S UPPLEMENT 2 T O CHAPTER

1952-8

A Discounted Cost Criterion

hroughout Chap. 19 we have measured policies on the basis of their (long-run)

expected average cost per unit time. We now turn to an alternative measure of per-
formance, namely, the expected total discounted cost.

As first introduced in Sec. 18.2, this measure uses a discount factor a, where
0 < a < 1. The discount factor @ can be interpreted as equal to 1/(1 + i), where i is
the current interest rate per period. Thus, a is the present value of one unit of cost
one period in the future. Similarly, a” is the present value of one unit of cost m
periods in the future.

This discounted cost criterion becomes preferable to the average cost criterion when
the time periods for the Markov chain are sufficiently long that the time value of money
should be taken into account in adding costs in future periods to the cost in the current
period. Another advantage is that the discounted cost criterion can readily be adapted to
dealing with a finite-period Markov decision process where the Markov chain will ter-
minate after a certain number of periods.

Both the policy improvement technique (see Supplement 1) and the linear pro-
gramming approach (see Sec. 19.3) still can be applied here with relatively minor
adjustments from the average cost case, as we describe next. Then we will present
another technique, called the method of successive approximations, for quickly approx-
imating an optimal policy.

A Policy Improvement Algorithm

To derive the expressions needed for the value determination and policy improvement
steps of the algorithm, we now adopt the viewpoint of probabilistic dynamic programming
(as described in Sec. 11.4). In particular, for each state i (i =0, 1, . . . , M) of a Markov
decision process operating under policy R, let V/'(R) be the expected total discounted cost
when the process starts in state i (beginning the first observed time period) and evolves
for n time periods. Then V/'(R) has two components: Cy, the cost incurred during the

M
first observed time period, and az p,j(k)Vj"_l(R), the expected total discounted cost of
=0
the process evolving over the remaining n — 1 time periods. For each i =0, 1, . . ., M, this
yields the recursive equation
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M
VIR) = Cy + a )" piRVi ™ R),
j=0

with VX(R) = C;, which closely resembles the recursive relationships of probabilistic
dynamic programming found in Sec. 11.4.
As n approaches infinity, this recursive equation converges to

M
V(R) = Cy + az piVi(R), fori=0,1, .., M,

j=0

where Vi(R) can now be interpreted as the expected total discounted cost when the process
starts in state i and continues indefinitely. There are M + 1 equations and M + 1 unknowns,
so the simultaneous solution of this system of equations yields the Vi(R).

To illustrate, consider again the prototype example of Sec. 19.1. Under the average
cost criterion, we found in Secs. 19.2 and 19.3, as well as Supplement 1, that the optimal
policy is to do nothing in states 0 and 1, overhaul in state 2, and replace in state 3. Under
the discounted cost criterion, with @ = 0.9, this same policy gives the following system
of equations:

SR

Vo(R) = + 0.9[% Vi(R) + %VZ(R) T

_ 3 1 1
Vi(R) = 1,000 + 0.9 [ ZViR) + 2 VaR) + 8V3(R)]
Vo(R) = 4,000 + 0.9[V,(R)]
V3(R) = 6,000 + 0.9[Vy(R)].

The simultaneous solution is

Vo(R) = 14,949
Vi(R) = 6,262

Vo(R) = 18,636
Vy(R) = 19,454

Thus, assuming that the system starts in state 0, the expected total discounted cost is
$14,949.

This system of equations provides the expressions needed for a policy improvement
algorithm (such as described in Supplement 1 under the average cost criterion). After
summarizing this algorithm in general terms, we shall use it to check whether this
particular policy still is optimal under the discounted cost criterion.

Summary of the Policy Improvement Algorithm
(Discounted Cost Criterion)

Initialization: Choose an arbitrary initial trial policy R;. Set n = 1.

Iteration n:

Step 1: Value determination: For policy R,, use p;(k) and Cy to solve the system of
M + 1 equations

M
V(R,) = Cy + az pi)ViR,), fori=0,1,..., M,
=0
for all M + 1 unknown values of Vy(R,), Vi(R,), . . ., Vi(R,).
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Step 2: Policy improvement: Using the current values of the Vi(R,), find the alternative
policy R, such that, for each state i, d;,(R,,;) = k is the decision that minimizes

M
Ci + @) Py V/(R,).
Jj=0

i.e., for each state i,

M

Minimize | Cy + a ) pyk) Vi(R,)|.
=0

and then set d,(R,,) equal to the minimizing value of k. This procedure defines a new

policy R, ;.

Optimality test: The current policy R, is optimal if this policy is identical to policy R,.

If it is, stop. Otherwise, reset n = n + 1 and perform another iteration.

Three key properties of this algorithm are

1. V(R, ;1) < Vi(R,), fori=0,1,...,Mandn=1,2,....

2. The algorithm terminates with an optimal policy in a finite number of iterations.

3. The algorithm is valid without the assumption (used for the average cost case) that
the Markov chain associated with every transition matrix is irreducible (i.e., any state
can be reached eventually from any other state).

Your IOR Tutorial includes an interactive procedure for applying this algorithm.

Solving the Prototype Example by This Policy Improvement Algorithm. We now
pick up the prototype example where we left it before summarizing the algorithm.

We already have selected the optimal policy under the average cost criterion to be our
initial trial policy R;. This policy, its transition matrix, and its costs are summarized below:

Policy R, Transition matrix Costs
State Decision State 0] 1 2 3 State Cix
0 1 0 0 % 11_6 1‘|_6 0 0
1 1 1 1,000
3 1 1
2 2 = - <
1 0 2 3 3 2 4,000
3 3 3 6,000
2 0 1 0 0
3 1 0 0 0

We also have already done step 1 (value determination) of iteration 1. This transi-
tion matrix and these costs led to the system of equations used to find Vy(R;) = 14,949,
Vi(R)) = 16,262, V,(R,) = 18,636, and V3(R;) = 19,454.

To start step 2 (policy improvement), we only need to construct the expression to
be minimized for the two states (1 and 2) with a choice of decisions.

State 11 Cyy + 0.9[p1o(k)(14,949) + p,(k)(16,262) + p1a(k)(18,636)
+ p13(k)(19,454)]

State 2: Cy + 0.9[pa(k)(14,949) + py(k)(16,262) + pr(k)(18,636)
+ pa3(k)(19,454)].

For each of these states and their possible decisions, we show below the corresponding
Cit. the P;(k), and the resulting value of the expression.
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State 1
Value of
Decision Ci Pro(k) pnlk) Pr2(K) Ppia(k) Expression
1 1,000 (] 3 1 1 16,262 « Minimum
’ 4 8 8 ’
3 6,000 1 0 0 0 19,454
State 2
Value of
Decision Cox P20(K) P(k) P22(K) P23(k) Expression
1 3,000 0 0 1 1 20,140
, > > )
4,000 0 1 0 0 18,636 « Minimum
6,000 1 0 0 0 19,454

Since decision 1 minimizes the expression for state 1 and decision 2 minimizes the
expression for state 2, our next trial policy (R,) is as follows:

Policy R,

State Decision

w N = O
W N =

Since this policy is identical to policy R), the optimality test indicates that this policy
is optimal. Thus, the optimal policy under the average cost criterion also is optimal under
the discounted cost criterion in this case. (This often occurs, but not always.)

Linear Programming Formulation

The linear programming formulation for the discounted cost case is similar to that for
the average cost case given in Sec. 19.3. However, we no longer need the first constraint given
in Sec. 19.3; but the other functional constraints do need to include the discount factor o.
The other difference is that the model now contains constants f; for j =0, 1, ..., M. These
constants must satisfy the conditions

M
Zﬁjzl, p; >0 forj=0,1, ..., M,
=0

but otherwise they can be chosen arbitrarily without affecting the optimal policy obtained
from the model.

The resulting model is to choose the values of the continuous decision variables y;,
SO as to

M K
Minimize Z = Z Z Cayins
=0 k=1
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subject to the constraints

K

(1) ZK: Vie — @ f Z yupik) = B, forj=0,1, ..., M,
k=1

=0 k=1
@) yi>0, fori=0,1,...,M k=12, .., K

Once the simplex method is used to obtain an optimal solution for this model, the
corresponding optimal policy then is defined by

Yik
< .
Z Yik
k=1

The y; now can be interpreted as the discounted expected time of being in state i and
making decision k, when the probability distribution of the initial state (when observa-
tions begin) is P{X, = j} = p;for j =0, 1, ..., M. In other words, if

Dj, = P{decision = k | state = i} =

zh = P{at time n, state = [ and decision = k},
then
Vi + 70+ azip + Azh+ g + -

With the interpretation of the B; as initial state probabilities (with each probability greater
than zero), Z can be interpreted as the corresponding expected total discounted cost. Thus,
the choice of fij affects the optimal value of Z (but not the resulting optimal policy).

It again can be shown that the optimal policy obtained from solving the linear pro-
gramming model is deterministic; that is, Dy, = 0 or 1. Furthermore, this technique is valid
without the assumption (used for the average cost case) that the Markov chain associated
with every transition matrix is irreducible.

Solving the Prototype Example by Linear Programming. The linear programming
model for the prototype example (with @ = 0.9) is

Minimize Z = 1,000_)’11 + 6,000y13 + 3,000y21 + 4,000y22 + 6,000y23

+ 6,000y33,

subject to
1
Yor — 0.9(yi3 + yo3 + y33) = 1
7 3 1
yu +yiz — 0.9<§y01 + Z}’n + }’22) =7
Ya+yn+y —09(Ly +ly +ly )=l
21 2 23 I\ 1gY0r T gyt 50 1
1 1 1 1
Y33 — 0-9<E)’01 + g)’n + E)’Zl) =7

and

all y; >0,

where S, B, >, and B are arbitrarily chosen to be %. By the simplex method, the optimal
solution is

yor = 1.210,  (y11, y13) = (6.656, 0), (y21, Y22, ¥23) = (0, 1.067, 0),
Y33 = 1067,

Copyright © 2021 The McGraw-Hill Companies



Copyright © 2021 The McGraw-Hill Companies

SUPPLEMENT 2 TO CHAPTER 19 A DISCOUNTED COST CRITERION 19S52-13

)
Doy =1, (D1, Di3) = (1, 0), (D, Dy, Dy3) = (0, 1,0), D33 =1.

This optimal policy is the same as that obtained earlier in this supplement by the policy
improvement algorithm.

The value of the objective function for the optimal solution is Z = 17,325. This value
is closely related to the values of the V(R) for this optimal policy that were obtained by
the policy improvement algorithm. Recall that Vi(R) is interpreted as the expected total
discounted cost given that the system starts in state i, and we are interpreting 3; as the
probability of starting in state i. Because each f; was chosen to equal %,

17.325 = i[VO(R) + Vi(R) + Vs(R) + V5(R)]

= %(14,949 + 16262 + 18,636 + 19,454).

Finite-Period Markov Decision Processes and the Method
of Successive Approximations

We now turn our attention to an approach, called the method of successive approxima-
tions, for quickly finding at least an approximation to an optimal policy.

We have assumed so far that the Markov decision process will be operating indefi-
nitely, and we have sought an optimal policy for such a process. The basic idea of the
method of successive approximations is to instead find an optimal policy for the decisions
to make in the first period when the process has only n time periods to go before ter-
mination, starting with n = 1, then n = 2, then n = 3, and so on. As n grows large, the
corresponding optimal policies will converge to an optimal policy for the infinite-period
problem of interest. Thus, the policies obtained for n = 1, 2, 3, . . . provide successive
approximations that lead to the desired optimal policy.

The reason that this approach is attractive is that we already have a quick method of
finding an optimal policy when the process has only n periods to go, namely, probabilistic
dynamic programming as described in Sec. 11.4.

In particular, fori =0, 1, . .., M, let

Vi' = expected total discounted cost of following an optimal policy, given that
process starts in state i and has only n periods to go.'

By the principle of optimality for dynamic programming (see Sec. 11.2), the V' are
obtained from the recursive relationship

M
V= mkin{C,»k + az pii(k) Vj"—‘}, fori=0,1,.., M.
=0
The minimizing value of k provides the optimal decision to make in the first period when
the process starts in state i.

To get started, with n = 1, all the ViO = 0 so that

vl = min{Cy},  fori=0.1,.., M

Although the method of successive approximations may not lead to an optimal policy
for the infinite-period problem after only a few iterations, it has one distinct advantage over
the policy improvement and linear programming techniques. It never requires solving a
system of simultaneous equations, so each iteration can be performed simply and quickly.

'Since we want to allow n to grow indefinitely, we are letting n be the number of periods to go, instead of
the number of periods from the beginning (as in Chap. 11).
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Furthermore, if the Markov decision process actually does have just n periods to go,
n iterations of this method definitely will lead to an optimal policy. (For an n-period
problem, it is permissible to set @ = 1, that is, no discounting, in which case the objec-
tive is to minimize the expected total cost over n periods.)

Your IOR Tutorial includes an interactive procedure to help guide you to use this
method efficiently.

Solving the Prototype Example by the Method
of Successive Approximations

We again use a = 0.9. Refer to the rightmost column of Table 19.1 at the end of Sec. 19.1
for the values of Cj. Also note in the first two columns of this table that the only feasible
decisions k for each state iare k = 1 fori =0, k=1or3fori=1,k=1, 2, or 3 for
i=2,and k =3 fori = 3.

For the first iteration (n = 1), the value obtained for each V| is shown below, along
with the minimizing value of k (given in parentheses).

Vo = min{Cy} = 0 k=1
Vi = min {Cy;} = 1,000 (k=1)
V= min {Cy} =3.000 (k=1

k=1, 2,

Vi =min{Cy} = 6000  (k=3)

Thus, the first approximation calls for making decision 1 (do nothing) when the system
is in state 0, 1, or 2. When the system is in state 3, decision 3 (replace the machine) is
made.

The second iteration leads to

V2=0+09 [%(1,000) + 1—16(3,000) + 11—6(6,000)] — 1294 (k = 1)
V2= min{l,OOO +09 [%(1,000) + %(3,000) + %(6,000)],
6,000 + 0.9[1(0)]} =268 (k= 1)

V2 = min {3,000 +09 [%(3,000) + %(6,000)],
4,000 + 0.9[1(1,000)], 6,000 + 0.9(1(0)]} = 4,900 (k = 2)

Vi = 6,000 + 0.9[1(0)] = 6,000 (k = 3).

where the min operator has been deleted from the first and fourth expressions because
only one alternative for the decision is available. Thus, the second approximation calls
for leaving the machine as is when it is in state O or 1, overhauling when it is in state 2,
and replacing the machine when it is in state 3. Note that this policy is the optimal one
for the infinite-period problem, as found earlier in this supplement by both the policy
improvement algorithm and linear programming. However, the V7 (the expected total
discounted cost when starting in state i for the two-period problem) are not yet close to
the V; (the corresponding cost for the infinite-period problem).
The third iteration leads to

Vi=0+ 09 %(2,688) n %6(4,900) + %(6,000) = 2730 (k= 1)
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V3= min{ 1,000 + 0.9 [%(2,688) + %(4,900) + %(6,000)],

6,000 + 0.9[1(1294)]} =4,041 (k=1)

V3 = min {3,000 + 0.9[%(4,900) + %(6,000)],
4,000 + 0.9[1(2,688)], 6,000 + 0.9[1(1,294)1} = 6419 (k = 2)
Vi = 6,000 + 0.9[1(1,294)] = 7,165 (k = 3).

Again the optimal policy for the infinite-period problem is obtained, and the costs are
getting closer to those for that problem. This procedure can be continued, and Vi, V{,
V5, and V3 will converge to 14,949, 16,262, 18,636, and 19,454, respectively.

Note that termination of the method of successive approximations after the second
iteration would have resulted in an optimal policy for the infinite-period problem,
although there is no way to know this fact without solving the problem by other methods.

As indicated earlier, the method of successive approximations definitely obtains an
optimal policy for an n-period problem after n iterations. For this example, the first,
second, and third iterations have identified the optimal immediate decision for each state
if the remaining number of periods is one, two, and three, respectively.

@ LEARNING AIDS FOR THIS SUPPLEMENT ON THIS WEBSITE
Interactive Procedures in IOR Tutorial:

Enter Markov Decision Model
Interactive Policy Improvement Algorithm—Discounted Cost
Interactive Method of Successive Approximations

“Ch. 19—Markov Decision Proc” Files for Solving the Linear
Programming Formulations:

Excel Files
LINGO/LINDO File

Glossary for Chapter 19

See Appendix 1 for documentation of the software.



1952-16

SUPPLEMENT 2 TO CHAPTER 19 A DISCOUNTED COST CRITERION

B PROBLEMS

The symbols to the left of some of the problems (or their parts)
have the following meaning:

I  We suggest that you use the corresponding interactive proce-
dure listed above (the printout records your work).

C:  Use the computer with any of the software options available to
you (or as instructed by your instructor) to solve your linear
programming formulation.

1 19S2-1. Joe wants to sell his car. He receives one offer each
month and must decide immediately whether to accept the offer.
Once rejected, the offer is lost. The possible offers are $600, $300,
and $1,000, made with probabilities %, %, and é, respectively (where
successive offers are independent of each other). There is a mainte-
nance cost of $60 per month for the car. Joe is anxious to sell the
car and so has chosen a discount factor of a = 0.95.

Using the policy improvement algorithm, find a policy that
minimizes the expected total discounted cost. (Hint: There are two
actions: Accept or reject the offer. Let the state for month 7 be the
offer in that month. Also include a state co, where the process goes
to state oo whenever an offer is accepted and it remains there at a
monthly cost of 0.)

19S2-2. Reconsider Prob. 1952-1.
(a) Formulate a linear programming model for finding an optimal
policy.
C (b) Use the simplex method to solve this model. Use the result-
ing optimal solution to identify an optimal policy.

1 1952-3. For Prob. 19S2-1, use three iterations of the method of
successive approximations to approximate an optimal policy.

1 19S2-4. The price of a certain stock is fluctuating between $10,
$20, and $30 from month to month. Market analysts have predicted
that if the stock is at $10 during any month, it will be at $10 or $20 the
next month, with probabilities % and %, respectively; if the stock is
at $20, it will be at $10, $20, or $30 the next month, with probabil-
ities %, %, and %, respectively; and if the stock is at $30, it will be at
$20 or $30 the next month, with probabilities % and %, respectively.
Given a discount factor of 0.9, use the policy improvement algo-
rithm to determine when to sell and when to hold the stock to max-
imize the expected total discounted profit. (Hint: Include a state
that is reached with probability 1 when the stock is sold and with

probability O when the stock is held.)

19S2-5. Reconsider Prob. 1952-4.
(a) Formulate a linear programming model for finding an optimal
policy.
C (b) Use the simplex method to solve this model. Use the result-
ing optimal solution to identify an optimal policy.

I 19S2-6. For Prob. 19S2-4, use three iterations of the method of
successive approximations to approximate an optimal policy.

19S2-7. A chemical company produces two chemicals, denoted by
C1 and C2, and only one can be produced at a time. Each month a

decision is made as to which chemical to produce that month. Be-
cause the demand for each chemical is predictable, it is known that
if C2 is produced this month, there is a 60 percent chance that it will
also be produced again next month. Similarly, if C1 is produced
this month, there is only a 30 percent chance that it will be pro-
duced again next month.

To combat the emissions of pollutants, the chemical company
has two processes, process A, which is efficient in combating the
pollution from the production of C2 but not from C1, and pro-
cess B, which is efficient in combating the pollution from the pro-
duction of C1 but not from C2. Only one process can be used at a
time. The amount of pollution from the production of each chemical
under each process is

(& c2

Unfortunately, there is a time delay in setting up the pollution
control processes, so that a decision as to which process to use must
be made in the month prior to the production decision. Manage-
ment wants to determine a policy for when to use each pollution
control process that will minimize the expected total discounted
amount of all future pollution with a discount factor of @ = 0.5.
(a) Formulate this problem as a Markov decision process by iden-

tifying the states, the decisions, and the Cj. Identify all the
(stationary deterministic) policies.
1 (b) Use the policy improvement algorithm to find an optimal
policy.

19S2-8. Reconsider Prob. 19S2-7.
(a) Formulate a linear programming model for finding an optimal
policy.
C (b) Use the simplex method to solve this model. Use the result-
ing optimal solution to identify an optimal policy.

1 19S2-9. For Prob. 19S2-7, use two iterations of the method of
successive approximations to approximate an optimal policy.

1 19S2-10. Reconsider Prob. 19S2-7. Suppose now that the com-
pany will be producing either of these chemicals for only 4 more
months, so a decision on which pollution control process to use
1 month hence only needs to be made three more times. Find an
optimal policy for this three-period problem.

1 19S2-11 Reconsider the prototype example presented in
Sec. 19.1. Suppose now that the production process using the
machine under consideration will be used for only 4 more weeks.
Using the discounted cost criterion with a discount factor of a = 0.9,
find the optimal policy for this four-period problem.
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