconsider Prob. 28.2-2. Suppose now that whether or not 
the stock goes up tomorrow depends upon whether it increased to-
day, yesterday, and the day before yesterday. Can this problem be 
formulated as a Markov chain? If so, what are the possible states? 
Explain why these states give the process the Markovian property 
whereas the states in Prob. 28.2-2 do not.

28.3-1.  Reconsider Prob. 28.2-1.
C  (a) � Use the procedure Chapman-Kolmogorov Equations in 

your IOR Tutorial to find the n-step transition matrix P(n) 
for n = 2, 5, 10, 20.

(b)	 The probability that it will rain today is 0.5. Use the results 
from part (a) to determine the probability that it will rain n days 
from now, for n = 2, 5, 10, 20.

C  (c) � Use the procedure Steady-State Probabilities in your IOR 
Tutorial to determine the steady-state probabilities of the 
state of the weather. Describe how the probabilities in the 

■  PROBLEMS
n-step transition matrices obtained in part (a) compare to 
these steady-state probabilities as n grows large.

28.3-2.  Suppose that a communications network transmits binary 
digits, 0 or 1, where each digit is transmitted 10 times in succes-
sion. During each transmission, the probability is 0.995 that the 
digit entered will be transmitted accurately. In other words, the 
probability is 0.005 that the digit being transmitted will be recorded 
with the opposite value at the end of the transmission. For each 
transmission after the first one, the digit entered for transmission is 
the one that was recorded at the end of the preceding transmission. 
If X0 denotes the binary digit entering the system, X1 the binary 
digit recorded after the first transmission, X2 the binary digit re-
corded after the second transmission, . . . , then {Xn} is a Markov 
chain.
(a)	 Construct the (one-step) transition matrix.
C  (b) � Use your IOR Tutorial to find the 10-step transition matrix 

P(10). Use this result to identify the probability that a digit 
entering the network will be recorded accurately after the 
last transmission.

C  (c) � Suppose that the network is redesigned to improve the prob-
ability that a single transmission will be accurate from 0.995 
to 0.998. Repeat part (b) to find the new probability that a 
digit entering the network will be recorded accurately after 
the last transmission.

28.3-3.  A particle moves on a circle through points that have been 
marked 0, 1, 2, 3, 4 (in a clockwise order). The particle starts at 
point 0. At each step it has probability 0.5 of moving one point 
clockwise (0 follows 4) and 0.5 of moving one point counter-
clockwise. Let Xn (n ≥ 0) denote its location on the circle after step n. 
{Xn} is a Markov chain.
(a)	 Construct the (one-step) transition matrix.
C  (b) � Use your IOR Tutorial to determine the n-step transition 

matrix P(n) for n = 5, 10, 20, 40, 80.
C  (c) � Use your IOR Tutorial to determine the steady-state proba-

bilities of the state of the Markov chain. Describe how the 
probabilities in the n-step transition matrices obtained in part 
(b) compare to these steady-state probabilities as n grows 
large.

28.4-1.  Given the following (one-step) transition matrices of a 
Markov chain, determine the classes of the Markov chain and 
whether they are recurrent.

	 State	 0	 1	 2	 3

(a)	 P =  ​​ 

0

​ 1​ 
2
​ 

3

​​ ​​

⎡

 ⎢ 
⎣

​

0

​ 

0

​ 

​ 1 _ 3 ​

​ 

​ 2 _ 3 ​

​ 1​  0​  0​  0​ 
0
​ 

1
​ 

0
​ 

0
​ 

0

​ 

1

​ 

0

​ 

0

​

⎤

 ⎥ 
⎦

​​
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	 State	 0	 1	 2	 3

(b)	 P =  ​​ 

0

​ 
1
​ 2​ 

3

​​ ​​

⎡

 ⎢ 

⎣

​

1

​ 

0

​ 

0

​ 

0

​ 
0
​ 

​ 1 _ 2 ​
​ 

​ 1 _ 2 ​
​ 

0
​ 

0
​  ​ 1 _ 2 ​

​  ​ 1 _ 2 ​
​ 

0
​ 

​ 1 _ 2 ​

​ 

0

​ 

0

​ 

​ 1 _ 2 ​

 ​

⎤

 ⎥ 

⎦

​​

28.4-2.  Given each of the following (one-step) transition matrices 
of a Markov chain, determine the classes of the Markov chain and 
whether they are recurrent.

	 State	 0	 1	 2	 3

(a)	 P =  ​​ 

0

​ 
1
​ 

2
​ 

3

​​ ​​

⎡

 ⎢ 

⎣

​

0

​ 

​ 1 _ 3 ​

​ 

​ 1 _ 3 ​

​ 

​ 1 _ 3 ​

​ 
​ 1 _ 3 ​​ 

0
​ 

​ 1 _ 3 ​​ 
​ 1 _ 3 ​​ 

​ 1 _ 3 ​
​ 

​ 1 _ 3 ​
​ 

0
​ 

​ 1 _ 3 ​
​ 

​ 1 _ 3 ​

​ 

​ 1 _ 3 ​

​ 

​ 1 _ 3 ​

​ 

0

​

⎤

 ⎥ 

⎦

​​

	 State	 0	 1	 2

(b)	 P =  ​​ 
0
​ 1​ 

2
​​ ​​

⎡
 ⎢ 

⎣
​
0
​ 

0
​ 

1
​ ​ 1 _ 2 ​​  ​ 1 _ 2 ​​  0​ 

0
​ 

1
​ 

0
​
⎤
 ⎥ 

⎦
​​

28.4-3.  Given the following (one-step) transition matrix of a 
Markov chain, determine the classes of the Markov chain and 
whether they are recurrent.

	 State	 0	 1	 2	 3	 4

	 P =  ​​ 

0

​ 

1

​ 2​ 

3

​ 

4

​​ ​​

⎡

 ⎢ 
⎣

​ 

​ 1 _ 4 ​

​ 

​ 3 _ 4 ​

​ 

0

​ 

0

​ 

0

​  

​ 3 _ 4 ​

​ 

​ 1 _ 4 ​

​ 

0

​ 

0

​ 

0

​  ​ 1 _ 3 ​​  ​ 1 _ 3 ​​  ​ 1 _ 3 ​​  0​  0​  

0

​ 

0

​ 

0

​ 

​ 3 _ 4 ​

​ 

​ 1 _ 4 ​

​  

0

​ 

0

​ 

0

​ 

​ 1 _ 4 ​

​ 

​ 3 _ 4 ​

 ​

⎤

 ⎥ 
⎦

​​

28.4-4.  Determine the period of each of the states in the Markov 
chain that has the following (one-step) transition matrix.

	 State	 0	 1	 2	 3	 4	 5

	 P =  ​​ 

0

​ 

1

​ 2​ 
3
​ 

4

​ 

5

​​ ​​

⎡

 ⎢ 
⎣

​

0

​ 

0

​ 

0

​ 

​ 2 _ 3 ​

​ 

0

​ 

​ 1 _ 3 ​

​  

0

​ 

0

​ 

1

​ 

0

​ 

0

​ 

0

​  
1
​ 

0
​ 

0
​ 

0
​ 

0
​ 

0
​  0​  ​ 1 _ 4 ​

​  0​  0​  ​ 3 _ 4 ​
​  0​  

0

​ 

0

​ 

1

​ 

0

​ 

0

​ 

0

​  

0

​ 

​ 1 _ 2 ​

​ 

0

​ 

0

​ 

​ 1 _ 2 ​

​ 

0

​

⎤

 ⎥ 
⎦

​​

28.4-5.  Consider the Markov chain that has the following (one-
step) transition matrix.

	 State	 0	 1	 2	 3	 4

	 P =  ​​ 

0

​ 
1
​ 2​ 

3

​ 

4

​​ ​​

⎡

 ⎢ 
⎣

​

0

​ 

​ 4 _ 5 ​

​ 

0

​ 

​ 1 _ 5 ​

​ 

0

​  
​ 1 _ 4 ​
​ 

0
​ 

​ 1 _ 2 ​
​ 

​ 1 _ 4 ​
​ 

0
​  0​  ​ 1 _ 2 ​

​  0​  ​ 1 __ 10 ​
​  ​ 2 _ 5 ​

​  

0

​ 

0

​ 

0

​ 

1

​ 

0

​  

​ 1 _ 3 ​

​ 

0

​ 

​ 1 _ 3 ​

​ 

​ 1 _ 3 ​

​ 

0

​

⎤

 ⎥ 
⎦

​​

(a)	 Determine the classes of this Markov chain and, for each class, 
determine whether it is recurrent or transient.

(b)	 For each of the classes identified in part (a), determine the 
period of the states in that class.

28.5-1.  Reconsider Prob. 28.2-1. Suppose now that the given prob-
abilities, 0.5 and 0.9, are replaced by arbitrary values, α and β, 
respectively. Solve for the steady-state probabilities of the state of 
the weather in terms of α and β.

28.5-2.  A transition matrix P is said to be doubly stochastic if the 
sum over each column equals 1; that is,

​​∑ 
i=0

​ 
M

​   ​​pij = 1,    for all j.

If such a chain is irreducible, aperiodic, and consists of M + 1 
states, show that

πj = ​​  1 ______ 
M + 1

 ​​,    for j = 0, 1, . . . , M.

28.5-3.  Reconsider Prob. 28.3-3. Use the results given in Prob. 28.5-2 
to find the steady-state probabilities for this Markov chain. Then 
find what happens to these steady-state probabilities if, at each 
step, the probability of moving one point clockwise changes to 0.9 
and the probability of moving one point counterclockwise changes 
to 0.1.

C  28.5-4.  The leading brewery on the West Coast (labeled A) has 
hired an OR analyst to analyze its market position. It is particularly 
concerned about its major competitor (labeled B). The analyst 
believes that brand switching can be modeled as a Markov chain 
using three states, with states A and B representing customers 
drinking beer produced from the aforementioned breweries and 
state C representing all other brands. Data are taken monthly, and 
the analyst has constructed the following (one-step) transition 
matrix from past data.

		  A	 B	 C

	 A	 0.8	 0.15	 0.05
	 B	 0.25	 0.7	 0.05
	 C	 0.15	 0.05	 0.8

What are the steady-state market shares for the two major breweries?

28.5-5.  Consider the following blood inventory problem facing a 
hospital. There is need for a rare blood type, namely, type AB, Rh 
negative blood. The demand D (in pints) over any 3-day period is 
given by

P{D = 0} = 0.4,    P{D = 1} = 0.3,
P{D = 2} = 0.2,    P{D = 3} = 0.1.

Note that the expected demand is 1 pint, since E(D) = 0.3(1) 
+ 0.2(2) + 0.1(3) = 1. Suppose that there are 3 days between deliv-
eries. The hospital proposes a policy of receiving 1 pint at each  
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Xn = ​​{​
​X​n−1​ − Dn + 2m

​ 
if Xn−1 − Dn < 1

​   
Xn−1 − Dn

​ 
if Xn−1 − Dn ≥ 1

​​​    (n = 1, 2, . . . ),

when {Xn} (n = 0, 1, . . . ) is a Markov chain. It has only two states, 
1 and 2, because the only time that ordering will take place is when 
Zn = 0, −1, −2, or −3, in which case 2, 2, 4, and 4 units are ordered, 
respectively, leaving Xn = 2, 1, 2, 1, respectively.
(a)	 Construct the (one-step) transition matrix.
(b)	 Use the steady-state equations to solve manually for the steady-

state probabilities.
(c)	 Now use the result given in Prob. 28.5-2 to find the steady-state 

probabilities.
(d)	 Suppose that the ordering cost is given by (2 + 2m) if an order 

is placed and zero otherwise. The holding cost per period is Zn 
if Zn ≥ 0 and zero otherwise. The shortage cost per period is 
−4Zn if Zn < 0 and zero otherwise. Find the (long-run) expected 
average cost per unit time.

28.5-9.  An important unit consists of two components placed in 
parallel. The unit performs satisfactorily if one of the two compo-
nents is operating. Therefore, only one component is operated at a 
time, but both components are kept operational (capable of being 
operated) as often as possible by repairing them as needed. An op-
erating component breaks down in a given period with probability 
0.2. When this occurs, the parallel component takes over, if it is 
operational, at the beginning of the next period. Only one compo-
nent can be repaired at a time. The repair of a component starts at 
the beginning of the first available period and is completed at the 
end of the next period. Let Xt be a vector consisting of two elements 
U and V, where U represents the number of components that are 
operational at the end of period t and V represents the number of 
periods of repair that have been completed on components that are 
not yet operational. Thus, V = 0 if U = 2 or if U = 1 and the repair 
of the nonoperational component is just getting under way. Be-
cause a repair takes two periods, V = 1 if U = 0 (since then one 
nonoperational component is waiting to begin repair while the 
other one is entering its second period of repair) or if U = 1 and the 
nonoperational component is entering its second period of repair. 
Therefore, the state space consists of the four states (2, 0), (1, 0), 
(0, 1), and (1, 1). Denote these four states by 0, 1, 2, 3, respectively. 
{Xt} (t = 0, 1, . . .) is a Markov chain (assume that X0 = 0) with the 
(one-step) transition matrix

	 State	 0	 1	 2	 3

	 P =  ​ 

0

​ 1​ 
2
​ 

3

​  ​

⎡

 ⎢ 

⎣

​

0.8

​ 

0.2

​ 

0

​ 

0

​  0​  0​  0.2​  0.8​  
0
​ 

1
​ 

0
​ 

0
​  

0.8

​ 

0.2

​ 

0

​ 

0

 ​

⎤

 ⎥ 

⎦

​.

C  (a)  �What is the probability that the unit will be inoperable 
(because both components are down) after n periods, for n = 
2, 5, 10, 20?

delivery and using the oldest blood first. If more blood is required 
than is on hand, an expensive emergency delivery is made. Blood is 
discarded if it is still on the shelf after 21 days. Denote the state of 
the system as the number of pints on hand just after a delivery. Thus, 
because of the discarding policy, the largest possible state is 7.
(a)	 Construct the (one-step) transition matrix for this Markov 

chain.
C  (b)  �Find the steady-state probabilities of the state of the Markov 

chain.
(c)	 Use the results from part (b) to find the steady-state probability 

that a pint of blood will need to be discarded during a 3-day 
period. (Hint: Because the oldest blood is used first, a pint 
reaches 21 days only if the state was 7 and then D = 0.)

(d)	 Use the results from part (b) to find the steady-state probability 
that an emergency delivery will be needed during the 3-day 
period between regular deliveries.

C  28.5-6.  In the last subsection of Sec. 28.5, the (long-run) ex-
pected average cost per week (based on just ordering costs and 
unsatisfied demand costs) is calculated for the inventory example 
of Sec. 28.1. Suppose now that the ordering policy is changed to the 
following. Whenever the number of cameras on hand at the end of 
the week is 0 or 1, an order is placed that will bring this number up 
to 3. Otherwise, no order is placed.
	 Recalculate the (long-run) expected average cost per week 
under this new inventory policy.

28.5-7.  Consider the inventory example introduced in Sec. 28.1, 
but with the following change in the ordering policy. If the number 
of cameras on hand at the end of each week is 0 or 1, two additional 
cameras will be ordered. Otherwise, no ordering will take place. 
Assume that the storage costs are the same as given in the second 
subsection of Sec. 28.5.
C  (a)  �Find the steady-state probabilities of the state of this Markov 

chain.
(b)	 Find the long-run expected average storage cost per week.

28.5-8.  Consider the following inventory policy for a certain prod-
uct. If the demand during a period exceeds the number of items 
available, this unsatisfied demand is backlogged; i.e., it is filled 
when the next order is received. Let Zn (n = 0, 1, . . . ) denote the 
amount of inventory on hand minus the number of units back-
logged before ordering at the end of period n (Z0 = 0). If Zn is zero 
or positive, no orders are backlogged. If Zn is negative, then −Zn 
represents the number of backlogged units and no inventory is on 
hand. At the end of period n, if Zn < 1, an order is placed for 2m 
units, where m is the smallest integer such that Zn + 2m ≥ 1. Orders 
are filled immediately.
	 Let D1, D2, . . . , be the demand for the product in periods 1, 
2, . . . , respectively. Assume that the Dn are independent and iden-
tically distributed random variables taking on the values, 0, 1, 2, 3, 
4, each with probability ​​ 1 _ 5 ​.​ Let Xn denote the amount of stock on 
hand after ordering at the end of period n (where X0 = 2), so that
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C  (b)  �What are the steady-state probabilities of the state of this 
Markov chain?

(c)	 If it costs $30,000 per period when the unit is inoperable (both 
components down) and zero otherwise, what is the (long-run) 
expected average cost per period?

28.6-1.  A computer is inspected at the end of every hour. It is 
found to be either working (up) or failed (down). If the computer is 
found to be up, the probability of its remaining up for the next hour 
is 0.95. If it is down, the computer is repaired, which may require 
more than 1 hour. Whenever the computer is down (regardless of 
how long it has been down), the probability of its still being down 
1 hour later is 0.5.
(a)	 Construct the (one-step) transition matrix for this Markov 

chain.
(b)	 Use the approach described in Sec. 28.6 to find the μij (the 

expected first passage time from state i to state j) for all  
i and j.

28.6-2.  A manufacturer has a machine that, when operational at 
the beginning of a day, has a probability of 0.1 of breaking down 
sometime during the day. When this happens, the repair is done the 
next day and completed at the end of that day.
(a)	 Formulate the evolution of the status of the machine as a 

Markov chain by identifying three possible states at the end 
of each day, and then constructing the (one-step) transition 
matrix.

(b)	 Use the approach described in Sec. 28.6 to find the μij (the ex-
pected first passage time from state i to state j) for all i and j. 
Use these results to identify the expected number of full days 
that the machine will remain operational before the next break-
down after a repair is completed.

(c)	 Now suppose that the machine already has gone 20 full days 
without a breakdown since the last repair was completed. How 
does the expected number of full days hereafter that the ma-
chine will remain operational before the next breakdown com-
pare with the corresponding result from part (b) when the 
repair had just been completed? Explain.

28.6-3.  Reconsider Prob. 28.6-2. Now suppose that the manu-
facturer keeps a spare machine that only is used when the pri-
mary machine is being repaired. During a repair day, the spare 
machine has a probability of 0.1 of breaking down, in which 
case it is repaired the next day. Denote the state of the system by 
(x, y), where x and y, respectively, take on the values 1 or 0 de-
pending upon whether the primary machine (x) and the spare 
machine (y) are operational (value of 1) or not operational 
(value of 0) at the end of the day. [Hint: Note that (0, 0) is not a 
possible state.]
(a)	 Construct the (one-step) transition matrix for this Markov 

chain.
(b)	 Find the expected recurrence time for the state (1, 0).

28.6-4.  Consider the inventory example presented in Sec. 28.1 ex-
cept that demand now has the following probability distribution:

P{D = 0} = ​​ 1 __ 
4
 ​​,    P{D = 2} = ​​ 1 __ 

4
 ​​,

P{D = 1} = ​​ 1 __ 
2
 ​​,    P{D ≥ 3} = 0.

The ordering policy now is changed to ordering just 2 cameras at the 
end of the week if none are in stock. As before, no order is placed if 
there are any cameras in stock. Assume that there is one camera in 
stock at the time (the end of a week) the policy is instituted.
(a)	 Construct the (one-step) transition matrix.
C  (b)  �Find the probability distribution of the state of this Markov 

chain n weeks after the new inventory policy is instituted, for 
n = 2, 5, 10.

(c)	 Find the μij (the expected first passage time from state i to state j) 
for all i and j.

C  (d)  �Find the steady-state probabilities of the state of this Markov 
chain.

(e)	 Assuming that the store pays a storage cost for each camera 
remaining on the shelf at the end of the week according to the 
function C(0) = 0, C(1) = $2, and C(2) = $8, find the long-run 
expected average storage cost per week.

C  28.6-5.  Reconsider the prototype example for Markov decision 
processes that is described in Sec. 19.1. Assume that the current 
maintenance policy being followed (before the optimization 
described in Chap. 19 is done) is to replace the machine when it 
becomes inoperable (by entering state 3) but do nothing otherwise.
	 Find the expected recurrence time for state 0 (i.e., the  
expected length of time a machine can be used before it must be 
replaced).

28.7-1.  Consider the following gambler’s ruin problem. A gambler 
bets $1 on each play of a game. Each time, he has a probability p of 
winning and probability q = 1 − p of losing the dollar bet. He will 
continue to play until he goes broke or nets a fortune of T dollars. 
Let Xn denote the number of dollars possessed by the gambler after 
the nth play of the game. Then

Xn+1 = ​{​
Xn + 1

​ 
with probability p

​   
Xn − 1

​ 
with probability q = 1 − p

​​	 for 0 < Xn < T,

Xn+1 = Xn,	 for Xn = 0 or T.

{Xn} is a Markov chain. The gambler starts with X0 dollars, where 
X0 is a positive integer less than T.

(a)	 Construct the (one-step) transition matrix of the Markov chain.
(b)	 Find the classes of the Markov chain.
(c)	 Let T = 3 and p = 0.3. Using the notation of Sec. 28.7, find f10, 

f1T, f20, f2T.
(d)	 Let T = 3 and p = 0.7. Find f10, f1T, f20, f2T.
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28.7-2.  A video cassette recorder manufacturer is so certain of its 
quality control that it is offering a complete replacement warranty 
if a recorder fails within 2 years. Based upon compiled data, the 
company has noted that only 1 percent of its recorders fail during 
the first year, whereas 5 percent of the recorders that survive the 
first year will fail during the second year. The warranty does not 
cover replacement recorders.
(a)	 Formulate the evolution of the status of a recorder as a Markov 

chain whose states include two absorption states that involve 
needing to honor the warranty or having the recorder survive 
the warranty period. Then construct the (one-step) transition 
matrix.

(b)	 Use the approach described in Sec. 28.7 to find the probability 
that the manufacturer will have to honor the warranty.

28.8-1.  Reconsider the example presented at the end of Sec. 28.8. 
Suppose now that a third machine, identical to the first two, has 

been added to the shop. The one maintenance person still must 
maintain all the machines.
(a)	 Develop the rate diagram for this Markov chain.
(b)	 Construct the steady-state equations.
(c)	 Solve these equations for the steady-state probabilities.

28.8-2.  The state of a particular continuous time Markov chain is 
defined as the number of jobs currently at a certain work center, 
where a maximum of two jobs are allowed. Jobs arrive individu-
ally. Whenever fewer than two jobs are present, the time until the 
next arrival has an exponential distribution with a mean of 2 days. 
Jobs are processed at the work center one at a time and then leave 
immediately. Processing times have an exponential distribution 
with a mean of 1 day.
(a)	 Construct the rate diagram for this Markov chain.
(b)	 Write the steady-state equations.
(c)	 Solve these equations for the steady-state probabilities.
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