
19S1-1

C
op

yr
ig

ht
 ©

 2
02

1 T
he

 M
cG

ra
w

-H
ill

C
om

pa
ni

es

Chapter 19 described two methods for deriving an optimal policy for a Markov deci-
sion process: exhaustive enumeration and linear programming. Exhaustive enumer-

ation is useful because it is both quick and straightforward for very small problems.
Linear programming can be used to solve vastly larger problems, and software packages
for the simplex method are very widely available.
	 We now present a third popular method, namely, a policy improvement algorithm.
The key advantage of this method is that it tends to be very efficient because it usually
reaches an optimal policy in a relatively small number of iterations (far fewer than for
the simplex method with a linear programming formulation).
	 Consider the model for Markov decision processes presented in Sec. 19.2. As a joint
result of the current state i of the system and the decision di(R) = k when operating under
policy R, two things occur. First, an (expected) cost Cik is incurred that depends upon only
the observed state of the system and the decision made. Second, the system moves to state j
at the next observed time period, with transition probability given by pij(k). If, in fact, state j
influences the cost that has been incurred, then Cik is calculated as follows. Let

qij(k) = �expected cost incurred when the system is in state i, decision k is made,
and the system evolves to state j at the next observed time period.

Then

​Cik =​∑ 
j=0

​ 
M

​  qij(k)pij(k).​​

Preliminaries

Referring to the description and notation for Markov decision processes given at the
beginning of Sec. 19.2, we can show that, for any given policy R, there exist values g(R),
v0(R), v1(R), . . . , vM(R) that satisfy

​g(R) + vi(R) = Cik + ​∑ 
j=0

​ 
M

​  pij(k)vj(R),  for i = 0, 1, 2, . . . , M.​​

We now shall give a heuristic justification of these relationships and an interpretation
for these values.

A Policy Improvement Algorithm
for Finding Optimal Policies

19S U P P L E M E N T 1 T O C H A P T E R

hiL72998_ch19_Supplement_1_001-007.indd 1 18/09/19 5:49 PM

19S1-2	 SUPPLEMENT 1 TO CHAPTER 19 A POLICY IMPROVEMENT ALGORITHM

C
op

yr
ig

ht
 ©

 2
02

1 T
he

 M
cG

ra
w

-H
ill

C
om

pa
ni

es

	 Denote by ​​v​ i​ n​(R)​ the total expected cost of a system starting in state i (beginning the
first observed time period) and evolving for n time periods. Then ​​v​ i​ n​(R)​ has two compo-

nents: Cik, the cost incurred during the first observed time period, and ​​∑ 
j=0

​ 
M

​   pij(k) ​v​ j​ 
n−1​(R),​​

the total expected cost of the system evolving over the remaining n − 1 time periods.
This gives the recursive equation

​​v​ i​ 
n​(R) = Cik + ​∑ 

j=0

​ 
M

​   pij(k) ​v​ j​ 
n−1​(R),​  for i = 0, 1, 2, … , M,​

where ​​v​ i​ 1​(R) = Cik​ for all i.

	 It will be useful to explore the behavior of ​​v​ i​ 
n​​(R) as n grows large. Recall that the

(long-run) expected average cost per unit time following any policy R can be expressed as

​g(R) = ​∑ 
i=0

​ 
M

​   πiCik,​​

which is independent of the starting state i. Hence, ​​v​ i​ 
n​​(R) behaves approximately as n g(R)

for large n. In fact, if we neglect small fluctuations, ​​v​ i​ 
n​​(R) can be expressed as the sum

of two components

​​v​ i​ 
n​(R) ≈ n g(R) + vi(R),​

where the first component is independent of the initial state and the second is dependent
upon the initial state. Thus, vi(R) can be interpreted as the effect on the total expected
cost due to starting in state i. Consequently,

​​v​ i​ 
n​(R) − ​v​ j​ 

n​(R) ≈ vi(R) − vj(R),​

so that vi(R) − vj(R) is a measure of the effect of starting in state i rather than state j.
	 Letting n grow large, we now can substitute ​​v​ i​ 

n​(R) = n g(R) + vi(R)​ and ​​v​ j​ n − 1​(R) =​
(n − 1)g(R) + vj(R) into the recursive equation. This leads to the system of equations
given in the opening paragraph of this subsection.
	 Note that this system has M + 1 equations with M + 2 unknowns, so that one
of these variables may be chosen arbitrarily. By convention, vM(R) will be chosen
equal to zero. Therefore, by solving the system of linear equations, we can obtain
g(R), the (long-run) expected average cost per unit time when policy R is followed.
In principle, all policies can be enumerated and that policy which minimizes g(R)
can be found. However, even for a moderate number of states and decisions, this
technique is cumbersome. Fortunately, there exists an algorithm that can be used to
evaluate policies and find the optimal one without complete enumeration, as
described next.

The Policy Improvement Algorithm1

The algorithm begins by choosing an arbitrary policy R1. It then solves the system of
equations to find the values of g(R1), v0(R), v1(R), . . . , vM−1(R) [with vM(R) = 0]. This

1This algorithm assumes that the Markov chain associated with the transition matrices used by the Markov
decision process is irreducible, i.e., any state can be reached eventually from any other state.

hiL72998_ch19_Supplement_1_001-007.indd 2 18/09/19 5:49 PM

	 SUPPLEMENT 1 TO CHAPTER 19 A POLICY IMPROVEMENT ALGORITHM	 19S1-3
C

op
yr

ig
ht

 ©
 2

02
1 T

he
 M

cG
ra

w
-H

ill
C

om
pa

ni
es

step is called value determination. A better policy, denoted by R2, is then constructed.
This step is called policy improvement. These two steps constitute an iteration of the
algorithm. Using the new policy R2, we perform another iteration. These iterations con-
tinue until two successive iterations lead to identical policies, which signifies that the
optimal policy has been obtained. The details are outlined below.

Summary of the Policy Improvement Algorithm

Initialization: Choose an arbitrary initial trial policy R1. Set n = 1.
Iteration n:
Step 1: Value determination: For policy Rn, use pij(k), Cik, and vM(Rn) = 0 to solve the
system of M + 1 equations

​g(Rn) = Cik + ​∑ 
j=0

​ 
M

​   pij(k) vj(Rn) − vi(Rn),​  for i = 0, 1,… , M.

​for all M + 1 unknown values of g(Rn), v0(Rn), v1(Rn), . . . , vM−(Rn).
Step 2: Policy improvement: Using the current values of vi(Rn) computed for policy Rn,
find the alternative policy Rn + 1 such that, for each state i, di(Rn + 1) = k is the decision
that minimizes

​Cik + ​∑ 
j=0

​ 
M

​   pij(k) vj(Rn) − vj(Rn),​​

i.e., for each state i,

​​Minimize​ 
k=1, 2, … ,K

​ ​ ​[Cik + ​∑ 
j=0

​ 
M

​   pij(k) vj(Rn) − vi(Rn)​]​,​

and then set di(Rn+1) equal to the minimizing value of k. This procedure defines a new
policy Rn+1.
Optimality test: The current policy Rn+1 is optimal if this policy is identical to policy Rn.
If it is, stop. Otherwise, reset n = n + 1 and perform another iteration.

Two key properties of this algorithm are

1.	 g(Rn+1) ≤ (Rn), for n = 1, 2, . . .
2.	 The algorithm terminates with an optimal policy in a finite number of iterations.2

Solving the Prototype Example by the Policy Improvement Algorithm

Referring to the prototype example presented in Sec. 19.1, we outline the application of
the algorithm next.

Initialization. For the initial trial policy R1, we arbitrarily choose the policy that calls
for replacement of the machine (decision 3) when it is found to be in state 3, but doing
nothing (decision 1) in other states. This policy, its transition matrix, and its costs are
summarized next.

2This termination is guaranteed under the assumptions of the model given in Sec. 19.2, including particularly
the (implicit) assumptions of a finite number of states (M + 1) and a finite number of decisions (K), but not
necessarily for more general models. See R. Howard, Dynamic Programming and Markov Processes, M.I.T.
Press, Cambridge, MA, 1960. Also see pp. 1291–1293 in A. F. Veinott, Jr., “On Finding Optimal Policies in
Discrete Dynamic Programming with No Discounting,” Annals of Mathematical Statistics, 37: 1284–1294, 1966.

hiL72998_ch19_Supplement_1_001-007.indd 3 18/09/19 5:49 PM

19S1-4	 SUPPLEMENT 1 TO CHAPTER 19 A POLICY IMPROVEMENT ALGORITHM

C
op

yr
ig

ht
 ©

 2
02

1 T
he

 M
cG

ra
w

-H
ill

C
om

pa
ni

es

Iteration 1. With this policy, the value determination step requires solving the following
four equations simultaneously for g(R1), v0(R1), v1(R1), and v2(R1) [with v3(R1) = 0].

​g(R1) =	 + ​ 7 __ 
8
 ​ v1(R1) 	+ ​ 1 ___ 

16
 ​ v2(R1)	− v0(R1).

g(R1) = 1,000 	+ ​ 3 __ 
4
 ​ v1(R1)	+ ​ 1 __ 

8
 ​ v2(R1)	 − v1(R1).

g(R1) = 3,000		 + ​ 1 __ 
2
 ​ v2(R1)	 − v2(R1).

g(R1) = 6,000	 + v0(R1)​.
The simultaneous solution is

​ g(R1) = ​ 25,000 ______ 
13

 ​ = 1,923

v0(R1) = −​ 53,000 ______ 
13

 ​ = −4,077

v1(R1) = −​ 34,000 ______ 
13

 ​ = −2,615

v2(R1) = ​ 28,000 ______ 
13

 ​ = 2,154.

​	 Step 2 (policy improvement) can now be applied. We want to find an improved
policy R2 such that decision k in state i minimizes the corresponding expression below.
State 0:	 C0k − p00(k)(4,077) − p01(k)(2,615) + p02(k)(2,154) + 4,077
State 1:	 C1k − p10(k)(4,077) − p11(k)(2,615) + p12(k)(2,154) + 2,615
State 2:	 C2k − p20(k)(4,077) − p21(k)(2,615) + p22(k)(2,154) − 2,154
State 3:	 C3k − p30(k)(4,077) − p31(k)(2,615) + p32(k)(2,154).
	 Actually, in state 0, the only decision allowed is decision 1 (do nothing), so no
calculations are needed. Similarly, we know that decision 3 (replace) must be made in
state 3. Thus, only states 1 and 2 require calculation of the values of these expressions
for alternative decisions.
	 For state 1, the possible decisions are 1 and 3. For each one, we show below the
corresponding C1k, the p1j(k), and the resulting value of the expression:

Policy R1

State Decision

0 1

1 1

2 1

3 3

Costs

State Cik

0 0

1 1,000

2 3,000

3 6,000

Transition matrix

State 0 1 2 3

0 0 ​​ 7 __ 8 ​​ ​​ 1 ___ 16 ​​ ​​ 1 ___ 16 ​​

1 0 ​​ 3 __ 4 ​​ ​​ 1 __ 8 ​​ ​​ 1 __ 8 ​​

2 0 0 ​​ 1 __ 2 ​​ ​​ 1 __ 2 ​​

3 1 0 0 0

State 1

Decision C1k p10(k) p11(k) p12(k) p13(k)
Value of

Expression

1 1,000 0 ​​ 3 __ 4 ​​ ​​ 1 __ 8 ​​ ​​ 1 __ 8 ​​ 1,923 ← Minimum

3 6,000 1 0 0 0 4,538

hiL72998_ch19_Supplement_1_001-007.indd 4 18/09/19 5:49 PM

	 SUPPLEMENT 1 TO CHAPTER 19 A POLICY IMPROVEMENT ALGORITHM	 19S1-5
C

op
yr

ig
ht

 ©
 2

02
1 T

he
 M

cG
ra

w
-H

ill
C

om
pa

ni
es

	 Since decision 1 minimizes the expression, it is chosen as the decision to be made
in state 1 for policy R2 (just as for policy R1).
	 The corresponding results for state 2 are shown below for its three possible decisions.

State 2

Decision C2k p20(k) p21(k) p22(k) p23(k)
Value of

Expression

1 3,000 0 0 ​​ 1 __ 2 ​​ ​​ 1 __ 2 ​​ 1,923

2 4,000 0 1 0 0 −769 ← Minimum

3 6,000 1 0 0 0 −231

Therefore, decision 2 is chosen as the decision to be made in state 2 for policy R2. Note
that this is a change from policy R1.
	 We summarize our new policy, its transition matrix, and its costs below:

Policy R2

State Decision

0 1

1 1

2 2

3 3

Costs

State Cik

0 0

1 1,000

2 4,000

3 6,000

Transition matrix

State 0 1 2 3

0 0 ​​ 7 __ 8 ​​ ​​ 1 ___ 16 ​​ ​​ 1 ___ 16 ​​

1 0 ​​ 3 __ 4 ​​ ​​ 1 __ 8 ​​ ​​ 1 __ 8 ​​

2 0 1 0 0

3 1 0 0 0

Since this policy is not identical to policy R1, the optimality test says to perform another
iteration.

Iteration 2. For step 1 (value determination), the equations to be solved for this policy
are shown below:

​g(R2) =	 + ​ 7 __ 
8
 ​ v1(R2) 	+ ​ 1 ___ 

16
 ​ v2(R2)	− v0(R2).

g(R2) = 1,000 	+ ​ 3 __ 
4
 ​ v1(R2)	+ ​ 1 __ 

8
 ​ v2(R2)	 − v1(R2).

g(R2) = 4,000	 +  v1(R2)		 − v2(R2).

g(R2) = 6,000	 + v0(R2)​.

The simultaneous solution is

​ g(R2) = ​ 5,000 ______ 
3
 ​ = 1,667

v0(R2) = −​ 13,000 ______ 
3
 ​ = −4,333

v1(R2) = −3,000

v2(R2) = −​ 2,000 ______ 
3
 ​ = −667.​

hiL72998_ch19_Supplement_1_001-007.indd 5 18/09/19 5:49 PM

19S1-6	 SUPPLEMENT 1 TO CHAPTER 19 A POLICY IMPROVEMENT ALGORITHM

C
op

yr
ig

ht
 ©

 2
02

1 T
he

 M
cG

ra
w

-H
ill

C
om

pa
ni

es

	 Step 2 (policy improvement) can now be applied. For the two states with more than
one possible decision, the expressions to be minimized are

	 State 1:  C1k − p10(k)(4,333) − p11(k)(3,000) − p12(k)(667) + 3,000
	 State 2:  C2k − p20(k)(4,333) − p21(k)(3,000) − p22(k)(667) + 667.

	 The first iteration provides the necessary data (the transition probabilities and Cik)
required for determining the new policy, except for the values of each of these expres-
sions for each of the possible decisions. These values are

Decision Value for State 1 Value for State 2

1 1,667 3,333

2 — 1,667

3 4,667 2,334

Since decision 1 minimizes the expression for state 1 and decision 2 minimizes the
expression for state 2, our next trial policy R3 is

Policy R3

State Decision

0 1

1 1

2 2

3 3

	 Note that policy R3 is identical to policy R2. Therefore, the optimality test indicates
that this policy is optimal, so the algorithm is finished.
	 Another example illustrating the application of this algorithm is included in your
OR Tutor. The Solved Examples section for Chapter 19 on the book’s website provides
an additional example as well. The IOR Tutorial also includes an interactive procedure
for efficiently learning and applying the algorithm.

■  LEARNING AIDS FOR THIS SUPPLEMENT ON THIS WEBSITE
A Solved Example:

Examples for Chapter 19

A Demonstration Example in OR Tutor:

Policy Improvement Algorithm — Average Cost Case

Interactive Procedures in IOR Tutorial:

Enter Markov Decision Model
Interactive Policy Improvement Algorithm — Average Cost

Glossary for Chapter 19

	 See Appendix 1 for documentation of the software.

hiL72998_ch19_Supplement_1_001-007.indd 6 18/09/19 5:49 PM

	 SUPPLEMENT 1 TO CHAPTER 19 A POLICY IMPROVEMENT ALGORITHM	 19S1-7
C

op
yr

ig
ht

 ©
 2

02
1 T

he
 M

cG
ra

w
-H

ill
C

om
pa

ni
es

The symbols to the left of some of the problems (or their parts)
have the following meaning:

D:	 The demonstration example listed above may be helpful.
I:	� We suggest that you use the corresponding interactive proce-

dure listed above (the printout records your work).

D,I  19S1-1.  Use the policy improvement algorithm to find an
optimal policy for Prob. 19.2-2.

D,I  19S1-2.  Use the policy improvement algorithm to find an
optimal policy for Prob. 19.2-3.

D,I  19S1-3.  Use the policy improvement algorithm to find an
optimal policy for Prob. 19.2-4.

D,I  19S1-4.  Use the policy improvement algorithm to find an
optimal policy for Prob. 19.2-5.

D,I  19S1-5.  Use the policy improvement algorithm to find an
optimal policy for Prob. 19.2-6.

D,I  19S1-6.  Use the policy improvement algorithm to find an
optimal policy for Prob. 19.2-7.

■  PROBLEMS

D,I  19S1-7.  Use the policy improvement algorithm to find an
optimal policy for Prob. 19.2-8.

D,I  19S1-8.  Consider the blood-inventory problem presented in
Prob. 28.5-5 (see Chap. 28 on this website). Suppose now that the
number of pints of blood delivered (on a regular delivery) can be
specified at the time of delivery (instead of using the old policy of
receiving 1 pint at each delivery). Thus, the number of pints de-
livered can be 0, 1, 2, or 3 (more than 3 pints can never be used).
The cost of regular delivery is $50 per pint, while the cost of an
emergency delivery is $100 per pint. Starting with the policy of
taking one pint at each regular delivery if the number of pints on
hand just prior to the delivery is 0, 1, or 2 pints (so there never is
more than 3 pints on hand), perform two iterations of the policy
improvement algorithm. (Because so few pints are kept on hand
and the oldest pint always is used first, you now can ignore the
remote possibility that any pints will reach 21 days on the shelf
and need to be discarded.)

hiL72998_ch19_Supplement_1_001-007.indd 7 18/09/19 5:49 PM

