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978 Mechanical Engineering Design

Statistics in mechanical design provides a method of dealing with characteristics whose
values are variable. Products manufactured in large quantities—automobiles, watches,
lawnmowers, washing machines, for example—have a life that is variable. One auto-
mobile may have so many defects that it must be repaired repeatedly during the first few
months of operation while another may operate satisfactorily for years, requiring only
minor maintenance.

Methods of quality control are deeply rooted in the use of statistics, and engineer-
ing designers need a knowledge of statistics to conform to quality-control standards.
The variability inherent in limits and fits, in stress and strength, in bearing clearances,
and in a multitude of other characteristics must be described numerically for proper
control. It is not satisfactory to say that a product is expected to have a long and
troublefree life. We must express such things as product life and product reliability in
numerical form in order to achieve a specific quality goal. As noted in Sec. 1–10, uncer-
tainties abound and require quantitative treatment. The algebra of real numbers, by
itself, is not well-suited to describing the presence of variation.

It is clear that consistencies in nature are stable, not in magnitude, but in the pat-
tern of variation. Evidence gathered from nature by measurement is a mixture of sys-
tematic and random effects. It is the role of statistics to separate these, and, through the
sensitive use of data, illuminate the obscure.

Some students will start this book after completing a formal course in statistics
while others may have had brief encounters with statistics in their engineering courses.
This contrast in background, together with space and time constraints, makes it very dif-
ficult to present an extensive integration of statistics with mechanical engineering design
at this stage. Beyond first courses in mechanical design and engineering statistics, the
student can begin to meaningfully integrate the two in a second course in design.

The intent of this chapter is to introduce some statistical concepts associated with
basic reliability goals.

20–1 Random Variables
Consider an experiment to measure strength in a collection of 20 tensile-test specimens
that have been machined from a like number of samples selected at random from a car-
load shipment of, say, UNS G10200 cold-drawn steel. It is reasonable to expect that
there will be differences in the ultimate tensile strengths Sut of each of the individual
test specimens. Such differences may occur because of differences in the sizes of the
specimens, in the strength of the material itself, or both. Such an experiment is called a
random experiment, because the specimens are selected at random. The strength Sut

determined by this experiment is called a random, or a stochastic, variable. So a ran-
dom variable is a variable quantity, such as strength, size, or weight, whose value
depends on the outcome of a random experiment.

Let us define a random variable x as the sum of the numbers obtained when two
dice are tossed. Either die can display any number from 1 to 6. Figure 20–1 displays all
possible outcomes in what is called the sample space. Note that x has a specific value

Figure 20–1

Sample space showing all
possible outcomes of the toss
of two dice.

1,1 1,2 1,3 1,4 1,5 1,6

2,1 2,2 2,3 2,4 2,5 2,6

3,1 3,2 3,3 3,4 3,5 3,6

4,1 4,2 4,3 4,4 4,5 4,6

5,1 5,2 5,3 5,4 5,5 5,6

6,1 6,2 6,3 6,4 6,5 6,6
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Statistical Considerations 979

for each possible outcome—for example, the event 5, 4; x = 5 + 4 = 9. It is useful to
form a table showing the values of x and the corresponding values of the probability of x,
called p = f (x). This is easily done from Fig. 20–1 merely by adding each outcome,
determining how many times a specific value of x arises, and dividing by the total num-
ber of possible outcomes. The results are shown in Table 20–1. Any table like this, list-
ing all possible values of a random variable and with the corresponding probabilities, is
called a probability distribution.

The values of Table 20–1 are plotted in graphical form in Fig. 20–2. Here it is clear
that the probability is a function of x. This probability function p = f (x) is often called
the frequency function or, sometimes, the probability density function (PDF). The prob-
ability that x is less than or equal to a certain value xi can be obtained from the proba-
bility function by summing the probability of all x’s up to and including xi . If we do
this with Table 20–1, letting xi equal 2, then 3, and so on, up to 12, we get Table 20–2,
which is called a cumulative probability distribution. The function F(x) in Table 20–2
is called a cumulative density function (CDF) of x. In terms of f (x) it may be expressed
mathematically in the general form

F(xi ) =
∑
xj ≤xi

f (xj ) (20–1)

The cumulative distribution may also be plotted as a graph (Fig. 20–3).
The variable x of this example is called a discrete random variable, because x has

only discrete values. A continuous random variable is one that can take on any value in
a specified interval; for such variables, graphs like Figs. 20–2 and 20–3 would be
plotted as continuous curves. For a continuous probability density function F(x), the
probability of obtaining an observation equal to or less than x is given by

F(x) =
∫ x

−∞
f (x) dx (20–2)

Table 20–1

A Probability Distribution

x 2 3 4 5 6 7 8 9 10 11 12

f(x) 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

p = f (x)

x

6
36

5
36

4
36

3
36

2
36

1
36

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 20–2

Frequency distribution.

Table 20–2

A Cumulative

Probability Distribution

x 2 3 4 5 6 7 8 9 10 11 12

F(x) 36
36

35
36

33
36

30
36

26
36

21
36

15
36

10
36

6
36

3
36

1
36
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980 Mechanical Engineering Design

where f (x) is the probability per unit x. When x → ∞, then∫ ∞

−∞
f (x) dx = 1 (20–3)

Differentiation of Eq. (20–2) gives

d F(x)

dx
= f (x) (20–4)

20–2 Arithmetic Mean, Variance, 
and Standard Deviation 
In studying the variations in the mechanical properties and characteristics of mechani-
cal elements, we shall generally be dealing with a finite number of elements. The total
number of elements, called the population, may in some cases be quite large. In such
cases it is usually impractical to measure the characteristics of each member of the pop-
ulation, because this involves destructive testing in some cases, and so we select a small
part of the group, called a sample, for these determinations. Thus the population is the
entire group, and the sample is a part of the population. 

The arithmetic mean of a sample, called the sample mean, consisting of N elements,
is defined by the equation 

x̄ = x1 + x2 + x3 + · · · + xN

N
= 1

N

N∑
i=1

xi (20–5)

Besides the arithmetic mean, it is useful to have another kind of measure that will tell us
something about the spread, or dispersion, of the distribution. For any random variable x,
the deviation of the ith observation from the mean is xi − x̄. But since the sum of the
deviations so defined is always zero, we square them, and define sample variance as

s2
x = (x1 − x̄)2 + (x2 − x̄)2 + · · · + (xN − x̄)2

N − 1
= 1

N − 1

N∑
i=1

(xi − x̄)2 (20–6)

F(x)

x

36
36

27
36

18
36

9
36

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 20–3

Cumulative frequency
distribution.
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Statistical Considerations 981

The sample standard deviation, defined as the square root of the sample variance, is

sx =
√√√√ 1

N − 1

N∑
i=1

(xi − x̄)2 (20–7)

Equation (20–7) is not well-suited for use in a calculator. For such purposes, use the
alternative form

sx =

√√√√√ N∑
i=1

x2
i −

(
N∑

i=1
xi

)2/
N

N − 1
=

√√√√√ N∑
i=1

x2
i − N x̄2

N − 1
(20–8)

for the standard deviation.
It should be observed that some authors define the variance and the standard devi-

ation by using N instead of N − 1 in the denominator. For large values of N, there is
very little difference. For small values, the denominator N − 1 actually gives a better
estimate of the variance of the population from which the sample is taken.

Equations (20–5) to (20–8) apply specifically to the sample of a population. When
an entire population is considered, the same equations apply, but x̄ and sx are replaced
with the symbols μx and, σ̂x respectively. The circumflex accent mark ˆ, or “hat,” is
used to avoid confusion with normal stress. For the population variance and standard
deviation, N weighting is used in the denominators instead of N − 1.

Sometimes we are going to be dealing with the standard deviation of the strength
of an element. So you must be careful not to be confused by the notation. Note that we
are using the capital letter S for strength and the lowercase letter s for standard devia-
tion as shown in the caption of the histogram in Fig. 20–4.

Figure 20–4 is called a discrete frequency histogram, which gives the number of
occurrences, or class frequency fi , within a given range. If the data are grouped in this
fashion, then the mean and standard deviation are given by

x̄ = 1

N

k∑
i=1

fi xi (20–9)

and

sx =

√√√√√ k∑
i=1

fi x2
i −

[( k∑
i=1

fi xi

)2/
N

]
N − 1

=

√√√√√ k∑
i=1

fi x2
i − N x̄2

N − 1
(20–10)

Here xi , fi , and k are class midpoint, frequency of occurrences within the range of the
class, and the total number of classes, respectively. Also, the cumulative density func-
tion that gives the probability of an occurrence at class mark of xi or less is

Fi = fiwi

2
+

i−1∑
j=1

f jwj (20–11)

where wi represents the class width at xi . For Fig. 20–4a, k = 21 and the class width
is constant at w = 1 kpsi.
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982 Mechanical Engineering Design

Notation
In this book, we follow the convention of designating vectors by boldface characters,
indicative of the fact that two or three quantities, such as direction and magnitude, are
necessary to describe them. The same convention is widely used for random variables
that can be characterized by specifying a mean and a standard deviation. We shall there-
fore use boldface characters to designate random variables as well as vectors. No
confusion between the two is likely to arise. 

The terms stochastic variable and variate are also used to mean a random variable.
A deterministic quantity is something that has a single specific value. The mean value
of a population is a deterministic quantity, and so is its standard deviation. A stochastic
variable can be partially described by the mean and the standard deviation, or by the
mean and the coefficient of variation defined by

Cx = sx

x̄
(20–12)

Thus the variate x for the sample can be expressed in the following two ways:

x = X(x̄, sx) = x̄ X(1, Cx) (20–13)

where X represents a variate probability distribution function. Note that the determin-
istic quantities x̄, sx , and Cx are all in normal italic font.
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Figure 20–4

Distribution of tensile
properties of hot-rolled UNS
G10350 steel, as rolled. These
tests were made from round
bars varying in diameter from 1
to 9 in. (a) Tensile-strength
distributions from 930 heats;
S̄u = 86.0 kpsi, sSu = 4.94 kpsi.
(b) Yield-strength distribution
from 899 heats; S̄y = 49.5 kpsi,
sSy = 5.36 kpsi. (From
Metals Handbook, vol. 1, 
8th ed., American Society for
Metals, Materials Park, 
OH 44073-0002, fig. 22, p. 64.
Reprinted by permission of
ASM International®,
www.asminternational.org.)
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Statistical Considerations 983Statistical Considerations 983

Table 20–3

Data Worksheet from

Nine Tensile Test

Specimens Taken from

a Shipment of 1030

Hot-Rolled Steel

Barstock

Sut, kpsi
x x2

62.8 3 943.84

64.4 4 147.36

65.8 4 329.64

66.3 4 395.69

68.1 4 637.61

69.1 4 774.81

69.8 4 872.04

71.5 5 112.25

74.0 5 476.00∑
611.8 41 689.24

EXAMPLE 20–1 Five tons of 2-in round rod of 1030 hot-rolled steel has been received for workpiece
stock. Nine standard-geometry tensile test specimens have been machined from random
locations in various rods. In the test report, the ultimate tensile strength was given in
kpsi. In ascending order (not necessary), these are displayed in Table 20–3. Find the
mean x̄ , the standard deviation sx , and the coefficient of variation Cx from the sample,
such that these are best estimates of the parent population (the stock your plant will
convert to product).

Solution From Eqs. (20–5) and (20–8),

x̄ = 1

N

9∑
i=1

xi

and

sx =
√∑

x2
i − (∑

xi
)2/

N

N − 1

It is computationally efficient to generate 
∑

x and 
∑

x2 before evaluating x̄ and sx .
This has been done in Table 20–3.

Answer x̄ = 1

9
(611.8) = 67.98 kpsi

Answer sx =
√

41 689.24 − 611.82/9

9 − 1
= 3.543 kpsi

From Eq. (20–12),

Answer Cx = sx

x̄
= 3.543

67.98
= 0.0521

All three statistics are estimates of the parent population statistical parameters. Note
that these results are independent of the distribution.
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984 Mechanical Engineering Design

Table 20–4

Grouped Data of

Ultimate Tensile

Strength from Nine

Tensile Test Specimens

from a Shipment of 

1030 Hot-Rolled Steel

Barstock

Class
Midpoint Class

x, Frequency Extension
kpsi f fx fx2

63.5 2 127 8 064.50

66.5 2 133 8 844.50

69.5 3 208.5 14 480.75

72.5 2 145 10 513.50∑
9 613.5 41 912.25

Multiple data entries may be identical or may be grouped in histographic form to
suggest a distributional shape. If the original data are lost to the designer, the grouped
data can still be reduced, although with some loss in computational precision.

EXAMPLE 20–2 The data in Ex. 20–1 have come to the designer in the histographic form of the first two
columns of Table 20–4. Using the data in this form, find the mean x̄ , standard devia-
tion sx , and the coefficient of variation Cx .

The data in Table 20– 4 have been extended to provide 
∑

fi xi and 
∑

fi x2
i . 

Solution From Eq. (20–9),

Answer x̄ = 1

N

4∑
i=1

fi xi = 1

9
(613.5) = 68.17 kpsi

From Eq. (20–10),

Answer sx =
√

41 912.25 − 613.52/9

9 − 1
= 3.391 kpsi

From Eq. (20–12),

Answer Cx = sx

x̄
= 3.391

68.17
= 0.0497

Note the small changes in x̄, sx , and Cx due to small changes in the summation terms.

The descriptive statistics developed, whether from ungrouped or grouped data,
describe the ultimate tensile strength Sut of the material from which we will form parts.
Such description is not possible with a single number. In fact, sometimes two or three
numbers plus identification or, at least, a robust approximation of the distribution are
needed. As you look at the data in Ex. 20–1, consider the answers to these questions:

• Can we characterize the ultimate tensile strength by the mean, S̄ut?

• Can we take the lowest ultimate tensile strength of 62.8 kpsi as a minimum? If we
do, we will encounter some lesser ultimate strengths, because some of 100 specimens
will be lower.

• Can we find the distribution of the ultimate tensile strength of the 1030 stock in
Ex. 20–1? Yes, but it will take more specimens and require plotting on coordinates
that rectify the data string.
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Statistical Considerations 985

20–3 Probability Distributions
There are a number of standard discrete and continuous probability distributions that
are commonly applicable to engineering problems. In this section, we will discuss four
important continuous probability distributions; the Gaussian, or normal, distribution;
the lognormal distribution; the uniform distribution; and the Weibull distribution.

The Gaussian (Normal) Distribution
When Gauss asked the question, What distribution is the most likely parent to a set of
data?, the answer was the distribution that bears his name. The Gaussian, or normal,
distribution is an important one whose probability density function is expressed in
terms of its mean μx and its standard deviation σ̂x as

f (x) = 1

σ̂x

√
2π

exp

[
−1

2

(
x − μx

σ̂x

)2
]

(20–14)

With the notation described in Sec. 20–2, the normally distributed variate x can be
expressed as

x = N(μx , σ̂x) = μxN(1, Cx) (20–15)

where N represents the normal distribution function given by Eq. (20–14).
Since Eq. (20–14) is a probability density function, the area under it, as required,

is unity. Plots of Eq. (20–14) are shown in Fig. 20–5 for small and large standard devi-
ations. The bell-shaped curve is taller and narrower for small values of σ̂ and shorter
and broader for large values of σ̂ . Integration of Eq. (20–14) to find the cumulative den-
sity function F(x) is not possible in closed form, but must be accomplished numeri-
cally. To avoid the need for many tables for different values of μ and σ̂ , the deviation
from the mean is expressed in units of standard deviation by the transform 

z = x − μx

σ̂x
(20–16)

The integral of the transform is tabulated in Table A–10 and sketched in Fig. 20–6. The
value of the normal cumulative density function is used so often, and manipulated in so

f (x)

x
�

(a)

f (x)

x
�

(b)

Figure 20–5

The shape of the normal
distribution curve: (a) small σ̂ ;
(b) large σ̂ .

f (z)

z
z�

� (z�)

0

�

Figure 20–6

The standard normal
distribution.
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986 Mechanical Engineering Design

many equations, that it has its own particular symbol, �(z). The transformation variate
z is normally distributed, with a mean of zero and a standard deviation and variance of
unity. That is, z = N (0, 1). The probability of an observation less than z is �(z) for
negative values of z and 1 − �(z) for positive values of z in Table A–10.

EXAMPLE 20–3 In a shipment of 250 connecting rods, the mean tensile strength is found to be 45 kpsi
and the standard deviation 5 kpsi. 
(a) Assuming a normal distribution, how many rods can be expected to have a strength

less than 39.5 kpsi? 
(b) How many are expected to have a strength between 39.5 and 59.5 kpsi? 

Solution (a) Substituting in Eq. (20–16) gives the standardized z variable as

z39.5 = x − μx

σ̂x
= S − S̄

σ̂S
= 39.5 − 45

5
= −1.10

The probability that the strength is less than 39.5 kpsi can be designated as F(z) =
�(−1.10). Using Table A–10, and referring to Fig. 20–7, we find �(z39.5) = 0.1357.
So the number of rods having a strength less than 39.5 kpsi is,

f (z)

z

z59.5z39.5

0 +2.9–1.1–

Figure 20–7

Answer N�(z39.5) = 250(0.1357) = 33.9 ≈ 34

because �(z39.5) represents the proportion of the population N having a strength less
than 39.5 kpsi. 
(b) Corresponding to S = 59.5 kpsi, we have

z59.5 = 59.5 − 45

5
= 2.90

Referring again to Fig. 20–7, we see that the probability that the strength is less than
59.5 kpsi is F(z) = �(z59.5). Since the z variable is positive, we need to find the value
complementary to unity. Thus, from Table A–10, 

�(2.90) = 1 − �(−2.90) = 1 − 0.001 87 = 0.998 13

The probability that the strength lies between 39.5 and 59.5 kpsi is the area between the
ordinates at z39.5 and z59.5 in Fig. 20–7. This probability is found to be 

p = �(z59.5) − �(z39.5) = �(2.90) − �(−1.10)

= 0.998 13 − 0.1357 = 0.862 43

Therefore the number of rods expected to have strengths between 39.5 and 59.5 kpsi is 

Answer N p = 250(0.862) = 215.5 ≈ 216
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Statistical Considerations 987

The Lognormal Distribution
Sometimes random variables have the following two characteristics:

• The distribution is asymmetrical about the mean.

• The variables have only positive values.

Such characteristics rule out the use of the normal distribution. There are several other
distributions that are potentially useful in such situations, one of them being the log-
normal (written as a single word) distribution. Especially when life is involved, such as
fatigue life under stress or the wear life of rolling bearings, the lognormal distribution
may be a very appropriate one to use. 

The lognormal distribution is one in which the logarithms of the variate have a nor-
mal distribution. Thus the variate itself is said to be lognormally distributed. Let this
variate be expressed as

x = LN(μx , σ̂x) (a)

Equation (a) states that the random variable x is distributed lognormally (not a loga-
rithm) and that its mean value is μx and its standard deviation is σ̂x .

Now use the transformation 

y = ln x (b)

Since, by definition, y has a normal distribution, we can write

y = N(μy, σ̂y) (c)

This equation states that the random variable y is normally distributed, its mean value
is μy , and its standard deviation is σ̂y .

It is convenient to think of Eq. (a) as designating the parent, or principal, distribu-
tion while Eq. (b) represents the companion, or subsidiary, distribution.

The probability density function (PDF) for x can be derived from that for y; see
Eq. (20–14), and substitute y for x in that equation. Thus the PDF for the companion
distribution is found to be 

f (x) =
⎧⎨⎩

1

x σ̂y

√
2π

exp

[
−1

2

(
ln x − μy

σ̂y

)2
]

for x > 0

0 for x ≤ 0

(20–17)

The companion mean μy and standard deviation σ̂y in Eq. (20–17) are obtained from

μy = ln μx − ln
√

1 + C2
x ≈ ln μx − 1

2
C2

x (20–18)

σ̂y =
√

ln
(
1 + C2

x

) ≈ Cx (20–19)

These equations make it possible to use Table A–10 for statistical computations and
eliminate the need for a special table for the lognormal distribution.

EXAMPLE 20–4 One thousand specimens of 1020 steel were tested to rupture and the ultimate tensile
strengths were reported as grouped data in Table 20–5. From Eq. (20–9),

x̄ = 63 625

1000
= 63.625 kpsi
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988 Mechanical Engineering Design

From Eq. (20–10),

sx =
√

4 054 864 − 63 6252/1000

1000 − 1
= 2.594 245 = 2.594 kpsi

Cx = sx

x̄
= 2.594 245

63.625
= 0.040 773 = 0.0408

From Eq. (20–14) the probability density function for a normal distribution with a mean
of 63.625 and a standard deviation of 2.594 245 is

f (x) = 1

2.594 245
√

2π
exp

[
−1

2

(
x − 63.625

2.594 245

)2
]

For example, f (63.625) = 0.1538. The probability density f (x) is evaluated at class
midpoints to form the column of normal density in Table 20–5.

Class Observed Normal Lognormal
Midpoint, Frequency Extension PDF Density Density

kpsi fi xifi x2
i fi fi/(Nw)* f(x) g(x)

56.5 2 113.0 6 384.5 0.002 0.0035 0.0026

57.5 18 1 035.0 59 512.5 0.018 0.0095 0.0082

58.5 23 1 345.5 78 711.75 0.023 0.0218 0.0209

59.5 31 1 844.5 109 747.75 0.031 0.0434 0.0440

60.5 83 5 021.5 303 800.75 0.083 0.0744 0.0773

61.5 109 6 703.5 412 265.25 0.109 0.110 0.1143

62.5 138 8 625.0 539 062.5 0.138 0.140 0.1434

63.5 151 9 588.5 608 869.75 0.151 0.1536 0.1539

64.5 139 8 965.5 578 274.75 0.139 0.1453 0.1424

65.5 130 8 515.0 577 732.5 0.130 0.1184 0.1142

66.5 82 5 453.0 362 624.5 0.082 0.0832 0.0800

67.5 49 3 307.5 223 256.25 0.049 0.0504 0.0493

68.5 28 1 918.0 131 382.0 0.028 0.0263 0.0268

69.5 11 764.5 53 132.75 0.011 0.0118 0.0129

70.5 4 282.0 19 881.0 0.004 0.0046 0.0056

71.5 2 143.0 10 224.5 0.002 0.0015 0.0022∑
1 000 63 625 4 054 864 1.000

*To compare discrete frequency data with continuous probability density functions fi must be divided by Nw. Here, N = sample size = 1000;
w = width of class interval = 1 kpsi.

Table 20–5

Worksheet for Ex. 20–4
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LN (63.625, 2.594)

50 60 70
0

0.1

0.2

Pr
ob

ab
ili

ty
 d

en
si

ty

Ultimate tensile strength, kpsi

Figure 20–8

Histogram for Ex. 20–4 and
Ex. 20–5 with normal and
lognormal probability density
functions superposed.

EXAMPLE 20–5 Continue Ex. 20–4, but fit a lognormal density function.

Solution From Eqs. (20–18) and (20–19),

μy = ln μx − ln
√

1 + C2
x = ln 63.625 − 1

2 ln(1 + 0.040 7732) = 4.1522

σ̂y =
√

ln
(
1 + C2

x

) =
√

ln(1 + 0.040 7732) = 0.0408

The probability density of a lognormal distribution is given in Eq. (20–17) as

g(x) = 1

x (0.0408)
√

2π
exp

[
−1

2

(
ln x − 4.1522

0.0408

)2
]

for x > 0

For example, g(63.625) = 0.1537. This lognormal density has been added to Table 20–5.
Plot the lognormal PDF superposed on the histogram of Ex. 20–4 along with the normal
density. As seen in Fig. 20–8, both normal and lognormal densities fit well.

The Uniform Distribution
The uniform distribution is a closed-interval distribution that arises when the chance of
an observation is the same as the chance for any other observation. If a is the lower
bound and b is the upper bound, then the probability density function (PDF) for the uni-
form distribution is

f (x) =
{

1/(b − a) a ≤ x ≤ b

0 a > x > b
(20–20)
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The cumulative density function (CDF), the integral of f (x), is thus linear in the range
a ≤ x ≤ b given by

F(x) =
{ 0 x < a

(x − a)/(b − a) a ≤ x ≤ b
1 x > b

(20–21)

The mean and standard deviation are given by

μx = a + b

2
(20–22)

σ̂x = b − a

2
√

3
(20–23)

The uniform distribution arises, among other places in manufacturing, where a
part is mass-produced in an automatic operation and the dimension gradually changes
through tool wear and increased tool forces between setups. If n is the part sequence or
processing number, and n f is the sequence number of the final-produced part before
another setup, then the dimension x graphs linearly when plotted against the sequence
number n. If the last proof part made during the setup has a dimension xi , and the final
part produced has the dimension x f , the magnitude of the dimension at sequence num-
ber n is given by

x = xi + (x f − xi )
n

n f
= xi + (x f − xi )F(x) (a)

since n/n f is a good approximation to the CDF. Solving Eq. (a) for F(x) gives

F(x) = x − xi

x f − xi
(b)

Compare this equation with the middle form of Eq. (20–21).

The Weibull Distribution
The Weibull distribution does not arise from classical statistics and is usually not
included in elementary statistics textbooks. It is far more likely to be discussed and used
in works dealing with experimental results, particularly reliability. It is a chameleon dis-
tribution, asymmetrical, with different values for the mean and the median. It contains
within it a good approximation of the normal distribution as well as an exact represen-
tation of the exponential distribution. Most reliability information comes from labora-
tory and field service data, and because of its flexibility, the Weibull distribution is
widely used.

The expression for reliability is the value of the cumulative density function com-
plementary to unity. For the Weibull this value is both explicit and simple. The reliability
given by the three-parameter Weibull distribution is

R(x) = exp

[
−

(
x − x0

θ − x0

)b
]

x ≥ x0 ≥ 0 (20–24)

where the three parameters are

x0 = minimum, guaranteed, value of x

θ = a characteristic or scale value (θ ≥ x0)

b = a shape parameter (b > 0)
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Figure 20–9

The density function of the
Weibull distribution showing
the effect of skewness of the
shape parameter b.

1To estimate the Weibull parameters from data, see J. E. Shigley and C. R. Mischke, Mechanical
Engineering Design, 5th ed., 1989, McGraw-Hill, New York, Sec. 4–12. The Weibull parameters are
determined for the data given in Ex. 2–4.

For the special case when x0 = 0, Eq. (20–24) becomes the two-parameter Weibull

R(x) = exp

[
−

( x

θ

)b
]

x ≥ 0 (20–25)

The characteristic variate θ serves a role similar to the mean and represents a value of
x below which lie 63.2 percent of the observations.

The shape parameter b controls the skewness of the distribution. Figure 20–9
shows that large b’s skew the distribution to the right and small b’s skew it to the left.
In the range 3.3 < b < 3.5, approximate symmetry is obtained along with a good
approximation to the normal distribution. When b = 1, the distribution is exponential.

Given a specific required reliability, solving Eq. (20–24) for x yields

x = x0 + (θ − x0)

(
ln

1

R

)1/b

(20–26)

To find the probability function, we note that

F(x) = 1 − R(x) (a)

f (x) = d F(x)

dx
= −d R(x)

dx
(b)

Thus, for the Weibull,

f (x) =
⎧⎨⎩

b

θ − x0

(
x − x0

θ − x0

)b−1

exp

[
−

(
x − x0

θ − x0

)b
]

x ≥ x0 ≥ 0

0 x ≤ x0

(20–27)

The mean and standard deviation are given by

μx = x0 + (θ − x0) �(1 + 1/b) (20–28)

σ̂x = (θ − x0)
√

�(1 + 2/b) − �2(1 + 1/b) (20–29)

where � is the gamma function and may be found tabulated in Table A–34. The nota-
tion for a Weibull distribution is1

x = W(x0, θ, b) (20–30)
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EXAMPLE 20–6 The Weibull is used extensively for expressing the reliability of rolling-contact bearings
(see Sec. 11–4). Here, the variate x is put in dimensionless form as x = L/L10 where
L is bearing life, in say, number of cycles; and L10 is the manufacturer’s rated life of the
bearing where 10 percent of the bearings have failed (90 percent reliability).

Construct the distributional properties of a 02–30 mm deep-groove ball bearing if
the Weibull parameters are x0 = 0.0200, θ = 4.459, and b = 1.483. Find the mean,
median, L90, and standard deviation.

Solution From Eq. (20–28) the mean dimensionless life is

Answer μx = x0 + (θ − x0)�(1 + 1/b)

= 0.0200 + (4.459 − 0.0200)�(1 + 1/1.483) = 4.033

This says that the average bearing life is 4.033 L10. The median dimensionless life
corresponds to R = 0.5, or L50, and from Eq. (20–26) is

Answer x0.5 = x0 + (θ − x0)

(
ln

1

0.5

)1/b

= 0.0200 + (4.459 − 0.0200)

(
ln

1

0.5

)1/1.483

= 3.487

For L90, R = 0.1, the dimensionless life x is

Answer x0.90 = 0.0200 + (4.459 − 0.0200)

(
ln

1

0.1

)1/1.483

= 7.810

The standard deviation of the dimensionless life is given by Eq. (20–29):

Answer σ̂x = (θ − x0)
√

�(1 + 2/b) − �2(1 + 1/b)

= (4.459 − 0.0200)
√

�(1 + 2/1.483) − �2(1 + 1/1.483) = 2.753

20–4 Propagation of Error
In the equation for axial stress

σ = F

A
(a)

suppose both the force F and the area A are random variables. Then Eq. (a) is written as

� = F
A

(b)

and we see that the stress � is also a random variable. When Eq. (b) is solved, the errors
inherent in F and in A are said to be propagated to the stress variate �. It is not hard to
think of many other relations where this will occur.

Suppose we wish to add the two variates x and y to form a third variate z. This is
written as

z = x + y (c)

The mean is given as

μz = μx + μy (d)

bud29281_ch20_0977-1002.qxd  12/22/09  2:55 PM  Page 992 epg 203:MHDQ196:bud29281:0073529281:bud29281_pagefiles:



Statistical Considerations 993

Table 20–6

Means and Standard

Deviations for Simple

Algebraic Operations

on Independent

(Uncorrelated) Random

Variables

Note: The coefficient of variation of variate x is Cx = σ̂x/μx . For small COVs their square is small compared
to unity, so the first term in the powers of x expressions are excellent approximations. For correlated
products and quotients see Charles R. Mischke, Mathematical Model Building, 2nd rev. ed., Iowa State
University Press, Ames, 1980, App. C.

2See E. B. Haugen, Probabilistic Mechanical Design, Wiley, New York, 1980, pp. 49–54.

The standard deviation follows the Pythagorean theorem. Thus the standard deviation
for both addition and subtraction of independent variables is

σ̂z =
√

σ̂ 2
x + σ̂ 2

y (e)

Similar relations have been worked out for a variety of functions and are displayed in
Table 20–6. The results shown can easily be combined to form other functions.

An unanswered question here is what is the distribution that results from the vari-
ous operations? For answers to this question, statisticians use closure theorems and the
central limit theorem.2

Function Mean ( ) Standard Deviation ( )

a a 0

x μ x ˆ σx

x + a μ x + a ˆ σx

ax aμ x a ˆ σx

x + y μ x + μ y ˆ σ2
x + ˆ σ2

y

1/2

x − y μ x − μ y ˆ σ2
x + ˆ σ2

y

1/2

xy μ xμ y μ xμ y C2
x + C2

y + C2
x C2

y

1/2

x/y μ x/μ y μ x/μ y C2
x + C2

y 1 + C2
y

1/2

xn μn
x 1 + n(n − 1)

2
C2

x | n| μn
xCx 1 + (n − 1)2

4
C2

x

1/x
1

μ x
1 + C2

x
Cx

μ x
1 + C2

x

1/x2 1

μ2
x

1 + 3C2
x

2Cx

μ2
x

1 + 9

4
C2

x

1/x3 1

μ3
x

1 + 6C2
x

3Cx

μ3
x

1 + 4C2
x

1/x4 1

μ4
x

1 + 10 C2
x

4Cx

μ4
x

1 + 25

4
C2

x

√
x

√
μ x 1 − 1

8
C2

x

√
μ x

2
Cx 1 + 1

16
C2

x

x2 μ2
x 1 + C2

x 2μ2
x Cx 1 + 1

4
C2

x

x3 μ3
x 1 + 3C2

x 3μ3
x Cx 1 + C2

x

x4 μ4
x 1 + 6C2

x 4μ4
x Cx 1 + 9

4
C2

x

ˆ
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EXAMPLE 20–7 A round bar subject to a bending load has a diameter d = LN(2.000, 0.002) in. This
equivalency states that the mean diameter is μd = 2.000 in and the standard deviation is
σ̂d = 0.002 in. Find the mean and the standard deviation of the second moment of area.

Solution The second moment of area is given by the equation

I = πd4

64

The coefficient of variation of the diameter is

Cd = σ̂d

μd
= 0.002

2
= 0.001

Using Table 20–6, we find

Answer μI = (π/64)μ4
d

(
1 + 6C2

d

) = (π/64)(2.000)4[1 + 6(0.001)2] = 0.785 in4

Answer σ̂I = 4μ4
dCd

[
1 + (9/4)C2

d

] = 4(2.000)4(0.001)[1 + (9/4)(0.001)2] = 0.064 in4

These results can be expressed in the form

I = LN(0.785, 0.064) = 0.785LN(1, 0.0815) in4

20–5 Linear Regression
Statisticians use a process of analysis called regression to obtain a curve that best fits a
set of data points. The process is called linear regression when the best-fitting straight
line is to be found. The meaning of the word best is open to argument, because there
can be many meanings. The usual method, and the one employed here, regards a line as
“best” if it minimizes the squares of the deviations of the data points from the line.

Figure 20–10 shows a set of data points approximated by the line AB. The standard
equation of a straight line is

y = mx + b (20–31)

x

b

y

A

B m
1

Figure 20–10

Set of data points approximated
by regression line AB.
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3From this point on, for economy of notation, the limits of the summation of i(1, N ) will not be displayed.

where m is the slope and b is the y intercept. Consider a set of N data points (xi , yi ). In
general, the best-fit line will not intersect a data point. Thus, we can write

yi = mxi + b + εi (b)

where εi = yi − y is the deviation between the data point and the line. The sum of the
squares of the deviations is given by3

E =
∑

ε2
i =

∑
(yi − mxi − b)2 (c)

Minimizing E , the sum of the squared errors, expecting a stationary point minimum,
requires ∂E/∂m = 0 and ∂E/∂b = 0. This results in two simultaneous equations for
the slope and y intercept denoted as m̂ and b̂, respectively. Solving these equations
results in

m̂ = N
∑

xi yi − ∑
xi

∑
yi

N
∑

x2
i − (∑

xi
)2 =

∑
xi yi − N x̄ ȳ∑
x2

i − N x̄2
(20–32)

b̂ =
∑

yi − m̂
∑

xi

N
= ȳ − m̂x̄ (20–33)

Once you have established a slope and an intercept, the next point of interest is to
discover how well x and y correlate with each other. If the data points are scattered all
over the xy plane, there is obviously no correlation. But if all the data points coincide
with the regression line, then there is perfect correlation. Most statistical data will be in
between these extremes. A correlation coefficient r, having the range −1 ≤ r ≤ +1,
has been devised to answer this question. The formula is

r = m̂
sx

sy
(20–34)

where sx and sy are the standard deviations of the x coordinates and y coordinates of the
data, respectively. If r = 0, there is no correlation; if r = ±1, there is perfect correla-
tion. A positive or negative r indicates that the regression line has a positive or negative
slope, respectively.

The standard deviations for m̂ and b̂ are given by

sm̂ = sy·x√∑
(xi − x̄)2

(20–35)

sb̂ = sy·x

√
1

N
+ x̄2∑

(xi − x̄)2 (20–36)

where

sy·x =
√∑

y2
i − b̂

∑
yi − m̂

∑
xi yi

N − 2
(20–37)

is the standard deviation of the scatter of the data from the regression line.
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Table 20–7

Worksheet for Ex. 20–6

y x
�, psi �

5 033 0.000 20 0.000 000 040 1.006 600 25 330 089 0.000 000 130

10 068 0.000 30 0.000 000 090 3.020 400 101 364 624 0.000 000 069

15 104 0.000 50 0.000 000 250 7.552 000 228 130 816 0.000 000 004

20 143 0.000 65 0.000 000 423 13.092 950 405 740 449 0.000 000 008

35 261 0.001 15 0.000 001 323 40.557 050 1 243 761 289 0.000 000 348∑
85 615 0.002 80 0.000 002 125 65.229 000 2 004 328 267 0.000 000 556

Note: ȳ = 85 615/5 = 17 123 psi, x̄ = 0.002 80/5 = 0.000 56.

EXAMPLE 20–8 A specimen of a medium carbon steel was tested in tension. With an extensometer in
place, the specimen was loaded then unloaded, to see if the extensometer reading returned
to the no-load reading, then the next higher load was applied. The loads and extensometer
elongations were reduced to stress σ and strain ε, producing the following data:

σ, psi 5033 10 068 15 104 20 143 35 267

ε 0.000 20 0.000 30 0.000 50 0.000 65 0.001 15

Find the mean Young’s modulus Ē and its standard deviation. Since the extensometer
seems to have an initial reading at no load, use a y = mx + b regression.

Solution From Table 20–7, x̄ = 0.002 80/5 = 0.000 56, ȳ = 85 615/5 = 17 123. Note that a
regression line always contains the data centroid. From Eq. (20–32)

Answer m̂ = 5(65.229) − 0.0028(85 615)

5(0.000 002 125) − 0.00282
= 31.03(106) psi = Ē

From Eq. (20–33)

b̂ = 0.000 002 125(85 615) − 0.002 80(65.229)

5(0.000 002 125) − 0.00282
= −254.69 psi

From Eq. (20–34), obtaining sx and sy from a statistics calculator routine,

r̂ = m̂sx

sy
= 31 031 597.85(3 162 163 10−4)

11 601.11
= 0.998

From Eq. (20–37), the scatter about the regression line is measured by the standard
deviation sy·x and is equal to

sy·x =
√∑

y2 − b̂
∑

y − m̂
∑

xy

N − 2

=
√

2 004 328 267 − (−254.69)85 615 − 31.03(106)(65.229)

5 − 2

= 811.1 psi

x2 xy y2 (x − x)2
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Figure 20–11

The data from Ex. 20–8 are
plotted. The regression line
passes through the data
centroid and among the data
points, minimizing the squared
deviations.

PROBLEMS
20–1 At a constant amplitude, completely reversed bending stress level, the cycles-to-failure experi-

ence with 69 specimens of 5160H steel from 1.25-in hexagonal bar stock was as follows:

L 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

f 2 1 3 5 8 12 6 10 8 5 2 3 2 1 0 1

where L is the life in thousands of cycles, and f is the class frequency of failures.
(a) Construct a histogram with class frequency f as ordinate.
(b) Estimate the mean and standard deviation of the life for the population from which the sample

was drawn.

20–2 Determinations of the ultimate tensile strength Sut of stainless steel sheet (17-7PH, condition TH
1050), in sizes from 0.016 to 0.062 in, in 197 tests combined into seven classes were

Sut, kpsi 174 182 190 198 206 214 222

Frequency, f 6 9 44 67 53 12 6

where f is the class frequency. Find the mean and standard deviation.

From Eq. (20–35), the standard deviation of m̂ is

Answer sm̂ = sy·x√∑
(x − x̄)2

= 811.1√
0.000 000 558

= 1.086(106) psi = sE

See Fig. 20–11 for the regression plot.
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20–3 A total of 58 AISI 1018 cold-drawn steel bars were tested to determine the 0.2 percent offset yield
strength Sy . The results were

Sy, kpsi 64 68 72 76 80 84 88 92

f 2 6 6 9 19 10 4 2

where Sy is the class midpoint and f is the class frequency. Estimate the mean and standard
deviation of Sy and its PDF assuming a normal distribution.

20–4 The base 10 logarithm of 55 cycles-to-failure observations on specimens subjected to a constant
stress level in fatigue have been classified as follows:

y 5.625 5.875 6.125 6.375 6.625 6.875 7.125 7.375 7.625 7.875 8.125

f 1 0 0 3 3 6 14 15 10 2 1

Here y is the class midpoint and f is the class frequency.
(a) Estimate the mean and standard deviation of the population from which the sample was taken

and establish the normal PDF.
(b) Plot the histogram and superpose the predicted class frequency from the normal fit.

20–5 A 1
2 -in nominal diameter round is formed in an automatic screw machine operation that is

initially set to produce a 0.5000-in diameter and is reset when tool wear produces diameters in
excess of 0.5008 in. The stream of parts is thoroughly mixed and produces a uniform distribution
of diameters.
(a) Estimate the mean and standard deviation of the large batch of parts from setup to reset.
(b) Find the expressions for the PDF and CDF of the population.
(c) If, by inspection, the diameters less than 0.5002 in are removed, what are the new PDF and CDF

as well as the mean and standard deviation of the diameters of the survivors of the inspection?

20–6 The only detail drawing of a machine part has a dimension smudged beyond legibility. The round
in question was created in an automatic screw machine and 1000 parts are in stock. A random sam-
ple of 50 parts gave a mean dimension of d̄ = 0.6241 in and a standard deviation of s = 0.000 581 in.
Toleranced dimensions elsewhere are given in integral thousandths of an inch. Estimate the miss-
ing information on the drawing.

20–7 (a) The CDF of the variate x is F(x) = 0.555x − 33, where x is in millimeters. Find the PDF, the
mean, the standard deviation, and the range numbers of the distribution.

(b) In the expression σ = F/A, the force F = LN(3600, 300) lbf and the area is A =
LN(0.112, 0.001) in2. Estimate the mean, standard deviation, coefficient of variation, and
distribution of �.

20–8 A regression model of the form y = a1 x + a2 x2 is desired. From the normal equations∑
y = a1

∑
x + a2

∑
x2∑

xy = a1

∑
x2 + a2

∑
x3

show that

a1 =
∑

y
∑

x3 − ∑
xy

∑
x2∑

x
∑

x3 − (∑
x2

)2
and a2 =

∑
x

∑
xy − ∑

y
∑

x2∑
x

∑
x3 − (∑

x2
)2
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For the data set

x 0.0 0.2 0.4 0.6 0.8 1.0

y 0.01 0.15 0.25 0.25 0.17 −0.01

find the regression equation and plot the data with the regression model.

20–9 R. W. Landgraf reported the following axial (push–pull) endurance strengths for steels of differ-
ing ultimate strengths:

Su Se
� Su Se

� Su Se
�

65 29.5 325 114 280 96

60 30 238 109 295 99

82 45 130 67 120 48

64 48 207 87 180 84

101 51 205 96 213 75

119 50 225 99 242 106

195 78 325 117 134 60

210 87 355 122 145 64

230 105 225 87 227 116

265 105

(a) Plot the data with S′
e as ordinate and Su as abscissa.

(b) Using the y = mx + b linear regression model, find the regression line and plot.

20–10 In fatigue studies a parabola of the Gerber type

σa

Se
+

(
σm

Sut

)2

= 1

is useful (see Sec. 6–12). Solved for σa the preceding equation becomes

σa = Se − Se

S2
ut

σ 2
m

This implies a regression model of the form y = a0 + a2 x2 . Show that the normal equations are∑
y = na0 + a2

∑
x2∑

xy = a0

∑
x + a2

∑
x3

and that

a0 =
∑

x3
∑

y − ∑
x2

∑
xy

n
∑

x3 − ∑
x

∑
x2

and a2 = n
∑

xy − ∑
x

∑
y

n
∑

x3 − ∑
x

∑
x2

Plot the data

x 20 40 60 80

y 19 17 13 7

superposed on a plot of the regression line.
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20–11 Consider the following data collected on a single helical coil extension spring with an initial
extension Fi and a spring rate k suspected of being related by the equation F = Fi + kx where
x is the deflection beyond initial. The data are

x, in 0.2 0.4 0.6 0.8 1.0 2.0

F, lbf 7.1 10.3 12.1 13.8 16.2 25.2

(a) Estimate the mean and standard deviation of the initial tension Fi .
(b) Estimate the mean and standard deviation of the spring rate k.

20–12 In the expression for uniaxial strain � � �/l, the elongation is specified as �∼ (0.0015,0.000 092)

in and the length as l ∼ (2.0000,0.0081) in. What are the mean, the standard deviation, and the
coefficient of variation of the corresponding strain �.

20–13 In Hooke’s law for uniaxial stress, � � �E, the strain is given as � ∼ (0.0005, 0.000 034) and
Young’s modulus as E ∼ (29.5, 0.885) Mpsi. Find the mean, the standard deviation, and the coef-
ficient of variation of the corresponding stress � in psi.

20–14 The stretch of a uniform rod in tension is given by the formula δ = Fl/AE . Suppose the terms in
this equation are random variables and have parameters as follows:

F ∼ (14.7, 1.3) kip A ∼ (0.226, 0.003) in2

l ∼ (1.5, 0.004) in E ∼ (29.5, 0.885) Mpsi

Estimate the mean, the standard deviation, and the coefficient of variation of the corresponding
elongation � in inches.

20–15 The maximum bending stress in a round bar in flexure occurs in the outer surface and is given by
the equation � = 32M/πd3. If the moment is specified as M ∼ (15 000,1350) lbf · in and the
diameter is d ∼ (2.00,0.005) in, find the mean, the standard deviation, and the coefficient of vari-
ation of the corresponding stress � in psi.

20–16 When a production process is wider than the tolerance interval, inspection rejects a low-end scrap
fraction α with x < x1 and an upper-end scrap fraction β with dimensions x > x2 . The surviving
population has a new density function g(x) related to the original f (x) by a multiplier a. This is
because any two observations xi and xj will have the same relative probability of occurrence as
before. Show that

a = 1

F(x2) − F(x1)
= 1

1 − (α + β)

and

g(x) =
{ f (x)

F(x2) − F(x1)
= f (x)

1 − (α + β)
x1 ≤ x ≤ x2

0 otherwise

20–17 An automatic screw machine produces a run of parts with a uniform distribution d =
U[0.748, 0.751] in because it was not reset when the diameters reached 0.750 in. The square
brackets contain range numbers.
(a) Estimate the mean, standard deviation, and PDF of the original production run if the parts are

thoroughly mixed.
(b) Using the results of Prob. 20–16, find the new mean, standard deviation, and PDF. Superpose

the PDF plots and compare.
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Statistical Considerations 1001

20–18 A springmaker is supplying helical coil springs meeting the requirement for a spring rate k of
10 ± 1 lbf/in. The test program of the springmaker shows that the distribution of spring rate is
well approximated by a normal distribution. The experience with inspection has shown that
8.1 percent are scrapped with k < 9 and 5.5 percent are scrapped with k > 11. Estimate the prob-
ability density function.

20–19 The lives of parts are often expressed as the number of cycles of operation that a specified per-
centage of a population will exceed before experiencing failure. The symbol L is used to desig-
nate this definition of life. Thus we can speak of L10 life as the number of cycles to failure
exceeded by 90 percent of a population of parts. Using the mean and standard deviation for the
data of Prob. 20–1, a normal distribution model, estimate the corresponding L10 life.

20–20 Fit a normal distribution to the histogram of Prob. 20–1. Superpose the probability density func-
tion on the f/(Nw) histographic plot. 

20–21 For Prob. 20–2, plot the histogram with f/(Nw) as ordinate and superpose a normal distribution
density function on the histographic plot.

20–22 For Prob. 20–3, plot the histogram with f/(Nw) as ordinate and superpose a normal distribution
probability density function on the histographic plot.

20–23 A 1018 cold-drawn steel has a 0.2 percent tensile yield strength Sy = N(78.4, 5.90) kpsi. A round
rod in tension is subjected to a load P = N(40, 8.5) kip. If rod diameter d is 1.000 in, what is the
probability that a random static tensile load P from P imposed on the shank with a 0.2 percent
tensile load Sy from Sy will not yield?

20–24 A hot-rolled 1035 steel has a 0.2 percent tensile yield strength Sy = LN(49.6, 3.81) kpsi. A
round rod in tension is subjected to a load P = LN(30, 5.1) kip. If the rod diameter d is 1.000 in,
what is the probability that a random static tensile load P from P on a shank with a 0.2 percent
yield strength Sy from Sy will not yield?

20–25 The tensile 0.2 percent offset yield strength of AISI 1137 cold-drawn steel rounds up to 1 inch in
diameter from 2 mills and 25 heats is reported histographically as follows:

Sy 93 95 97 99 101 103 105 107 109 111

f 19 25 38 17 12 10 5 4 4 2

where Sy is the class midpoint in kpsi and f is the number in each class. Presuming the distribu-
tion is normal, what is the yield strength exceeded by 99 percent of the population? 

20–26 Repeat Prob. 20–25, presuming the distribution is lognormal. What is the yield strength exceeded
by 99 percent of the population? Compare the normal fit of Prob. 20–25 with the lognormal fit by
superposing the PDFs and the histographic PDF.

20–27 A 1046 steel, water-quenched and tempered for 2 h at 1210°F, has a mean tensile strength of
105 kpsi and a yield mean strength of 82 kpsi. Test data from endurance strength testing at
104-cycle life give (S′

f e)104 = W[79, 86.2, 2.60] kpsi. What are the mean, standard deviation,
and coefficient of variation of (S′

f e)104 ?

20–28 An ASTM grade 40 cast iron has the following result from testing for ultimate tensile strength:
Sut = W[27.7, 46.2, 4.38] kpsi. Find the mean and standard deviation of Sut , and estimate the
chance that the ultimate strength is less than 40 kpsi.

20–29 A cold-drawn 301SS stainless steel has an ultimate tensile strength given by Sut = W[151.9,
193.6, 8.00] kpsi. Find the mean and standard deviation.
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20–30 A 100-70-04 nodular iron has tensile and yield strengths described by

Sut = W[47.6, 125.6, 11.84] kpsi

Sy = W[64.1, 81.0, 3.77] kpsi

What is the chance that Sut is less than 100 kpsi? What is the chance that Sy is less than 70 kpsi?

20–31 A 1038 heat-treated steel bolt in finished form provided the material from which a tensile test
specimen was made. The testing of many such bolts led to the description Sut = W[122.3, 134.6,
3.64] kpsi. What is the probability that the bolts meet the SAE grade 5 requirement of a minimum
tensile strength of 120 kpsi? What is the probability that the bolts meet the SAE grade 7 require-
ment of a minimum tensile strength of 133 kpsi?

20–32 A 5160H steel was tested in fatigue and the distribution of cycles to failure at constant stress level
was found to be n = W[36.9,133.6, 2.66] in 103 cycles. Plot the PDF of n and the PDF of the
lognormal distribution having the same mean and standard deviation. What is the L10 life (see
Prob. 20–19) predicted by both distributions?

20–33 A material was tested at steady fully reversed loading to determine the number of cycles to fail-
ure using 100 specimens. The results were

(10�5)L 3.05 3.55 4.05 4.55 5.05 5.55 6.05 6.55 7.05 7.55 8.05 8.55 9.05 9.55 10.05

f 3 7 11 16 21 13 13 6 2 0 4 3 0 0 1

where L is the life in cycles and f is the number in each class. Assuming a lognormal distribution,
plot the theoretical PDF and the histographic PDF for comparison.

20–34 The ultimate tensile strength of an AISI 1117 cold-drawn steel is Weibullian, with Su = W[70.3,
84.4, 2.01]. What are the mean, the standard deviation, and the coefficient of variation?

20–35 A 60-45-15 nodular iron has a 0.2 percent yield strength Sy with a mean of 49.0 kpsi, a standard
deviation of 4.2 kpsi, and a guaranteed yield strength of 33.8 kpsi. What are the Weibull para-
meters θ and b?

20–36 A 35018 malleable iron has a 0.2 percent offset yield strength given by the Weibull distribution
Sy = W[34.7, 39.0, 2.93] kpsi. What are the mean, the standard deviation, and the coefficient of
variation?

20–37 The histographic results of steady load tests on 237 rolling-contact bearings are:

L 1 2 3 4 5 6 7 8 9 10 11 12

f 11 22 38 57 31 19 15 12 11 9 7 5

where L is the life in millions of revolutions and f is the number of failures. Fit a lognormal
distribution to these data and plot the PDF with the histographic PDF superposed. From the log-
normal distribution, estimate the life at which 10 percent of the bearings under this steady load-
ing will have failed.
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