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Chapter 12 has presented a number of examples where the basic decisions of the 
problem are of the yes-or-no type, so that binary variables are introduced to repre-

sent these decisions. We now will look at some other ways in which binary variables 
can be very useful. In particular, we will see that these variables sometimes enable us 
to take a problem whose natural formulation is intractable and reformulate it as a pure 
or mixed IP problem.
	 This kind of situation arises when the original formulation of the problem fits either an 
IP or a linear programming format except for minor disparities involving combinatorial 
relationships in the model. By expressing these combinatorial relationships in terms of ques-
tions that must be answered yes or no, auxiliary binary variables can be introduced to the 
model to represent these yes-or-no decisions. (Rather than being a decision variable for the 
original problem under consideration, an auxiliary binary variable is a binary variable that 
is introduced into the model of the problem simply to help formulate the model as a pure 
or mixed BIP model.) Introducing these variables reduces the problem to an MIP problem 
(or a pure IP problem if all the original variables also are required to have integer values).
	 Some cases that can be handled by this approach are discussed next, where the xj denote 
the original variables of the problem (they may be either continuous or integer variables) 
and the yi denote the auxiliary binary variables that are introduced for the reformulation.

Either-Or Constraints

Consider the important case where a choice can be made between two constraints, so 
that only one (either one) must hold (whereas the other one can hold but is not required 
to do so). For example, there may be a choice as to which of two resources to use for 
a certain purpose, so that it is necessary for only one of the two resource availability 
constraints to hold mathematically. To illustrate the approach to such situations, suppose 
that one of the requirements in the overall problem is that

Either	 3x1 + 2x2 ≤ 18
or	   x1 + 4x2 ≤ 16,

i.e., at least one of these two inequalities must hold but not necessarily both. This require-
ment must be reformulated to fit it into the linear programming format where all 
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specified constraints must hold. Let M symbolize a huge positive number. Then this 
requirement can be rewritten as

	 3x1 + 2x2 ≤ 18Either		   x1 + 4x2 ≤ 16 + M
	 3x1 + 2x2 ≤ 18 + Mor		   x1 + 4x2 ≤ 16.

The key is that adding M to the right-hand side of such constraints has the effect of 
eliminating them, because they would be satisfied automatically by any solutions that 
satisfy the other constraints of the problem. (This formulation assumes that the set of 
feasible solutions for the overall problem is a bounded set and that M is large enough 
that it will not eliminate any feasible solutions.) This formulation is equivalent to the set 
of constraints

3x1 + 2x2 ≤ 18 + My
  x1 + 4x2 ≤ 16 + M(1 − y).

Because the auxiliary variable y must be either 0 or 1, this formulation guarantees that 
one of the original constraints must hold while the other is, in effect, eliminated. This 
new set of constraints would then be appended to the other constraints in the overall 
model to give a pure or mixed IP problem (depending upon whether the xj are integer 
or continuous variables).
	 This approach is related directly to the discussion at the beginning of this supplement  
about expressing combinatorial relationships in terms of questions that must be answered 
yes or no. The combinatorial relationship involved in the current example concerns the 
combination of the other constraints of the model with the first of the two alternative 
constraints and then with the second. Which of these two combinations of constraints is 
better (in terms of the value of the objective function that then can be achieved)? To 
rephrase this question in yes-or-no terms, we ask two complementary questions:

1.	 Should x1 + 4x2 ≤ 16 be selected as the constraint that must hold?
2.	 Should 3x1 + 2x2 ≤ 18 be selected as the constraint that must hold?

Because exactly one of these questions is to be answered affirmatively, we let the binary 
terms y and 1 − y, respectively, represent these yes-or-no decisions. Thus, y = 1 if the 
answer is yes to the first question (and no to the second), whereas 1 − y = 1 (that is, 
y = 0) if the answer is yes to the second question (and no to the first). Since y + 1 − y = 1 
(one yes) automatically, there is no need to add another constraint to force these two 
decisions to be mutually exclusive. (If separate binary variables y1 and y2 had been used 
instead to represent these yes-or-no decisions, then an additional constraint y1 + y2 = 1 
would have been needed to make them mutually exclusive.)
	 A formal presentation of this approach is given next for a more general case.

K out of N Constraints Must Hold

Consider the case where the overall model includes a set of N possible constraints such 
that only some K of these constraints must hold. (Assume that K < N.) Part of the 
optimization process is to choose the combination of K constraints that permits the objec-
tive function to reach its best possible value. The N − K constraints not chosen are, in 
effect, eliminated from the problem, although feasible solutions might coincidentally still 
satisfy some of them.

hiL72998_ch12_Supplement_001-011.indd   2 18/09/19   5:37 PM



	 SUPPLEMENT TO CHAPTER 12 SOME INNOVATIVE USES OF BINARY	 12S-3
C

op
yr

ig
ht

 ©
 2

02
1 T

he
 M

cG
ra

w
-H

ill 
C

om
pa

ni
es

	 This case is a direct generalization of the preceding case, which had K = 1 and N = 2. 
Denote the N possible constraints by

f1(x1, x2, . . . , xn)	 ≤ 	d1
f2(x1, x2, . . . , xn)	 ≤ 	d2
	 ⋮
fN(x1, x2, . . . , xn)	 ≤ 	dN.

Then, applying the same logic as for the preceding case, we find that an equivalent 
formulation of the requirement that some K of these constraints must hold is

f1(x1, x2, . . . , xn) ≤ 	d1 + My1
f2(x1, x2, . . . , xn) ≤ 	d2 + My2

	 ⋮
fN(x1, x2, . . . , xn)	 ≤ 	dN + MyN

​​∑ 
i=1

​ 
N

​   yi​​ = 	N − K,

and

yi is binary,    for i = 1, 2, . . . , N,

where M symbolizes a huge positive number. For each binary variable yi (i = 1, 2, . . . , N), 
note that yi = 0 makes Myi = 0, which reduces the new constraint i to the original constraint i. 
On the other hand, yi = 1 makes (di + Myi) so large that (again assuming a bounded fea-
sible region) the new constraint i is automatically satisfied by any solution that satisfies 
the other new constraints, which has the effect of eliminating the original constraint i. 
Therefore, because the constraints on the yi guarantee that K of these variables will equal 0 
and those remaining will equal 1, K of the original constraints will be unchanged and the 
other (N − K) original constraints will, in effect, be eliminated. The choice of which K 
constraints should be retained is made by applying the appropriate algorithm to the overall 
problem so it finds an optimal solution for all the variables simultaneously.

Functions with N Possible Values

Consider the situation where a given function is required to take on any one of N given 
values. Denote this requirement by

f (x1, x2, . . . , xn) = d1    or    d2, . . . ,    or    dN.

One special case is where this function is

f (x1, x2, . . . , xn) = ​​∑ 
j=1

​ 
n

​   ​​ajxj,

as on the left-hand side of a linear programming constraint. Another special case is where 
f (x1, x2, . . . , xn) = xj for a given value of j, so the requirement becomes that xj must 
take on any one of N given values.
	 The equivalent IP formulation of this requirement is the following:

f (x1, x2, . . . , xn) = ​​∑ 
i=1

​ 
N

​   diyi​​

​​∑ 
i=1

​ 
N

​   yi = 1​​
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and

yi is binary,    for i = 1, 2, . . . , N.

so this new set of constraints would replace this requirement in the statement of the 
overall problem. This set of constraints provides an equivalent formulation because 
exactly one yi must equal 1 and the others must equal 0, so exactly one di is being cho-
sen as the value of the function. In this case, there are N yes-or-no questions being asked, 
namely, should di be the value chosen (i = 1, 2, . . . , N )? Because the yi respectively 
represent these yes-or-no decisions, the second constraint makes them mutually exclusive 
alternatives.
	 To illustrate how this case can arise, reconsider the Wyndor Glass Co. problem 
presented in Sec. 3.1. Eighteen hours of production time per week in Plant 3 currently 
is unused and available for the two new products or for certain future products that will 
be ready for production soon. In order to leave any remaining capacity in usable blocks 
for these future products, management now wants to impose the restriction that the 
production time used by the two current new products be 6 or 12 or 18 hours per week. 
Thus, the third constraint of the original model (3x1 + 2x2 ≤ 18) now becomes

3x1 + 2x2 = 6  or  12  or  18.

In the preceding notation, N = 3 with d1 = 6, d2 = 12, and d3 = 18. Consequently, man-
agement’s new requirement should be formulated as follows:

3x1 + 2x2 = 6y1 + 12y2 + 18y3
y1 + y2 + y3 = 1

and

y1, y2, y3 are binary.

The overall model for this new version of the problem then consists of the original model 
(see Sec. 3.1) plus this new set of constraints that replaces the original third constraint. 
This replacement yields a very tractable MIP formulation.
	 In general terms, for all the formulation possibilities with auxiliary binary variables 
discussed so far, we need to strike the same note of caution. This approach sometimes 
requires adding a relatively large number of such variables, which can make the model 
computationally infeasible. (Section 12.5 provides some perspective on the sizes of IP 
problems that can be solved.)
	 We now present two examples that illustrate a variety of formulation techniques 
with binary variables. For the sake of clarity, these examples have been kept very small. 
(A somewhat larger formulation example, with dozens of binary variables and con-
straints, is included in the Solved Examples section of the book’s website for Chapter 12.) 
In actual applications, these formulations typically would be just a small part of a vastly 
larger model.

	 EXAMPLE 1	 Making Choices When the Decision Variables Are Continuous

The Research and Development Division of the GOOD PRODUCTS COMPANY has 
developed three possible new products. However, to avoid undue diversification of the 
company’s product line, management has imposed the following restriction:

Restriction 1: From the three possible new products, at most two should be 
chosen to be produced.
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Each of these products can be produced in either of two plants. For administrative reasons, 
management has imposed a second restriction in this regard.

Restriction 2: Just one of the two plants should be chosen to be the sole producer 
of the new products.

The production cost per unit of each product would be essentially the same in the two 
plants. However, because of differences in their production facilities, the number of hours 
of production time needed per unit of each product might differ between the two plants. 
These data are given in Table 1, along with other relevant information, including market-
ing estimates of the number of units of each product that could be sold per week if it is 
produced. The objective is to choose the products, the plant, and the production rates of 
the chosen products so as to maximize total profit.
	 In some ways, this problem resembles a standard product mix problem such as the 
Wyndor Glass Co. example described in Sec. 3.1. In fact, if we changed the problem 
by dropping the two restrictions and by requiring each unit of a product to use the 
production hours given in Table 1 in both plants (so the two plants now perform dif-
ferent operations needed by the products), it would become just such a problem. In 
particular, if we let x1, x2, x3 be the production rates of the respective products, the 
model then becomes

Maximize    Z = 5x1 + 7x2 + 3x3,

subject to

3x1 + 4x2 + 2x3 ≤ 30
4x1 + 6x2 + 2x3 ≤ 40
x1	  ≤   7

	  x2	  ≤   5
	   x3 ≤   9

and

x1 ≥ 0,    x2 ≥ 0,    x3 ≥ 0.

	 For the real problem, however, restriction 1 necessitates adding to the model the 
constraint

The number of strictly positive decision variables (x1, x2, x3) must be ≤ 2.

■  TABLE 1  Data for Example 1 (the Good Products Co. problem)

		  Production Time Used	
Production Time		  for Each Unit Produced	

Available
	 Product 1	 Product 2	 Product 3	 per Week

Plant 1	 3 hours	 4 hours	 2 hours	 30 hours
Plant 2	 4 hours	 6 hours	 2 hours	 40 hours

Unit profit	 5	 7	 3	 (thousands of dollars)

Sales potential	 7	 5	 9	 (units per week)
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This constraint does not fit into a linear or an integer programming format, so the key 
question is how to convert it to such a format so that a corresponding algorithm can be 
used to solve the overall model. If the decision variables were binary variables, then the 
constraint would be expressed in this format as x1 + x2 + x3 ≤ 2. However, with 
continuous decision variables, a more complicated approach involving the introduction 
of auxiliary binary variables is needed.
	 Requirement 2 necessitates replacing the first two functional constraints (3x1 + 4x2 
+ 2x3 ≤ 30 and 4x1 + 6x2 + 2x3 ≤ 40) by the restriction

Either	 3x1 + 4x2 + 2x3 ≤ 30
or	 4x1 + 6x2 + 2x3 ≤ 40

must hold, where the choice of which constraint must hold corresponds to the choice of 
which plant will be used to produce the new products. We discussed earlier how such 
an either-or constraint can be converted to a linear or an integer programming format, 
again with the help of an auxiliary binary variable.

Formulation with Auxiliary Binary Variables.  To deal with requirement 1, we introduce 
three auxiliary binary variables (y1, y2, y3) with the interpretation

​yj = ​{ ​1​ 
if xj > 0 can hold (can produce product j)

​     
0
​ 

if xj = 0 must hold (cannot produce product j),
​
​
 ​​

for j = 1, 2, 3. To enforce this interpretation in the model with the help of M (a symbol 
for a huge positive number), we add the constraints

x1 ≤ My1
x2 ≤ My2
x3 ≤ My3
y1 + y2 + y3 ≤ 2
yj is binary,    for j = 1, 2, 3.

The either-or constraint and nonnegativity constraints give a bounded feasible region  
for the decision variables (so each xj ≤ M throughout this region). Therefore, in each  
xj ≤ Myj constraint, yj = 1 allows any value of xj in the feasible region, whereas yj = 0 
forces xj = 0. (Conversely, xj > 0 forces yj = 1, whereas xj = 0 allows either value of yj.) 
Consequently, when the fourth constraint forces choosing at most two of the yj to equal 1, 
this amounts to choosing at most two of the new products as the ones that can be produced.
	 To deal with requirement 2, we introduce another auxiliary binary variable y4 with 
the interpretation

​y4 = ​{ ​1​ 
if 4x1 + 6x2 + 2x3 ≤ 40 must hold (choose Plant 2)

​     
0
​ 

if 3x1 + 4x2 + 2x3 ≤ 30 must hold (choose Plant 1).
​
​
 ​​

As discussed earlier, this interpretation is enforced by adding the constraints,

3x1 + 4x2 + 2x3 ≤ 30 + My4
4x1 + 6x2 + 2x3 ≤ 40 + M(1 − y4)
y4 is binary.

	 Consequently, after we move all variables to the left-hand side of the constraints, 
the complete model is

Maximize    Z = 5x1 + 7x2 + 3x3,
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1In practice, some care is taken to choose a value for M that definitely is large enough to avoid eliminating 
any feasible solutions, but as small as possible otherwise in order to avoid unduly enlarging the feasible region 
for the LP relaxation (described in Sec. 12.5) and to avoid numerical instability. For this example, a careful 
examination of the constraints reveals that the minimum feasible value of M is M = 9.

subject to

x1 ≤ 7
x2 ≤ 5
x3 ≤ 9

x1 − My1 ≤ 0
x2 − My2 ≤ 0
x3 − My3 ≤ 0

y1 + y2 + y3 ≤ 2
3x1 + 4x2 + 2x3 − My4 ≤ 30
4x1 + 6x2 + 2x3 + My4 ≤ 40 + M

and

x1 ≥ 0,    x2 ≥ 0,    x3 ≥ 0
yj is binary,    for j = 1, 2, 3, 4.

This now is an MIP model, with three variables (the xj) not required to be integer and 
four binary variables, so an MIP algorithm can be used to solve the model. When this 
is done (after substituting a large numerical value for M),1 the optimal solution is y1 = 1, 
y2 = 0, y3 = 1, y4 = 1, ​x1 = 5​ 1 _ 2 ​, x2 = 0​, and x3 = 9; that is, choose products 1 and 3 to 
produce, choose Plant 2 for the production, and choose the production rates of ​5​ 1 _ 2 ​ ​units 
per week for product 1 and 9 units per week for product 3. The resulting total profit is 
$54,500 per week.

	 EXAMPLE 2	 �Violating Proportionality

The SUPERSUDS CORPORATION is developing its marketing plans for next year’s 
new products. For three of these products, the decision has been made to purchase a total 
of five TV spots for commercials on national television networks. The problem we will 
focus on is how to allocate the five spots to these three products, with a maximum of 
three spots (and a minimum of zero) for each product.
	 Table 2 shows the estimated impact of allocating zero, one, two, or three spots to 
each product. This impact is measured in terms of the profit (in units of millions of 
dollars) from the additional sales that would result from the spots, considering also the 
cost of producing the commercial and purchasing the spots. The objective is to allocate 
five spots to the products so as to maximize the total profit.

■  TABLE 2  �Data for Example 2 (the  
Supersuds Corp. problem)

	 Profit

	 Product
Number of

TV Spots	 1	 2	 3

0	 0	 0	   0
1	 1	 0	 −1
2	 3	 2	   2
3	 3	 3	   4
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	 This small problem can be solved easily by dynamic programming (Chap. 11) or 
even by inspection. (The optimal solution is to allocate two spots to product 1, no 
spots to product 2, and three spots to product 3.) However, we will show two differ-
ent BIP formulations for illustrative purposes. Such a formulation would become 
necessary if this small problem needed to be incorporated into a larger IP model 
involving the allocation of resources to marketing activities for all the corporation’s 
new products.

One Formulation with Auxiliary Binary Variables.  A natural formulation would be to 
let x1, x2, x3 be the number of TV spots allocated to the respective products. The contribu-
tion of each xj to the objective function then would be given by the corresponding column 
in Table 2. However, each of these columns violates the assumption of proportionality 
described in Sec. 3.3. Therefore, we cannot write a linear objective function in terms of 
these integer decision variables.
	 Now see what happens when we introduce an auxiliary binary variable yij for each 
positive integer value of xi = j ( j = 1, 2, 3), where yij has the interpretation

​yij = ​{ ​1​ 
if xi = j

​  
0
​ 

otherwise.
​
​
 ​​

(For example, y21 = 0, y22 = 0, and y23 = 1 mean that x2 = 3.) The resulting linear BIP 
model is

Maximize    Z = y11 + 3y12 + 3y13 + 2y22 + 3y23 − y31 + 2y32 + 4y33,

subject to

y11 + y12 + y13 ≤ 1
y21 + y22 + y23 ≤ 1
y31 + y32 + y33 ≤ 1

y11 + 2y12 + 3y13 + y21 + 2y22 + 3y23 + y31 + 2y32 + 3y33 = 5

and

each yij is binary.

	 Note that the first three functional constraints ensure that each xi will be assigned 
just one of its possible values. (Here yi1 + yi2 + yi3 = 0 corresponds to xi = 0, which 
contributes nothing to the objective function.) The last functional constraint ensures that  
x1 + x2 + x3 = 5. The linear objective function then gives the total profit according 
to Table 2.
	 Solving this BIP model gives an optimal solution of

y11 = 0,	 y12 = 1,	 y13 = 0,	 so	 x1 = 2
y21 = 0,	 y22 = 0,	 y23 = 0,	 so	 x2 = 0
y31 = 0,	 y32 = 0,	 y33 = 1,	 so	 x3 = 3.

Another Formulation with Auxiliary Binary Variables.  We now redefine the above 
auxiliary binary variables yij as follows:

​yij = ​{ ​1​ 
if xi ≥ j

​  
0
​ 

otherwise.
​
​
 ​​
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Thus, the difference is that yij = 1 now if xi ≥ j instead of xi = j. Therefore,

xi = 0	 ⇒	 yi1 = 0,	 yi2 = 0,	 yi3 = 0,
xi = 1	 ⇒	 yi1 = 1,	 yi2 = 0,	 yi3 = 0,
xi = 2	 ⇒	 yi1 = 1,	 yi2 = 1,	 yi3 = 0,
xi = 3	 ⇒	 yi1 = 1,	 yi2 = 1,	 yi3 = 1,
so xi = yi1 + yi2 + yi3

for i = 1, 2, 3. Because allowing yi2 = 1 is contingent upon yi1 = 1 and allowing yi3 = 1 
is contingent upon yi2 = 1, these definitions are enforced by adding the constraints

yi2 ≤ yi1    and    yi3 ≤ yi2,    for i = 1, 2, 3.

	 The new definition of the yij also changes the objective function, as illustrated in 
Fig. 1 for the product 1 portion of the objective function. Since y11, y12, y13 provide the 
successive increments (if any) in the value of x1 (starting from a value of 0), the coef-
ficients of y11, y12, y13 are given by the respective increments in the product 1 column 
of Table 2 (1 − 0 = 1, 3 − 1 = 2, 3 − 3 = 0). These increments are the slopes in 
Fig. 1, yielding 1y11 + 2y12 + 0y13 for the product 1 portion of the objective function. 
Note that applying this approach to all three products still must lead to a linear objec-
tive function.

Profit from product 1 = 1y11 + 2y12 + 0y13

1 2 3 x1

4

3

2

1

0

Slope = 1

Slope = 2

Slope = 0

y11 y12 y13

■  FIGURE 1
The profit from the additional 
sales of product 1 that would 
result from x1 TV spots, where 
the slopes give the 
corresponding coefficients in 
the objective function for the 
second BIP formulation for 
Example 2 (the Supersuds 
Corp. problem).
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	 After we bring all variables to the left-hand side of the constraints, the resulting 
complete BIP model is

Maximize    Z = y11 + 2y12 + 2y22 + y23 − y31 + 3y32 + 2y33,

subject to

y12 − y11 ≤ 0
y13 − y12 ≤ 0
y22 − y21 ≤ 0
y23 − y22 ≤ 0
y32 − y31 ≤ 0
y33 − y32 ≤ 0
y11 + y12 + y13 + y21 + y22 + y23 + y31 + y32 + y33 = 5

and

each yij is binary.

	 Solving this BIP model gives an optimal solution of

y11 = 1,	 y12 = 1,	 y13 = 0,	 so	 x1 = 2
y21 = 0,	 y22 = 0,	 y23 = 0,	 so	 x2 = 0
y31 = 1,	 y32 = 1,	 y33 = 1,	 so	 x3 = 3.

	 There is little to choose between this BIP model and the preceding one other than 
personal taste. They have the same number of binary variables (the prime consideration 
in determining computational effort for BIP problems). They also both have some special 
structure (constraints for mutually exclusive alternatives in the first model and constraints 
for contingent decisions in the second) that can lead to speedup. The second model does 
have more functional constraints than the first. 
	 Another example of a challenging IP formulation is given in the Solved Examples 
section for Chapter 12 on the book’s website.

12S-1.  The Research and Development Division of the Progres-
sive Company has been developing four possible new product 
lines. Management must now make a decision as to which of these 
four products actually will be produced and at what levels. There-
fore, an operations research study has been requested to find the 
most profitable product mix.
	 A substantial cost is associated with beginning the production 
of any product, as given in the first row of the following table. 
Management’s objective is to find the product mix that maximizes 
the total profit (total net revenue minus start-up costs).

■  PROBLEMS
	 Let the continuous decision variables x1, x2, x3, and x4 be the 
production levels of products 1, 2, 3, and 4, respectively. Management 
has imposed the following policy constraints on these variables:

1.  No more than two of the products can be produced.
2.  Either product 3 or 4 can be produced only if either product 
1 or 2 is produced.
3.  Either    5x1 + 3x2 + 6x3 + 4x4 ≤ 6,000

or        4x1 + 6x2 + 3x3 + 5x4 ≤ 6,000.

(a)	 �Introduce auxiliary binary variables to formulate a mixed BIP 
model for this problem.

C  (b)  Use the computer to solve this model.

12S-2.  Suppose that a mathematical model fits linear program-
ming except for the restriction that ∣ x1 − x2 ∣ = 0, or 3, or 6. Show 
how to reformulate this restriction to fit an MIP model.

12S-3.  Suppose that a mathematical model fits linear program-
ming except for the restrictions that

	 Product

	 1	 2	 3	 4

Start-up cost	 $50,000	 $40,000	 $70,000	 $60,000
Marginal revenue	 $70	 $60	 $90	 $80
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	 SUPPLEMENT TO CHAPTER 12 SOME INNOVATIVE USES OF BINARY	 12S-11

1.  At least one of the following two inequalities holds:

3x1 − x2 − x3 + x4 ≤ 12
  x1 + x2 + x3 + x4 ≤ 15.

2.  At least two of the following three inequalities holds:

 2x1 + 5x2 −   x3 + x4 ≤ 30
 −x1 + 3x2 + 5x3 + x4 ≤ 40
 3x1   −   x2 + 3x3 − x4 ≤ 60.

Show how to reformulate these restrictions to fit an MIP model.

12S-4.  Reconsider Prob. 1. Follow the instructions for that prob-
lem after imposing one new restriction. To avoid doubling the start-
up costs, just one factory would be used, where the choice would be 
based on maximizing profit. The same factory would be used for 
both new toys if both are produced.

12S-5.  Reconsider the Fly-Right Airplane Co. problem introduced 
in Prob. 12.3-2. A more detailed analysis of the various cost and 
revenue factors now has revealed that the potential profit from pro-
ducing airplanes for each customer cannot be expressed simply in 
terms of a start-up cost and a fixed marginal net revenue per airplane 
produced. Instead, the profits are given by the following table.

now has decided to add the restriction that no more than two of the 
three prospective products should be produced.
(a)	� Introduce auxiliary binary variables to formulate an MIP mod-

el for this new version of the problem.
C  (b) � Use the computer to solve this model.

12S-8.  Consider the following integer nonlinear programming problem:

Maximize    Z = 4x2
1 − x3

1 + 10x2
2 − x4

2,

subject to

x1 + x2 ≤ 3

and

x1 ≥ 0,    x2 ≥ 0
x1 and x2 are integers.

This problem can be reformulated in two different ways as an 
equivalent pure BIP problem (with a linear objective function) with 
six binary variables (y1 j and y2 j for j = 1, 2, 3), depending on the 
interpretation given the binary variables.
(a)	� Formulate a BIP model for this problem where the binary var-

iables have the interpretation,

​   yij = ​{ ​1​ 
if xi = j

​  
0
​ 

otherwise.
​
​
 ​​

C  (b) � Use the computer to solve the model formulated in part (a), 
and thereby identify an optimal solution for (x1, x2) for the 
original problem.

(c)	� Formulate a BIP model for this problem where the binary var-
iables have the interpretation,

​  yij = ​{ ​1​ 
if xi ≥ j

​  
0
​ 

otherwise.
​
​
 ​​

C  (d) � Use the computer to solve the model formulated in part (c), 
and thereby identify an optimal solution for (x1, x2) for the 
original problem.

12S-9.  Consider the following special type of shortest-path 
problem (see Sec. 10.3) where the nodes are in columns and the 
only paths considered always move forward one column at a time.

	 Profit from

Airplanes
	 Customer

Produced	 1	 2	 3

0	 0	 0	 0
1	 −$1 million	 $1 million	 $1 million
2	   $2 million	 $5 million	 $3 million
3	   $4 million		  $5 million
4			   $6 million
5			   $7 million

(Origin) (Destination)O

A

B

C

D

T

6

3

4

3

6

5 3

2

(a)	� Formulate a BIP model for this problem that includes con-
straints for mutually exclusive alternatives.

C  (b) � Use the computer to solve the model formulated in part (a). 
Then use this optimal solution to identify the optimal num-
ber of airplanes to produce for each customer.

(c)	� Formulate another BIP model for this model that includes con-
straints for contingent decisions.

C  (d) � Repeat part (b) for the model formulated in part (c).

12S-6.  Reconsider the Wyndor Glass Co. problem presented in 
Sec. 3.1. Management now has decided that only one of the two 
new products should be produced, and the choice is to be made on 
the basis of maximizing profit. Introduce auxiliary binary variables 
to formulate an MIP model for this new version of the problem.

12S-7.  Reconsider Prob. 3.1-11, where the management of the 
Omega Manufacturing Company is considering devoting excess 
production capacity to one or more of three products. Management 

The numbers along the links represent distances, and the objective 
is to find the shortest path from the origin to the destination.
	 This problem also can be formulated as a BIP model involving 
both mutually exclusive alternatives and contingent decisions.
(a)	� Formulate this model. Identify the constraints that are for 

mutually exclusive alternatives and that are for contingent 
decisions.

C � (b) � Use the computer to solve this problem.
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